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Abstract 

This paper is concerned with the distributed fusion estimation problem for discrete-time linear 

stochastic systems with measurements coming from different sensors and correlated random 

parameter matrices in both the state and measurement equations. At each sampling time, the 

random state transition parameter matrices are assumed to be correlated at the same sampling 

time with the measurement random parameter matrices of each sensor. Moreover, the random 

parameter matrices in the observation equations are one-step auto-correlated and cross-correlated 

between the different sensors. The additive noises are also assumed to be correlated. Under these 

assumptions, the distributed fusion filter is designed as the matrix-weighted linear combination of 

the local least-squares linear filters obtained at every single sensor, using the linear minimum 

variance optimality criterion. A numerical simulation example considering a two-sensor system with 

randomly delayed measurements is used to illustrate the applicability of multi-sensor systems with 

correlated random parameter matrices and analyse the performance of the proposed filtering 

estimators. 

Usuario
Rectángulo



1. Introduction

In the last decades, the estimation problem for networked stochastic systems has be-
come a challenging research topic, due to its wide applicability in several scientific
areas, mainly related to sensor and communication technologies. The most common
data fusion techniques used in the state estimation problem are the centralized and
distributed ones [14]. The first one provides the optimal linear filtering estimator as
a combination of the measurements coming from all the sensors, so it is theoretically
optimal when all the sensors work correctly. Under the distributed architecture, local
filtering estimators are independently obtained at each single sensor, before being sent
to a fusion center to be combined by using an optimal or suboptimal fusion criterion.
This approach has considerable advantages, such as superior performance in terms of
flexibility, robustness to failure and cost effectiveness. For this reason, many results on
the distributed fusion estimation have been reported in recent years (see e.g. [2], [3],
[11], [12] and references therein).

There are many real situations where sensor network systems are used and the unre-
liable network characteristics usually lead to different possible failures in the measure-
ments caused by fading phenomena in propagation channels, degradation or attenua-
tion of the information, inaccessibility at certain times, multiplicative noise uncertain-
ties, among others. The distributed fusion estimation problem has been analyzed in
[12] for a class of multisensor multirate systems with observation multiplicative noises.
The results in [12] are extended in [15], where a distributed fusion filter is presented
for multisensor multirate systems with multiplicative noises and fading measurements.
The distributed H∞-consensus filtering problem has been addressed in [13] for a class
of uncertain stochastic systems with multiple missing measurements. The fusion esti-
mation problem has been studied in [17] when the stochastic uncertainties are caused
by multiplicative noises in the state and observation matrices. In [9], the distributed
fusion estimation problem has also been considered for a class of multi-sensor sys-
tems with correlated noises and fading measurements. A recursive state estimator has
been designed in [8] for time-varying complex networks with missing measurements
using a variance-constrained approach. The recursive finite-horizon filtering problem
has been investigated in [7] for a class of nonlinear time-varying systems subject to
multiplicative noises and missing measurements. Moreover, random failures or inter-
ruptions in the transmission of the measurements can occur frequently, yielding, for
example, random communication packet dropouts or sensor delays. The distributed
Kalman filtering problem has been addressed in [5], for a class of networked multi-
sensor systems with missing sensor measurements, random transmission delays and
packet dropouts, in [18] for stochastic non-linear systems with random delays and
packet dropouts, and in [11] for uncertain networked systems considering time delays
in the data transmission and cross-correlated noises.

The state estimation problem in all these types of systems can be globally addressed
in a unified way by considering systems with random parameter matrices in the state
and measurement equations. This kind of systems appear in a large variety of applica-
tion fields, such as digital control of chemical processes, mobile robot localization, nav-
igation systems and economics systems (see [6]) and they are currently being analyzed
in many research papers. For example, systems with state-dependent multiplicative
noise can be considered as a particular case of systems with random state transition
parameter matrices, whereas systems with missing measurements, random delays or
packet dropouts can be modeled by systems with measurement random parameter
matrices. The study of the centralized and distributed fusion estimation problems in
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systems with random parameter matrices has been addressed under different correla-
tion assumptions on the random parameter matrices and the noises involved in the
system model. The centralized fusion estimation problem has been studied in [10]
and the distributed fusion estimation problem has been analyzed in [2] for discrete-
time linear stochastic systems with multi-sensor measurements including correlated
and cross-correlated random parameter matrices in the measurement equations and
noises, and the results obtained have been applied to systems with correlated miss-
ing and randomly delayed measurements. Also, the fusion estimation problem from
measurements subject to random delays and packet dropouts during the transmission
has been studied in [4]. More recently, in [16] the centralized estimation problem has
been investigated for a class of non-linear discrete-time stochastic systems with ran-
dom parameter matrices which are correlated with each other at the same time, fading
measurements and correlated noises.

