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Abstract 

This paper focuses on the least-squares linear fusion filter design for discrete-time stochastic 

signals from multisensor measurements perturbed not only by additive noise, but also by different 

uncertainties that can be comprehensively modeled by random parameter matrices. The additive 

noises from the different sensors are assumed to be cross-correlated at the same time step and 

correlated with the signal at the same and subsequent time steps. A covariance based approach 

is used to derive easily implementable recursive filtering algorithms under the centralized, 

distributed and sequential fusion architectures. Although centralized and sequential estimators both 

have the same accuracy, the evaluation of their computational complexity reveals that the 

sequential filter can provide a significant reduction of computational cost over the centralized one. 

The accuracy of the proposed fusion filters is explored by a simulation example, where observation 

matrices with random parameters are used to describe different kinds of sensor uncertainties. 

Usuario
Rectángulo



1. Introduction

Multisensor systems are applied with different purposes in a large variety of fields in
engineering, technology or computer science, among others. These applications demand
an efficient use of the information contained in all the sensor observations that must
be used to estimate the signal of interest and, for that purpose, the use of suitable
information fusion techniques is required. If a central processor directly receives all the
measured outputs from sensors and processes them in real time, the corresponding
estimator is known as centralized fusion estimator (Ma and Sun (2013), Caballero-

Águila et al. (2015)). Since the centralized approach uses all sensor observations, it
clearly provides optimal estimators, but it suffers from several drawbacks, such as poor
reliability, heavy communication and heavy computational burden.

A different approach is the commonly named distributed or decentralized fusion
method (Dong et al. (2015), Caballero-Águila et al. (2017)). Under this approach,
each single sensor produces its own local estimator based only on its own data. These
local estimators are then transmitted to a central processor where they are fused
to yield an estimator that outperforms the local ones in terms of some optimality
criterion (e.g. the least-squares criterion). For a detailed overview of recent advances
on distributed filtering for stochastic systems over sensor networks, the reader may
go through references Ding et al. (2014) and Sun et al. (2017a). Even though the
distributed fusion architecture is more robust and flexible, has better reliability and
usually lower computational load, it provides less accurate estimators in general. Both
centralized and distributed fusion methods are based on the idea of batch fusion,
meaning that sensor measurements or local estimates are fused all at a time when all
of them are available at the fusion center.

The sequential fusion method, where the sensor data are fused one at a time, accord-
ing to the arrival time order (instead of processing them as a whole vector), overcomes
the aforementioned issues, achieving the same estimation accuracy but a lower compu-
tational cost than the centralized one. For this reason, the sequential fusion estimation
problem in multisensor systems has attracted much research interest during the last
decade and, assuming the knowledge of the state-space model of the system, many
relevant results have been presented in Wen et al. (2013), Yan et al. (2013), Zhou
et al. (2016), Kettner and Paolone (2017), Lin and Sun (2018), Feng et al. (2018) and
Lin and Sun (2019), among others. In Yan et al. (2013), the sequential fusion estima-
tion for a class of discrete time-varying linear systems is addressed, when the noises of
different sensors are cross-correlated and also coupled with the system noise of the pre-
vious step. Since the estimators of the measurement noises are ignored, the sequential
fusion algorithm proposed by these authors provides only suboptimal estimators. More
recently, a linear optimal recursive sequential fusion filtering algorithm for multisensor
systems with stochastic parameter perturbations and fading measurements has been
proposed in Lin and Sun (2018), under the additional assumption that the measure-
ment noises of different sensors are correlated with each other and also correlated with
the system noise at the same time step. In Lin and Sun (2019), the optimal sequential
estimation problem is studied for multisensor systems with correlated noises, where
the measurement noises of the different sensors are cross-correlated with each other at
the same instant and correlated with the system noise at the previous step.

In some conventional algorithms, additive noise is assumed to be the only source of
uncertainty in the sensor measurements and perfect transmissions between the sensor
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nodes and the fusion center are considered (see e.g., Wen et al. (2013), Yan et al.
(2013) and references therein). However, in many practical applications, a more realis-
tic scenario had better include the presence of different random phenomena (stochastic
parameter perturbations, missing or fading measurements, multiplicative noise, etc.)
in the sensor output measurements, as such uncertainties are usually inherent to the
network itself, due to bandwidth limitations or measuring device inaccuracies (see Liu
et al. (2016a), Liu et al. (2016b), Hu et al. (2017), Li et al. (2017), Wang and Sun
(2017) and Zhang et al. (2018), among others). To cope with these kind of situations,
a proper choice is the inclusion of random parameter matrices in the measurement
equation, as they provide an inclusive framework to model many of those random
phenomena. For this reason, the estimation problem in systems with random param-
eter matrices has sparked great research interest over the last years (see Yang et al.

(2016), Sun et al. (2017b), Wang and Zhou (2017), Caballero-Águila et al. (2018),

Caballero-Águila et al. (2019b) and references therein).

Another prolific research topic arises when dealing with multisensor systems whose
noises at different sensors are cross-correlated and also coupled with the process noise.
Sensor noise cross-correlation can be found when the signal process is observed by
sensors that operate in a common noisy environment (Caballero-Águila et al. (2017),
Li et al. (2017), Sun et al. (2017b), Wang and Sun (2017)), but it also can arise, for
example, after the transformation of systems with random delays or packet-dropouts
(Zhu et al. (2013)). Concerning the correlation between the sensor measurement noises
and the system noise, although several papers consider the estimation problem when
the sensor noises are correlated with the system noise at the same time step (Wen
et al. (2013), Lin and Sun (2018)), the case of correlation in the previous time step is
also of great interest (Yan et al. (2013), Lin and Sun (2019)). One of the most common
situations in which this type of correlation stems is the procedure of discretization of
continuous-time systems; actually, if the discrete-time linear system is obtained from
discretization of a continuous-time system, then the measurement noise is correlated
with the system noise of the previous time step (Li (2003)). This correlation assump-
tion makes the measurement noises at any time step be correlated with the signal at
the same and subsequent time steps.

Finally, it should be pointed out that, to the best of the authors’ knowledge, all
papers in the literature on sequential fusion estimation require the knowledge of the
state-space model; hence, the use of covariance information instead is a challenging
research field. It is also important to mention that all papers on covariance-based
centralized and distributed fusion algorithms assume independence between the signal
and sensor noises and, hence, independence between the system noise and sensor noises
is required, which, as already indicated, is not a realistic assumption in many practical
situations.

Encouraged by the above considerations, our goal is to design fusion algorithms,
based on the use of covariance information, for the least-squares linear centralized,
distributed and sequential filtering estimators of a stochastic signal, measured by a
multisensor network, when the additive noises are correlated across the different sen-
sors and also correlated with the signal process.

Compared with the related work in the literature, the main contributions are:

(a) The existing results on the sequential fusion estimation problem mainly focus
on the state-space model. In this paper, however, the signal evolution model
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is assumed to be unknown and only the mean and covariance functions of the
processes involved in the sensor measurement equations are available; actually,
this is the first time the sequential fusion estimation problem have been addressed
in this covariance information context.

(b) Unlike previous authors’ work concerning centralized and distributed fusion es-
timation algorithms, where independence between the signal and the additive
noises of the different sensors has always been assumed, the fusion estimation
algorithms proposed in this paper are obtained under the hypothesis that the
additive sensor noises are correlated with the signal at the same and subsequent
time steps.

