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Abstract: A central aspect of in vivo experiments with anticancer therapies is the comparison of
the effect of different therapies, or doses of the same therapeutic agent, on tumor growth. One of
the most popular clinical endpoints is tumor growth delay, which measures the effect of treatment
on the time required for tumor volume to reach a specific value. This effect has been analyzed
through a variety of statistical methods: conventional descriptive analysis, linear regression, Cox
regression, etc. We propose a new approach based on stochastic modeling of tumor growth and the
study of first-passage time variables. This approach allows us to prove that the time required for
tumor volume to reach a specific value must be determined empirically as the average of the times
required for the volume of individual tumors to reach said value instead of the time required for the
average volume of the tumors to reach the value of interest. In addition, we define several measures
in random environments to compare the time required for the tumor volume to multiply k times its
initial volume in control, as well as treated groups, and the usefulness of these measures is illustrated
by means of an application to real data.

Keywords: tumor growth; tumor growth delay measurements; first-passage times; diffusion pro-
cesses

1. Introduction

In oncological clinical practice, the scarcity of dose-response data makes it difficult to
assess the response of human tumors to a given treatment or combination of treatments.
However, preclinical modeling of anticancer therapies can overcome this problem. Since
the development of the first tumor models in vivo, modeling solid tumors in mice has
been a concern of tumor biology, and a useful tool in the search for new drugs that may
improve treatment [1]. A remarkable breakthrough, human tumor xenograft models in
immuno-deficient mice, allows researchers to conduct preclinical evaluations of the effect
of experimental therapies on tumor growth. When in vivo experiments are performed on
mice, adequate modeling of the effect of therapies makes it possible to understand when
these are efficient and how administration protocols must be arranged.

In general, preclinical therapeutic trials compare tumor volume (or tumor volume
relative to initial volume) in various treated groups and a control (untreated) one in order
to find the strongest antitumor agents and the most effective treatments. When tumors are
treated with one therapy (or a combination of therapies), the surviving tumor cells regrow
with a delay induced by treatment. Tumor regrowth will depend on both growth and the
cell destruction rates.

Several measures have been proposed to evaluate the effectiveness of a therapy.
In general, these measures compare the volume a tumor reaches or the time required for
the tumor to reach a certain volume in both treated and control groups.

Mathematics 2021, 9, 642. https://doi.org/10.3390/math9060642 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7752-8290
https://orcid.org/0000-0001-6459-2613
https://orcid.org/0000-0001-6485-3924
https://orcid.org/0000-0001-6254-2209
https://doi.org/10.3390/math9060642
https://doi.org/10.3390/math9060642
https://doi.org/10.3390/math9060642
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9060642
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9060642?type=check_update&version=1


Mathematics 2021, 9, 642 2 of 14

The tumor growth inhibition (TGI) rate and relative tumor volume variation (RTVV)
are two of the most recently used metrics to quantify treatment response based on tumor
volume (see Koning et al. [2]).

On the other hand, one of the most used clinical endpoints is the time taken for
the tumor to reach a specific volume (usually a multiple of its initial volume). With this
measure as a starting point, others have been considered such as tumor growth delay (TGD),
defined as the difference between the time taken for the tumor to reach a specific volume
in the treated and control group (see, for example, Yarnold et al. [3] and Karsch et al. [4]),
or specific tumor growth delay (see, for example, Rofstad et al. [5] and Rygaard et al. [6]),
used to compare therapeutic effects on tumors that exhibit different growth rates prior
to treatment.

Demidenko [7] referred to some relevant articles in relation to these last endpoints,
reviewed some basic facts about exponential and Gompertz-like growth, mathematically
defined doubling time and tumor growth delay using the exponential growth model,
and proposed their statistical estimation by applying a mixed effects model to the combined
data set of the different treatments.

