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Abstract This work proposes a new general procedure to stochastically ana-
lyze multi-model multivariate wave climate time series projections at different
temporal scales. For every projection, it characterizes significant wave height,
peak period and mean direction by means of univariate non-stationary dis-10

tributions capable of capturing cyclic climate behavior over a reference time
interval duration. The temporal dependence between the values at a given
sea state and previous short-term wave climate is described with a vector
autoregressive model (VAR). The multi-model ensemble wave climate charac-
terization is based on a compound distribution of the individual non-stationary15

distributions and a weighted averaged VAR model. The methodology is ap-
plied to bias-adjusted wave climate projections derived using WaveWatch III
forced by wind field data from EURO-CORDEX models at a location close
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to the Mediterranean Spanish coast. Results are compared to hindcast data
which shows a clear bi-seasonal behavior. Different temporal references were20

considered, starting with a 1-year reference period to analyze overall changes
in wave climate at scales ranging from days, months and seasons with respect
to historic conditions. The results show that the projected wave climate has
a very different temporal behavior than hindcast data, delaying and widen-
ing/shortening the start and duration of the two main seasons and including25

shorter term variations. Regarding the energetic content of the sea states, the
compound variable highest percentiles of the significant wave height present
lower values than the hindcast (≈ 3−10%) during the traditionally more severe
period (November-March) but higher values (≈ 10 − 35%) during the calmer
months. The projected peak period presents a similar temporal pattern to the30

hindcast data, while the mean wave direction shows a significant change from
the historical bi-modal behavior towards more likely easterly waves through-
out the year. Additionally, a 10-year analysis is done to find larger tempo-
ral variabilities such as decadal variations associated with the North Atlantic
Oscillation. The observed temporal variability in the yearly seasonal pattern35

throughout the century is addressed by analysing 20-year rolling windows in
all the model projections and in the compound variable. The compound dis-
tribution shows significant temporal variabilities throughout the century with
the most severe periods and more likely severe waves during summer at the
end of the century.40

Keywords future wave climate · climate change · temporal variability ·
non-stationary · multivariate analysis

1 Introduction

Coastal regions are particularly vulnerable to climate change with expected im-
pacts not only associated to global mean sea-level rise and permanent flooding45

of low-lying areas but also to the occurrence of extreme wave climate (Vitousek
et al., 2017; Vousdoukas et al., 2020). Coastal risks, understood as the prob-
ability of unwanted consequences, are particularly high as around 680 million
people (approximately 10% of the global population) resides in coastal regions
(<10 m above sea level) with a projection to reach more than one billion by50

2050 (IPCC, 2019). Therefore, a crucial step towards coastal planning and
adaption is the understanding of extreme wave events drivers and impacts in
a changing climate.

Climate change is expected to affect wind patterns and storm characteris-
tics, and it will, therefore, modify wave climate and its contribution to rela-55

tive sea levels, sediment dynamics and shoreline processes in coastal regions.
According to the IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate, extreme events that historically occurred once per century
combining sea level, tides, surges and waves, are projected to become at least
annual events at most parts of the world during the 21st century (Oppenheimer60
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et al., 2019). Changes in wave climate severity and particularly in the incom-
ing direction may also alter the sedimentary dynamics and shoreline processes
in coastal regions, exacerbating morphological changes including erosion.

When addressing climate change coastal impacts, it is key to include and
analyze the future changes to the multivariate wave climate as well as its non-65

stationarity on different temporal scales as wave patterns are often described
as the prevailing drivers of coastal changes (Mentaschi et al., 2017; Melet et al.,
2020). The knowledge of projected wave climate and changes in storminess is
limited relative to other climate variables given the difficulty to predict their
large interannual and decadal variability (Bricheno and Wolf, 2018; Morim70

et al., 2018). In recent years, studies have focused on the characterization of
future changes in global significant wave height, its occurrence and magnitude
but there is still a lack of knowledge regarding wave period and direction and
their contribution to extreme sea levels and coastal stability (Collins et al.,
2019).75

Wave climate has a wide range of temporal variability. Lira-Loarca et al.
(2020) proposed a methodology to characterize, from observations or hind-
cast time series, the main wave variables and their temporal dependence un-
der storm conditions by non-stationary mixture distribution functions and
a vector autorregressive model (hereinafter VAR) at intra-annual scale. Their80

work allowed to adequately reproduce the random temporal evolution of storm
events, crucial for the study of coastal impacts and damage evolution on ma-
rine structures. Melet et al. (2018) analyzed the contribution of wave setup
to the changes in coastal sea levels on interannual to multidecadal timescales
and highlighted the need to analyze further the wave contribution to total sea85

levels and their temporal variability.