Motivated by the above discussion, this paper is concerned with the distributed fu-
sion estimation problem for discrete-time linear stochastic systems with measurements
coming from different sensors, correlated random parameter matrices in both, the state
and measurement equations, and correlated noises. The main contributions of this pa-
per are summarized as follows: (a) The system model is quite comprehensive, since
it covers general situations involving correlated multiplicative noises and other phe-
nomena, such as correlated missing measurements or delayed measurements, among
others. (b) The proposed results are more general than those in [2], where the dis-
tributed fusion filters are obtained for networked systems with independent random
state transition matrices, whereas correlation at the same sampling time with the
measurement random parameter matrices of each sensor is considered in the current
paper. (c) The proposed recursive algorithm for the local least-squares linear filters is
derived by using the innovation approach and the distributed fusion filter is designed
as the matrix weighted linear combination of the local ones which minimizes the mean
squared filtering estimation error. This methodology is very simple computationally
and suitable for online applications.

The rest of the paper is organized as follows. In Section 2 the system model is es-
tablished and the distributed estimation problem is formulated. In Section 3, the local
least-squares linear filtering algorithm is given, the cross-covariance matrices between
any two local filters are presented, and the proposed distributed fusion filter is gener-
ated as a matrix-weighted linear combination of the local filters using the mean squared
error optimality criterion. The numerical simulation example in Section 4 shows how
the current model is applicable to multi-sensor systems with correlated random delays
in transmission and analyzes the effectiveness of the proposed distributed fusion filter.
The paper ends with some concluding remarks in Section 5.

2. Problem formulation

Consider a class of discrete-time linear stochastic systems with nx-dimensional state
process, {xk}k≥0, whose evolution is described by random transition parameter matri-
ces, {Fk}k≥0, and an additive process noise, {wk}k≥0. Specifically, the state equation
is given by

xk+1 = Fkxk + wk, k ≥ 0. (1)

Assuming that there are m sensors from which the state process is observed, the
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ny-dimensional measurements provided by the i-th sensor, {y(i)
k }k≥1, are described as

follows:

y
(i)
k = H

(i)
k xk +B

(i)
k v

(i)
k , k ≥ 1, i = 1, . . . ,m, (2)

where {H(i)
k }k≥1 and {B(i)

k }k≥1 are sequences of random parameter matrices, and

{v(i)
k }k≥1 is the nv-dimensional process noise of the i-th sensor.

Our aim is to solve the distributed fusion estimation problem of the state xk based

on the measurements coming from all the sensors, y
(i)
1 , y

(i)
2 , . . . , y

(i)
k , i = 1, . . . ,m, under

the following hypotheses about the initial state, the random parameter matrices and
the noise processes involved in the previous system (1)-(2):

Hypothesis 1. The initial state x0 is a zero-mean random vector with Cov[x0] = Σ0.
It is also assumed to be independent of the random parameter matrices and noise
processes.

Hypothesis 2. The mean functions of {Fk}k≥0, {H(i)
k }k≥1 and {B(i)

k }k≥1, i =

1, . . . ,m, are known. We will denote F k ≡ E[Fk], k ≥ 0, H
(i)
k ≡ E[H

(i)
k ] and

B
(i)
k ≡ E[B

(i)
k ], k ≥ 1. For i, j = 1, . . . ,m, the following expectations are also assumed

to be known:

E[fpq(k)fp′q′(s)] = E[fpq(k)fp′q′(k)]δk,s,

E[h(i)
pq (k)h

(j)
p′q′(s)] = E[h(i)

pq (k)h
(j)
p′q′(k)]δk,s + E[h(i)

pq (k)h
(j)
p′q′(k − 1)]δk−1,s, s ≤ k,

E[b(i)pq (k)b
(j)
p′q′(s)] = E[b(i)pq (k)b

(j)
p′q′(k)]δk,s + E[b(i)pq (k)b

(j)
p′q′(k − 1)]δk−1,s, s ≤ k,

E[fpq(k)h
(i)
p′q′(s)] = E[fpq(k)h

(i)
p′q′(k)]δk,s,

E[fpq(k)b
(i)
p′q′(s)] = E[fpq(k)b

(i)
p′q′(k)]δk,s,

E[h(i)
pq (k)b

(j)
p′q′(s)] = E[h(i)

pq (k)b
(j)
p′q′(k)]δk,s + E[h(i)

pq (k)b
(j)
p′q′(k − 1)]δk−1,s

+ E[h(i)
pq (k)b

(j)
p′q′(k + 1)]δk+1,s,

E[h(i)
pq (k)fqr(s)h

(j)
p′q′(s)] = E[h(i)

pq (k)fqr(k − 1)h
(j)
p′q′(k − 1)]δk−1,s,

E[h(i)
pq (k)fqr(s)b

(j)
p′q′(s)] = E[h(i)

pq (k)fqr(k − 1)b
(j)
p′q′(k − 1)]δk−1,s,

where δk,s is the Kronecker delta function and fpq(r), h
(i)
pq (r) and b

(i)
pq (r) denote the

(p, q)-th entries of Fr, H
(i)
r and B

(i)
r , respectively.

