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Abstract 

The least-squares linear centralized estimation problem is addressed for discrete-time signals from 

measured outputs whose disturbances are modeled by random parameter matrices and correlated 

noises. These measurements, coming from different sensors, are sent to a processing center to 

obtain the estimators and, due to random transmission failures, some of the data packet processed 

for the estimation may either contain only noise (uncertain observations), be delayed (sensor 

delays) or even be definitely lost (packet dropouts). Different sequences of Bernoulli random 

variables with known probabilities are employed to describe the multiple random transmission 

uncertainties of the different sensors. Using the last observation that successfully arrived when a 

packet is lost, the optimal linear centralized fusion estimators, including filter, multi-step predictors 

and fixed-point smoothers, are obtained via an innovation approach; this approach is a general and 

useful tool to find easily implementable recursive algorithms for the optimal linear estimators under 

the least-squares optimality criterion. The proposed algorithms are obtained without requiring the 

evolution model of the signal process, but using only the first and second-order moments of the 

processes involved in the measurement model. 



1. Introduction

In recent years, the use of sensor networks has been widely encouraged in

many different fields of application, due to the fact that they usually provide

more information than traditional single-sensor communication systems. For

this reason, much thought has been given to the multi-sensor fusion estima-

tion problem in many significant research fields of engineering, computing, and

mathematics, mainly because of its wide variety of applications, including target

tracking, habitat monitoring, animal tracking or communications, among oth-

ers. Depending on the way the multi-sensor measurements are combined and

processed, there are two fundamental fusion techniques: (1) centralized fusion

approach, where the measurements of all the sensors are sent directly to the

processing center and fused for signal estimation, and (2) distributed fusion ap-

proach, where the measurements of each sensor are processed independently to

obtain local estimators before they are sent to the processing center for fusion

(see e.g. [1]-[3]). Centralized algorithms provide estimators by jointly process-

ing the measurements of all the sensors at each instant of time; hence, when

all the sensors work correctly, and the connections are perfect, they have the

optimal estimation accuracy.

The aforementioned literature deals with different fusion estimation algo-

rithms for conventional network systems with additive noises, when there are

no error in the sensors (except those described by the additive noises) and the

measured data packets are transmitted to the processing center over perfect

connections. However, uncertainties in the sensor output measurements, such

as stochastic sensor gain degradation, multiplicative noises, missing or fading

measurements (see e.g. [4]-[8]), and failures during the transmissions, as for

example random delays and packet dropouts or uncertain observations (see e.g.

[9]-[12]), commonly occur and can spoil dramatically the quality of the fusion

estimators designed without considering these drawbacks.

A unified framework to model the random disturbances in the output mea-

surements is provided by the use of random measurement matrices and, for this
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reason, the estimation problem in this type of systems has become an issue of

great concern in the last years (see e.g. [13]-[19] and references therein). Also,

it is well known that the correlation of sensor measurement noises is inevitable

in many network systems, due to the internal structure of the sensor and the

influence of the practical environment. Systems with correlated measurement

noises usually arise in situations where all the sensors operate in the same noisy

environment, or when augmented systems are used to describe random delays

and measurement losses. So, the assumption of uncorrelated sensor noises is

commonly weakened and, in the past years, a great deal of efforts have been de-

voted to the research of the signal estimation problem in systems with correlated

noises (see e.g. [5], [7], [11], [17] and [18]).

As already indicated, some fusion estimation algorithms consider conven-

tional systems, where the sensors transmit their output measurements to the

processing center over perfect connections. However, usually the communication

channels may not be completely reliable and some anomalies (e.g. uncertain ob-

servations -measurements that contain only noise-, random delays and/or packet

dropouts) may arise when the sensor measurements are sent to the processing

center. Hence, the design of new fusion estimation algorithms for systems fea-

turing one of these uncertainties (see e.g. [11], [14] and references therein), or

even several of them simultaneously (see e.g. [10], [15], [20], [21] and references

therein), has become an active research topic.

In some practical systems, these three random transmission failures can co-

exist with uncertainty in the measured outputs and correlation in the sensor

noises. Up to now, to the best of the authors’ knowledge, the signal estimation

problem in sensor networks with noise correlation and simultaneous transmis-

sion uncertainties of sensor delays, packet dropouts and uncertain observations,

has not been fully investigated in the framework of random measurement ma-

trices modelling the random disturbances in the measured outputs, so it is still

a challenging research topic.

Motivated by the above discussion, in the current paper, we aim to investi-

gate the centralized fusion linear signal estimation problem from measurement
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outputs, whose disturbances are modeled by random parameter matrices and

correlated noises, coming from multiple sensors subject to mixed uncertainties of

random sensor delays, packet dropouts and uncertain observations. The major

contributions and novelties of this paper are highlighted as follows: (1) Random

matrices are considered in the measurement outputs of the sensors to provide a

unified framework to address some random uncertainties, such as missing and

fading measurements or sensor gain degradation, and, simultaneously, random

delays, packet dropouts and uncertain observations are considered in the data

transmissions from each sensor. (2) The proposed recursive prediction, filter-

ing and fixed-point smoothing algorithms, based on covariance information, do

not require the signal evolution model and they are computationally simple and

suitable for online applications. Compared to [21], the main contributions of the

current paper are: (a) The consideration of measurement outputs with random

parameter matrices, which provides a unified framework to model some random

phenomena as stochastic sensor gain degradation, missing or fading measure-

ments, which cannot be described only by the usual additive disturbances. (b)

The design of optimal linear centralized fusion estimation algorithms, includ-

ing, not only filtering as in [21], but also multi-step prediction and fixed-point

smoothing.