The rest of the paper is organized as follows. In Section 2, the observation model and
the hypotheses about the stochastic processes involved in such model are described.
The centralized and distributed fusion filtering algorithms are detailed in Section 3 and
Section 4, respectively. The sequential fusion filtering algorithm is derived in Section
5. In Section 6, the feasibility and effectiveness of the proposed fusion filters is verified
by a computer simulation example, where the influence of the sensor uncertainties on
the performance of the filters is analyzed. Also, this example shows the equivalence on
estimation accuracy of the sequential and centralized fusion filters, and their superior-
ity over the distributed one. Finally, some concluding remarks are drawn in Section 7
and the derivation of the centralized, distributed and sequential estimation algorithms
are detailed in appendices A, B and C, respectively.

Notation: The n-dimensional Euclidean space and the set of all n1×n2 real matrices
are denoted by Rn and Rn1×n2 , respectively. If A and B are equal by definition (i.e.,
A is defined as B), it will be symbolically written as A ≡ B. For a matrix M , MT and
M−1 denote its transpose and inverse, respectively; also for a vector w, its transpose
is denoted by wT . If the dimensions of a vector or a matrix are not explicitly stated,
they are assumed to be compatible with algebraic operations. I and 0 denote the
identity matrix and the zero matrix, respectively. The shorthand

(
M1, . . . ,Ms

)
denotes

a partitioned matrix whose blocks are the submatrices M1, . . . ,Ms. For any function
Gk,h, depending on the time instants k and h, we will write Gk = Gk,k for simplicity;

analogously, F (i) = F (ii) will be written for any function F (ij), depending on the
sensors i and j. Finally, δk,h denotes the Kronecker delta function, which is equal to
one if k = h and zero otherwise.

2. Observation model. Assumptions

This paper addresses the least-squares (LS) linear fusion estimation problem of
discrete-time random signals from multi-sensor noisy measurements, perturbed by
random parameter matrices, using different fusion methods; specifically, the central-
ized, distributed and sequential methods are considered. The estimation problem will
be addressed by an innovation approach, since the LS linear signal estimator based on
the observations agrees with the one based on the innovations (Kailath et al. (2000)).
The fusion estimation algorithms will be derived using only covariance information,
without requiring full knowledge of the evolution model generating the signal process.

4



2.1. Signal processes with factorizable covariance function

The estimation algorithms based on the state-space model require an explicit mathe-
matical model of the signal time-variation and an explicit model expressing how the
observations used to estimate the signal are related with it. Hence, for every signal
evolution model, a different estimation algorithm must be derived. This handicap can
be overcome using a covariance-based approach for the algorithm design, where the
evolution model of the signal process is not required but, instead, it must be assumed
that the signal mean function is zero and its covariance function is factorizable. More
precisely, the following assumption is required:

(A1) The nx-dimensional signal {xk}k≥1 is a zero-mean second-order process and its
autocovariance function is expressed in a separable form; namely, E

[
xkx

T
h

]
=

AkB
T
h , h ≤ k, where Ak, Bh ∈ Rnx×n are known matrices.

It should be pointed out that this hypothesis holds true for the signal process of
the most commonly used signal evolution models and, consequently, the covariance-
based estimation approach provides a comprehensive context to cope with different
signal models without the necessity of obtaining a specific algorithm for each of them.
Some examples of processes satisfying (A1) are the signal of linear systems or that
of uncertain systems with state-dependent multiplicative noise (for details see e.g.

Caballero-Águila et al. (2019a)). Also, signals involving a sum of multiple multiplica-
tive noise terms, as those considered in Lin and Sun (2018), meet this assumption, as
it will be shown in Section 6.

2.2. Multi-sensor measured outputs with random parameter matrices

Consider the problem of estimating the signal xk from a set of measurements that are
provided by m sensors and obey the following model:

y
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, . . . ,m, (1)

where y
(i)
k ∈ Rny is the measured output of the ith sensor at time k, H

(i)
k ∈ Rny×nx ,

and v
(i)
k ∈ Rny is the measurement noise vector.

On the sensor noise correlation. The additive noises of the different sensors are as-
sumed to be cross-correlated at the same time and also correlated with the signal
process; specifically, the following two assumptions are required:

(A2) The measurement noises {v(i)
k }k≥1, i = 1, . . . ,m, are zero-mean white second-

order process with known E
[
v

(i)
k v

(j)T
h

]
= R

(ij)
k δk,h, i, j = 1, . . . ,m.

(A3) For i = 1, . . . ,m, the noise {v(i)
k }k≥1 is correlated with the signal process {xk}k≥1

according to the following correlation function:

E[xkv
(i)T
h ] =

{
CkD

(i)T
h , h ≤ k,

0, h > k,

where Ck ∈ Rnx×n′
and D

(i)
h ∈ Rny×n′

are known matrices.

These two assumptions allow us to consider state-space models in which the additive
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noises of different sensors are correlated with each other at the same time instant, and
also correlated with the system noise of the previous time step (see Section 6). This
correlation assumption between the measurement noises and the system noise appears,
for example, in Lin and Sun (2019) and also when the discrete-time linear system is
obtained from discretization of a continuous-time system (Yan et al. (2013)).

On the sensor measurement matrices. In different real situations, the unreliable en-
vironment or fallible operating mechanisms may yield sensor failures that cannot be
described using only additive noises; for instance, uncertainties such as missing or fad-
ing measurements, sensor gain degradation, or presence of multiplicative noises. Hence,

besides the noises v
(i)
k , the measured outputs y

(i)
k are here considered subject to other

stochastic uncertainties, coming from multiple sources, which can be mathematically

described in a unified way by assuming that the parameter matrices H
(i)
k in (1) are

random. In order that the random measurement matrices include the aforementioned
uncertainties as special cases, no specific distribution for their elements will be re-
quired, and only the existence and knowledge of their first and second-order moments
will be assumed. Moreover, to cover the possibility of having the same uncertainty
in the different sensors, we will suppose that the elements of the matrices modelling
these uncertainties in the different sensors are cross-correlated in the same time in-
stant. More specifically, the following assumption on the measurement matrices in (1)
is considered:

(A4) For i = 1, . . . ,m, {H(i)
k }k≥1 are sequences of independent random parame-

ter matrices. By denoting h
(i)
k,pq

, p = 1, . . . , ny and q = 1, . . . , nx, the (p, q)-

th entry of H
(i)
k , it is assumed that the means, E[h

(i)
k,pq

], and the covariances,

Cov[h
(i)
k,pq

, h
(j)
k′,p′q′

] = Cov[h
(i)
k,pq

, h
(j)
k,p′q′

]δk,k′, for p, p′ = 1, . . . , ny and q, q′ =

1, . . . , nx, are known.

This assumption provides an inclusive framework to model different sensor uncertain-
ties, for instance, the fading measurement phenomenon considered in Lin and Sun
(2018).

Also, the following independence assumption is assumed:

(A5)
(
{xk}k≥1, {v

(i)
k }k≥1, i = 1, . . . ,m

)
and

(
{H(i)

k }k≥1, i = 1, . . . ,m
)

are indepen-

dent.

