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Abstract: A new stochastic process was developed by considering the internal performance of
macro-states in which the sojourn time in each one is phase-type distributed depending on time.
The stationary distribution was calculated through matrix-algorithmic methods and multiple inter-
esting measures were worked out. The number of visits distribution to a determine macro-state
were analyzed from the respective differential equations and the Laplace transform. The mean
number of visits to a macro-state between any two times was given. The results were implemented
computationally and were successfully applied to study random telegraph noise (RTN) in resistive
memories. RTN is an important concern in resistive random access memory (RRAM) operation.
On one hand, it could limit some of the technological applications of these devices; on the other
hand, RTN can be used for the physical characterization. Therefore, an in-depth statistical analysis to
model the behavior of these devices is of essential importance.

Keywords: phase-type distributions; Markov processes; RRAM; random telegraph noise; statistics

1. Introduction

In several fields, such as computing and electronics engineering, it is of great interest
to analyze complex devices with several macro-states that evolve by time. It is usual to
consider Markov processes for this analysis, but in multiple occasions, the spent times in
each macro-state are not exponentially distributed. In this context, a new approach is to
consider that the spent time in each macro-state is phase-type (PH) distributed. In this
case, it is assumed that each macro-state is composed of internal performance states that
have a Markovian behavior. One interesting aspect is that the modeling of the stochastic
process can only occur when the macro-state process can be observed. For this new process,
the Markovianity is lost.

A phase-type distribution is defined as the distribution of the absorption time in an
absorbing Markov chain. These probability distributions constitute a class of distributions
on the positive real axis, which seems to strike a balance between generality and tractability,
thanks to its good properties. This class of distributions was introduced by Neuts [1,2]
and allows the modeling of complex problems in an algorithmic and computational way.
It has been widely applied in fields such as engineering to model complex systems [3–5],
queueing theory [6], risk theory [7] and electronics engineering [8].

The good properties of PH distributions due to their appealing probabilistic argu-
ments constitute their main feature of being mathematically tractable. Several well-known
probability distributions, e.g., exponential, Erlang, Erlang generalized, hyper-geometric,
and Coxian distributions, among others, are particular cases of PH. One of the most
important PH properties is that whatever nonnegative probability distribution can be
approximated as much as desired through a PH, accounting for the fact that the PH class
is dense in the set of probability distributions on the nonnegative half-line [9]. It allows
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the consideration of general distributions through PH approximations. Exact solutions
to many complex problems in stochastic modeling can be obtained either explicitly or
numerically by using matrix-analytic methods. The main features of PH distributions are
described in depth in [10].

A macro-state stochastic process is built here to model the behavior of different
random telegraph noise (RTN) signals. Given that the behavior of the different macro-
states (levels) is not exponentially distributed, we assume each level to be composed of
multiple internal phases that can be related with other levels. We show that if the internal
process, by considering internal states inside the macro-states, has a Markovian behavior,
the process between levels is not. For the latter, the sojourn time in each level is phase-type
distributed depending on the initial time. This fact is of great interest and gives us more
information about the device’s internal process.

Advanced statistical techniques are key tools to model complex physical and engi-
neering problems in many different areas of expertise. In this context, a new statistical
methodology is presented; we will concentrate in the study of resistive memories [11,12],
also known as resistive random access memories (RRAMs), a subgroup of a wide class
of electron devices named memristors [13]. They constitute a promising technology with
great potential in several applications in the integrated circuit realm.

Circuit design is a tough task because of the high number of electronic components
included in integrated circuits, therefore, electronic design automation (EDA) tools are
essential. These software tools need compact models that represent the physics of the
devices in order to fulfil their role in aiding circuit design. Although there are many works
in compact modeling in the RRAM literature [14,15], there is a lot to be done, in particular
in certain areas related to variability and noise. Variability is essential in modeling due to
the RRAM operation’s inherent stochasticity, since the physics is linked to random physical
mechanisms [16,17]. Another issue of great importance in these devices is noise. Among the
different types of noise, random telegraph noise is of great concern [18]. The disturbances
produced by one or several traps (physical active defects within the dielectric) inside the
conductive filament or close to it alter charge transport mechanisms and consequently,
current fluctuations can occur (Figure 1) that lead to RTN [14,15,19,20]. This noise can affect
the correct device operation in applications linked to memory-cell arrays and neuromorphic
hardware [14,16,21], posing important hurdles to the use of this technology in highly scaled
integrated circuits. Nevertheless, RTN fluctuations can also be beneficial, for instance,
when used as entropy sources in random number generators, an employment of most
interest in cryptography [22,23].

The application in this issue is addressed in the current work, in particular with the
statistical description of RTN signals in RRAMs. This study, in addition to physically
characterizing the devices, can be used for compact modeling and, therefore, as explained
above, for developing the software tools needed for circuit design. Accounting for the
aforementioned intrinsic stochasticity of these devices, the choice of a correct statistical
strategy to attack this problem is essential in the analysis. In this respect, we use the
PH distributions, which have already been employed to depict some facets of RRAM
variability [24]; nonetheless, as far as we know, they have not been used in RTN analysis.