The rest of the paper is organized as follows. In Section 2, we present

the measurement model of the different sensors and the assumptions under

which the estimation problem is addressed. In Section 3, the original model is

rewritten in a stacked form to carry out the centralized fusion estimation and

the necessary statistical properties of the stacked observations are displayed.

In Section 4, the LS linear centralized fusion estimation algorithms, obtained

by the innovation approach, are presented. The performance of the proposed

estimators is illustrated by numerical simulations in Section 5 and the paper

concludes with some final comments in Section 6.

Notation. The notation used throughout the paper is standard. Rn denotes

the n-dimensional Euclidean space. For a matrix A, AT and A−1 denote its
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transpose and inverse, respectively. 1n = (1, . . . , 1)T denotes the all-ones n× 1-

vector and In the n× n identity matrix. If a matrix dimension is not specified,

it is assumed to be compatible with algebraic operations. The Kronecker and

Hadamard product of matrices will be denoted by ⊗ and ◦, respectively. δk,s

denotes the Kronecker delta function. For any a, b ∈ R, a∧b is used to mean the

minimum of a and b. Finally, for any function Gk,s, depending on the sampling

times k and s, for simplicity we will write Gk = Gk,k; analogously, K(i) = K(ii)

will be written for any function K(ij) depending on the sensors i and j.

2. Observation model and hypotheses

The aim of this section is to design a model for the observations to be

processed in the least-squares (LS) linear estimation problem of discrete-time

random signals from multi-sensor noisy measurements transmitted through im-

perfect communication channels, when three types of random uncertainties may

arise in the transmission process. More specifically, it is assumed that the mea-

sured outputs of each sensor, perturbed by random parameter matrices, are

transmitted to a processing center (PC), and the observations processed for the

estimation may randomly be one-step delayed, contain only noise (uncertain

observations), or be lost during transmission. Different sequences of Bernoulli

random variables with known probabilities are introduced to depict these dif-

ferent uncertainties in the transmission and, in case of loss, the last observation

that successfully arrived is used for the estimation.

In this context, our goal is to find recursive algorithms for the LS linear

prediction, filtering and fixed-point smoothing problems using the centralized

fusion method. These algorithms will be obtained under the assumption that the

evolution model of the signal to be estimated is unknown and only information

about its mean and covariance functions is available; this information is specified

in the following hypothesis:

Hypothesis 1: The nx-dimensional signal process {xk}k≥1 has zero mean

and its autocovariance function is expressed in a separable form, E[xkx
T
s ] =
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AkB
T
s , s ≤ k, where Ak, Bs ∈ Rnx×M are known matrices.

2.1. Multi-sensor measured outputs with random parameter matrices

Usually, the signal measured outputs are subject to uncertainties which can-

not be described only by the usual additive disturbances. For example, stochas-

tic sensor gain degradation [4], multiplicative noises [5], missing [6] or fading

[7] measurements, or even both multiplicative noises and missing measurements

[8]. A unified framework to model these random phenomena is provided by the

use of random measurement matrices.

In this paper, we consider measured outputs with random parameter matri-

ces. So, we assume that there are m sensors which provide measurements of the

signal process according to the following model:

z
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, . . . ,m, (1)

where z
(i)
k ∈ Rnz is the signal measured output from the i-th sensor at time k,

which will be transmitted to the PC by an unreliable network, H
(i)
k is a ran-

dom parameter matrix and v
(i)
k is the measurement noise vector. The following

hypotheses are assumed:

Hypothesis 2: {H(i)
k }k≥1, i = 1, . . . ,m, are independent sequences of indepen-

dent random parameter matrices with known means, E[H
(i)
k ] = H

(i)

k . Moreover,

by denoting h(i)
pq

(k) the (p, q)-th entry of H
(i)
k , the expectations E[h(i)

pq
(k)h(i)

p′q′
(k)]

are also assumed to be known, for p, p′ = 1, . . . , nz and q, q′ = 1, . . . , nx.

Hypothesis 3: The measurement noises {v(i)
k }k≥1, i = 1, . . . ,m, are zero-mean

second-order processes with

E[v
(i)
k v(j)T

s ] = R
(ij)
k δk,s +R

(ij)
k,k−1δk−1,s, s ≤ k.

2.2. Observation transmission model with mixed uncertainties

As already indicated, due to eventual imperfections of the communication

channels, one-step delays, uncertain observations or packet dropouts may occur
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randomly in data transmissions from the individual sensors to the PC, with

different rates. Specifically, the following model is considered for the processed

measurements, y
(i)
k , coming from the i-th sensor:

y
(i)
k = γ

(i)
0,kz

(i)
k + γ

(i)
1,kz

(i)
k−1 + γ

(i)
2,kv

(i)
k + γ

(i)
3,ky

(i)
k−1, k ≥ 2;

y
(i)
1 = γ

(i)
0,1z

(i)
1 + γ

(i)
2,1v

(i)
1 , i = 1, . . . ,m,

(2)

where γ
(i)
d,k, d = 0, 1, 2, 3, are Bernoulli random variables such that, for k ≥ 2,

3∑
d=0

γ
(i)
d,k = 1, and γ

(i)
0,1 + γ

(i)
2,1 = 1. The following hypothesis on these variables is

assumed:

Hypothesis 4:
{(
γ

(i)
0,k, γ

(i)
1,k, γ

(i)
2,k

)T}
k≥1

, with γ
(i)
1,1 = 0, i = 1, . . . ,m, are

independent sequences of independent random vectors, whose components are

Bernoulli random variables with known probabilities, γ
(i)
d,k ≡ P [γ

(i)
d,k = 1], for

i = 1, . . . ,m and d = 0, 1, 2.