Concerning the calculation of the instant of time at which a tumor reaches a certain
volume, the works of Thomlinson et al. [8] and Denekamp [9] set the basis for how to
proceed. In the former, the average of the times it takes for each individual tumor to reach
a given size was employed, while in the second, the average growth curve of the tumors
was considered and used to calculate the specific time point. However, although simple
and quite widespread, such empirical methods have some drawbacks:

• They can be imprecise and contain substantial bias, which can lead to erroneous
conclusions about the effect of therapy. On the one hand, they require using some
interpolation method because the individual or average growth curves usually reach
the specified volume between two instants of time. On the other hand, the individual
growth curves are irregular and able to reach the volume specified at more than one
time instant.

• If the mean of a group is analyzed instead of the individual trajectories, the standard
errors necessary for the comparison of groups by t-tests or F-tests will not be available.
Furthermore, when significant variations in the response occur, the analysis of the
mean can lead to incorrect estimates of the mean time to reach a specific volume.

Data modeling is the tool of choice when data follow a credible growth pattern
and implies making certain assumptions about the dynamics of tumor growth and re-
growth. Traditionally, in order to estimate the mean time for which a specific volume is
reached, an exponential or Gompertz curve has been fit to the average tumor growth data,
depending on the size of the tumors or the duration of the experiment.

The fact that deterministic models do not consider the usual fluctuations in the dy-
namics of real systems gave way to the consideration of stochastic models, among which
diffusion processes stand out. These models are obtained from stochastic differential equa-
tions obtained by adding a noise to the ordinary differential equation that gives rise to
the growth curve. Using this methodology, Capocelli and Ricciardi [10,11] obtained the
lognormal and Gompertz diffusion processes, associated with the exponential and Gom-
pertz growth curves, respectively. Later, Gutiérrez et al. [12] obtained a Gompertz-type
diffusion process associated with a Gompertz growth curve whose limit value depends on
the initial value.

Stochastic modeling of tumor growth in the presence of therapies raises the need
to modify the available models that fit control (untreated) groups by including in their
trend the effect of an antitumor treatment through time-dependent functions. In this sense,
Albano et al. [13,14] developed a methodology to determine the effect of a treatment in
therapeutic trials. The idea is to model the treated group using a modified Gompertz (or
Gompertz-like) process. For this, time functions are introduced into its infinitesimal mean
representing the effect of the therapy on the growth and/or death rates. Later, said effects
are estimated from some relationship between the characteristics of both processes. These
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models were extended later to the case in which the therapy also affects the variability
of tumor growth. For this, another term is included in the infinitesimal variance of the
process that models the control group (Román et al. [15] and Albano et al. [16]).

Thus, suitable probabilistic models are currently available to model tumor growth
data and to determine the effect of treatments. In the present paper, we use stochastic
modeling of tumor growth to study the time in which a specific volume is reached in a
random environment, and we propose some new endpoints of the effect of a therapy. To do
this, we employ the study of temporal variables associated with the diffusion processes
considered, such as the first-passage times (f.p.t.). The fact that the distribution of the
temporal variable that describes the phenomenon under study is available will allow
more complete information to be gathered on the evolution of tumors in the presence of
a certain therapy. As of today, such considerations are already being incorporated into
epidemiological studies (see Gómez-Corral et al. [17]).

We focus our attention on the time required for the relative volume of the tumor to
reach a value k ∈ N, with k > 1, resulting in the time doubling, tripling, quadrupling,
etc., the initial tumor volume. In a random environment, we assume that the growth
curves of the relative volume of the tumor for each individual considered are discretized
sample trajectories of a diffusion process {X(t); t ∈ I} defined on a real interval I = [t0, T]
(t0 ≥ 0), taking values on E ⊆ R, with infinitesimal mean and variance A1(x, t) and
A2(x, t), respectively, being x ∈ E and t ∈ I, and initial distribution P[X(t0) = 1] = 1.
Consequently, the time required for X(t) to reach the value k for the first time is a random
variable, specifically the variable f.p.t. of the process through the constant boundary
S(t) = k, provided X(t0) = 1, that is:

Tk,1 = In f
t≥t0

{t : X(t) > k | X(t0) = 1} (1)

Let us note that knowledge of the distribution of Tk,1 is very important since it allows
us to answer questions of interest such as:

• What is the average time required for the tumor to multiply k times its initial volume
for the first time?