Usually, in practical situations, the probability distributions of these random variables

describing the entries of the random parameter matrices, fpq(r), h
(i)
pq (r) and b

(i)
pq (r),

are known and such distributions, together with the relation between these entries,
provide the necessary information to calculate these expectations.

From this hypothesis, the random parameter matrices are correlated with each other.
Specifically, the random state transition matrices, {Fk}k≥0, and the measurement ma-

trices, {H(i)
k }k≥1 and {B(i)

k }k≥1 of each sensor, are correlated at the same sampling
time. Furthermore, the measurement matrices are assumed to be one-step correlated
and cross-correlated between the different sensors. This correlation hypothesis covers
situations involving correlated multiplicative noises, such as interferences or intermit-
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tent sensor failures. Also, transformed versions from networked systems with random
delays and packet dropouts include correlated random parameter matrices. Therefore,
by virtue of Hypothesis 2 the estimation algorithm designed in this paper can be
applied to all these situations involving random correlated uncertainties.

Hypothesis 3. {wk}k≥0 and {v(i)
k }k≥1, i = 1, . . . ,m, are zero-mean sequences with

the following known covariances and cross-covariances:

E[wkw
T
s ] = Qkδk,s +Qk,k−1δk−1,s, s ≤ k,

E[v
(i)
k v(j)T

s ] = R
(ij)
k δk,s +R

(ij)
k,k−1δk−1,s, s ≤ k, i, j = 1, . . . ,m,

E[wkv
(i)T
s ] = S

(i)
k δk,s + S

(i)
k,k+1δk+1,s + S

(i)
k,k+2δk+2,s, k ≥ 0, s ≥ 1, i = 1, . . . ,m.

This hypothesis indicates that the process and measurement noises are one-step auto-
correlated, and two-step forward cross-correlated. The measurement noises are also
one-step cross-correlated between the different sensors.

Hypothesis 4.
(
{Fk}k≥0, {H

(i)
k }k≥1, {B

(i)
k }k≥1, i = 1, . . . ,m

)
is independent of(

{wk}k≥0, {v
(i)
k }k≥1, i = 1, . . . ,m

)
.

3. Design of distributed fusion filters

In this section, we design the distributed fusion filter of the state xk based on the

available measurements y
(i)
1 , . . . , y

(i)
k , i = 1, . . . ,m. First, local least-squares linear

filters are obtained at each sensor, using its own measurement information by means
of a recursive algorithm. Then, the cross-covariance matrices between any two local
filters are presented. To conclude, the distributed fusion filter is obtained by applying
the optimal information fusion criterion weighted by matrices in the linear minimum
variance sense.

3.1. Local least-squares linear filters

The following theorem provides the recursive algorithm for the local least-squares
linear filter and its error covariance matrix at each sensor i = 1, . . . ,m.

Theorem 3.1. For system (1)-(2), under hypotheses 1-4, the local least-squares linear

filter for the i-th sensor, x̂
(i)
k/k, i = 1, . . . ,m, is obtained as

x̂
(i)
k/k = x̂

(i)
k/k−1 + X (i)

k Π
(i)−1
k µ

(i)
k , k ≥ 1; x̂

(i)
0/0 = 0.

The one-step predictor, x̂
(i)
k/k−1, is calculated by

x̂
(i)
k/k−1 = F k−1x̂

(i)
k−1/k−1 + Φ

(i)
k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2; x̂

(i)
1/0 = 0,
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where, denoting F̃k ≡ Fk − F k, the matrix Φ
(i)
k ≡ E[(F̃kxk + wk)µ

(i)T
k ] is given by

Φ
(i)
k = E[F̃kDkH

(i)T
k ] + E[F̃kE

(i)
k B

(i)T
k ] +Qk,k−1H

(i)T
k + S

(i)
k B

(i)T
k , k ≥ 1. (3)

The innovation, µ
(i)
k , is given by

µ
(i)
k = y

(i)
k −H

(i)
k x̂

(i)
k/k−1 −Ψ

(i)
k,k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2; µ

(i)
1 = y

(i)
1 , (4)

where, denoting H̃
(i)
k ≡ H

(i)
k − H

(i)
k , the matrix Ψ

(i)
k,k−1 ≡ E[(H̃

(i)
k xk + B

(i)
k v

(i)
k )µ

(i)T
k−1]

satisfies

Ψ
(i)
k,k−1 = E[H̃

(i)
k Fk−1Dk−1H

(i)T
k−1 ] + E[H̃

(i)
k Qk−1,k−2H

(i)T
k−1 ]