In our study, we deal with devices whose structure is based on the Ni/HfO2/Si stack.
The fabrication details, as well as their electric characterization, are given in [25]. RTN mea-
surements were recorded in the time domain by means of an HP-4155B semiconductor
parameter analyzer (Figure 1). The current fluctuation between levels (see the marked
levels in red in Figure 1), ∆I, and the spent time in each of the levels are key parameters
to analyze. The associated time with the current low level is known as emission time (τe),
which is linked to the time the active defect keeps a “captured” electron trapped until it
releases it (through this time, it is said that the defect is occupied). On the other hand,
the capture time (τc) represents the time taken to capture an electron by an empty defect.
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Figure 1. Current versus time trace for a Ni/HfO2/Si device in the high resistance state HRS, in 
which the RTN noise can clearly be seen. A two-level signal is shown; the two different current 
levels are marked with the corresponding current thresholds. Another RTN trace is shown in the 
inset, measured for the same device. Three current levels are seen in this case.  

The manuscript is organized as follows: in Section 2, the proposed statistical pro-
cedure is described; in Section 3, we deepen on the measures associated; and in Section 4, 
the number of visits to a determined macro-state is presented. The parameter estimation 
is unfolded in Section 5, and the application of the methodology developed here in Sec-
tion 6. Finally, conclusions related to the main contributions of this work are presented in 
Section 7. 

2. Statistical Methodology 
Different RTN signals have been employed here, such as the ones shown in Figure 1. 

We have determined the number of current levels in order to be able to calculate the 
emission and capture times for a certain time interval. The current thresholds (red lines in 
Figure 1) were chosen to allow the extraction algorithm to calculate the time intervals 
corresponding to the levels defined previously. 

In order to explain these issues, a new model is first built in transient and stationary 
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Figure 1. Current versus time trace for a Ni/HfO2/Si device in the high resistance state HRS, in which
the RTN noise can clearly be seen. A two-level signal is shown; the two different current levels
are marked with the corresponding current thresholds. Another RTN trace is shown in the inset,
measured for the same device. Three current levels are seen in this case.

The manuscript is organized as follows: in Section 2, the proposed statistical proce-
dure is described; in Section 3, we deepen on the measures associated; and in Section 4,
the number of visits to a determined macro-state is presented. The parameter estimation is
unfolded in Section 5, and the application of the methodology developed here in Section 6.
Finally, conclusions related to the main contributions of this work are presented in Section 7.

2. Statistical Methodology

Different RTN signals have been employed here, such as the ones shown in Figure 1.
We have determined the number of current levels in order to be able to calculate the
emission and capture times for a certain time interval. The current thresholds (red lines
in Figure 1) were chosen to allow the extraction algorithm to calculate the time intervals
corresponding to the levels defined previously.

In order to explain these issues, a new model is first built in transient and station-
ary regimes.

2.1. The Model

We assume a stochastic process {X(t); t ≥ 0} with macro-state space E = {1, 2, . . . , r}.
Each macro-state k, level k, is composed of nk internal phases or states denoted as ik

h
for h = 1, . . . ,nk. We assume that the device internal performance is governed by a
Markov process, {J(t); t ≥ 0}, with state space E =

{
i11, . . . , i1n1

, i21, . . . , i2n2
, . . . , ir1, . . . , irnr

}
,

and with an initial distribution θ, and the following generator matrix expressed by blocks:

Q =



Q11 · · · Q1k · · · Q1r
. . .

... Qkk
...

. . .
Qr1 · · · Qrk · · · Qrr


where the matrix block Qij contains the transition intensities between the states of the
macro-states from i to j.
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Throughout this work, we will denote Qk as the matrix with zeros except the col-
umn matrix block k of Q, and Q−k as the matrix Q with zeros in the k-th block column.
These matrices give the transition intensities of macro-state k and of any macro-state different
to k, respectively.

Thus:

Qk =

 0 . . . 0 Q1k 0 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 Qrk 0 . . . 0



Q−k =

 Q11 . . . Q1,k−1 0 Q1,k+1 . . . Q1r
... . . .

...
...

... . . .
...

Qr1 . . . Qr,k−1 0 Qr,k+1 . . . Qrr


It can be seen that the following equality holds: Q = Qk + Q−k.

Given the Q-matrix of the Markov process, the transition probability matrix for the
process {J(t); t ≥ 0} is given by P(t) = exp{Qt}. From this and from the initial distribution θ,
the transient distribution at time t is given by (P{X(t) = i11}, P{X(t) = i12}, . . . , P{X(t) = irnr }) =
a(t) = θ·P(t). The order of this vector is 1 x ∑r

i=1 ni.
The transition probabilities for the process {X(t); t ≥ 0} can be obtained from the

transition probabilities of the Markov process {J(t); t ≥ 0}. If it is denoted as H(·,·) where
the transition between macro-states i→j is given by:

hij(s, t) = P{X(t) = j|X(s) = i} =
∑

h∈j
∑

k∈i
P{J(t)=h|J(s)=k}P{J(s)=k}

∑
k∈i

P{J(s)=k}

=
∑

k∈i

[
ak(s) ∑

h∈j
pkh(t−s)

]
∑

k∈i
ak(s)

.