• Do tumors show great variability in relation to the time it takes to multiply k times
their initial volume for the first time?

• What time is required for a certain percentage of tumors to multiply k times their
initial volume for the first time?

The rest of the article is structured as follows: Section 2 provides a brief perspective
on the definition of first-passage time and the way in which the density function of such
a variable can be obtained. Taking into account the random modeling of tumor growth,
Section 3 discusses a relevant question in clinical practice, namely how the time required
to reach a specific volume should be determined empirically. Section 4 establishes the
new proposed criteria to evaluate the therapeutic effect in a random environment. Finally,
Section 5 illustrates the use of the proposed criteria through a real-life application.

2. A Brief Overview of First-Passage Times

Let I = [t0, T] be a real interval (t0 ≥ 0) and {X(t); t ∈ I} a diffusion process,
in general time-non-homogeneous, taking values on E ⊆ R, with infinitesimal moments
A1(x, t) and A2(x, t), being x ∈ E and t ∈ I, and consider S a C1-class function in I.
The time variable f.p.t. through the boundary S, conditioned to X(t0) = x0, is defined as:

TS(t),x0
=


In f
t≥t0

{t : X(t) > S(t) | X(t0) = x0} if x0 < S(t0)

In f
t≥t0

{t : X(t) < S(t) | X(t0) = x0} if x0 > S(t0)

(2)
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whose density function is denoted by g(S(t), t|x0, t0).
Note that sometimes, the conditioning that appears in the definition is not established

on a fixed value, but on variable X(t0). In such cases, and if J denotes the range of
variation of X(t0), the density of the f.p.t. can be obtained from the family of densities
{g(S(t), t|x0, t0), x0 ∈ J − {S(t0)}} by means of the expression:

g(S(t), t) = lim
ε→0+

[∫ S(t0)−ε

−∞
g(S(t), t|x0, t0) fX(t0)

(x0) dx0 +
∫ +∞

S(t0)+ε
g(S(t), t|x0, t0) fX(t0)

(x0) dx0

]
where fX(t0)

is the density function of X(t0). Therefore, this case can be reduced to the
former, and to that end, we focus on the formulation given by (2).

Historically, the study of the procedures for obtaining the density function of the f.p.t.
through time-dependent boundaries for diffusion processes has undergone a substantial
evolution. Initially, this type of study was restricted to specific diffusion processes and
boundaries. Subsequently, the class of diffusion processes where the problem was studied,
as well as their associated class of boundaries, were generalized. In this way, in the context
of time-homogeneous diffusion processes, Giorno et al. [18] proved that the probability
density function of the f.p.t. variable (2), through a C1[t0, T]-class function S, verifies a
second kind Volterra integral equation with a non-singular kernel. For more details, see
Ricciardi et al. [19], where a description of the development of the study of this problem
up to that date was made, with numerous references that include both theoretical studies
and applications to several fields.

Concerning the non-homogeneous case, a first generalization of the integral equation
was made by considering some special kind of diffusion processes (see Gutiérrez et al. [20]).
Later, Gutiérrez et al. [21] extended their results and also showed their validity for the
class of time-non-homogeneous diffusion processes. More in detail, if S ∈ C1[t0, T],
g(S(t), t|x0, t0) is the solution of the second kind Volterra integral equation:

g(S(t), t|x0, t0) = ρ

{
−2Ψ(S(t), t|x0, t0) + 2

∫ t

t0

g(S(τ), τ|x0, t0)Ψ(S(t), t|S(τ), τ) dτ

}
, (3)

where ρ = Sgn(S(t0)− x0) and:

Ψ(S(t), t|y, τ) =
1
2

f (S(t), t | y, τ)

[
S
′
(t)− A1(S(t), t) +

3
4

∂A2(x, t)
∂x

∣∣∣∣
x=S(t)

]
+

1
2

A2(S(t), t)
∂ f (x, t | y, τ)

∂x

∣∣∣∣
x=S(t)

,

f (x, t|y, s) being the transition probability density function of the process. We must note
that this equation is also valid in somewhat more general contexts such as Gauss–Markov
processes, as proven by Di Nardo et al. [22].