+ E[H̃
(i)
k Fk−1E

(i)
k−1B

(i)T
k−1 ] + E[H̃

(i)
k S

(i)
k−1B

(i)T
k−1 ]

+ E[B
(i)
k S

(i)T
k−2,kH

(i)T
k−1 ] + E[B

(i)
k R

(ii)
k,k−1B

(i)T
k−1 ], k ≥ 2.

(5)

The matrix X (i)
k ≡ E[xkµ

(i)T
k ] is calculated by

X (i)
k = Σ

(i)
k/k−1H

(i)T
k + E(i)

k B
(i)T
k −X (i)

k,k−1Π
(i)−1
k−1 Ψ

(i)T
k,k−1, k ≥ 2;

X (i)
1 = Σ

(i)
1/0H

(i)T
1 + E(i)

1 B
(i)T
1 ,

where X (i)
k,k−1 ≡ E[xkµ

(i)T
k−1] is given by

X (i)
k,k−1 = F k−1X

(i)
k−1 + Φ

(i)
k−1, k ≥ 2.

The innovation covariance matrix, Π
(i)
k ≡ E[µ

(i)
k µ

(i)T
k ], satisfies

Π
(i)
k = E[H̃

(i)
k DkH

(i)T
k ] + E[H̃

(i)
k E

(i)
k B

(i)T
k ] + E[B

(i)
k E

(i)T
k H̃

(i)T
k ] + E[B

(i)
k R

(ii)
k B

(i)T
k ]

+H
(i)
k X

(i)
k + X (i)T

k H
(i)T
k −H(i)

k Σ
(i)
k/k−1H

(i)T
k −Ψ

(i)
k,k−1Π

(i)−1
k−1 Ψ

(i)T
k,k−1, k ≥ 2;

Π
(i)
1 = E[H̃

(i)
1 D1H

(i)T
1 ] + E[H

(i)
1 E

(i)
1 B

(i)T
1 ] + E[B

(i)
1 E

(i)T
1 H

(i)T
1 ]

+ E[B
(i)
1 R

(ii)
1 B

(i)T
1 ] +H

(i)
1 Σ

(i)
1/0H

(i)T
1 .

The filtering error covariance matrix, Σ
(i)
k/k ≡ E[(xk − x̂

(i)
k/k)(xk − x̂

(i)
k/k)T ], is computed

by

Σ
(i)
k/k = Σ

(i)
k/k−1 −X

(i)
k Π

(i)−1
k X (i)T

k , k ≥ 1; Σ
(i)
0/0 = Σ0,

where the prediction error covariance matrix, Σ
(i)
k/k−1 ≡ E[(xk−x̂

(i)
k/k−1)(xk−x̂

(i)
k/k−1)T ],
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is given by

Σ
(i)
k/k−1 = Dk + F k−1(Σ

(i)
k−1/k−1 −Dk−1)F

T
k−1 + Φ

(i)
k−1Π

(i)−1
k−1 Φ

(i)T
k−1

−X (i)
k,k−1Π

(i)−1
k−1 Φ

(i)T
k−1 − Φ

(i)
k−1Π

(i)−1
k−1 X

(i)T
k,k−1, k ≥ 2;

Σ
(i)
1/0 = D1.

Finally, the matrix Dk+1 ≡ E[xk+1x
T
k+1] is calculated by

Dk+1 = E[FkDkF
T
k ] +Qk + F kQk−1,k +Qk,k−1F

T
k , k ≥ 1;

D1 = E[F0D0F
T
0 ] +Q0; D0 = Σ0,

and E(i)
k ≡ E[xkv

(i)T
k ] is obtained by

E(i)
k = F k−1S

(i)
k−2,k + S

(i)
k−1,k, k ≥ 2; E(i)

1 = S
(i)
0,1.

Proof. The proof, based on the innovation approach, is analogous to that in Section

3 of [10] except for the calculation of the matrices Φ
(i)
k and Ψ

(i)
k,k−1 because of the

correlation between {Fk}k≥0, {Hk}k≥1 and {Bk}k≥1. Thus, only expressions (3) and
(5) for these matrices are proved:

(I) Derivation of expression (3) for Φ
(i)
k ≡ E[(F̃kxk + wk)µ

(i)T
k ].