Properties. Taking into account the above assumptions (A1)-(A5), the following prop-
erties, which will be used in the derivation of the distributed and sequential fusion
algorithms, are easily derived:

− Denoting H
(i)
k ≡ E

[
H

(i)
k

]
and H̃

(i)
k ≡ H

(i)
k − H

(i)
k , from (A1) and the conditional

expectation properties, we have

E[H̃
(i)
k xkx

T
k H̃

(j)T
k ] = E[H̃

(i)
k AkB

T
k H̃

(j)T
k ], i, j = 1, . . . ,m,
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where, for p, q = 1, . . . , ny, the (p, q)-th entries of these matrices are

(
E[H̃

(i)
k AkB

T
k H̃

(j)T
k ]

)
pq

=

nx∑
a=1

nx∑
b=1

Cov[h
(i)
k,pa

, h
(j)
k,qb

]
(
AkB

T
k

)
ab
.

− The signal process, {xk}k≥1, is correlated with the measurement process, {y(i)
k }k≥1,

and

E
[
xky

(i)T
h

]
=
(
Ak , Ck

)(
H

(i)
h Bh, D

(i)
h

)T
, h ≤ k, i = 1, . . . ,m. (2)

− The random vectors H̃
(i)
k xk+v

(i)
k and y

(j)
k are correlated, for all i, j = 1, . . . ,m, with

E
[(
H̃

(i)
k xk + v

(i)
k

)
y

(j)T
k

]
= E[H̃

(i)
k AkB

T
k H̃

(j)T
k ] +D

(i)
k CTk H

(j)T
k +R

(ij)
k . (3)

3. Centralized fusion filtering estimators

In the centralized fusion method, all the measurement data coming from the different
sensors are sent to a fusion center where they are combined to provide optimal estima-
tors based on all the received measurements. So, to address the LS estimation problem
by this method, in which the observations from the different sensors are jointly pro-
cessed at each sampling time, the observation model (1) is rewritten in a stacked form
as shown in the next subsection.

3.1. Stacked observation model. Properties

Defining the vectors yk =
(
y

(1)T
k , . . . , y

(m)T
k

)T
, the observation equations of the differ-

ent sensors (1) are rewritten in a compact way as follows:

yk = Hkxk + vk, k ≥ 1, (4)

where Hk =
(
H

(1)T
k , . . . ,H

(m)T
k

)T
and vk =

(
v

(1)T
k , . . . , v

(m)T
k

)T
.

To address the LS estimation problem from the observations given in (4), the fol-
lowing statistical properties of the processes involved in (4), which are easily inferred
from assumptions (A2)-(A5), are used:

• {Hk}k≥1 is a sequence of independent random matrices with known means, Hk ≡
E[Hk] =

(
H

(1)T
k , . . . ,H

(m)T
k

)T
, and

E[H̃kxkx
T
k H̃

T
k ] = E[H̃kAkB

T
k H̃

T
k ] =

(
E[H̃

(i)
k AkB

T
k H̃

(j)T
k ]

)
i,j=1,...,m

.

• The noise process, {vk}k≥1, has zero mean and E[vkv
T
h ] = Rkδk,h, where Rk =(

R
(ij)
k

)
i,j=1,...,m

.

• The signal process, {xk}k≥1, and the noise process, {vk}k≥1, are correlated to each

other, with E[xkv
T
h ] =

{
CkD

T
h , h ≤ k,

0, h > k.
where Dh =

(
D

(1)T
h , . . . , D

(m)T
h

)T
.
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• {Hk}k≥1 is independent of
(
{xk}k≥1, {vk}k≥1

)
.

• The signal process, {xk}k≥1, is correlated with the process {yk}k≥1 and

E
[
xky

T
h

]
=
(
Ak , Ck

)(
HhBh , Dh

)T
, h ≤ k. (5)

• The random vectors H̃kxk + vk and yk are correlated to each other, with

E
[(
H̃kxk + vk

)
yTk
]

= E[H̃kAkB
T
k H̃

T
k ] +DkC

T
k H

T
k +Rk, k ≥ 1. (6)

3.2. Centralized filtering recursive algorithm

A recursive algorithm for the LS linear centralized fusion filter, x̂
(C)
k/k, of the signal

xk based on the observations {y1, . . . , yk} given in (4), is presented in the following
theorem.

Theorem 3.1. Under assumptions (A1)-(A5), the centralized filter, x̂
(C)
k/k, and the

filtering error covariance matrix, Σ
(C)
k/k ≡ E[(xk − x̂

(C)
k/k)(xk − x̂

(C)
k/k)

T ], are given by

x̂
(C)
k/k =

(
Ak , Ck

)
uk, k ≥ 1,

Σ
(C)
k/k = AkB

T
k −

(
Ak , Ck

)
Ku
k

(
Ak , Ck

)T
, k ≥ 1,

(7)

where the vectors uk and the matrices Ku
k ≡ E

[
uku

T
k

]
are obtained from

uk = uk−1 + UkΠ−1
k µk, k ≥ 1; u0 = 0,

Ku
k = Ku

k−1 + UkΠ−1
k U

T
k , k ≥ 1; Ku

0 = 0,
(8)

and the matrices Uk ≡ E
[
ukµ

T
k

]
satisfy

Uk =
(
HkBk, Dk

)T −Ku
k−1

(
Ak , Ck

)T
H
T
k , k ≥ 1. (9)

The innovation, µk ≡ yk− ŷ
(C)
k/k−1, and its covariance matrix, Πk ≡ E[µkµ

T
k ], are given

by

µk = yk −Hk

(
Ak , Ck

)
uk−1, k ≥ 1, (10)

Πk = E[H̃kAkB
T
k H̃

T
k ] +DkC

T
k H

T
k +Rk +Hk

(
Ak , Ck

)
Uk, k ≥ 1. (11)

Proof. See Appendix A. �

4. Distributed fusion estimation problem

Under the distributed fusion methodology, local filtering estimators are computed for
each single sensor i = 1, . . . ,m, using only the measurements of the sensor itself; after
that, all the local filters are sent to a fusion center to generate the estimator by a
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certain fusion criterion. Accordingly, in this section, we will firstly obtain a recursive
algorithm for the local LS linear filtering estimators (Theorem 4.1) and, after that, the
proposed distributed filtering estimators will be designed as the LS matrix-weighted
linear combination of the local filters (Theorem 4.2).

Theorem 4.1. Under assumptions (A1)-(A5), for each i = 1, . . . ,m, the local LS

linear filter, x̂
(i)
k/k, and the corresponding error covariance matrix, Σ

(i)
k/k ≡ E

[
(xk −

x̂
(i)
k/k)(xk − x̂

(i)
k/k)

T
]
, are given by

x̂
(i)
k/k =

(
Ak , Ck

)
u

(i)
k , k ≥ 1,

Σ
(i)
k/k = AkB

T
k −

(
Ak , Ck

)
Ku(i)

k

(
Ak , Ck

)T
, k ≥ 1,

where the vectors u
(i)
k and the matrices Ku(i)

k ≡ E
[
u

(i)
k u

(i)T
k

]
are obtained from

u
(i)
k = u

(i)
k−1 + U (i)

k Π
(i)−1
k µ

(i)
k , k ≥ 1; u

(i)
0 = 0,

Ku(i)

k = Ku(i)

k−1 + U (i)
k Π

(i)−1
k U (i)T

k , k ≥ 1; Ku(i)

0 = 0,

and the matrices U (i)
k ≡ E

[
u

(i)
k µ

(i)T
k

]
satisfy

U (i)
k =

(
H

(i)
k Bk, D

(i)
k

)T −Ku(i)

k−1

(
Ak , Ck

)T
H

(i)T
k , k ≥ 1.