According to the general theory of Volterra integral equations, the non-singularity of
the kernel is equivalent to:

lim
τ↑t

Ψ(S(t), t|S(τ), τ) = 0 .

If, additionally, it is verified that:

Ψ(S(t), t | S(τ), τ) = 0 ∀ t, τ : t0 ≤ τ < t , (4)

the probability density of the f.p.t. is explicitly given by:

g(S(t), t | x0, t0) = 2|Ψ(S(t), t | x0, t0)| . (5)

Nevertheless, and apart from some particular processes and boundaries, closed-form
solutions for the integral equation are not available. For this reason, in the cases without
explicit solutions, numerical procedures are needed. The most usual methods are based
on numerical quadrature procedures, as proposed by Buonocore et al. [23] on the basis of
the composite trapezoid method. However, in the application of this type of algorithm,
some problems can be found, leading to undesirable solutions. For instance, considering
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an inadequate integration step for the variation range of the f.p.t. variable may lead to bad
approximations of its density function. Another possible drawback is related to a potential
unnecessarily high computational cost. This may be due to a poor choice of the initial
instant for the application of the algorithm or to the use of stopping rules, which are unable
to detect tails in the distribution of the variable. To solve these problems, Roman et al. [24]
developed a general heuristic strategy that allows an efficient implementation of the
algorithm, avoiding the aforementioned drawbacks. This strategy is based on the so-called
FPTLfunction (Roman et al. [25]) and was implemented in the R package fptdApprox [26].

3. Determining the Time Required to Reach a Specific Volume

In experimental trials, it is usual to define the average time to reach a specific volume
as the time at which the mean of the tumor growth curves reaches said volume, instead of
considering the average of the times required for each tumor growth curve to individually
reach it. This practice can lead to very different estimates of the average time to reach a
particular volume, as is made evident in the following examples.

First, let us consider a set of data (kindly provided by the Laboratory of Preclinical
Investigation of the Translational Research Department of the Institute Curie, Paris) about
the growth of the BC297MONp5tumor in an experimental group of seven mice treated
with a combination of cyclophosphamide/doxorubicin. Figure 1 shows the individual and
mean growth curves of the relative tumor volume.
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Figure 1. (a) Individual growth curves and (b) mean growth curve of the relative volume of the tumor BC297MONp5in the
group treated with cyclophosphamide + doxorubicin.

From these data, interpolation reveals that the average time required for each indi-
vidual tumor to quadruple its initial volume is 21.38 days, while the time required for the
average of the relative volumes of tumors to reach a value of four is 15.75 days. The dis-
parity between the values is mainly due to the fact that the average relative volume of the
tumors is a rather limited representation of the variability of the response to treatment.

The time taken by each individual tumor to quadruple its initial volume can be
interpreted as a random sample of the f.p.t. variable for relative tumor volume X(t)
through constant boundary S = 4, conditioned to X(1) = 1, that is:

T4,1 = In f
t≥1
{t : X(t) > 4 | X(1) = 1}

As a consequence, the average of the times required by each individual tumor to
quadruple its volume should be considered from an empirical standpoint.

The following example based on simulated data and related to exponential tumor
growth helps clarify the matter. Likewise, it shows how random modeling presents clear
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advantages over empirical procedures in correctly determining the average time to reach a
specific volume.

Let us suppose that the relative volume of the tumor is modeled by a lognormal
diffusion process {X(t), t0 ≤ t ≤ T}, taking values on R+, with infinitesimal moments
A1(x) = mx, m 6= 0, and A2(x) = σ2x2, σ > 0, and initial distribution X(t0) = 1.