Since F̃kxk + wk is independent of y
(i)
1 , . . . , y

(i)
k−1, we have Φ

(i)
k = E[(F̃kxk +

wk)y
(i)T
k ]. From (2) for y

(i)
k , we obtain that

Φ
(i)
k = E[F̃kxkx

T
kH

(i)T
k ] + E[F̃kxkv

(i)T
k B

(i)T
k ] + E[wkx

T
kH

(i)T
k ] + E[wkv

(i)T
k B

(i)T
k ]

Taking into account the conditional expectation properties, we have

E[F̃kxkx
T
kH

(i)T
k ] = E[F̃kDkH

(i)T
k ] and E[F̃kxkv

(i)T
k B

(i)T
k ] = E[F̃kE

(i)
k B

(i)T
k ]. The

noise correlation hypothesis together with (1) yield E[wkx
T
kH

(i)T
k ] = Qk,k−1H

(i)T
k

and E[wkv
(i)T
k B

(i)T
k ] = S

(i)
k B

(i)T
k . Therefore, from the above expectations, expres-

sion (3) for Φ
(i)
k is clear.

(II) Derivation of expression (5) for Ψ
(i)
k,k−1 ≡ E[(H̃

(i)
k xk +B

(i)
k v

(i)
k )µ

(i)T
k−1].

Following a similar reasoning to the previous one and using (1) for xk in two
steps, we obtain that

Ψ
(i)
k,k−1 = E[H̃kxkx

T
k−1H

(i)T
k−1 ] + E[H̃kxkv

(i)T
k−1B

(i)T
k−1 ]

+ E[B
(i)
k v

(i)
k xTk−1H

(i)T
k−1 ] + E[B

(i)
k v

(i)
k v

(i)T
k−1B

(i)T
k−1 ]

= E[H̃kFk−1Dk−1H
(i)T
k−1 ] + E[H̃kwk−1x

T
k−1H

(i)T
k−1 ]

+ E[H̃kFk−1E
(i)
k−1B

(i)T
k−1 ] + E[H̃kS

(i)
k−1B

(i)T
k−1 ]

+ E[B
(i)
k v

(i)
k xTk−1H

(i)T
k−1 ] + E[B

(i)
k R

(i)
k,k−1B

(i)T
k−1 ].
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Then, considering again (1) and hypothesis 3, it is deduced that

E[H̃kwk−1x
T
k−1H

(i)T
k−1 ] = E[H̃kQk−1,k−2H

(i)T
k−1 ],

E[B
(i)
k v

(i)
k xTk−1H

(i)T
k−1 ] = E[B

(i)
k S

(i)T
k−2,kH

(i)T
k−1 ],

so, expression (5) for Ψ
(i)
k,k−1 is also immediately clear, and the proof is completed.

3.2. Cross-covariance matrices between any two local filters

To apply the optimal fusion criterion weighted by matrices in the linear minimum
variance sense, the cross-covariance matrices between local estimators of any two sub-
systems must be calculated.

Theorem 3.2. For i, j = 1, . . . ,m, the cross-covariance matrices, K
(ij)
k/k ≡

E[x̂
(i)
k/kx̂

(j)T
k/k ] between any two local filters are calculated as

K
(ij)
k/k = K

(ij)
k/k−1 + L

(ij)
k Π

(j)−1
k X (j)T

k + X (i)
k Π

(i)−1
k L

(ji)T
k

+ X (i)
k Π

(i)−1
k Π

(ij)
k Π

(j)−1
k X (j)T

k , k ≥ 1, i 6= j, K
(ii)
k/k = Dk − Σ

(i)
k/k, k ≥ 1,

where

(a) For i, j = 1, . . . ,m, K
(ij)
k/k−1 ≡ E[x̂

(i)
k/k−1x̂

(j)T
k/k−1] is recursively calculated by

K
(ij)
k/k−1 = F k−1K

(ij)
k−1/k−2F

T
k−1 + F k−1L

(ij)
k−1Π

(j)−1
k−1 X

(j)T
k,k−1

+ X (i)
k,k−1Π

(i)−1
k−1 L

(ji)T
k−1 F

T
k−1

+ X (i)
k,k−1Π

(i)−1
k−1 Π

(ij)
k−1Π

(j)−1
k−1 X

(j)T
k,k−1, k ≥ 2, i 6= j;

K
(ij)
1/0 = 0;

K
(ii)
k/k−1 = Dk − Σ

(i)
k/k−1, k ≥ 1.