From this assumption, it is clear that γ
(i)
3,k ≡ P [γ

(i)
3,k = 1] = 1−

2∑
d=0

γ
(i)
d,k and,

also, for i, j = 1, . . . ,m, and d, d′ = 0, 1, 2, 3, the correlation of the variables γ
(i)
d,k

and γ
(j)
d′,s is known, and it is given by:

E
[
γ

(i)
d,kγ

(j)
d′,s

]
=

 γ
(i)
d,kδd,d′ , i = j and k = s

γ
(i)
d,kγ

(j)
d′,s, i 6= j or k 6= s.

(3)

Finally, the following independence hypothesis is also required:

Hypothesis 5: For each i = 1, . . . ,m, the signal, {xk}k≥1, and the processes

{H(i)
k }k≥1, {v(i)

k }k≥1 and
{(
γ

(i)
0,k, γ

(i)
1,k, γ

(i)
2,k

)T}
k≥1

are mutually independent.

3. Stacked observation model

To address the estimation problem by the centralized fusion method, the

observations from the different sensors are gathered and jointly processed at

each sampling time to yield the optimal signal estimator. Therefore, our aim

is to obtain a recursive algorithm for the LS linear estimator of xk based on{
y

(i)
1 , . . . , y

(i)
L , i = 1, . . . ,m

}
, which will be denoted by x̂k/L, and the problem
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will be addressed considering, at each time k ≥ 1, the vector constituted by the

measurements of all sensors. For this purpose, the equations (1) and (2) are

combined to yield the following stacked observation model:

zk = Hkxk + vk, k ≥ 1.

yk = Γ0,kzk + Γ1,kzk−1 + Γ2,kvk + Γ3,kyk−1, k ≥ 2;

y1 = Γ0,1z1 + Γ2,1v1,

(4)

where:

zk =
(
z

(1)T
k , . . . , z

(m)T
k

)T
, Hk =

(
H

(1)T
k , . . . ,H

(m)T
k

)T
, vk =

(
v

(1)T
k , . . . , v

(m)T
k

)T
,

and Γd,k = diag
(
γ

(1)
d,k, . . . , γ

(m)
d,k

)
⊗ Inz , d = 0, 1, 2, 3.

Therefore, the problem is reformulated as that of obtaining the LS linear

estimator of the signal, xk, based on the observations {y1, . . . , yL}, given in

(4). Next, the statistical properties of the processes involved in the observation

model (4), necessary to address the LS linear estimation problem are specified:

• {Hk}k≥1 is a sequence of independent random matrices with known means,

Hk ≡ E[Hk] =
(
H

(1)T

k , . . . ,H
(m)T

k

)T
, and it satisfies

E[Hkxkx
T
kH

T
k ] = E[HkAkB

T
k H

T
k ] =

(
E[H

(i)
k AkB

T
k H

(j)T
k ]

)
i,j=1,...,m

where the (p, q)-th entries, p, q = 1, . . . , nz, of these matrices are given by:(
E[H

(i)
k AkB

T
k H

(j)T
k ]

)
pq

=

nx∑
a=1

nx∑
b=1

E[h(i)
pa

(k)h(j)
qb

(k)]
(
AkB

T
k

)
ab
.

Also, for s 6= k, we have E[HkAkB
T
s H

T
s ] = HkAkB

T
s H

T

s .

• {vk}k≥1 is a zero-mean noise process with E[vkv
T
s ] = Rkδk,s+Rk,k−1δk−1,s,

for s ≤ k, where Rk,s =
(
R

(ij)
k,s

)
i,j=1,...,m

.

• {Γd,k}k≥1, d = 0, 1, 2, 3, are sequences of independent random matrices

with means Γd,k ≡ E[Γd,k] = diag
(
γ

(1)
d,k, . . . , γ

(m)
d,k

)
⊗ Inz

. If we denote

γ
d,k

=
(
γ

(1)
d,k, . . . , γ

(m)
d,k

)T⊗1nz
, the Hadamard product properties guarantee

that, for any deterministic matrix S, E[Γd,kSΓd′,k] = Kγk
d,d′◦S, beingKγk

d,d′ ≡

E[γ
d,k
γT

d′,k
], for d, d′ = 0, 1, 2, 3, the correlation matrices whose entries are

given in (3).
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• The processes {xk}k≥1, {Hk}k≥1, {vk}k≥1 and
{(

Γ0,k,Γ1,k,Γ2,k,Γ3,k

)
}k≥1

are mutually independent.

Remark 1. In order to simplify the algorithm derivations, the observation model

(4) is rewritten in an equivalent way as follows:

yk = Γ0,kHkxk + Γ1,kHk−1xk−1 + Γ3,kyk−1 +Wk, k ≥ 2;

y1 = Γ0,1H1x1 + v1.