It is known that the transition probability density function of the process is that
corresponding to a lognormal variable:

X(t) | X(s) = y ∼ Λ
[

ln y +

(
m− σ2

2

)
(t− s); (t− s)σ2

]
, (6)

so E(X(t)) = E(X(t) | X(t0) = 1) = exp(m(t − t0)) (see Román et al. [27] for details).
As a consequence, the time required to quadruple the average volume of the tumors is
t = t0 + ln(4)/m, regardless of the variability of X(t). This means that if we consider
simulated trajectories for different groups of individuals, generated with the same value
of m and different values of σ, it is expected that the sample mean function in each group
will be similar and will provide approximately the same time required to quadruple initial
tumor volume. However, the average times required by the individual trajectories in each
group to quadruple the initial volume will be affected by the different variability of the
simulated processes and will yield quite different values.

From the lognormal diffusion process {X(t), 1 ≤ t ≤ 10} with degenerate initial
distribution P[X(1) = 1] = 1 and parameter m = 0.4, we simulated twelve sample paths
by considering different values of σ, concretely 0.05, 0.1, and 0.15, in time instants tj = j,
j = 1, . . . , 10. Figure 2 shows, for each value of σ, the simulated sample paths, as well as
the corresponding sample mean functions.
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Figure 2. (a) Simulated sample paths of the lognormal diffusion process with m = 0.4 and σ = 0.05, 0.1, 0.15. (b) Sample
mean functions from the simulated sample paths.

For each value of σ, the following values were determined:

• The time instant at which the mean of the sample paths reaches a value of four for the
first time (t4),

• and the sample mean and variance of the time instants at which the sample paths
reach a of value four for the first time (t̄4 and S2

4, respectively).

The results obtained are presented in Table 1. In view of the results, it can be concluded
that, as a matter of fact, times t4 are quite close to one another, whereas larger differences
between values t̄4 are observed, as well, between these values and the previous ones,
the differences becoming larger as the variability increases.
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Table 1. t4, t̄4, and S2
4 values corresponding to the time instants at which the mean of the sample

paths and the sample paths reach a value of 4 for the first time.

σ t4 t̄4 S2
4

0.05 4.32851 4.35223 0.02931
0.10 4.34020 4.41009 0.16220
0.15 4.33503 4.51410 0.87163

Next, we compare the results obtained by studying the f.p.t. of the process through
boundary S = 4. We must note that, from the probability density function of (6), for the
lognormal diffusion process and boundary S(t) = A exp(Bt), A > 0, Equation (4) is
verified. Additionally, the probability density function of the f.p.t. variable through this
boundary is given by Equation (5) (see [20] for details). Therefore, by considering B = 0,
the explicit expression for a constant boundary S(t) = A 6= x0 is available. More in detail,
the expression is:

g(A, t | x0, t0) =
| ln(A/x0) |

σ
√

2π(t− t0)3/2
exp

(
− 1

2σ2(t− t0)

[
ln(A/x0)−

(
m− σ2

2

)
(t− t0)

]2)
. (7)

Obviously, in order to use (7) in this example, it is necessary to previously estimate
the values of m and σ. Obtaining the maximum likelihood estimates of these parameters
makes it possible to approximate the density function of the f.p.t. variable, through the
boundary S = 4, for the process fitting the simulated sample paths. Finally, the mean and
variance of said variable are considered to estimate the mean and variance of the time
required to quadruple the initial tumor volume.

For each value of σ, Table 2 shows the maximum likelihood estimates of the parameters
of m and σ, together with the theoretical and estimated values of the mean and variance of
the f.p.t. variable T4,1.

Table 2. Estimated values of m and σ, theoretical and estimated values for the mean and variance of
the first-passage time (f.p.t.) variable T4,1.

σ E(T4,1) Var(T4,1) m̂ σ̂ ̂E(T4,1) ̂Var(T4,1)

0.05 4.47660 0.05467 0.39963 0.05103 4.48032 0.05716
0.10 4.50961 0.22494 0.39799 0.10007 4.52764 0.22876
0.15 4.56602 0.53091 0.40034 0.15052 4.56368 0.53357

In all cases, the fitted diffusion processes provide good approximations of the pa-
rameters of the theoretical model and fit adequately both the mean and the variability
of the simulated trajectories. Figures 3–5 show the mean and variance of the simulated
trajectories and the mean function of the lognormal diffusion process adjusted for σ = 0.05,
0.1, and 0.15, respectively. The approximations of the density function of the time required
to quadruple the initial tumor volume for the different values of σ are represented in
Figure 6.