(b) For i, j = 1, . . . ,m, with i 6= j, L
(ij)
k ≡ E[x̂

(i)
k/k−1µ

(j)T
k ] is given by

L
(ij)
k =

(
F k−1K

(ii)
k−1/k−2F

T
k−1 −K

(ij)
k/k−1

)
H

(j)T
k

+ X (i)
k,k−1Π

(i)−1
k−1

(
∆

(ji)T
k,k−1 + V(ji)T

k,k−1

)
− L(ij)

k,k−1Π
(j)−1
k−1 Ψ

(j)T
k,k−1, k ≥ 2;

L
(ij)
1 = 0,

where
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• ∆
(ij)
k,k−1 ≡ E[H

(i)
k xkµ

(j)T
k−1 ] is obtained by

∆
(ij)
k,k−1 = E[H

(i)
k Fk−1Dk−1H

(j)T
k−1 ] + E[H

(i)
k Qk−1,k−2H

(j)T
k−1 ]

+ E[H
(i)
k Fk−1E

(j)
k−1B

(j)T
k−1 ] + E[H

(i)
k S

(j)
k−1B

(j)T
k−1 ]

−H(i)
k F k−1

(
K

(jj)
k−1/k−2H

(j)T
k−1 + X (j)

k−1,k−2Π
(j)−1
k−2 Ψ

(j)T
k−1,k−2

)
, k ≥ 3;

∆
(ij)
2,1 = E[H

(i)
2 F1D1H

(j)T
1 ] + E[H

(i)
2 Q1,0H

(j)T
1 ]

+ E[H
(i)
2 F1E(j)

1 B
(j)T
1 ] + E[H

(i)
2 S

(j)
1 B

(j)T
1 ],

(6)

• V(ij)
k,k−1 ≡ E[B

(i)
k v

(i)
k y

(j)T
k−1 ] is given by

V(ij)
k,k−1 = E[B

(i)
k S

(i)T
k−2,kH

(j)T
k−1 ] + E[B

(i)
k R

(ij)
k,k−1B

(j)T
k−1 ], k ≥ 2,

• L(ij)
k,k−1 ≡ E[x̂

(i)
k/k−1µ

(j)T
k−1 ] is calculated by

L
(ij)
k,k−1 = F k−1L

(ij)
k−1 + X (i)

k,k−1Π
(i)−1
k−1 Π

(ij)
k−1, k ≥ 2.

(c) For i, j = 1, . . . ,m, with i 6= j, Π
(ij)
k ≡ E[µ

(i)
k µ

(j)T
k ] is expressed by

Π
(ij)
k = ∆

(ij)
k + E[B

(i)
k E

(i)T
k H

(j)T
k ] + E[B

(i)
k R

(ij)
k B

(j)T
k ]−H(i)

k L
(ij)
k

− V(ij)
k,k−1Π

(j)−1
k−1

(
H

(j)
k X

(j)
k,k−1 + Ψ

(j)
k,k−1

)T
−Ψ

(i)
k,k−1Π

(i)−1
k−1 Π

(ij)
k−1,k, k ≥ 2;

Π
(ij)
1 = ∆

(ij)
1 + E[B

(i)
1 E

(i)T
1 H

(j)T
1 ] + E[B

(i)
1 R

(ij)
1 B

(j)T
1 ],

where
• ∆

(ij)
k ≡ E[H

(i)
k xkµ

(j)T
k ] satisfies

∆
(ij)
k = E[H

(i)
k DkH

(j)T
k ] + E[H

(i)
k E

(j)
k B

(j)T
k ]−H(i)

k F k−1K
(jj)
k−1/k−2F

T
k−1H

(j)T
k

−∆
(ij)
k,k−1Π

(j)−1
k−1

(
H

(j)
k X

(j)
k,k−1 + Ψ

(j)
k,k−1

)T
, k ≥ 2;

∆
(ij)
1 = E[H

(i)
1 D1H

(j)T
1 ] + E[H

(i)
1 E

(j)
1 B

(j)T
1 ],

• Π
(ij)
k−1,k ≡ E[µ

(i)
k−1µ

(j)T
k ] is calculated by

Π
(ij)
k−1,k = ∆

(ji)T
k,k−1 + V(ji)T

k,k−1 − L
(ji)T
k,k−1H

(j)T
k −Π

(ij)
k−1Π

(j)−1
k−1 Ψ

(j)T
k,k−1, k ≥ 2.

Finally, for i = 1, . . . ,m, Π
(i)
k , X (i)

k , Σ
(i)
k/k and Dk are specified in Theorem 3.1.

Proof. The proof is similar to that in Section 3.2 of [2], except for the derivation of

the expectation ∆
(ij)
k,k−1 ≡ E[H

(i)
k xkµ

(j)T
k−1 ], which is affected by the correlation of the

transition matrices {Fk}k≥0. For this reason, only expression (6) for ∆
(ij)
k,k−1 is proved
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here. Firstly, substituting (4) for µ
(j)
k−1, we deduce that ∆

(ij)
k,k−1 can be written as:

∆
(ij)
k,k−1 = E[H

(i)
k xky

(j)T
k−1 ]− E[H

(i)
k xkx̂

(j)T
k−1/k−2]H

(j)T
k−1 − E[H

(i)
k xkµ

(j)T
k−2 ]Π

(j)−1
k−2 Ψ

(j)T
k−1,k−2.