Wk = Γ1,kH̃k−1xk−1 +
(
Γ0,k + Γ2,k

)
vk + Γ1,kvk−1, k ≥ 2,

(5)

with H̃k = Hk −Hk, for k ≥ 1.

In the following lemmas we present the expressions of the covariance matrices

of the processes involved in the observation model. From the previous properties,

the proof of these lemmas is straightforward, so the details are omitted.

Lemma 1. {zk}k≥1 is a zero-mean mnz-dimensional process whose autocovari-

ance function, Σzk,s ≡ E
[
zkz

T
s

]
, is given by:

Σzk,s = E
[
HkAkB

T
s H

T
s

]
+Rkδk,s +Rk,k−1δk−1,s, 1 ≤ s ≤ k.

Lemma 2. {yk}k≥1 is a zero-mean mnz-dimensional process and the covari-

ance matrices Σyk,s ≡ E[yky
T
s ], for s = k, k − 1, and Σyk−1,k = ΣyTk,k−1 are

obtained by the following expressions:

Σyk = Kγk
0,0 ◦ Σzk +Kγk

1,1 ◦ Σzk−1 + (Kγk
0,2 +Kγk

2,0 +Kγk
2,2) ◦Rk +Kγk

3,3 ◦ Σyk−1

+Kγk
0,1 ◦ Σzk,k−1 +Kγk

1,0 ◦ Σzk−1,k +Kγk
0,3 ◦ Σzyk,k−1 +Kγk

3,0 ◦ Σyzk−1,k

+Kγk
1,3 ◦ Σzyk−1 +Kγk

3,1 ◦ Σyzk−1 +Kγk
1,2 ◦Rk−1,k +Kγk

2,1 ◦Rk,k−1

+Kγk
3,2 ◦

((
Γ0,k−1 + Γ2,k−1

)
Rk−1,k

)
+Kγk

2,3 ◦
(
Rk,k−1

(
Γ0,k−1 + Γ2,k−1

))
, k ≥ 2,

Σy1 = Kγ1
0,0 ◦ Σz1 + (Kγ1

0,2 +Kγ1
2,0 +Kγ1

2,2) ◦R1,

Σyk,k−1 = Γ0,kΣzyk,k−1 + Γ1,kΣzyk−1 + Γ2,kRk,k−1

(
Γ0,k−1 + Γ2,k−1

)
+Γ3,kΣyk−1, k ≥ 2,
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where Σzyk,s ≡ E
[
zky

T
s

]
are given by:

Σzyk,s = Σzk,sΓ0,s + Σzk,s−1Γ1,s +RkΓ2,kδk,s +Rk,k−1Γ2,k−1δk−1,s

+Σzyk,s−1Γ3,s, 2 ≤ s ≤ k,

Σzyk,1 = Σzk,1Γ0,1 +
(
R1δk,1 +R2,1δk−1,1

)
Γ2,1, k ≥ 1.

Lemma 3. The mnz-dimensional process {Wk}k≥2, defined in (5), has zero

mean and the covariance matrices ΣWk,k−1 ≡ E[WkW
T
k−1] are obtained by:

ΣWk,k−1 =
((

Γ0,k + Γ2,k

)
Rk,k−1 + Γ1,kRk−1

)(
Γ0,k−1 + Γ2,k−1

)
+Γ1,kRk−1,k−2Γ1,k−1, k ≥ 3;

ΣW2,1 =
(
Γ0,2 + Γ2,2

)
R2,1 + Γ1,2R1.

4. Centralized fusion estimators

Our aim in this section is to obtain recursive algorithms for the LS linear

centralized prediction, filtering and fixed-point smoothing problems. For this

purpose, an innovation approach will be used.

4.1. Innovation approach to the LS linear estimation problem

The innovation approach consists of transforming the observation process

{yk}k≥1 into an equivalent one of orthogonal vectors, the innovation process,

{µk}k≥1, defined as µk = yk − ŷk/k−1, where ŷk/k−1, the one-stage observation

predictor, is the orthogonal projection of yk onto the linear space generated by

{µ1, . . . , µk−1}. So, denoting Πh = E[µhµ
T
h ], the following general expression

for the LS linear estimator of a vector ξk based on the observations {y1, . . . , yL}

is obtained

ξ̂k/L =

L∑
h=1

E
[
ξkµ

T
h

]
Π−1
h µh. (6)

From this expression, the first step to obtain the signal estimators is to find

an explicit formula for the innovation or, equivalently, for the one-stage linear

predictor of the observation. Using (5) and applying orthogonal projections, we

have:

ŷk/k−1 = Γ0,kHkx̂k/k−1 + Γ1,kHk−1x̂k−1/k−1 + Γ3,kyk−1 + Ŵk/k−1, k ≥ 2.
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Now, from (6), denoting Wk,h ≡ E
[
Wkµ

T
h

]
, h ≤ k− 1, and taking into account

that Wk,h = 0 for h ≤ k − 3, we obtain:

Ŵk/k−1 =Wk,k−2Π−1
k−2µk−2 +Wk,k−1Π−1

k−1µk−1, k ≥ 3; Ŵ2/1 =W2,1Π−1
1 µ1,

and, hence, the observation predictor is given by

ŷk/k−1 = Γ0,kHkx̂k/k−1 + Γ1,kHk−1x̂k−1/k−1 + Γ3,kyk−1

+

(k−1)∧2∑
h=1

Wk,k−hΠ−1
k−hµk−h, k ≥ 2.