The comparison between Tables 1 and 2 allows us to establish two important conclu-
sions:

• It is empirically more accurate and convenient for comparing treatments to determine
the average of the times required for the volume of individual tumors to reach a
specific value instead of calculating the time required for the average volume of the
tumors to reach said value.

• Random modeling of tumor growth through diffusion processes provides a better
estimate of the mean time required for the tumor volume to reach a specific value,
as well as other characteristics of said variable, such as its variability.
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Figure 3. Mean (a) and variance (b) of simulated sample paths (in blue) and the fitted model (in red) for σ = 0.05.
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Figure 4. Mean (a) and variance (b) of simulated sample paths (in blue) and the fitted model (in red) for σ = 0.1.

2 4 6 8 10

0

5

10

15

20

25

30

35

Days after start of treatment

R
el

at
iv

e 
tu

m
or

 v
ol

um
e

2 4 6 8 10

0

50

100

150

200

250

300

Days after start of treatment

R
el

at
iv

e 
tu

m
or

 v
ol

um
e

(a) (b)

Figure 5. Mean (a) and variance (b) of simulated sample paths (in blue) and the fitted model (in red) for σ = 0.15.
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Figure 6. Approximations of the density function of the time required to quadruple the initial tumor
volume from simulated sample paths of the lognormal diffusion process with m = 0.4 and σ = 0.05,
0.1, 0.15.

4. Tumor Growth Delay Measurements in a Random Environment

As mentioned in Section 1, the scientific literature has defined tumor growth delay as
a measure of the effect of the therapy on the time required for the tumor volume to reach a
specific value. It has thus been determined by different authors as the difference between
the times taken for the tumor, in the treated and the control group, to reach the volume of
interest, usually a multiple of the initial tumor volume.

Let us consider a tumoral preclinical trial in which the relative volume of a tumor is
observed in a control group and in one or more treated groups. Based on the results of the
previous section, the difference between the average of the time instants required for the
relative tumor volume to reach a specific value for the first time in the treated and control
groups is an appropriate measure of the delay in tumor growth. Alternatively, the ratio
between such times can be considered. Quite often, the interest is focused on the time
required for the tumor to multiply k times its initial volume, so that an adequate empirical
measure of the tumor growth delay is given by:

TGDk =
t̄ T
k

t̄ C
k

for k = 2, 3, 4, . . ., where t̄ T
k and t̄ C

k are, respectively, the average of the time instants
required for the relative tumor volume to reach value k for the first time in the treated and
control groups.

TGDk is a simple measure of the change caused by treatment in the time required for
the tumor to multiply k times its volume. In a random environment, this time is provided
by the random variable Tk,1, considered in the previous section. Therefore, a possible
alternative to TGDk is to compare the behavior of the studied variable in the control, as
well as in the treated groups.

Let TC
k,1 and TT

k,1 be the random variables “time required for the tumor to multiply k
times its initial volume” in the control and treated groups, respectively. The distributions
of these variables can be compared according to one or more of their characteristics. In this
sense, a measure analogous to TGDk in a random environment would be given by:

RTGDk =
E(TT

k,1)

E(TC
k,1)
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which determines the rate of increase of the mean time required for the tumor volume to
multiply k times its initial volume when it is subjected to a therapy.

However, other alternatives can be considered to evaluate, or compare, the effect of
the treatments. Among them, we can highlight the analysis of survival or hazard functions
associated with Tk,1 in the control and treated groups, which are not usually used in this
context by medical researchers. These functions can easily be determined from the density
function g(k, t|1, t0) of Tk,1.