This transition probability can be expressed in a matrix-algorithmic form as follows.
Denoting by Ak a matrix of zeros with order ∑r

i=1 ni x ∑r
i=1 ni except the block correspond-

ing to the macro-state k, which is the identity matrix, then:

hij(s, t) = P{X(t) = j|X(s) = i} =
a(s)AiP(t− s)Aj · e

a(s)Ai · e

where a(t)Aie is the probability of being in the macro-state i at time t, with e being a
column vector of ones with an appropriate order. A similar reasoning can be done with the
embedded jumping probability.

Note that the matrix H is a stochastic matrix, and therefore it is a transition matrix of a
Markov process. However, an important remark is that the Markov process related to the
matrix H does not correspond to the process defined in this section. In fact, this process is
non-homogeneous and not Markovian.

2.2. Stationary Distribution

The stationary distribution for the process {X(t); t ≥ 0} can be calculated by blocks
from the stationary distribution for the process {J(t); t ≥ 0}. It is well known that this
distribution verifies the balance equations πQ = 0 and the normalization equation πe = 1.
We denote πk as the block of π corresponding to the macro-state k. It is denoted as πke
(k = 1,...,r) to the stationary distribution for the macro-state k of the process {X(t); t ≥ 0}.

The stationary distribution has been worked out by blocks in order to reduce the
computational cost, according to the macro-states, and applying matrix-analytic methods.
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As stated above, the stationary distribution verifies the following system:

π1Q11 + π2Q21 + π3Q31 + · · ·+ πrQr1 = 0
π1Q12 + π2Q22 + π3Q32 + · · ·+ πrQr2 = 0
π1Q13 + π2Q23 + π3Q33 + · · ·+ πrQr3 = 0

· · ·
π1Q1r + π2Q2r + π3Q3r + · · ·+ πrQrr = 0

π · e = 1.

It has been solved by using matrix-analytics methods, and the solution is given by

πj = −
j−1

∑
i=1

πiR
r−j+1
ij ; j = 2, . . . , r

where R1
ij = QijQ

−1
jj for any i, j = 1, . . . , r with i 6= j

Rr−j+1
ij =

(
R1

ij + Hr−j+1
ij

)(
I + Hr−j+1

jj

)−1
for 1 ≤ i < j < r being

Hr−j+1
ij = − ∑

j<u1≤r
Rr−u1+1

iu1
R1

u1 j + ∑
j<u1<u2≤r

Rr−u1+1
iu1

Rr−u2+1
u1u2 R1

u2 j

− ∑
j<u1<u2<u3≤r

Rr−u1+1
iu1

Rr−u2+1
u1u2 Rr−u3+1

u2u3 R1
u3 j

+ ∑
j<u1<u2<u3<u4≤r

Rr−u1+1
iu1

Rr−u2+1
u1u2 Rr−u3+1

u2u3 Rr−u4+1
u3u4 R1

u4 j − . . . for 1 ≤ i < j < r

± ∑
j<u1<u2<···<ur−j≤r

Rr−u1+1
iu1

Rr−u2+1
u1u2 · · ·Rr−ur−2+1

ur−3ur−2 R1
ur−2 j

∓I{j<r−1 or i 6=j}R
r−j
1,j+1Rr−j

j+1,j+2 · · ·R
1
r−1,rR1

rj.

The vector π1 is worked out as follows:

π1 = (1, 0)
[
B
∣∣(I + Hr

11)
∗ ]−1

Where, given a matrix A, A* is the matrix A without the last column, and:
B = e− ∑

j<u1≤r
Rr−u1+1

iu1
e + ∑

j<u1<u2≤r
Rr−u1+1

iu1
Rr−u2+1

u1u2 e− ∑
j<u1<u2<u3≤r

Rr−u1+1
iu1

Rr−u2+1
u1u2 Rr−u3+1

u2u3 e

+ ∑
j<u1<u2<u3<u4≤r

Rr−u1+1
iu1

Rr−u2+1
u1u2 Rr−u3+1

u2u3 Rr−u4+1
u3u4 e− . . .

± ∑
j<u1<u2<···<ur−j≤r

Rr−u1+1
iu1

Rr−u2+1
u1u2 · · ·Rr−ur−2+1

ur−3ur−2 e.

Finally, the stationary distribution of the process {X(t); t ≥ 0} is given by
(π1 · e,π2 · e, · · · ,πr · e).