The innovations, µ
(i)
k ≡ y

(i)
k − ŷ

(i)
k/k−1, and their covariance matrices, Π

(i)
k ≡

E[µ
(i)
k µ

(i)T
k ], are given by

µ
(i)
k = y

(i)
k −H

(i)
k

(
Ak , Ck

)
u

(i)
k−1, k ≥ 1,

Π
(i)
k = E[H̃

(i)
k AkB

T
k H̃

(i)T
k ] +D

(i)
k CTk H

(i)T
k +R

(i)
k +H

(i)
k

(
Ak , Ck

)
U (i)
k , k ≥ 1.

Proof. Note that the local filtering algorithm has the same structure as the centralized
filtering algorithm in Theorem 3.1. Therefore, the proof of Theorem 4.1 is thoroughly
analogous to that of Theorem 3.1 and, consequently, it is omitted. �

Once the local filters have been obtained, the distributed fusion filter, x̂
(D)
k/k , will

be calculated as a matrix-weighted linear combination of the local filters, x̂
(i)
k/k, i =

1, . . . ,m, in which the weight matrices are computed by minimizing the mean squared

estimation error. The distributed filters, x̂
(D)
k/k , and a formula for the error covariance

matrices, Σ
(D)
k/k ≡ E

[
(xk − x̂

(D)
k/k)(xk − x̂

(D)
k/k)T

]
, are presented in the following theorem.

Theorem 4.2. Let X̂k/k =
(
x̂

(1)T
k/k , . . . , x̂

(m)T
k/k

)T
be the vector constituted by the local

filters calculated from the algorithm in Theorem 4.1; then, the distributed filtering
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estimators and their error covariance matrices are given by

x̂
(D)
k/k = Υk/kΞ

−1
k/kX̂k/k, k ≥ 1,

Σ
(D)
k/k = AkB

T
k −Υk/kΞ

−1
k/kΥ

T
k/k, k ≥ 1.

(12)

with Ξk/k ≡
(
K x̂(ij)

k/k

)
i,j=1,...,m

and Υk/k ≡
(
K x̂(1)

k/k , . . . ,K
x̂(m)

k/k

)
, where the matrices

K x̂(ij)

k/k ≡ E
[
x̂

(i)
k/kx̂

(j)T
k/k

]
, i, j = 1, . . . ,m, are obtained by

K x̂(ij)

k/k =
(
Ak , Ck

)
Ku(ij)

k

(
Ak , Ck

)T
, k ≥ 1, (13)

and the matrices Ku(ij)

k ≡ E
[
u

(i)
k u

(j)T
k

]
are given by

Ku(ij)

k = Ku(ij)

k−1 + U (ij)
k−1,kΠ

(j)−1
k U (j)T

k + U (i)
k Π

(i)−1
k U (ji)T

k , k ≥ 1; Ku(ij)

0 = 0. (14)

The matrices U (ij)
h,k ≡ E[u

(i)
h µ

(j)T
k ], h = k − 1, k, are calculated by

U (ij)
k−1,k=

(
Ku(i)

k−1 −Ku(ij)

k−1

)(
Ak , Ck

)T
H

(j)T
k , k ≥ 1, (15)

U (ij)
k = U (ij)

k−1,k + U (i)
k Π

(i)−1
k Π

(ij)
k , k ≥ 1. (16)

Finally, the cross-covariance matrices, Π
(ij)
k ≡ E

[
µ

(i)
k µ

(j)T
k

]
, satisfy

Π
(ij)
k = E[H̃

(i)
k AkB

T
k H̃

(j)T
k ] +D

(i)
k CTk H

(j)T
k +R

(ij)
k

+H
(i)
k

(
Ak , Ck

)(
U (j)
k − U

(ij)
k−1,k

)
, k ≥ 1.

(17)

Proof. See Appendix B. �

5. Sequential fusion filtering estimators

In the sequential fusion method, at each sampling time k, instead of processing the
measurements of the different sensors as a vector, an algorithm is implemented to
process sequentially these measurements. More precisely, the signal estimator based
on the measurements of all the sensors up to time k− 1 is sequentially updated using
the successive measurements provided by every sensor at time k. Consider that the
sensor measurements arrive at the processing center according to an arbitrary order
and, without loss of generality, assume that this order is indicated by the sensor

numbering; that is, for all i = 1, . . . ,m − 1, the observation y
(i)
k from the ith sensor

is received before the observation y
(i+1)
k from the (i + 1)th sensor. Hence, at each

sampling time k, the update of the signal estimators is recursively carried out in real
time according to the arriving order of measurements from the different sensors.

Our aim in this section is to use the sequential fusion method to obtain the LS

linear filtering estimator, x̂
(S)
k/k, of the signal xk based on the observations made by all

10



the sensors up to time k. The set of observations made by the first i sensors at time k

will be denoted by Y
(i)
k =

{
y

(1)
k , . . . , y

(i)
k

}
; hence, Y

(m)
k is the set of observations made

by all the sensors at time k, and Yk =
{
Y

(m)
1 , . . . , Y

(m)
k

}
are all the observations made

by all the sensors up to time k. Also, for notational simplicity, we will write Y
(0)
k to

mean that no observations of any sensor are available at the instant k.

Clearly, Yk = {y1, . . . , yk}, with y1, . . . , yk the observations given in (4). Conse-

quently, the sequential fusion filter is equal to the centralized one (x̂
(S)
k/k = x̂

(C)
k/k) but,

as it will be discussed in Remark 1, in comparison with the centralized fusion al-
gorithm, the sequential fusion algorithm can significantly reduce the computational
cost.

Let us denote x̂k/k,i the LS linear estimator of the signal xk based on the observations
provided by all sensors up to time k − 1 and the observations provided by the first

i sensors at time k; that is, the estimator of xk based on
{
Yk−1, Y

(i)
k

}
. Since Yk ={

Yk−1, Y
(m)
k

}
, it is clear that the sequential fusion filter is given by x̂

(S)
k/k = x̂k/k,m; so,

for each k ≥ 1, our aim is to derive a recursive algorithm to obtain sequentially the
estimators x̂k/k,1, . . . , x̂k/k,m.

As in the previous centralized and local estimators, the derivation of the filtering
estimators by the sequential fusion method will also be carried out using an innovation
approach.

Innovation-based expression of the estimators. For any fixed k, let ŷ
(i)
k/k,i−1 be the

estimator of y
(i)
k based on

{
Yk−1, Y

(i−1)
k

}
. Note that this estimator is the part of

the observation y
(i)
k determined by the knowledge of the set

{
Yk−1, Y

(i−1)
k

}
; then, the

difference vector µk,i ≡ y
(i)
k −ŷ

(i)
k/k,i−1 is the new information or the innovation provided

by y
(i)
k .

Using that the LS linear estimator based on the observations is equal to the one
based on the innovations, we have that, for i = 0, . . . ,m, the LS linear estimator,

ξ̂k/k,i, of a random vector ξk based on the observations
{
Yk−1, Y

(i)
k

}
, can be expressed

as follows:

ξ̂k/k,i=(1− δk,1)

k−1∑
h=1

m∑
j=1

E[ξkµ
T
h,j ]Π

−1
h,jµh,j + (1− δi,0)

i∑
j=1

E[ξkµ
T
k,j ]Π

−1
k,jµk,j , (18)

where Πh,j ≡ E[µh,jµ
T
h,j ], h ≤ k, denotes the covariance matrix of µh,j .

