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Nomenclature 

 

Ac,eff effective area of concrete, perpendicular to the bar, at a distance from the bar smaller 

than 7.5db 

Ac,eff,min minimum effective area of concrete, perpendicular to the bar, at a distance from the bar 

smaller than 7.5ϕ, with ϕ as the diameter of the bar for the minimum amount required 

As Area of steel 

Asv Area of the vertical steel. 

Aϕ Area of the vertical leg 

bw breadth of the web 

d effective depth 

db, ϕ bar diameter in mm. 

Ecm Secant modulus of elasticity of concrete 

Es Modulus of elasticity of reinforcing steel 

fctm mean concrete strength in tension 

fy steel yield stress 

fvy  yield stress of the transverse steel reinforcement 

nl number of legs for stirrup 

s distance between vertical bars 

z lever arm 

 

 

εay mean strain for apparent yield 

εc concrete strain 

εmean mean strain 

εs, εsv steel strain, steel strain of the vertical bar 

ε1 strain in the principal direction of tension 

 

γ shear rotation 

σct concrete stress in tension 

σs steel stress 

σsv stress of vertical steel 

σ1 concrete tensional stress in the principal direction of tension 

τci shear stress in the crack 

θ crack angle 

 

Abstract 

This paper presents a simple and robust method for calculating the shear deformation, up to 

collapse, of reinforced concrete beams and columns. The method is based on the fundaments of 

the shear deformation of reinforced concrete elements. A conceptual review of the different 



models used to describe the tension stiffening of concrete is also presented. A detailed example 

is shown. 

1. Introduction 

In general, Reinforced Concrete (RC) codes, such as Eurocode 2[1] or ACI-318[2] do not take 

into account shear deformation, being the above obvious assumption for structural engineers. 

Nevertheless, the earthquake engineering community is concerned about the need for an 

efficient fiber beam-column element that considers flexure and shear interaction ([3], [4], 

[5],[6],[7]).   This is due to the fact that the shear collapse of beams and columns under seismic 

actions is of great importance, see Fig.1. 

                

Figure 1. Shear deformation of columns during the Lorca earthquake (2011), adapted from [8]. 

In the search for a fiber beam-column element that considers flexure and shear, different models 

of concrete have been used. Usually, the most popular ones are the Mander model for confined 

concrete [9] and the MCFT (Modified Compression Field Theory) [10] or the RA-STM 

(Rotating Angle Softened Truss Model) [11] for concrete tension stiffening.  

The main discrepancy between the MCFT and RA-STM concerns the steel bar model: while the 

MCFT uses a bare bar model, the RA-STM considers an embedded bar model. In an effort to 

show the equivalence of both theories, an interesting refinement of the original MCFT 

formulation was done in [12]. Both the MCFT and the RA-STM describe the tension stiffening 

of concrete using several functions. These functions need conditional checks to define their 

ranges of applicability (an apparent yield check in the case of the RA-STM and a crack check in 

the case of the MCFT). In both theories, the tension stiffening effect is considered to exist even 

for an average strain greater than the steel yield strain, an assumption which is also supported by 

other authors [13]. On the contrary, well recognized structural software packages such as [14] or 

[15] consider linear approximations for the tension stiffening response of concrete, assuming 

that for strain values beyond the steel yield strain, tension stiffening disappears. The above 

assumption is supported by authors such as (e.g. [16]).  

This work uses a bilinear approximation for the description of tension stiffening behavior, in 

such a way that the apparent yield and yielding of steel coincide. In doing so, the need for a 



distinction between bare bar and embedded bar models is no longer necessary. A conceptual 

review of the tension stiffening models is summarized in Appendix A. Regarding the steel 

model, the Eurocode 2[1] bilinear steel model with strain hardening is used here. Additionally, 

for the case of B-Regions, the authors have considered that the angle of cracks can be deduced 

from linear elastic theory. Therefore, for beams with no axial force, cracks at an angle of 45º are 

considered.  

Taking all of this information into account, a procedure to calculate the shear deformation of RC 

beams and columns is presented in this paper.  

2. Bilinear tension stiffening model 

In this work, a bilinear tension stiffening model is proposed, see Fig.2. The descending branch 

is defined by a certain point ψfctm (ψ≤1) of the ascending branch and the point corresponding to 

the steel yield strain (εy), for which the tension stiffness capacity is zero. Additionally, the 

model adopted presents a residual plateau, formulated using [13]. Because the model adopted 

lacks an apparent yield, a bare bar model is considered (see Appendix).  