Algorithm to calculate the stationary distribution

Step 1. For i, j =1, . . . , r and i 6= j
Compute R1

ij
Step 2. For j = r−1, . . . , 2 {

For i = 1, . . . , j {
Compute Hr−j+1

ij }
For i = 1, . . . , j {
Compute Rr−j+1

ij (i 6= j)}}
Step 3. Compute Hr

11 and B
Step 4. Compute π1
Step 5. Compute π2, . . . ,πr and π1 · e, . . . ,πr · e
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Example. Case r = 4
Step 1.

R1
12 = Q12Q−1

22 ; R1
13 = Q13Q−1

33 ; R1
14 = Q14Q−1

44
R1

21 = Q21Q−1
11 ; R1

23 = Q23Q−1
33 ; R1

24 = Q24Q−1
44

R1
31 = Q31Q−1

11 ; R1
32 = Q32Q−1

22 ;R1
34 = Q34Q−1

44
Step 2.

H2
13 = −R1

14R1
43; H2

23 = −R1
24R1

43; H2
33 = −R1

34R1
43

R2
13 =

(
R1

13 + H2
13
)(

I + H2
33
)−1; R2

23 =
(
R1

23 + H2
23
)(

I + H2
33
)−1

H3
12 = −R2

13R1
32 −R1

14R1
42 + R2

13R1
34R1

42
H3

22 = −R2
23R1

32 −R1
24R1

42 + R2
23R1

34R1
42

R3
12 =

(
R1

12 + H3
12
)(

I + H3
22
)−1

Step 3.
H4

11 = −R3
12R1

21 −R2
13R1

32 −R1
14R1

41 + R3
12R2

23R1
31 + R3

12R1
24R1

31 + R2
13R1

34R1
41 −R3

12R2
23R1

34R1
41

B = e−R3
12 · e−R2

13 · e−R1
14 · e + R3

12R2
23 · e + R3

12R1
24 · e + R2

13R1
34 · e−R3

12R2
23R1

34 · e
Step 4.

π1 = (1, 0)
[
B
∣∣∣(I + H4

11
)∗ ]−1

Step 5.
π2 = −π1R3

12; π3 = −π1R2
13 − π2R2

23; π4 = −π1R1
14 − π2R1

24 − π3R1
34

3. Associated Measures

Several associated measures, such as the sojourn time in each level (macro-state) and
the number of visits to each macro-state by time, have been worked out.

3.1. Sojourn Time Phase-Type Distribution

One interesting aspect to address at this point is the probability distribution of the
sojourn time in a macro-state. It is well known that for the Markov process J(t), the sojourn
time in any state is exponentially distributed. For the stochastic process X(t), it is different.

We denote T(X(s)) as the random sojourn time in macro-state X(s) from time s. If the
macro-state is known at time s, then:

P{T(X(s)) > t|X(s) = i} = a(s)Ai · exp{AiQAit} · e
a(s)Ai · e

Therefore, the probability distribution of T(X(s))|X(s) = i , for any s is phase-type dis-
tributed for any s with representation

(
a(s)Ai

a(s)Ai·e
, AiQAi

)
. Obviously, this distribution is

the same as
(

b(s)
b(s)·e , Qii

)
, with b(s) being the vector θP(s) restricted to the states of the

macro-state i.
If the process {X(t); t ≥ 0} has reached the stationary regime, then, if the process is in

macro-state i, the probability distribution of the sojourn time is PH with representation(
πAi
πAi·e , AiQAi

)
.

3.2. First Step Time

It is well-known that the first step-time distribution for the process {J(t); t ≥ 0} from
state l (out of macro-state k) to a macro-state k is phase-type distributed with representation
(θl , Q−2k) with θl = (0, . . . , 0, 1, 0, . . . , 0), where the value 1 corresponds to state l and
Q−2k is the matrix Q with row and column blocks of zeros corresponding to the macro-state
k. If we denote Th(s, k) as the first step time from macro state h, at time s, to macro-state
k, then:

P(Th(s, k) > t) =
∑

j∈k
∑

i∈h
P(T(j)>t|J(s)=i)P(J(s)=i)

∑
i∈h

P(J(s)=i)

=
a(s)Ah·exp{Q−2kt}·e

a(s)Ahe .
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4. Number of Visits to a Macro-State

One interesting measure is the number of visits to a determined state between any
two times s and t. We denote Nk(s, t) as the number of visits to the macro-state k from time
s up to time t. We denote pk(n, s, t) as the matrix whose (i, j) element is:

[pk(n, s, t)]ij = P{Nk(s, t) = n, J(t) = j|J(s) = i}
= P{Nk(t− s) = n, J(t− s) = j|J(0) = i}
= [pk(n, t− s)]ij.

The probability matrix verifies the following differential equations:

p′k(n, t) = pk(n, t)
(

Q−k + Q̃kk

)
+ pk(n− 1, t)

(
Qk − Q̃kk

)
; n ≥ 1,

with initial condition pk(n, 0) = 0, with Q̃kk a matrix of zeros, with the same order than Q,
except for the matrix block Qkk.