Observation estimator ŷ
(i)
k/k,i−1. To obtain an expression for ŷ

(i)
k/k,i−1, we will start from

(1) which, taking into account that H
(i)
k is correlated with H

(j)
k and, hence, correlated

with the innovations µk,j , for j = 1, . . . , i− 1, is rewritten as

y
(i)
k = H

(i)
k xk + H̃

(i)
k xk + v

(i)
k , k ≥ 1.

Clearly, the estimator of H
(i)
k xk based on

{
Yk−1, Y

(i−1)
k

}
is H

(i)
k x̂k/k,i−1 and, to obtain

the estimator of the vector H̃
(i)
k xk + v

(i)
k , we apply the general expression (18); so,

11



taking into account that E[(H̃
(i)
k xk + v

(i)
k )µTh,j ] = 0, for h ≤ k − 1 and j = 1, . . . ,m,

and denoting V(i)
k,j ≡ E

[
(H̃

(i)
k xk + v

(i)
k )µTk,j

]
, we obtain

ŷ
(i)
k/k,i−1 = H

(i)
k x̂k/k,i−1 + (1− δi,1)

i−1∑
j=1

V(i)
k,jΠ

−1
k,jµk,j , i = 1, . . . ,m. (19)

Signal estimator x̂k/k,i. From the general expression (18), to obtain the LS linear
estimator x̂k/k,i it is necessary to calculate the coefficients

Xk,h,j ≡ E
[
xkµ

T
h,j

]
= E

[
xky

(j)T
h

]
− E

[
xkŷ

(j)T
h/h,j−1

]
, h ≤ k, j = 1, . . . ,m.

Using (2) for E
[
xky

(j)T
h

]
and expression (19) for ŷ

(j)
h/h,j−1 together with (18) for

x̂h/h,j−1, we obtain that these coefficients are expressed as

Xk,h,j =
(
Ak , Ck

)
Uh,j , h ≤ k, j = 1, . . . ,m, (20)

where

Uh,j =
(
H

(j)
h Bh , D

(j)
h

)T − (1− δh,1)

h−1∑
h′=1

m∑
j′=1

Uh′,j′Π
−1
h′,j′U

T
h′,j′
(
Ah , Ch

)T
H

(j)T
h

−(1− δj,1)

j−1∑
j′=1

Uh,j′Π−1
h,j′

(
H

(j)
h

(
Ah , Ch

)
Uh,j′ + V(j)

h,j′

)T
, h ≥ 1, j = 1, . . . ,m.

Then, by defining the vectors

uk,i ≡
i∑

j=1

Uk,jΠ−1
k,jµk,j , i = 1, . . . ,m, uk,0 ≡ 0, k ≥ 1,

Uk ≡
k∑

h=1

uh,m, k ≥ 1; U0 ≡ 0,

(21)

and applying the expressions (18), (20) and (21), it is easy to see that the estimator
is given by x̂k/k,i =

(
Ak , Ck

)(
Uk−1 + uk,i

)
.

Taking into account the above results, the recursive algorithm for the LS linear
filter, under the sequential fusion method, is derived in the following theorem.

Theorem 5.1. Under assumptions (A1)-(A5), the sequential fusion filter x̂
(S)
k/k and

the filtering error covariance matrix, Σ
(S)
k/k ≡ E[(xk − x̂

(S)
k/k)(xk − x̂

(S)
k/k)

T ] are given by

x̂
(S)
k/k = x̂k/k,m, Σ

(S)
k/k = Σk/k,m, k ≥ 1,

where, for each k ≥ 1, the estimator x̂k/k,m and its error covariance matrix, Σk/k,m ≡
E[(xk − x̂k/k,m)(xk − x̂k/k,m)T ], are sequentially obtained by the following recursive

12



algorithm:

x̂k/k,i =
(
Ak , Ck

)(
Uk−1 + uk,i

)
, i = 1, . . . ,m,

Σk/k,i = AkB
T
k −

(
Ak , Ck

)(
KU
k−1 +Ku

k,i

)(
Ak , Ck

)T
, i = 1, . . . ,m.

(22)

The vectors uk,i and the matrices Ku
k,i ≡ E

[
uk,iu

T
k,i

]
are obtained from

uk,i = uk,i−1 + Uk,iΠ−1
k,iµk,i, i = 1, . . . ,m; uk,0 = 0,

Ku
k,i = Ku

k,i−1 + Uk,iΠ−1
k,iU

T
k,i, i = 1, . . . ,m; Ku

k,0 = 0,
(23)

and the vectors Uk and the matrices KU
k ≡ E

[
UkU

T
k

]
satisfy

Uk = Uk−1 + uk,m, k ≥ 1; U0 = 0,
KU
k = KU

k−1 +Ku
k,m, k ≥ 1; KU

0 = 0.
(24)

The matrices Uk,i ≡ E
[
uk,iµ

T
k,i

]
are given by

Uk,i =
(
H

(i)
k Bk , D

(i)
k

)T − (KU
k−1 +Ku

k,i−1

)(
Ak , Ck

)T
H

(i)T
k

−(1− δi,1)

i−1∑
j=1

Uk,jΠ−1
k,jV

(i)T
k,j , i = 1, . . . ,m.

(25)

The innovation, µk,i = y
(i)
k − ŷ

(i)
k/k,i−1, and its covariance matrix, Πk,i = E[µk,iµ

T
k,i],

are obtained by

µk,i = y
(i)
k −H

(i)
k

(
Ak , Ck

)(
Uk−1 + uk,i−1

)
−(1− δi,1)

i−1∑
j=1

V(i)
k,jΠ

−1
k,jµk,j , i = 1, . . . ,m,

(26)

Πk,i = H
(i)
k

(
Ak , Ck

)
Uk,i + V(i)

k,i , i = 1, . . . ,m. (27)

The matrices V(i)
k,j = E

[
(H̃

(i)
k xk + v

(i)
k )µTk,j

]
satisfy

V(i)
k,j =E[H̃

(i)
k AkB

T
k H̃

(j)T
k ]−(1−δj,1)

j−1∑
j′=1

V(i)
k,j′Π

−1
k,j′

(
H

(j)
k

(
Ak , Ck

)
Uk,j′ +V

(j)
k,j′

)T
+D

(i)
k CTk H

(j)T
k +R

(i,j)
k , i = 1, . . . ,m, j = 1, . . . , i.

(28)

Proof. See Appendix C. �

As it has been previously indicated, since Yk = {y1, . . . , yk} with y1, . . . , yk the
observations given in (4), the sequential fusion filter is equal to the centralized one.
Actually, the following Theorem provides the proof of this equivalence between the
least-squares centralized fusion and least-squares sequential fusion algorithms proposed
in this paper.
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Theorem 5.2. Under assumptions (A1)-(A5), the estimation accuracy of the cen-
tralized fusion filter given in Theorem 3.1 and that of the sequential fusion filter given

in Theorem 5.1 are equivalent under the same initial values; in fact, x̂
(C)
k/k = x̂

(S)
k/k and

Σ
(C)
k/k = Σ

(S)
k/k, for all k ≥ 1.

Proof. See Appendix D. �

Remark 1. Computational complexity. The implementation efficiency of an algorithm is
expressed by its computational complexity, measured by the amount of work (number
of operations) performed at each iteration. Such complexity is usually expressed using
the O(·) notation which, omitting multiplicative constants and lower order terms,
represents the order of magnitude as a function of the size of the input data. In our
study, we have considered a signal of dimension nx and observations coming from m
sensors, all of dimension ny.