The authors propose this tension stiffening model for two reasons: to obtain a computationally 

robust method, and to choose ψ so that the capacity of the effective area of concrete in tension 

equals the capacity of the minimum transversal steel area required by code. The later condition 

ensures that the branch D-E in Fig. A.7 is always ascending. Note that current provisions set a 

minimum amount of transverse steel to avoid sudden failures. 

 

 Figure 2. Bilinear model for tension stiffening. 

3. Compatibility and equilibrium equations 

Compression Field Theories [17] provide answers to the problem of shear and bending 

interaction using a continuum mechanics formulation. They have greatly helped with the 

understanding of the deformation of RC elements. In these theories, the equilibrium and 

compatibility equations can be formulated at a cross-sectional level or at a fiber level.  

In the procedure proposed, for the sake of robustness, the only equilibrium equation considered 

is the one corresponding to the vertical equilibrium. Crack angles are obtained from continuum 
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elastic mechanics, (i.e. 45º for RC beams and 0.5ArcTan(2τ/σ) for columns [18]) which is quite 

close to reality in B-Regions due to the fact that the formation of secondary cracks is highly 

unlikely [19]. Without any loss of generality, only shear reinforcement which is perpendicular 

to the axis of the element is considered in this work, see Fig. 3. VEd is the shear demand, defined 

by the exterior action and by the geometry of the element (see the example in the next section).  

Each one of the legs of the stirrups will contribute to the shear response according to the force-

strain relation given in Eq.(1) (see Fig. 3) with Ac,eff as the effective area associated to each leg 

and ε the longitudinal strain of the leg of the stirrup: 

sv c,eff ctA ( ) A ( )            (1) 

 Figure 3. Vertical equilibrium and shear deformation 

The deflection due to shear consists of the sliding of an adjacent cross sections of the beam, see 

Fig.3. In our case, two cross-sections separated by a distance s (distance between vertical bars) 

have been considered and so the sliding is directly deduced from the deformation of the legs as: 

dy z s

dx s z

 
             (2) 

where y is the deflection due to the shear deformation, x is the coordinate along the axis of the 

element, z is the lever arm and γ is the shear rotation. 

Imposing vertical equilibrium and accounting for Eq.1 and Eq. 2: 

Ed l sv c ,eff ct
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V ( x ) n A A

s z z

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     (3) 

with nl as the number of legs on each stirrup.  

The value of γ as a function of x (i.e. γ(x)) can be obtained from Eq. (3) and therefore, the shear 

deformation can be determined by the numerical integration of γ(x) along the length of the 

beam. The authors have used finite differences to do it, and the code developed is available on 

request. For the sake of simplicity, in this piece of work we have used Δx=s. 
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Example 

The example shown in Fig.4 has been adapted from [20]. The values of the effective depth, the 

secant modulus of elasticity of concrete and steel yield stress are: d=450 mm, Ecm=30500 MPa 

and fy=400 MPa, respectively.  

In the original example, the beam was subjected to a uniform load q equal to 16.9 kN/m. For 

this load, the maximum deflection calculated according to ACI-318[2] is 10.7 mm while the 

value of the maximum deflection calculated using the simplified method of EC2[1] (i.e. 

interpolating deflections and considering shrinkage) is 11.2 mm. 

The elastic modulus of  steel is Es=200000 MPa, the plastic modulus considered here is Es/100 

and the maximum strain is 0.01. It is also assumed that the crack angle is 45º.  

 

 Figure. 4. Example of reinforced concrete beam.  

The shear demand VEd is calculated as a function of q. For q=16.9 kN/m VEd is shown in Fig. 5. 

At a distance of less than d from the face of the support, the shear demand remains constant 

(EC2 [1], §6.2.1(8)). 

 

 Figure 5. Shear demand in the beam in Fig. 4 for q=16.9 kN/m. 

The components of the right side of Eq. 3 and their summation are shown in Fig.6 for the 

example studied. The dashed line is the contribution of the steel. The thin line corresponds to 

the contribution of concrete in tension (tension stiffening), assuming a tension stiffening bilinear 

model defined by ψ=0.6 (see Fig. 2). This value of ψ is deduced from the minimum shear 
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reinforcement ratio proposed by EC2[1] (Expression 9.5N of EC2) that applied to this beam 

lead to: 

 2
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The bold line is the summation of both contributions. 