For n = 0:
p′k(0, t) = pk(0, t)

(
Q−k + Q̃kk

)
pk(0, 0) = I

where, from the last two expressions we have that:

pk(0, t) = exp
{(

Q−k + Q̃kk

)
t
}

To obtain the probability matrix, we use Laplace transforms. It is well known that given a
locally integrable function f (t), its Laplace transform is defined as f ∗(u) =

∫ ∞
0 e−ut f (t)dt.

Therefore:
up∗k (0, u)− I = p∗k (0, u)

(
Q−k + Q̃kk

)
up∗k (n, u) = p∗k (n, u)

(
Q−k + Q̃kk

)
+ p∗k (n− 1, u)

(
Qk − Q̃kk

)
; n ≥ 1

Then:
p∗k (0, u) =

[
uI−

(
Q−k + Q̃kk

)]−1

p∗k (n, u) = p∗k (n− 1, u)
(

Qk − Q̃kk

)[
uI−

(
Q−k + Q̃kk

)]−1
; n ≥ 1

Thus, it can be proved that:

p∗k (n, u) =
[
uI−

(
Q−k + Q̃kk

)]−1
An(u); n ≥ 0

with A(u) being:

A(u) =
(

Qk − Q̃kk

)[
uI−

(
Q−k + Q̃kk

)]−1

Taking the inverse Laplace transform, the function pk(n, t) is achieved, and for the
non-homogeneous Markov process {X(t); t ≥ 0}, we have:

P{Nk(n, s, t) = n, X(t) = j|X(s) = i} =
θP(s)Aipk(n, t− s)Aj · e

θP(s)Ai · e

Therefore:

P{Nk(s, t) = n} = θ · P(s) · pk(n, t− s) · e, for n = 0, 1, 2, . . .
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4.1. Expected Number of Visits to Determine a Macro-State

The mean number of visits to the macro-state k can be obtained as follows. This measure
is given by:

E{Nk(t)} = θ ·
∞

∑
n=0

n · pk(n, t) · e = θ ·Mk(t) · e

From the differential equations above, we have:

∞

∑
n=1

n · p′k(n, t) =
∞

∑
n=1

n · pk(n, t)
(

Q−k + Q̃kk

)
+

∞

∑
n=1

n · pk(n− 1, t)
(

Qk − Q̃kk

)
∞

∑
n=1

n · p′k(n, t) =
∞

∑
n=1

n · pk(n, t)
(

Q−k + Q̃kk

)
+

∞

∑
n=1

n · pk(n, t)
(

Qk − Q̃kk

)
+ P(t)

(
Qk − Q̃kk

)
M′

k(t) = Mk(t)
[(

Q−k + Q̃kk

)
+
(

Qk − Q̃kk

)]
+ P(t)

(
Qk − Q̃kk

)
M′

k(t) = Mk(t)Q + P(t)
(

Qk − Q̃kk

)
Given that Q is a conservative matrix, then:

M′
k(t) · e = P(t)

(
Qk − Q̃kk

)
· e

with initial condition Mk(0) = 0 if the initial state is not considered, or Mk(0) = Ak if the
initial state is counted.

Therefore, for the first and second cases, we have, respectively:

E[Nk(t)] = θ ·Mk(t) · e = θ ·
∫ t

0
P(u)du

(
Qk − Q̃kk

)
· e

or

E[Nk(t)] = θ ·Ak · e + θ ·
∫ t

0
P(u)du

(
Qk − Q̃kk

)
· e

5. Parameter Estimation

The likelihood function when the exact change time between macro-states is known is
achieved. For a device l we observe ml transition times, denoted as:

0 = tl
0, tl

1, tl
2, . . . , tl

ml−1, tl
ml

where the last time is a complete or a censoring time.
The time tl

a corresponds to the transition from xl
a to xl

a+1. These macro-states are:
xl

0, xl
1, xl

2, . . . , xl
ml−1, xl

ml
.

This device contributes to the likelihood function: likelihood function:

Ll = αxl
0

[
ml−1

∏
a=0

e
Q

xl
a xl

a
(tl

a+1−tl
a)
(

Qxl
axl

a+1

)τl
]

e

where τl is 0 if the last time is a censoring time, and is 1 otherwise.
When m independent devices are considered:

L =
m

∏
l=1

Ll =
m

∏
l=1

αxl
0

[
ml−1

∏
a=0

e
Q

xl
a xl

a
(tl

a+1−tl
a)
(

Qxl
axl

a+1

)τl
]

e

This function is maximized by considering that Qaa is a square sub-stochastic matrix
whose main diagonal is negative and the rest are positive values, and Qab a matrix with

positive elements with
r
∑

b=1
Qabe = 0 for any a and b.
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Other log-likelihood function is given from the transition probabilities of the process

log L =
m

∑
l=1

ml−1

∑
a=0

log
(

hxl
axl

a+1

(
tl
a, tl

a+1

))
.