• Centralized fusion filtering algorithm. The dimension of the stacked observations
(4), containing the measurements of all the sensors, is nym; then, at each iteration,
the centralized fusion algorithm, given in Theorem 3.1, requires the computation
of the inverse of the innovation covariance matrix (of dimension nym × nym) and,
hence, the computational complexity of this algorithm has the order of magnitude
O((nym)3).

• Sequential fusion filtering algorithm. In the sequential fusion algorithm given in
Theorem 5.1, at each iteration k, the innovations µk,i, i = 2, . . . ,m, given by (26),

require the computation of i− 1 products of ny ×ny matrices; namely, V(i)
k,jΠ

−1
k,j , for

j = 1, . . . , i− 1. Since each of these products has the order of magnitude O(n3
y) and

we have 1+2+· · ·+m−1 =
m(m− 1)

2
products, the computational complexity of the

proposed sequential fusion algorithm has the order of magnitudeO
(
m(m− 1)

2
n3
y

)
.

So, compared with the centralized fusion algorithm, the sequential fusion one can
provide a significant reduction of the computational cost even for a small number of
sensors; clearly, the reduction is greater when the number of sensors, m, increases.

Remark 2. Centralized, distributed and sequential fusion filtering algorithms have been
obtained when the sensor measurement model includes random parameter matrices
and additive noises that are cross-correlated among the different sensors and corre-
lated with the signal at the same and future time steps. In contrast to the methodology
based on the state-space model used in Lin and Sun (2018) and Lin and Sun (2019),
a covariance-based approach is used here to derive the algorithms. In similarity with
these papers, the projection theory is used in the algorithm design and the computa-
tional cost of the proposed algorithms is the same as that of the algorithms in Lin and
Sun (2018) and Lin and Sun (2019).

6. Numerical simulation example

In this section, the application of the centralized, distributed and sequential filter-
ing algorithms proposed in the current paper is illustrated by a simulation example.
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Consider a two-dimensional signal whose first and second component represent the
position and velocity of a target, respectively. As in Lin and Sun (2018), assume that
the signal evolution equation is given by:

xk+1 =
(
F + ε

(1)
k F1 + ε

(2)
k F2

)
xk + %wk, k ≥ 1,

where

F =

(
0.95 0.1

0 0.95

)
, F1 =

(
0.1 0
0 0.01

)
, F2 =

(
0.2 0
0 0.02

)
, % =

(
0.8
0.6

)
.

The sequences
{
ε

(1)
k

}
k≥1

,
{
ε

(2)
k

}
k≥1

and
{
wk
}
k≥1

are standard white gaussian scalar

noises. The initial signal x0 is a two-dimensional zero-mean gaussian random vector
with covariance matrix E[x0x

T
0 ] = 0.1I.

Assuming that the initial signal, x0, and the sequences
{
ε

(1)
k

}
k≥1

,
{
ε

(2)
k

}
k≥1

and
{
wk
}
k≥1

are mutually independent, the signal covariance function is given by

E[xkx
T
h ] = F k−hE[xhx

T
h ], h ≤ k, where E[xhx

T
h ], h ≥ 1, is recursively obtained by:

E[xhx
T
h ] = FE[xh−1x

T
h−1]F T + F1E[xh−1x

T
h−1]F T1 + F2E[xh−1x

T
h−1]F T2 + %%T .

Hence, assumption (A1) is satisfied just taking, for example, Ak = F k and BT
h =

F−hE[xhx
T
h ].

The measurements of the target are provided by four sensors, which are affected
by different uncertainties: continuous gain degradation with correlation at the same
time instant is considered in sensors 1 and 4, discrete gain degradation in sensor 2
and missing measurements in sensor 3. Specifically, we consider the model (1) for the

measurements
{
y

(i)
k

}
k≥1

, i = 1, 2, 3, 4, with H
(1)
k = θ

(1)
k

(
0.75, 1

)
, H

(2)
k = θ

(2)
k

(
1, 0.75

)
,

H
(3)
k = θ

(3)
k

(
1, 1

)
and H

(4)
k = θ

(1)
k

(
1, 1.25

)
, where

{
θ

(i)
k

}
k≥1

, i = 1, 2, 3, are mutu-

ally independent sequences of independent random variables with the following time-
invariant probability distributions:

• θ(1)
k is uniformly distributed over [0.2, 0.8].

• P [θ
(2)
k = 0] = 0.3, P [θ

(2)
k = 0.5] = 0.3, P [θ

(2)
k = 1] = 0.4.

• θ(3)
k is a Bernoulli random variable with P [θ

(3)
k = 1] = θ.

The additive noise processes {v(i)
k }k≥1, i = 1, 2, 3, 4, are defined by v

(i)
k = ciwk−1,

with ci = 10i for i = 1, 2, 3, 4. Clearly, these noises are correlated, with E[v
(i)
k v

(j)
h ] =

cicjδk,h, i, j = 1, 2, 3, 4; hence, assumption (A2) holds with R
(ij)
k = cicj , k ≥ 1.

Also, it is clear that E[wk−1v
(i)
h ] = ciδk,h and, as a result, the signal process and the

observation noises are correlated with cross-covariance functions given by E[xkv
(i)
h ] =

F k−hE[xhv
(i)
h ] = F k−hE[%wh−1v

(i)
h ] = ciF

k−h%, for h ≤ k, and E[xkv
(i)
h ] = 0, for

h > k; hence, assumption (A3) is satisfied just taking Ck = F k and D
(i)T
h = ciF

−h%.

To illustrate and compare the effectiveness of the local and fusion estimators, the
proposed algorithms were implemented using MATLAB and two hundred iterations
were performed for the centralized, distributed and sequential fusion filtering algo-
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Figure 1. Error variance comparison of the local, distributed, centralized and sequential filtering estimators
when θ = 0.5.

rithms, besides the local filtering algorithms.

(1) Estimation accuracy. In order to compare the accuracy of the proposed fusion
estimators, the error variances of the local filters and the different fusion filters were
calculated. In Figure 1, considering θ = 0.5, the error variances of these filtering
estimators are displayed; this figure shows, on the one hand, that, as expected, the
distributed fusion filtering estimators outperform all the local ones (that is, the
error variances of the distributed fusion estimators are smaller than those of every
local filter) and, on the other hand, that the error variances corresponding to the
distributed fusion filters are greater than those of the centralized and sequential
filters. In Figure 1 it is also observed that, as indicated in Section 5, the accuracy
of the sequential filter is equal to that of the centralized filter.

(2) Tracking performance of the centralized and sequential fusion estimates. Using sim-
ulated values of the signal and the observations in the four sensors, both centralized
and sequential fusion filtering estimates were calculated when θ = 0.5. For both
signal components (position and velocity), Figure 2 shows a satisfactory and effi-
cient tracking performance of these fusion filtering estimates which, corroborating
what we indicated in Section 5, are exactly the same.

(3) Mean-squared error comparison. The distributed, centralized and sequential fusion
estimators have also been compared, when θ = 0.5, using the filtering mean-squared

error at each time instant k, MSEk =
1

1000

1000∑
r=1

(
x

(r)
k − x̂

(r)
k/k

)2
, where

{
x

(r)
k

}
1≤k≤200

is the r-th set of simulated signal data and x̂
(r)
k/k is the centralized/sequential filter
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Figure 2. Simulated values together with centralized and sequential fusion filtering estimates when θ = 0.5.

at the sampling time k in the r-th simulation run. The results are displayed in
Figure 3, from which analogous conclusions to those in the above figures can be
drawn.