(7)

This expression for the one-stage observation predictor, along with the general

expression (6) for the LS linear estimators as linear combination of the innova-

tions, are the starting points to derive the centralized prediction and filtering

recursive algorithm presented in Theorem 1.

4.2. Centralized prediction and filtering recursive algorithm

In the following theorem, a recursive algorithm is given for the optimal LS

linear centralized fusion estimators x̂k/L, L ≤ k, of the signal xk based on the

observations {y1, . . . , yL} given in (4) or, equivalently, in (5). The theorem

includes a recursive expression for the error covariance matrices, which are a

measure of the estimator performance.

Theorem 1. The centralized predictors and filter, x̂k/L, L ≤ k, and their

corresponding error covariance matrices, Σ̂k/L ≡ E[(xk − x̂k/L)(xk − x̂k/L)T ],

are obtained by

x̂k/L = AkOL, Σ̂k/L = Ak (Bk −AkrL)
T
, L ≤ k, (8)

where the vectors OL and the matrices rL ≡ E
[
OLO

T
L

]
are recursively obtained

from

OL = OL−1 + JLΠ−1
L µL, L ≥ 1; O0 = 0, (9)

rL = rL−1 + JLΠ−1
L JTL , L ≥ 1; r0 = 0, (10)

and the matrices JL ≡ E
[
OLµ

T
L

]
satisfy

JL = HTBL
− rL−1H

T

AL
−
(L−1)∧2∑
h=1

JL−hΠ−1
L−hW

T
L,L−h, L ≥ 2; J1 = HTB1

. (11)
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The innovations, µL, and their covariance matrices, ΠL, are given by

µL = yL − Γ3,LyL−1 −HAL
OL−1 −

(L−1)∧2∑
h=1

WL,L−hΠ−1
L−hµL−h, L ≥ 2;

µ1 = y1,

(12)

and

ΠL = ΣyL − Γ3,LΣyL−1,L − ΣyL,L−1Γ3,L + Γ3,LΣyL−1Γ3,L −HAL

(
HTBL
− JL

)
−
(L−1)∧2∑
h=1

WL,L−hΠ−1
L−h

(
HAL

JL−h +WL,L−h
)T
, L ≥ 2;

Π1 = Σy1.

(13)

The coefficients WL,L−h = E
[
WLµ

T
L−h

]
, for h = 1, 2, satisfy

WL,L−2 = Γ1,LRL−1,L−2

(
Γ0,L−2 + Γ2,L−2

)
, L ≥ 3.

WL,L−1 = Γ1,kE[H̃k−1Ak−1B
T
k−1H̃

T
k−1]Γ0,k−1 + ΣWL,L−1

−WL,L−2Π−1
L−2

(
HAL−1

JL−2 +WL−1,L−2

)T
, L ≥ 3;

W2,1 = Γ1,2E[H̃1A1B
T
1 H̃

T
1 ]Γ0,1 + ΣW2,1.

(14)

Finally, the matrices ΣyL, ΣyL,L−1 and ΣWL,L−1 are given in lemmas 2 and 3,

respectively, and the matrices HΨL
with ΨL = AL, BL, are defined by

HΨL
= Γ0,LHLΨL + Γ1,LHL−1ΨL−1, L ≥ 2; HΨ1

= Γ0,1H1Ψ1. (15)

Proof. From the general expression (6), to obtain the LS linear estimators

x̂k/L, L ≤ k, it is necessary to calculate the coefficients

Xk,h ≡ E
[
xkµ

T
h

]
= E

[
xky

T
h

]
− E

[
xkŷ

T
h/h−1

]
, h ≤ k.

Using the separable form of the signal covariance (Hypothesis 1) and the in-

dependence hypotheses on the model, it is clear that E[xky
T
h ] = AkH

T

Bh
, with

HBh
given in (15). Now, from expression (7) for ŷh/h−1, together with (6) for

x̂h/h−1 and x̂h−1/h−1, it is immediately deduced that the coefficients Xk,h can

be expressed as Xk,h = AkJh, 1 ≤ h ≤ k, with Jh given by

Jh = HTBh
−
h−1∑
j=1

JjΠ
−1
j JjH

T

Ah
−
(h−1)∧2∑
j=1

Jh−jΠ
−1
h−jW

T
h,h−j , h ≥ 2; J1 = HTB1

. (16)

12



Then, by denoting OL =

L∑
h=1

JhΠ−1
h µh for L ≥ 1, which clearly satisfies (9),

expression (8) for x̂k/L is easily obtained from (6).

Now, denoting rL =

L∑
h=1

JhΠ−1
h JTh , for L ≥ 1, which obviously satisfies (10),

expression (11) for JL is easily derived just making h = L in (16). Next, by

substituting x̂L/L = ALOL and x̂L/L−1 = ALOL−1 in (7) for k = L and using

(15), expression (12) for the innovation is obtained.