6. Application of the Developed Methodology

We have made use of measurements of current-time traces in a unipolar RRAM.
The RTN signals had an easy pattern, so different features of the device could be studied.
Current traces showed, for instance, the number of current levels in the signal, and also the
frequency at which each of these levels was active. The developed methodology allows the
modeling of the internal states under an approach based on hidden Markov processes that
produces the observed output (RTN signal measured). By analyzing the signals shown
in Figure 1, we are able to determine these states and characterize them, probabilistically
speaking, in order to understand their nature. It is possible to reproduce similar signals in
case they are needed for a circuit simulation or physical characterization of the traps that
help to generate the signals.

Specifically, we are going to analyze the behavior of several different current-time
traces (RTN25, RTN26, RTN27) that show RTN for the described devices in the introduction.
In addition, a long (more than three hours with millions of measured data) RTN current-
time trace was measured and used here for the same device. Due to the fact that all
signals come from devices with the same characteristics of fabrication, the difference
between them lies in the applied voltage that produces the variations of electric current.
Naturally, the measurement time for the long RTN was different. These measurements have
previously been characterized in different ways [19,20]; however, in this new approach,
the internal Markov chain that leads to the observed data set was identified, and the
model, whose methodology is developed in this work, was estimated. In particular,
in this application, it was shown that the short signals (RTN25, RTN26, and RTN27) had a
Markovian internal behavior, whereas the developed new methodology was applied to the
long RTN trace for its modeling.

6.1. Series RTN25-26-27

As stated above, the signals RTN25, RTN26, and RTN27 were produced by devices
whose structure is based on the Ni/HfO2/Si stack. Nevertheless, different voltages were
applied: 0.34 volts, 0.35 volts, and 0.36 volts, respectively. On the other hand, the measure-
ment time was similar for each one of these series.

Hidden Markov Models and the Latent Markov chain for RTN25/26/27 traces

To study the number of possible latent levels hidden into the signals, we considered
hidden Markov models (HMMs) [26,27]. Whereas in simple Markov models, the state of
the device is visible to the observer at each time, in HMMs, only the output of the device is
visible, while the state that leads to a determined output is hidden. Each state is associated
with a set of transition probabilities (one per each state) defining how likely it is for the
system, being in a given state at a given instant of time, to switch to another possible state
(including a transition to the same state) at the successive instants of time.

We analyzed different data sets for RTN25, RTN26, RTN27, and the hidden states from
the corresponding signals were discriminated. The best fit was achieved for latent levels
2 and 3 for RTN25, RTN26, RTN27. Figure 2 shows the original observed RTN signals
and the corresponding latent levels given by the model for both cases. This analysis was
performed using the depmixS4 package of R-cran [28].
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The RTN25/26/27 series was analyzed. The proportional number of times that the
chain is in the latent states for the different proposed models is shown in Table 1.
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Table 1. Proportional number of times that each chain was in the latent states.

Signal Model Latent State 1 Latent State 2 Latent State 3

RTN25
2 latent states 0.784 — 0.216
3 latent states 0.762 0.037 0.201

RTN26
2 latent states 0.756 — 0.244
3 latent states 0.753 0.0305 0.2165

RTN27
2 latent states 0.7665 — 0.2335
3 latent states 0.7575 0.0255 0.2170

For each model, the continuous Markov chain associated to the latent states was
estimated, and the corresponding stationary distribution was achieved. This is shown in
Table 2.

Table 2. Stationary distribution for the different traces.

Signal Model Latent State 1 Latent State 2 Latent State 3

RTN25
2 latent states 0.7974 — 0.2026
3 latent states 0.7847 0.0185 0.1968

RTN26
2 latent states 0.7708 — 0.2292
3 latent states 0.7746 0.0165 0.2089

RTN27
2 latent states 0.7736 — 0.2264
3 latent states 0.7785 0.0026 0.219

These values can be interpreted as the proportional time that the device is in each latent
state in the stationary regime for the embedded continuous Markov chain. We observed
that these values were very close to zero for the RTN25/26/27 devices. We tested this fact,
and do not think it can be rejected.

Therefore, we assumed that the internal performance of the devices behaved as a
Markov model with two latent states for the RTN25/26/27 traces. The Markov chains
for two latent states for the different cases were estimated. The exponentiality of the
sojourn time in each state cannot be rejected according to the p-values obtained by means
of a Kolmogorov–Smirnov test, and the expected number of visits up to a certain time as
explained in Section 4.1 also was estimated. These estimations are shown in Table 3.

Table 3. Expected number of visits to each level for the different traces.

Signal Level t = 5 t = 10 t = 15 t = 20

RTN25
Level 1 12.3497 23.8609 35.3721 46.8833
Level 2 11.5523 23.0635 34.5747 46.0859

RTN26
Level 1 12.8198 24.8162 36.8127 48.8092
Level 2 12.0490 24.0455 36.0419 48.0384

RTN27
Level 1 11.5645 22.5305 33.4965 44.4626
Level 2 11.7909 22.7569 33.7229 44.6890

6.2. Long RTN Trace

A similar exploratory analysis for this trace was carried out. This signal was supplied
with 0.5 V, and its behavior was measured for more than three hours. To study the number
of possible latent levels hidden in the signal, we again considered hidden Markov chains.
The best fit was achieved for latent levels 3 and 4 for this long RTN trace. Figure 3 shows
the original observed signal (a time interval of the whole signal was considered for the
sake of computing feasibility) and the corresponding latent levels given by the model for
both cases. This analysis also was performed using the depmixS4 package of R-cran.