Survival function STk,1(t) = P(Tk,1 > t) provides the probability that the tumor
volume does not multiply k times its initial volume before t. Then, the time tk,q in which
a specified proportion q of tumors has not yet multiplied k times their initial volume is
a solution of equation STk,1(tk,q) = q, that is P(Tk,1 ≤ tk,q) = 1− q and tk,q = QTk,1(1− q),
where QTk,1(p) is the quantile function of Tk,1.

Clearly, a therapy will be more effective the longer the time in which a significant
proportion of tumors have not yet multiplied k times their initial volume. Thus, we propose
to quantify the delay in tumor growth using:

RTGDk,q =
QTT

k,1
(1− q)

QTC
k,1
(1− q)

for some q ≥ 1/2 set previously by the researcher. RTGDk,q provides the proportion that
increases the time in which a proportion q of tumors has not yet multiplied k times their
initial volume when the tumors are subjected to therapy.

Nevertheless, given that the effectiveness of a therapy varies with time, a comparison
of the survival functions of Tk,1 in the control and treated groups over time should not be
dispensed with. The therapy will be effective in those periods of time in which the survival
function of Tk,1 in the treated group is greater than in the control group.

On the other hand, hazard function:

hTk,1(t) = lim
∆t→0

P(t < Tk,1 ≤ t + ∆t|Tk,1 > t)
∆t

=
g(k, t|1, t0)

STk,1(t)
= −

S′Tk,1
(t)

STk,1(t)
= (−ln(STk,1(t)))

′

measures the instantaneous probability that the tumor will multiply k times its initial
volume over time (if it has not done so before). Based on this function, a therapy will be
effective in those time periods in which the hazard function of Tk,1 in the treated group is
lower than in the control group. The hazard ratio function:

HRTk,1(t) =
hTT

k,1
(t)

hTC
k,1
(t)

allows us to compare hazard functions hTT
k,1

and hTC
k,1

over time. Values close to one of

HRTk,1(t) indicate that the therapy does not modify the instantaneous probability that the
tumor multiplies k times its initial volume, whereas values below one reveal a decrease of
said probability. This decrease becomes larger as the value of HRTk,1(t) diminishes.

In a random environment, the comparison of the effect of two therapies can be carried
out using RTGDk and RTGDk,q, as well as comparing the survival and hazard functions of
Tk,1 for each therapy. Obviously, this requires tumor growth to have been appropriately
modeled in advance.

5. Application to Real Data

With the purpose of studying the delay in tumor growth induced by a therapy in a
random environment, we consider again the data regarding the relative volume of tumor
BC297MONp5 in mice that were studied by Albano et al. [13] and Román-Román et al. [15].
In these studies, the modeling of the relative volume of the tumor was carried out through
the use of Gompertz diffusion processes. More specifically, a homogeneous version was
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considered for the control group, while for the group treated with cisplatin, it was necessary
to modify the previous one by introducing two functions C(t) and V(t) in the infinitesimal
moments. These functions represent the effect of therapy on growth rate and volume
variability, respectively.

We focus our attention on the time required for the tumor to quadruple its initial
volume, T4,1. Using the R package fptdApprox, the density functions of the f.p.t. of the
Gompertz models estimated through S = 4 were obtained (see Figure 7). From these
densities, Table 3 was established, which summarizes the characteristics of the variable T4,1
necessary to determine the proposed measures.
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Days after start of treatment

 Control group 
 Treated group 

Figure 7. Density functions of time required for the BC297MONp5 tumor to quadruple its initial
volume in control and cisplatin treated groups.

Table 3. Mean, variance, median, and 0.1 and 0.01 quantiles of T4,1 in the control and cisplatin
treated groups.

Group E(T4,1) (Var(T4,1))
1/2 QT4,1(0.5) QT4,1(0.1) QT4,1(0.01)

Control 15.58948 4.20476 15.01246 10.74839 8.31387
Treated 18.75715 4.36119 18.31466 13.76087 10.28704

The results show that the mean time required for the tumor to quadruple its initial
volume in the control group was 15.58948 days, while in the group treated with cisplatin,
this time increased to 18.75715 days. Therefore, RTGD4 = 1.2032, i.e., cisplatin therapy,
increased the mean time required for tumor volume to quadruple its initial volume by
20.32%. Furthermore, the variability of the time required for this event to occur was
slightly higher in the treated group.