(4) Influence of the missing probabilities. As it has been previously indicated, ran-
domly missing measurements are assumed to occur in sensor 3 with probability
1 − θ. In order to show the effect of this missing measurement phenomenon, the
centralized/sequential filtering error variances are plotted in Figure 4 for different
values of the probability θ; namely, we assumed that θ varies from 0.1 to 0.9. From
this figure, we observe that, as expected, the centralized/sequential error variances
become smaller as θ increases. Consequently, the performance of these filters is
indeed influenced by this probability, improving when the probability of missing
measurements, 1− θ, decreases. Finally, it is also inferred that this improvement is
more appreciable when θ ≥ 0.5.

7. Conclusion

Three different approaches (centralized, distributed and sequential) to the LS fusion
filtering problem have been investigated in this paper for discrete-time stochastic sig-
nals, which are observed by a multisensor network system whose measurements are
impaired by random uncertainties modelled by random parameter matrices. As it is
known, the centralized fusion estimation, despite theoretically providing optimal esti-
mators, suffers from high computational complexity. This and other disadvantages can
be overcome by using the distributed fusion estimation method which, on the other
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Figure 3. Distributed, centralized and sequential filtering mean-squared errors (MSE) when θ = 0.5.
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side, may provide suboptimal estimators. The sequential fusion method has the same
estimation accuracy as the centralized one, thus providing optimal estimators as well,
but the sensor data are processed in a sequential way, which yields a considerable
reduction of the computational cost. Most sequential fusion estimation algorithms in
the literature require the knowledge of the signal evolution model. However, in many
practical applications, such information may not be available and only the first and
second-order moments of the signal and the processes involved in the sensor measure-
ment equations can be obtained.

This paper has addressed the centralized, distributed and sequential fusion estima-
tion problems using covariance information when the sensor measurement model in-
cludes random parameter matrices and additive noises that are cross-correlated across
sensors and correlated with the signal at the same and future time steps. A simulation
example has shown how state-space models with additive noises correlated with the
system noise at the previous time step fit the proposed covariance-based approach
and how multiple uncertainties in the measurement equations (namely, discrete or
continuous gain degradation and missing measurements) are covered by the current
measurement model with random parameter matrices. The simulation results have
illustrated how the proposed fusion filters perform and how the missing measurement
phenomenon influences the estimation accuracy.
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Caballero-Águila, R., Hermoso-Carazo, A., and Linares-Pérez, J. (2016). Fusion estimation
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Appendix A. Proof of Theorem 3.1

Let start by expressing the LS linear estimator of xk based on the observations yh, h ≤
L, as a linear combination of the innovations µh, h ≤ L; namely:

x̂
(C)
k/L =

L∑
h=1

E
[
xkµ

T
h

]
Π−1
h µh. (29)

Hence, to obtain the LS linear filter x̂
(C)
k/k, it is necessary to calculate the coefficients

Xk,h ≡ E
[
xkµ

T
h

]
= E

[
xky

T
h

]
− E

[
xkŷ

(C)T
h/h−1

]
, for h ≤ k.

Taking orthogonal projections, the centralized one-stage observation predictor

ŷ
(C)
h/h−1 is expressed as ŷ

(C)
h/h−1 = Hhx̂

(C)
h/h−1. Then, using (5) for E

[
xky

T
h

]
and (29)

for x̂
(C)
h/h−1, we obtain that

Xk,h =
(
Ak , Ck

)
Uh, h ≤ k,
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where Uh is a function satisfying

Uh =
(
HhBh , Dh

)T − (1− δh,1)

h−1∑
j=1

UjΠ−1
j U

T
j

(
Ah , Ch

)T
H
T
h , h ≥ 1.

Then, by defining the vectors uk ≡
k∑

h=1

UhΠ−1
h µh, k ≥ 1, and the matrices Ku

k ≡

E
[
uku

T
k

]
=

k∑
h=1

UhΠ−1
h U

T
h , k ≥ 1, expressions (7)-(10) are easily derived.

To obtain expression (11) for Πk = E[µkµ
T
k ], we use that Πk = E[ykµ

T
k ] and,

rewriting (4) as yk = Hkxk + H̃kxk + vk, we have E[ykµ
T
k ] = HkE[xkµ

T
k ] +E[(H̃kxk +

vk)µ
T
k ]. Now, taking into account that the first expectation is E[xkµ

T
k ] = Xk,k =(

Ak , Ck
)
Uk, and using (6) for E[(H̃kxk + vk)µ

T
k ] = E[(H̃kxk + vk)y

T
k ], expression (11)

for Πk is derived. �

Appendix B. Proof of Theorem 4.2

Expression (12) for the distributed filtering estimators and their error covariance ma-

trices can be easily checked by applying the LS criterion (see e.g. Caballero-Águila
et al. (2016)).

Expression (13) is straightforward just using that x̂
(i)
k/k =

(
Ak , Ck

)
u

(i)
k , and expres-

sions (14) and (16) are obtained with no difficulty using the recursive formula of u
(i)
k

given in Theorem 4.1.

Next, we derive (15) for U (ij)
k−1,k = E[u

(i)
k−1y

(j)T
k ]− E[u

(i)
k−1ŷ

(j)T
k/k−1] as follows:

− E[u
(i)
k−1y

(j)T
k ] is obtained by using (1) for y

(j)
k and taking into account that, by the

projection theory, E[u
(i)
k−1x

T
k ] = E[u

(i)
k−1x̂

(i)T
k/k−1]; so, since x̂

(i)
k/k−1 =

(
Ak , Ck

)
u

(i)
k−1,

we have E[u
(i)
k−1y

(j)T
k ] = Ku(i)

k−1

(
Ak , Ck

)T
H

(j)T
k .

− Using the expression of the observation predictor, ŷ
(j)
k/k−1 = H

(j)
k

(
Ak , Ck

)
u

(j)
k−1, given

in Theorem 4.1, we have that E[u
(i)
k−1ŷ

(j)T
k/k−1] = Ku(ij)

k−1

(
Ak , Ck

)T
H

(j)T
k .

From both expectations, expression (15) for U (ij)
k−1,k is proven.

Finally, we derive expression (17) for Π
(ij)
k = E[y

(i)
k µ

(j)T
k ]− E[ŷ

(i)
k/k−1µ

(j)T
k ]. On the

one hand, by an analogous reasoning to that used for (11) but using now (3), we obtain

E[y
(i)
k µ

(j)T
k ]=E[H̃

(i)
k AkB

T
k H̃

(j)T
k ] +H

(i)
k

(
Ak , Ck

)
U (j)
k +D

(i)
k CTk H

(j)T
k +R

(ij)
k .

On the other hand, using again the expression of the observation predictor, we have

that E[ŷ
(i)
k/k−1µ

(j)T
k ] = H

(i)
k

(
Ak , Ck

)
U (ij)
k−1,k and expression (17) for Π

(ij)
k is directly

obtained. �
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Appendix C. Proof of Theorem 5.1

By defining the matrices

Ku
k,i ≡ E

[
uk,iu

T
k,i

]
=

i∑
j=1

Uk,jΠ−1
k,jU

T
k,j , i = 1, . . . ,m; Ku

k,0 ≡ 0,

KU
k ≡ E

[
UkU

T
k

]
=

k∑
h=1

Ku
h,m, k ≥ 1; KU

0 ≡ 0,

and applying (18)-(21), expressions (22)-(25)are deduced without trouble.