Mathematics 2021, 9, 390 12 of 16

Mathematics 2021, 9, 390 12 of 16 
 

 

Table 3. Expected number of visits to each level for the different traces. 

Signal Level t = 5 t = 10 t = 15 t = 20 

RTN25 
Level 1 12.3497 23.8609 35.3721 46.8833 
Level 2 11.5523 23.0635 34.5747 46.0859 

RTN26 
Level 1 12.8198 24.8162 36.8127 48.8092 
Level 2 12.0490 24.0455 36.0419 48.0384 

RTN27 
Level 1 11.5645 22.5305 33.4965 44.4626 
Level 2 11.7909 22.7569 33.7229 44.6890 

6.2. Long RTN Trace 
A similar exploratory analysis for this trace was carried out. This signal was sup-

plied with 0.5 V, and its behavior was measured for more than three hours. To study the 
number of possible latent levels hidden in the signal, we again considered hidden Mar-
kov chains. The best fit was achieved for latent levels 3 and 4 for this long RTN trace. 
Figure 3 shows the original observed signal (a time interval of the whole signal was con-
sidered for the sake of computing feasibility) and the corresponding latent levels given 
by the model for both cases. This analysis also was performed using the depmixS4 
package of R-cran. 

. 

Figure 3. Fit obtained with the HMM for multiple latent states for the RTN different signals under study. 

We have focused on the four latent states. If the HMM is considered, the propor-
tional time that the process was in each latent state was 0.3243048, 0.1219429, 0.1635429, 
and 0.3902095. If more latent states were assumed, negligible proportions would appear. 
Therefore, four different latent states were assumed. Before applying the new model to 
the data set, a statistical analysis was performed that considered classical techniques. For 
these latent states, the exponentiality of the sojourn time was tested and rejected through 
a Kolmogorov–Smirnov test for any latent state by obtaining the following p-values: 
0.00027, 0.0045, 0.0000, and 0.0001, respectively. Next, we studied whether these times 
could be described as PH distributions. After multiple analyses, the best PH distributions 
for the latent states had 2, 2, 4, and 3 internal states, respectively. The structures of these 
PH distributions were generalized Coxian/Erlang distributions. Then, the internal be-

Figure 3. Fit obtained with the HMM for multiple latent states for the RTN different signals under study.

We have focused on the four latent states. If the HMM is considered, the propor-
tional time that the process was in each latent state was 0.3243048, 0.1219429, 0.1635429,
and 0.3902095. If more latent states were assumed, negligible proportions would appear.
Therefore, four different latent states were assumed. Before applying the new model to the
data set, a statistical analysis was performed that considered classical techniques. For these
latent states, the exponentiality of the sojourn time was tested and rejected through a
Kolmogorov–Smirnov test for any latent state by obtaining the following p-values: 0.00027,
0.0045, 0.0000, and 0.0001, respectively. Next, we studied whether these times could be
described as PH distributions. After multiple analyses, the best PH distributions for the
latent states had 2, 2, 4, and 3 internal states, respectively. The structures of these PH
distributions were generalized Coxian/Erlang distributions. Then, the internal behavior
for each latent state passed across multiple internal states in a sequential way, one-by-one.
The Anderson–Darling test was applied to test the goodness of fit, and obtained p-values
of 0.8972, 0.4405, 0.0752, and 0.9876, respectively, for each latent state.

Generator of the Internal Markov Process

Given the previous analysis, we have observed that the sojourn time distribution in
each macro-state (latent state) was phase-type distributed with a sequential degradation
(generalized Coxian degradation). That is, the macro-states 1, 2 were composed of two
phases (internal states), the macro-state 3 of four phases, and the macro-state 4 of three
states. Thus, we assume the sojourn time in a macro-state i (level i) is PH distributed with
representation (αi, Ti) with the following structure:
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Macro-state 1 Macro-state 2

α1 =
(
α1

1, 1−α1
1
)

T1 =

(
−t1

12 t1
12

0 −t1
13

)
T0

1 =
(
0, t1

13
)′

α2 =
(
α2

1, 1−α2
1
)

T2 =

(
−t2

12 t2
12

0 −t2
13

)
T0

2 =
(
0, t2

13
)′

Macro-state 3 Macro-state 4

α3 =
(
α3

1,α3
2,α3

3, 1−α3
1 −α3

2 −α3
3
)

T3 =


−t3

12 t3
12 0 0

0 −t3
23 t3

23 0
0 0 −t3

34 t3
34

0 0 0 −t3
35


T0

3 =
(
0, 0, 0, t3

35
)′

α4 =
(
α4

1,α4
2, 1−α4

1 −α4
2
)