Secondly, using Equation (1) for xk and considering the conditional expectation prop-
erties, we have

∆
(ij)
k,k−1 = E[H

(i)
k Fk−1Dk−1H

(j)T
k−1 ] + E[H

(i)
k wk−1x

T
k−1H

(j)T
k−1 ]

+ E[H
(i)
k Fk−1E

(j)
k−1B

(j)T
k−1 ] + E[H

(i)
k S

(j)
k−1B

(j)T
k−1 ]

− E[H
(i)
k Fk−1xk−1x̂

(j)T
k−1/k−2]H

(j)T
k−1 −H

(i)
k E[xkµ

(j)T
k−2 ]Π

(j)−1
k−2 Ψ

(j)T
k−1,k−2.

Next, to obtain E[H
(i)
k wk−1x

T
k−1H

(j)T
k−1 ] and E[xkµ

(j)T
k−2 ], we use again Equation (1) for

xk−1 and xk, and it is easy to see that

E[H
(i)
k wk−1x

T
k−1H

(j)T
k−1 ] = E[H

(i)
k Qk−1,k−2H

(j)T
k−1 ],

E[xkµ
(j)T
k−2 ] = F k−1X

(i)
k−1,k−2.

Finally, from the Orthogonal Projection Lemma, it is derived that

E[H
(i)
k Fk−1xk−1x̂

(j)T
k−1/k−2] = H

(i)
k F k−1K

(jj)
k−1/k−2, and expression (6) for ∆

(ij)
k,k−1

is definitely proved.

3.3. Distributed fusion filter

Once the local least-squares linear filters (Theorem 3.1) and their cross-covariance
matrices (Theorem 3.2) have been calculated, the optimal distributed fusion filter is
designed as the matrix-weighted linear combination of such local filters that minimizes
the mean squared error, according to the following theorem [1].

Theorem 3.3. For i = 1, . . . ,m, from the local filters, x̂
(i)
k/k, given in Theorem 3.1

and the cross-covariance matrices, K
(ij)
k/k , given in Theorem 3.2, the distributed fusion

filter, weighted by matrices in the linear minimum variance sense, for system (1)-(2)
is given by

x̂
(D)
k/k = Ξk/kK

−1
k/kX̂k/k, k ≥ 1,

where X̂k/k = (x̂
(1)T
k/k , . . . , x̂

(m)T
k/k )T , Kk/k =

(
K

(ij)
k/k

)
i,j=1,...,m

and Ξk/k =

(K
(11)
k/k , . . . ,K

(mm)
k/k ).

The error covariance matrices of the distributed fusion filters are computed by

Σ
(D)
k/k = Dk − Ξk/kK

−1
k/kΞT

k/k, k ≥ 1.

Proof. This proof can be seen in [1], so the details are omitted here.
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Remark: The derivation of the proposed algorithms involves some difficulties associated
with the correlation hypothesis of the random parameter matrices (Hypothesis 2),
namely:

• The derivation of expression (3) for the matrices Φ
(i)
k ≡ E[(F̃kxk + wk)µ

(i)T
k ],

for which some properties of the conditional expectation must be used to obtain

E[F̃kDkH
(i)T
k ] and E[F̃kE

(i)
k B

(i)T
k ] (which are equal to zero when the transition

and observation matrices are independent).

• Analogous comments can be made concerning the derivation of Ψ
(i)
k,k−1 ≡

E[(H̃
(i)
k xk + B

(i)
k v

(i)
k )µ

(i)T
k−1], for which we must calculate E[H̃

(i)
k Fk−1Dk−1H

(i)T
k−1 ]

and E[H̃
(i)
k Fk−1E

(i)
k−1B

(i)T
k−1 ] (expectations that are straightforward when the tran-

sition matrices are independent of the observation matrices).

• The derivation of the cross-covariance matrices K
(ij)
k/k (Theorem 3.2) also en-

tails some difficulties due to the correlation of the transition matrices. They are

mainly associated with obtaining the expectation ∆
(ij)
k,k−1 ≡ E[H

(i)
k xkµ

(j)T
k−1 ] and

the calculations involving this expectation.

4. Numerical example: multi-sensor systems with random delays

In this section a numerical simulation example is presented. The hypotheses considered
in the current paper allow us to apply the results to multi-sensor systems with random
failures in data transmission; the purpose of this example is to illustrate our study by
considering a two-sensor system with correlated randomly delayed measurements as a
particular case.