Also, taking into account (19) together with (22) for x̂k,k,i−1, expression (26) for
the innovation is clear.

To obtain expression (27) for Πk,i = E[µk,iµ
T
k,i] = E[y

(i)
k µTk,i], we use again that

y
(i)
k = H

(i)
k xk + H̃

(i)
k xk + v

(i)
k and, since E[xkµ

T
k,i] = Xk,k,i =

(
Ak , Ck

)
Uk,i, and

E
[
(H̃

(i)
k xk + v

(i)
k )µTk,i

]
= V(i)

k,i , expression (27) is immediately deduced.

Finally, we prove expression (28) for

V(i)
k,j = E

[
(H̃

(i)
k xk + v

(i)
k )y

(j)T
k

]
− E

[
(H̃

(i)
k xk + v

(i)
k )ŷ

(j)T
k/k,j−1

]
.

The first expectation is given in (3) and, from (26), taking into account that

E
[
(H̃

(i)
k xk + v

(i)
k )UT

k−1

]
= 0, the second one satisfies:

E
[
(H̃

(i)
k xk + v

(i)
k )ŷ

(j)T
k/k,j−1

]
= E

[
(H̃

(i)
k xk + v

(i)
k )
(
H

(j)
k

(
Ak , Ck

)
uk,j−1 + (1− δj,1)

j−1∑
j′=1

V(i)
k,j′Π

−1
k,j′µk,j′

)T ]
.

Now, using (21) for uk,j−1 and the definition of V(i)
k,j , we have

E
[
(H̃

(i)
k xk + v

(i)
k )ŷ

(j)T
k/k,j−1

]
= (1− δj,1)

j−1∑
j′=1

V(i)
k,j′Π

−1
k,j′

(
H

(j)
k

(
Ak , Ck

)
Uk,j′ +V

(j)
k,j′

)T
.

From (3) and the above expression, (28) is obtained and the theorem is proven. �

Appendix D. Proof of Theorem 5.2

We start from the following identities satisfied by the centralized and sequential pre-
dictors and their error covariance matrices:

x̂
(C)
k/k−1 = x̂

(S)
k/k−1 = x̂k/k−1 and Σ

(C)
k/k−1 = Σ

(S)
k/k−1 = Σk/k−1. (30)
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From (7) and (8), taking into account that, from (29), x̂
(C)
k/k−1 =

(
Ak , Ck

)
uk−1 and

that Σ
(C)
k/k−1 = AkB

T
k −

(
Ak , Ck

)
Ku
k−1

(
Ak , Ck

)T
, we can write

x̂
(C)
k/k = x̂

(C)
k/k−1 +

(
Ak , Ck

)
UkΠ−1

k µk,

Σ
(C)
k/k = Σ

(C)
k/k−1 −

(
Ak , Ck

)
UkΠ−1

k U
T
k

(
Ak , Ck

)T
.

Analogously, from (22) and (23), we have that

x̂
(S)
k/k = x̂

(S)
k/k−1 +

(
Ak , Ck

) m∑
j=1

Uk,jΠ−1
k,jµk,j ,

Σ
(S)
k/k = Σ

(S)
k/k−1 −

(
Ak , Ck

) m∑
j=1

Uk,jΠ−1
k,jU

T
k,j

(
Ak , Ck

)T
.

Hence, based on assumption (30), to prove that x̂
(C)
k/k = x̂

(S)
k/k and Σ

(C)
k/k = Σ

(S)
k/k, we only

need to prove that

(
Ak , Ck

)
UkΠ−1

k µk =
(
Ak , Ck

) m∑
j=1

Uk,jΠ−1
k,jµk,j . (31)

As in Lin and Sun (2019), the proof will be done by induction on the number of sensors,
m. For m = 1 it is immediately clear that the centralized and sequential filters are
equal to each other. For m = 2, the following notation is introduced for simplicity:

∆
(i)
k ≡ Σk/k−1H

(i)T
k + CkD

(i)T
k , i = 1, 2,

Y
(i)
k = y

(i)
k −H

(i)
k x̂k/k−1, i = 1, 2,

R(i,j)
k ≡ E[H̃

(i)
k AkB

T
k H̃

(j)T
k ] +D

(i)
k CTk H

(j)T
k +R

(ij)
k , i, j = 1, 2,

Φ
(i,j)
k ≡ H(i)

k ∆
(j)
k +R(i,j)

k , i, j = 1, 2.

(32)

First, from the formulas of the centralized algorithm (Theorem 3.1) and using (30),
we get (

Ak , Ck
)
Uk = Σk/k−1H

T
k + CkD

T
k ,

Πk = HkΣk/k−1H
T
k +HkCkD

T
k + E[H̃kAkB

T
k H̃

T
k ] +DkC

T
k H

T
k +Rk,

µk = yk −Hkx̂k/k−1,

Consequently, from (32), it is clear that

(
Ak , Ck

)
UkΠ−1

k µk =
(

∆
(1)
k ∆

(2)
k

)(
Φ

(1,1)
k Φ

(1,2)
k

Φ
(2,1)
k Φ

(2,2)
k

)−1(
Y

(1)
k

Y
(2)
k

)
.

Now, using that(
Φ

(1,1)
k Φ

(1,2)
k

Φ
(2,1)
k Φ

(2,2)
k

)−1

=

(
Φ

(1,1)−1
k + Φ

(1,1)−1
k Φ

(1,2)
k Θ−1

k Φ
(2,1)
k Φ

(1,1)−1
k −Φ

(1,1)−1
k Φ

(1,2)
k Θ−1

k

−Θ−1
k Φ

(2,1)
k Φ

(1,1)−1
k Θ−1

k

)
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where Θk = Φ
(2,2)
k −Φ

(2,1)
k Φ

(1,1)−1
k Φ

(1,2)
k , the following expression for the left-hand side

of (31) is obtained:(
Ak , Ck

)
UkΠ−1

k µk = ∆
(1)
k Φ

(1,1)−1
k Y

(1)
k

+
(

∆
(2)
k −∆

(1)
k Φ

(1,1)−1
k Φ

(1,2)
k

)
Θ−1
k

(
Y

(2)
k − Φ

(2,1)
k Φ

(1,1)−1
k Y

(1)
k

)
.

(33)
Next, from the formulas of the sequential algorithm (Theorem 5.1), using again (30)
and (32), it is deduced that(

Ak , Ck
)
Uk,1 = ∆

(1)
k ,

(
Ak , Ck

)
Uk,2 = ∆

(2)
k −∆

(1)
k Φ

(1,1)−1
k Φ

(1,2)
k ,

Πk,1 = Φ
(1,1)
k , Πk,2 = Θk,

µk,1 = Y
(1)
k , µk,2 = Y

(2)
k − Φ

(2,1)
k Φ

(1,1)−1
k Y

(1)
k .

Hence, the right-hand side of (31) satisfies

(
Ak , Ck

) 2∑
j=1

Uk,jΠ−1
k,jµk,j = ∆

(1)
k Φ

(1,1)−1
k Y

(1)
k

+
(

∆
(2)
k −∆

(1)
k Φ

(1,1)−1
k Φ

(1,2)
k

)
Θ−1
k

(
Y

(2)
k − Φ

(2,1)
k Φ

(1,1)−1
k Y

(1)
k

)
.

(34)
From (33) and (34), expression (31) is proven for m = 2. The rest of the proof is
analogous to that of Theorem 2 in Lin and Sun (2019), so it is omitted. �
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