T4 =

 −t4
12 t4

12 0
0 −t4

23 t4
23

0 0 −t4
34


T0

4 =
(
0, 0, 0, t4

34
)′

We assume that when the device leaves the macro-state i, it goes to macro-state j with

a probability of pij, where pii = 0 and p14 = 1−
3
∑

i=1
pij, and the sojourn time in this new

macro-state begins with the corresponding initial distribution αj.
Thus, the behavior of the device is governed by a stochastic process {X(t); t≥ 0} with an embed-

ded Markov process {J(t); t≥ 0}, as described in Section 2.1. The macro-state space is {1, 2, 3, 4} and
the state space

{
1 = i11, 2 = i12; 3 = i21, 4 = i22; 5 = i31, 6 = i32, 7 = i33, 8 = i34; 9 = i41, 10 = i42, 11 = i43

}
.

In this case, the matrix blocks are Qii = Ti and Qii = pijT0
i ⊗ αj for i, j = 1,..., r and

I 6= j. Therefore, the matrix generator is given by:

Q =


T1 p12T0

1 ⊗α2 p13T0
1 ⊗α3 p14T0

1 ⊗α4
p21T0

2 ⊗α1 T2 p23T0
2 ⊗α3 p24T0

2 ⊗α4
p31T0

3 ⊗α1 p32T0
3 ⊗α2 T3 p34T0

3 ⊗α4
p41T0

4 ⊗α1 p42T0
4 ⊗α2 p43T0

4 ⊗α3 T4


The parameters were estimated by considering the likelihood function built in Section 5.

The estimated parameters with a value of the logL = −4066.118120 are:

P =


0 0.6667 0.0407 0.2926

0.3870 0 0.1969 0.4161
0.0296 0.2238 0 0.7466
0.1605 0.3395 0.5 0


α1 = (0.5730374, 0.4269626); T1 =

(
−0.6790043 0.6790043

0 −4.1343018

)
α2 = (0.4699825, 0.5300175); T2 =

(
−3.249849 3.249849

0 −10.426533

)
α3 = (0.0741494, 0.4258142, 0.5000364, 0)

T3 =


−0.5533471 0.5533471 0 0

0 −2.2755462 2.2755462 0
0 0 −29.535695 29.535695
0 0 0 −242.7465



α4 = (0.3593538, 0.6406462, 0.0000); T4 =

 −0.964899 0.964899 0
0 −4.112655 4.112655
0 0 −28.638854


Therefore, the generator of the Markov process {J(t); t ≥ 0} is:
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^
θ = (0, 0, 0, 0, 0.0741494, 0.4258142, 0.5000364, 0, 0, 0, 0).

The stationary distribution was estimated for the process {X(t); t ≥ 0} (given in Table 4)
from Section 2.2. It can be interpreted as the proportional time in each macro-state (long-run).

Table 4. Stationary distribution for the process {X(t); t ≥ 0}.

Level 1 Level 2 Level 3 Level 4

Selected
interval in the
long RTN trace

0.3273 0.1197 0.1612 0.3919

Finally, the mean number of visits to each macro-state up to a certain time t was
obtained following Section 4.1. It is shown in Table 5.

Table 5. Expected number of visits up to a certain time for different times.

Time Level 1 Level 2 Level 3 Level 4

t = 50 16.0207 25.0716 20.3974 30.0827
t = 100 31.0837 49.9364 40.9591 60.1877
t = 200 61.1925 99.6404 82.0612 120.3666
t = 500 151.4018 248.5475 205.1981 300.6553

7. Conclusions

A real problem motivates the construction of a new stochastic process that accounts
for the internal performance of different macro-states by considering that it follows an
internal Markovian behavior. We have shown that the homogeneity and Markovianity was
lost in the developed new macro-state model. The sojourn time in each macro-state was
phase-type distributed depending on the initial observed time. The stationary distribution
was calculated through matrix-algorithmic methods, and the distribution of the number
of visits to a determined macro-state between any two different times was calculated
using a Laplace transform. The mean number of visits depending on times was worked
out explicitly.

The new developed methodology enables the modeling of complex systems in an
algorithmic way by solving classic calculus problems. Thanks to the proposed development,
the results and measures were worked out in an easier way and could be interpreted.
Matrix analysis and Laplace transform techniques were used to determine the properties
of the model, and algorithms to obtain quantitative results were provided. Given that
everything was carried out algorithmically, is the model was implemented computationally
and was successfully applied to study different random telegraph noise signals measured
for unipolar resistive memories.
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Resistive memory random telegraph noise signals were analyzed in depth in order to
characterize them from a probabilistic point of view. These signals are essential, since they
can pose a limit in the performance of certain applications; in addition, this type of noise can
be good as an entropy source in the design of random number generators for cryptography.
From the proposed model, we showed that a latent state of a resistive memory RTN long
signal is composed of multiple internal states. Of course, the applications of a phase-type
model, as given in this work, are not restricted to the RRAM context.
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