To prove expression (13) for ΠL = E[µLµ
T
L], we apply the Orthogonal Pro-

jection Lemma (OPL) to write ΠL = ΣyL − E
[
ŷL/L−1ŷ

T
L/L−1

]
, with ΣyL =

E
[
yLy

T
L

]
given in Lemma 2, and applying again the OPL, we have

E
[
ŷL/L−1ŷ

T
L/L−1

]
= E

[
ŷL/L−1y

T
L

]
= E

[
ŷL/L−1

(
yL − Γ3,LyL−1

)T ]
+ ΣyL,L−1,Γ3,L,

where ΣyL,L−1 = E
[
yLy

T
L−1

]
is also given in Lemma 2. Now, using that ŷL/L−1 =

Γ3,LyL−1+HAL
OL−1+

(L−1)∧2∑
h=1

WL,L−hΠ−1
L−hµL−h in the expectation E

[
ŷL/L−1

(
yL−

Γ3,LyL−1

)T ]
and taking into account that

• E
[
yL−1

(
yL − Γ3,LyL−1

)T ]
= ΣyL−1,L − ΣyL−1Γ3,L,

• E
[
OL−1

(
yL − Γ3,LyL−1

)T ]
= E

[
OL−1

(
ŷL/L−1 − Γ3,LyL−1

)T ]
= HTBL

− JL,

• E
[
µL−h

(
yL − Γ3,LyL−1

)T ]
=
(
HAL

JL−h +WL,L−h
)T
, h = 1, 2,

expression (13) for ΠL is easily obtained.

Next, expression (14) forWL,L−h = E
[
WLµ

T
L−h

]
, h = 1, 2, with WL given in

(5), is derived. Taking into account that WL is uncorrelated with yh, h ≤ L−3,

we have that, for L ≥ 3,

WL,L−2 = E
[
WLy

T
L−2

]
= E

[
WLW

T
L−2

]
= Γ1,LRL−1,L−2

(
Γ0,L−2 + Γ2,L−2

)
.

Now, using (6) for ŷL−1/L−2 in WL,L−1 = E
[
WLy

T
L−1

]
− E

[
WLŷ

T
L−1/L−2

]
, we

have WL,L−1 = E
[
WLy

T
L−1

]
− WL,L−2Π−1

L−2E[µL−2y
T
L−1]. From (5) and the

independence between the signal and the observation noise, the first expectation

13



involved in the previous formula is given by

E[WLy
T
L−1] = E[WLx

T
L−1H

T
L−1]Γ0,L−1 +WL,L−2Γ3,L−1 + ΣWL,L−1,

and using again (5) for WL, we have

E[WLx
T
L−1H

T
L−1] = Γ1,LE[H̃L−1AL−1B

T
L−1H̃

T
L−1].

Finally, using that E
[
µL−2y

T
L−1

]
=
(
HAL−1

JL−2 +WL−1,L−2

)T
+ ΠL−2Γ3,L−1,

after some manipulations, expression (14) is proven and the proof of Theorem

1 is complete. �

4.3. Centralized fixed-point smoothing recursive algorithm

Starting with the filter, x̂k/k, the fixed-point smoothers x̂k/k+N , N > 0, k ≥

1, and their error covariance matrices are calculated in the following theorem

by a recursive algorithm.

Theorem 2. The fixed-point smoothers of the signal, x̂k/k+N , N > 0, and

their error covariance matrices, Σ̂k/k+N ≡ E[(xk − x̂k/k+N )(xk − x̂k/k+N )T ],

are calculated as

x̂k/k+N = x̂k/k+N−1 + Xk,k+NΠ−1
k+Nµk+N , N ≥ 1, k ≥ 1 (17)

and

Σ̂k/k+N = Σ̂k/k+N−1 −Xk,k+NΠ−1
k+NX

T
k,k+N , N ≥ 1, k ≥ 1. (18)

The matrices Xk,k+N ≡ E[xkµ
T
k+N ] satisfy

Xk,k+N =
(
Bk −Mk,k+N−1

)
HTAk+N

−
(k+N−1)∧2∑

h=1

Xk,k+N−hΠ−1
k+N−hW

T
k+N,k+N−h,

(19)

where Mk,k+N ≡ E[xkO
T
k+N ] are obtained from the recursive formula

Mk,k+N =Mk,k+N−1 + Xk,k+NΠ−1
k+NJ

T
k+N , k ≥ 1; Mk,k=Akrk. (20)

14



Proof. From (6), the signal smoothers are written as

x̂k/k+N =

k+N∑
h=1

Xk,hΠ−1
h µh, N ≥ 1;

then, by starting with the filter, x̂k/k, it is immediately clear that such estima-

tors are recursively obtained by (17), and from it, the recursive formula (18) for

the error covariance matrices, Σ̂k/k+N , is easily deduced.

Since Xk,k+N = E
[
xky

T
k+N

]
−E

[
xkŷ

T
k+N/k+N−1

]
, N ≥ 1, expression (19) is

derived, calculating each of these expectations, as follows:

• Hypothesis 1 together with (15), lead us to

E
[
xky

T
k+N

]
= BkH

T

Ak+N
+ E

[
xky

T
k+N−1

]
Γ3,k+N , N ≥ 1.

• Using the expression of ŷk+N/k+N−1 obtained from (12) is clear that

E
[
xkŷ

T
k+N/k+N−1

]
= E

[
xkO

T
k+N−1

]
HAk+N

+ E
[
xky

T
k+N−1

]
Γ3,k+N

+

(k+N−1)∧2∑
h=1

Xk,k+N−hΠ−1
k+N−hW

T
k+N,k+N−h, N ≥ 1.