 

 

 Figure 6. Shear response as a function of the shear rotation 

Shear rotation and shear deflection for values of q ranging from 17 to 47 kN/m have been 

represented in Fig.7 (in this example, collapse happens at q=47.1 kN/m). It can be observed that 

the response is in the linear elastic range of up to q=39 kN/m (Fig. 7a). For q=17 kN/m, the 

shear deformation (=0.06mm) is negligible in comparison with the bending deformation 

(=11mm). For q=39 kN/m, the maximum deformation due to shear is 0.15 mm at mid span, see 

Fig. 7a. 

For load values above q=39 kN/m, a drastic increment of both the shear rotation and the shear 

deflection happens in the vicinity of the supports, see Figs. 7b and 7c. This increment is 

associated to the yielding of the legs of the stirrups.  

As can be observed in Fig. 7, the maximum shear deflection at mid span for q=40 kN/m is 0.35 

mm, while for q=47 kN/m, it is 9.02 mm. The load increase and its corresponding deflection 

increase show a ductile behavior appropriate for seismic engineering design. 
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Figure 7. Shear rotation and shear deflection in the beam.  

 

Conclusions 

In this paper, a simple procedure to calculate the shear deflection of reinforced beams and 

columns is presented. The procedure is easy to implement with computer software. The 

methodology is applicable to the complete range of loadings and it is very interesting for the  

detection of shear collapse. The main advantages of the method proposed are its robustness and 

simplicity. An example has been studied to demonstrate the utility of the procedure proposed. 
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Appendix A. The steel models for tension stiffening of concrete: bare bar versus embedded 

bar. 

Tension stiffening of concrete is the ability of concrete to withstand stresses after cracking. This 

is due to the presence of reinforcing steel. A good expression of this property is given by [12] 

(Eq. A.1). As mentioned in the Introduction Section, this was proposed in an attempt to unify 

the results of both the MCFT and the RA-STM: 

1 3 6

c,effctm
ct c

bc

Af
( ) where M values in mm

d. M
 


 

     (A.1) 

Eq. A.1 and the experimental results obtained using [16] are plotted together in Fig. A.1. See 

[16] for the sizes and properties of the experiments. It can be observed that for strain values 

greater than 0.002 (the yield strain of steel in this case) the stresses are negligible in the 

experimental results. 

 Figure A.1. Tension stiffening of concrete. 

The MCFT considers a bare bar model, which can be modeled as bilinear with no strain 

hardening, see the blue curve in Fig. A.2, where εy is the yield strain. On the contrary, other 

theories use embedded bar models ([11],[21]), the red curve in Fig. A.2. As can be seen in Fig. 

A.2, the embedded bar model separates from the bare bar model at the apparent yield strain: εay. 

 Figure A.2. Example of bare bar model in blue and embedded bar model in red. 
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Figure A.3 and Eq. (A.2) show the equilibrium of forces between a crack section and a mean 

section of an embedded bar subjected to tension, assuming that the steel is yielding at the crack: 

{s y s s mean c ,eff ct mean

crack section mean section

A f A ( ) A ( )    
1 4 4 4 44 2 4 4 4 4 43        (A.2) 

 

 
Figure A.3. Embedded bar in tension. The steel stress at the crack is the steel yield 

stress, fy. 

 

 

Example 

Figure A.4 shows the components of Eq.A.2 for a leg of the stirrups of the classic example 

developed on page 352 of [17]. With ϕ=9.5 mm, Aceff=76×152 mm2, fctm=2MPa and fy=367 MPa 

(fck=38.6 MPa, fcm=46.6 MPa, Ecm=34909 MPa). The red curve represents the tension stiffening 

force according to Eq.(A.1) with Ac,eff as the concrete area affected. The blue curve shows the 

behavior of the bare bar. The term on the left side of Eq.(A.2) is the tension capacity of the bare 

bar (=26 kN), which corresponds to the maximum value of the summation of both terms at the 

right side of Eq.(A.2) (see brown curve in Fig. A.4).The result of this is: 

- The mean strain of the element when the first yield of the steel happens at the crack (which is 

also known as "apparent yield" (εay)) can be obtained by solving Eq. (A.2) for εmean = εay. In this 

case εay=0.0011. 