Let {xk}k≥0 be a scalar state process which must be estimated from measurements
coming from two different sensors, subject to random one-step delays correlated at
consecutive sampling times, namely:

xk = Fk−1xk−1 + wk−1, k ≥ 1,

z
(i)
k = C(i)xk + v

(i)
k , k ≥ 1, i = 1, 2,

y
(i)
k = (1− γ(i)

k )z
(i)
k + γ

(i)
k z

(i)
k−1, k ≥ 2, y

(i)
1 = z

(i)
1 , i = 1, 2

(7)

where Fk = 0.01(α
(1)
k + α

(2)
k ) + 0.95 with {α(i)

k }k≥1, i = 1, 2, two independent se-
quences of independent and identically distributed Bernoulli random variables such

that P [α
(i)
k = 1] = α(i). Also, C(1) = 0.8 and C(2) = 0.5, the additive noises are

defined as wk = 0.6(ηk + ηk+1) and v
(i)
k = c(i)ηk, i = 1, 2, with c(1) = 1, c(2) = 0.8 and

{ηk}k≥0 is a zero-mean Gaussian white process with variance 0.5.
For i = 1, 2, the phenomenon of delayed measurements is described by the random

variables γ
(i)
k which are defined from {α(i)

k }k≥1 as follows:

γ
(i)
k = α

(i)
k+1(1− α(i)

k ), i = 1, 2.

Hence, the variables γ
(i)
k and γ

(i)
s are one-step correlated.
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Then, using the notation

Xk ≡
(
xk
xk−1

)
, k ≥ 1, X0 ≡

(
x0

0

)
, Fk ≡

(
Fk 0
1 0

)
, Wk ≡

(
wk

0

)
, k ≥ 0,

H
(i)
k ≡

{ (
C(i), 0

)
, k = 1,(

(1− γ(i)
k )C(i), γ

(i)
k C(i)

)
, k ≥ 2,

B
(i)
k ≡


(

1, 0
)
, k = 1,(

1− γ(i)
k , γ

(i)
k

)
, k ≥ 2,

V
(i)
k ≡


(
v

(i)
1 , 0

)T
, k = 1,(

v
(i)
k , v

(i)
k−1

)T
, k ≥ 2,

we can easily observe that the random transition parameter matrices {Fk}k≥0 and

measurement matrices {H(i)
k }k≥1 and {B(i)

k }k≥1, as well as the process noises {Wk}k≥0

and {V (i)
k }k≥1, satisfy the correlation hypotheses specified in Section 2.

Thereby, system (7) is rewritten following the structure given by equations (1)-(2):

Xk+1 = FkXk +Wk, k ≥ 0,

y
(i)
k = H

(i)
k Xk +B

(i)
k V

(i)
k , k ≥ 1, i = 1, 2,

and the distributed fusion filtering algorithm proposed can be applied to this system.

To illustrate the accuracy of the proposed algorithm, it was implemented in MAT-
LAB and fifty iterations were run, considering different values of the probabilities
α(i), i = 1, 2, for which similar conclusions are derived. Then, the performance of
the distributed fusion filtering estimator is illustrated graphically for α(1) = 0.5 and
α(2) = 0.2 which yield to the delay probabilities γ(1) = 0.25 and γ(2) = 0.16.

Firstly, Figure 1 shows the state estimates obtained from the corresponding simu-
lated observations, the local estimates and the proposed distributed filtering estimates.
From this figure, it is deduced that all the estimates follow a satisfactory and efficient
tracking performance.

Next, the error variances of the local filters and the distributed fusion filter are
displayed in Figure 2. From this figure, we can see that the distributed filter has
better accuracy than any local one. The local filter obtained from the second sensor
is more accurate than that obtained from the first one since the second sensor delay
probability is smaller.

5. Conclusions

The distributed fusion filtering problem for multi-sensor stochastic systems with cor-
related random parameter matrices and additive noises in the state and measure-
ment equations has been addressed. Specifically, local least-squares linear filters have
been designed from the measurements coming from each single sensor and the cross-
covariance matrices between any two local filters have been specified. Then, the dis-
tributed fusion filter has been obtained as a matrix-weighted linear combination of
the local ones, under the mean squared error criterion. It is worth highlighting that
the correlation hypothesis between the transition parameter matrices and the mea-
surements coming from each sensor is useful to consider several general multi-sensor
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Figure 1. Simulated state, local estimates and proposed distributed filtering estimates.
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Figure 2. Local and distributed fusion filtering error variances.

systems with different kind of random failures. For example, as we can see in Section
4, the theoretical results obtained are applicable to multi-sensor systems with random
delays.
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