From the above items, we conclude that expression (19) holds true simply by

denoting Mk,k+N = E
[
xkO

T
k+N

]
. Using (9) for Ok+N , the recursive expression

(20) for the matrices Mk,k+N is also clear. �

5. Numerical simulation example

In this section, a numerical example is shown to illustrate the application

of the proposed centralized filtering and fixed-point smoothing algorithms and

how the estimation accuracy is influenced by the probabilities of occurrence of

missing measurements, random delays and packet dropouts during transmis-

sion. This example also illustrates some of the sensor uncertainties which are

particular cases of the current measurement model (1) with random parameter

matrices.

Let us consider that the system signal to be estimated is a zero-mean scalar

process, {xk}k≥1, with autocovariance function E[xkxj ] = 1.025641 × 0.95k−j ,

15



j ≤ k, which is factorizable according to Hypothesis 1 just taking, for example,

Ak = 1.025641× 0.95k and Bk = 0.95−k.

The measured outputs of this signal, which are provided by four different

sensors, are described in a unified way as in the proposed model (1) with random

measurement matrices and correlated noises. Specifically,

z
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, 2, 3, 4,

where the additive noises are defined as v
(i)
k = ci(ηk + ηk+1), i = 1, 2, 3, 4,

with c1 = c3 = 0.25, c2 = 0.75, c4 = 0.5, and {ηk}k≥1 is a standard Gaussian

white process. These noises are clearly correlated, with R
(ij)
k = 2cicj , R

(ij)
k,k−1 =

cicj , i, j = 1, 2, 3, 4. The random measurement matrices are defined by H
(i)
k =

θ
(i)
k C

(i)
k , for i = 1, 2, 3, where C

(1)
k = 0.82, C

(2)
k = 0.75, C

(3)
k = 0.74, and

H
(4)
k = θ

(4)
k

(
0.75 + 0.95ϕk

)
, with {ϕk}k≥1 a standard Gaussian white process,

and {θ(i)
k }k≥1, i = 1, 2, 3, 4, white processes with the following time-invariant

probability distributions:

• {θ(1)
k }k≥1 are uniformly distributed over [0.2, 0.7].

• P
(
θ

(2)
k = 0

)
= 0.3, P

(
θ

(2)
k = 0.5

)
= 0.3, P

(
θ

(2)
k = 1

)
= 0.4, k ≥ 1.

• For i = 3, 4, {θ(i)
k }k≥1 are Bernoulli variables with P

(
θ

(i)
k = 1

)
= θ, k ≥ 1.

According to the theoretical observation model, suppose that random one-

step delays, packet dropouts and uncertain observations with different rates

happen in the data transmissions. More precisely, the possibility that uncertain

observations, delays and packet dropouts simultaneously occur in the transmis-

sions from sensor 4 is considered, while the measurements transmitted by the

other sensors are only subject to one random failure: uncertain observations in

sensor 1, one-step delays in sensor 2 and packet dropouts in sensor 3. Specifi-

cally, let us consider the observation model (2):

y
(i)
k = γ

(i)
0,kz

(i)
k + γ

(i)
1,kz

(i)
k−1 + γ

(i)
2,kv

(i)
k + γ

(i)
3,ky

(i)
k−1, k ≥ 2;

y
(i)
1 = γ

(i)
0,1z

(i)
1 + γ

(i)
2,1v

(i)
1 ,
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where, for i = 1, 2, 3, 4, and d = 0, 1, 2, 3, {γ(i)
d,k}k≥1 are sequences of independent

Bernoulli variables with γ
(1)
0,1 = γ

(4)
0,1 = 0.9, γ

(2)
0,1 = γ

(3)
0,1 = 1, and for k ≥ 2,

γ
(i)
d,k = γ

(i)
d .

To illustrate the feasibility and effectiveness of the proposed algorithms, they

were implemented in MATLAB and fifty iterations of the centralized filtering

and fixed-point smoothing algorithms were run.

For θ = 0.5, γ
(i)
0 = 0.5, i = 1, 2, 3, γ

(1)
2 = γ

(2)
1 = γ

(3)
3 = 0.5 and

γ
(4)
d = 0.25, d = 0, 1, 2, 3, Figure 1 displays the error variances of the cen-

tralized prediction, filtering and smoothing estimators. On the one hand, this

figure shows that, as expected, the centralized fusion filtering estimators outper-

form the prediction ones and the error variances corresponding to the smoothers

are less than those of the filter, thus confirming that the estimation accuracy

of the smoothers is superior to that of the filters which, in turn, are more ac-

curate than the predictors. On the other, it is also gathered that the accuracy

of the predictors and fixed-point smoothers is better as the number of avail-

able observations increases. Similar results are obtained for other values of the

probabilities θ and γ
(i)
d , as we show below in Figure 2.

Next, for γ
(i)
0 = 0.9, i = 1, 2, 3, γ

(1)
2 = γ

(2)
1 = γ

(3)
3 = 0.1 and γ

(4)
d =

0.25, d = 0, 1, 2, 3, in order to show how the estimation accuracy is influenced

by the probability θ that the signal is present in the measured outputs of sensors

3 and 4, the centralized filtering and smoothing error variances are displayed in

Figure 2 for different values of these probabilities. From this figure, it is observed

that the performance of the centralized fusion estimators is indeed influenced by

the probability θ and, as expected, the filtering and smoothing error variances

become smaller as θ increases, which means that the performance of the central-

ized fusion estimators improves as the probability 1− θ of only-noise measured

outputs decreases, although this improvement is practically imperceptible for

small values of θ (see e.g. θ = 0.2 and 0.4).