- Eq.(A.2) provides a formulation for the embedded bar, based on the tension stiffening model 

for strain values greater than the apparent yield strain. See Eq.(A.3) and the yellow curve in 

Fig.A.4. 
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Figure A.4. Tension stiffening force versus strain for the example in page 352 of [17]. 

As can be seen in Fig.A.1, the values of tension stiffening given by Eq.(A.1) differ from 

experiments for strains greater than 0.0006. Therefore, Eqs (A.1) and (A.3) do not provide good 

results and they need to be adjusted for strain values greater than a certain value (e.g. 0.0006 in 

Fig. A.1). In fact, some authors claim that for strain values greater than the yield strain of steel 

(εy ~ 0.002), tension stiffening disappears [16]. The RA-STM solves this problem by 

introducing a new embedded bar model that is not based on the formulation of the concrete in 

tension, as in Eq.(A.3). In doing so, the tension stiffening phenomenon is modeled in the RA-

STM with two different functions which are not connected by equilibrium: one for the concrete 

and another one for the embedded bar. Alternatively, the MCFT solves the problem by 

introducing a shear stress parallel to the crack (known as "crack check"), and so tension 

stiffening is defined in two domains while keeping the bare bar model for the reinforcing steel. 

For the crack check, the MCFT imposes the equilibrium in the principal direction of tension, see 

Fig. A.5. It is important to notice that the compression field theories apply the stress-strain 

relations exclusively in principal directions and assume that the principal directions of both 

strains and stresses coincide.   
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Figure A.5. Crack check according to MCFT. Adapted from [17]. 

According to the “crack check”, the resultant vertical force in the crack (when the steel is 

yielding) and between the cracks has to be equivalent (see page 349 of [17]): 

w
sv sv ct sv vy ci w

b zz z
A A f b z

s tan tan s tan
  

  

   
     

   
     (A.4) 

Eq.(A.4) is presented as a limitation to σct (i.e. to the tension stiffening of concrete) introducing 

a new function: the shear stress at the crack parallel to the crack (τci), see [17]. Following this 

way of thinking, the refined tension curve of concrete according to the MCFT could be 

expressed as: 

 
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1 1
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 

 
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

 
 


     (A.5) 

where σsv is the stress of the transverse steel considering the bare bar model shown in blue in 

Fig. A.2 and fvy is the yield stress of the transverse steel reinforcement.  

Eq.(A.5) is coupled with other equations and it has to be solved simultaneously with both 

compatibility and equilibrium equations, see [17], [18].  

Example -continuation- 

Fig. A.6 shows the tension stiffening of concrete (σ1-ε1) curve obtained from Eq. (A.5) for the 

example considered above. 
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 Figure A.6. σ1-ε1 curve for the example developed in [17], page 352. 

It is interesting to notice that Eq.(A.4) can be interpreted in a similar way as Eq.(A.2).  

Let us assume that σct is already known from using Eq.(A.1) and then Eq.(A.4) is solved using 

σsv. In doing so, σsv could be a new formulation for an embedded bar model, but instead of this 

interpretation, the authors of the MCFT chose to see it as a corrected formulation of σct. It can 

be concluded that both embedded and bare bar models constitute equivalent interpretations of an 

equilibrium equation. In other words, the strong decay of the tension stiffening beyond the 

apparent yield strain is solved by the MCFT by introducing the crack shear stress, while the RA-

STM introduces the embedded steel model.  

In order to match experimental results while keeping Eq.(A.3) valid, [21] modified the effective 

area (Aceff) by multiplying it by a degradation coefficient, which is another alternative to the 

RA-STM and MCFT approaches. In [21] it was proved that the value of this coefficient 

decreases as the strain level increases, with 0.3 as a good constant approximation for strain 

values beyond apparent yield strain. 

As previously mentioned, software programs such as [14] or [15] use linear models to simulate 

the behavior of concrete in tension. In these cases, if the tension stiffening model adopted is 

such that the summation of the contribution of the bare bar plus the contribution of concrete is 

always smaller than the capacity of the steel, then the apparent yield strain will coincide with 

the yield strain. See Fig. A.7 for the example analyzed in this Appendix.  
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 Figure A.7. Absence of apparent yield in linear model of tension stiffening 

All the compression field theories [10], [11], [21] present a residual tension stiffening capacity. 

Bond-slip and tension stiffening are holistically related, [22] showed that the plateau presented 

in the residual bond is related to the clear spacing between reinforcement ribs. The value of the 

residual tension stiffening capacity used in this work was the one deduced in [13]. 
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