On the other hand, RTGD4,0.5 = 1.22, RTGD4,0.9 = 1.2803, and RTGD4,0.99 = 1.2373,
which allowed us to conclude that the therapy increased by 22% the time in which 50% of
the tumors had not yet quadrupled their initial volume and by 28.03 % the time in which
90 % of the tumors had not yet reached such a value, 23.73% being the increase for 99% of
the tumors that had not exceeded that level.

Finally, Figure 8 shows the survival and hazard functions of T4,1 in the control and
treated groups, while Figure 9 depicts the difference between the survival functions and
the hazards ratio function.

In Figure 9a, the therapy is shown to increase the probability that initial tumor volume
does not quadruple before any time instant between Days 7 through 41. Initially, the in-
crease in said probability grows to a maximum of approximately 0.34 by Day 16, when it
starts decreasing until it becomes negligible by Day 41.

Figure 9b shows that the therapy makes the instantaneous probability of tumors
multiplying their initial volume by four over time (if they have not done so before) to be
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reduced between Days 5 through 45, approximately. The maximum reduction, around 96%,
takes place at the beginning of this period, until a minimum reduction rate, of around 8%,
is reached by Day 21. The reduction in the instantaneous probability of interest is increased
again until day 39, when a new maximum is reached at around 30%. Finally, between days
39 and 45, the effect of therapy on the reduction of the instantaneous probability of tumors
multiplying their initial volume by four diminishes until it vanishes completely.

From Day 45 onward, therapy does not reduce the instantaneous probability of the
tumor multiplying its initial volume by four over time. Many reasons can affect the
behavior of tumor growth during treatment, one being that tumor cells that are resistant to
a given drug may initiate a process of active proliferation. This may therefore influence,
at that moment, the instantaneous probability of the tumor multiplying its initial volume
to be reduced. The main contribution of our study is that it provides early warning to
medical researchers when therapies behave as described in the previous lines, so that they
can be investigated and compensated, perhaps by increasing or anticipating the dose of the
therapeutic agent.
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Figure 8. Survival (a) and hazard (b) functions of T4,1 in control and treated groups.
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Figure 9. Difference between the survival functions (a) and hazards ratio function (b) of T4,1.
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6. Conclusions

In this work, stochastic modeling of tumor growth is used to study the first-passage
time variable defined by the time it takes the tumor volume to reach a specific value. This
procedure allows us to clarify how such a time should be determined in a conventional
descriptive analysis and, more importantly, to establish, for in random environments, new
clinical endpoints derived from the conventional measurement of tumor growth delay and
the techniques of the survival analysis.

The attrition rate in anticancer drug development is extremely high. To enhance the
chance of a drug gaining market authorization, extremely accurate preclinical data are
required. If our methodology is validated on large series of experimental data, we believe
it could be very useful for improving both the evaluation of the effectiveness of therapeutic
treatments and their administration schedules.

The results obtained in this work allow us to broaden the horizon on future lines of
action. One such line concerns survival theory, since our contribution is linked to concepts
such as the hazard and survival functions. Likewise, it is interesting to contrast the
possibilities of the methodology described herein with the results that can be deduced from
the classic models, such as general regression models or more specific models such as Cox’s
regression. In another potential line of application, the TGD can be an interesting source of
information for tackling complex problems such as determining the most optimal therapies
for a treatment. This is a problem that is related to that of model selection, in which the
Bayesian perspective may be of interest (in a similar way as it is in the selection of variables
in linear models). Furthermore, the Bayesian approach may also be of interest given the
importance of inferential aspects in this type of study. As a matter of fact, we cannot
forget that first-pass time densities depend on the transition densities of the process, and
therefore, the estimation of its parameters as its eventual approximation (when an exact
functional form is not available) is an issue that must be taken into account. In this regard,
recent progress from a Bayesian point of view includes the works of Pieschner et al. [28]
and Fuchs [29].
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