Next, in order to show how the estimation accuracy is influenced by the effect

17



Time k
5 10 15 20 25 30 35 40 45 50

E
s
ti
m

a
ti
o

n
 e

rr
o

r 
v
a

ri
a

n
c
e

s

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Prediction error variances Σ̂k/k−4

Prediction error variances Σ̂k/k−3

Prediction error variances Σ̂k/k−2

Prediction error variances Σ̂k/k−1

Filtering error variances Σ̂k/k

Smoothing error variances Σ̂k/k+1

Smoothing error variances Σ̂k/k+2

Smoothing error variances Σ̂k/k+3

Smoothing error variances Σ̂k/k+4

Figure 1: Error variance comparison of the centralized fusion filter and smoothers.
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Figure 2: Centralized fusion filtering, Σ̂k/k, and smoothing, Σ̂k/k+N , N = 1, 2, error variances

for different values of θ.
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of missing measurements, random delays and packet dropouts in the transmis-

sions from the sensors 1, 2 and 3, the centralized filtering error variances are

displayed in Figure 3 for different probabilities, γ
(i)
0 , for i = 1, 2, 3, consider-

ing, as in Figure 1, the value θ = 0.5, and γ
(4)
d = 0.25, d = 0, 1, 2, 3. From

this figure, it is deduced that the performance of the filters is indeed influenced

by these uncertainties and, as expected, the centralized error variances become

smaller as some of the probabilities γ
(i)
0 increase, which means that the perfor-

mance of the centralized filter improves when 1 − γ(i)
0 , for i = 1, 2, 3 (missing

measurement probability in sensor 1, delay probability in sensor 2 and packet

dropout probability in sensor 3) decrease. For example:

• If γ
(1)
0 = γ

(2)
0 = γ

(3)
0 , better estimators are obtained as γ

(i)
0 increases (see

γ
(i)
0 = 0.7, 0.8, 0.9, i = 1, 2, 3).

• If γ
(2)
0 = γ

(3)
0 , the error variances become lower as γ

(1)
0 is higher (see

γ
(i)
0 = 0.9, i = 2, 3 and γ

(1)
0 = 0.3, 0.9).

• If γ
(1)
0 = γ

(3)
0 , better estimators are obtained as γ

(2)
0 is higher (see γ

(i)
0 =

0.9, i = 1, 3 and γ
(2)
0 = 0.4, 0.9).

• If γ
(1)
0 = 0.9 and γ

(3)
0 = 0.2, also lower error variances are obtained as γ

(2)
0

increases (see γ
(2)
0 = 0.5, 0.9).

Finally, in order to analyze the performance of the proposed centralized filter

in comparison with the centralized filter in [21] and the centralized Kalman filter,

the different estimates are compared using the filtering mean-squared error at

each time instant k (MSEk), calculated as MSEk =
1

1000

1000∑
s=1

(
x

(s)
k − x̂

(s)
k/k

)2

,

where
{
x

(s)
k ; 1 ≤ k ≤ 150

}
denote the s-th set of artificially simulated data and

x̂
(s)
k/k is the filter at the sampling time k in the s-th simulation run. The results,

assuming the same probabilities θ and γ
(i)
d,k as in Figure 1, are displayed in Figure

4, which, as expected, shows that the MSEk for the proposed filtering estimates

are less than those of the other two filtering estimates. Indeed, the performance

of the proposed filter was expected to be better than that of the centralized
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Figure 3: Centralized fusion filtering error variances for different values γ
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Figure 4: Comparison of mean-squared errors for the Kalman filter, filter in [21] and proposed

filter.

filter [21], since the latter does not take into account the uncertainties in the

sensor measurements, and the centralized Kalman filter was also expected to

provide the worst estimations as it ignores the uncertainties in both the sensor

measurements and the transmissions.

6. Conclusion

Centralized fusion prediction, filtering and fixed-point smoothing algorithms

have been designed in sensor networks with measured outputs perturbed by ran-
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dom parameter matrices and correlated noises, using an innovation approach.

Owing to the unreliable network characteristics, the information transmission

through the network communication channels is assumed to be subject to mixed

random failures. The current measured output model with random parameter

matrices and correlated noises provides a general framework to deal with a great

variety of networked systems featuring different network-induced stochastic un-

certainties.

The proposed recursive estimation algorithms are easily implementable and

do not require the evolution model generating the signal process, since it is

based on covariance information. The estimation accuracy is measured by the

estimation error covariances, which can be calculated offline as they do not

depend on the current set of observed data.

A more general model, suggested by the anonymous reviewer, would be ob-

tained by considering that, for each sensor, the transmission noise is not equal

to the measurement noise. For this new model, estimation algorithms with a

similar structure to the proposed ones would be obtained, but essential differ-

ences would arise in the expressions of the covariance matrices given in Lemma

2 and Lemma 3, as well as in expression (14) of Theorem 1. Consequently,

the algorithms in the current paper would not be directly applicable in this

situation.
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