Morim et al. (2019) presented an ensemble of global wave climate projec-
tions from a coordinated and multi-method statistical and dynamical down-
scaling of Global Climate Models (GCMs) surface wind fields. Their results
highlighted the importance of the multivariate wave climate analysis as ≈ 40%90

of the world’s coastline presented robust changes in the significant wave height,
wave period and/or mean direction. They analyzed the uncertainties derived
from different components including the use of GCMs wind fields with spa-
tial resolutions of ≈ 1− 2◦. Furthermore, the results showed that storm wave
climate is not adequately captured in certain regions with such coarse res-95

olutions. Therefore, wave models driven by higher-resolution wind fields are
needed to properly resolve the wave field transformations as they propagate
into shallow waters and to provide appropriate characterizations of extreme
events for coastal applications (Bricheno and Wolf, 2018; Melet et al., 2020).
The international CORDEX (Coordinated Regional Climate Downscaling Ex-100

periment) initiative has provided an ensemble of climate simulations with high
spatial resolution Regional Climate Models (RCM) in different regions around
the globe. In Europe, the EURO-CORDEX initiative provides a large ensem-
ble of atmospheric simulations with a spatial resolution of 0.44◦(≈ 50 km) and
0.11◦(≈ 12.5 km) for the different RCP scenarios (Jacob et al., 2014).105
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Global climate models are the primary tools to investigate the response of
the climate system to different forcing, and are therefore suitable for quan-
titative future predictions and projections. In addition, regional downscaling
methods provide climate information at the smaller scales needed for many
climate impact studies (Cubasch et al., 2013). An individual GCM or RCM110

simulation represents only one of the possible climate system pathways due to
uncertainties that arise from internal variability, boundary conditions, param-
eters for a given model structure, among others. Ensemble methods allow to
assess these uncertainties by including larger samples with different methodolo-
gies (physical phenomena, modelling processes and initial conditions). Multi-115

model ensembles address structural uncertainty and internal variability by
using model simulations from multiple climate modelling centres. The most
common approach to characterize multi-model ensemble results is through
an unweighted multi-model mean following a ’one model, one vote approach’
regardless of the individual model performance (Flato et al., 2013). The re-120

liability of the ensemble can be improved by weighting models according to
their adequacy to reproduce some phenomena or their membership to a certain
set (Knutti et al., 2010; Tegegne et al., 2020) with a multitude of techniques
aimed at it but there is no consensus in the scientific community about how
to assign likelihood to different model projections (Christensen et al., 2010;125

IPCC, 2013).

We propose a methodology to statistically characterize a multi-model GCM-
RCMs ensemble of wave projections in a climate change scenario by means of
compound variables. The procedure is based on the works by Solari and Losada
(2011), Solari and Van Gelder (2011) and Lira-Loarca et al. (2020) for the130

non-stationary characterization of multivariate random series and extended to
include different temporal variabilities. In order to highlight the potential of
the methodology, it is applied to a case study in the Mediterranean sea with
wave projections obtained with the Wavewatch III model driven by the atmo-
spheric forcing of seven EURO-CORDEX models (GCM-RCM combinations)135

for RCP8.5.

The paper is organised as follows. Section 2 presents the different method-
ologies included in this work to analyze future wave climate with 7 different
GCM-RCM wave projections under RCP8.5 (§2.1) using non-stationary statis-
tical characterization of the main wave variables and their temporal multivari-140

ate dependence (§2.2) and the multi-model ensemble multivariate characteri-
zation (§2.3). Section 3 presents the results from applying the methodology to
a case study in the Mediterranean coast of Spain and the comparison to hind-
cast conditions. The discussion regarding the different methods and results
is presented in section 4. Finally, section 5 summarizes the main conclusions145

from this work.
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2 Materials and methods

We analyze local wave climate that is described by multivariate time series of
sea state descriptors such as the significant wave height, Hs, the peak period,
Tp, and the mean incoming wave direction, θm at a given ocean location, as it150

is customary in coastal engineering. Wave climate projections in the Mediter-
ranean sea are obtained using the WaveWatch III model for 7 different GCM-
RCMs under RCP8.5. The analysis comprises the time-dependent stochastic
characterization of wave climate for each GCM-RCM using non-stationary
probability models and the temporal dependence between variables by means155

of a VAR model. A Bayesian approach is used to describe the multi-model
random variables as compound variables.

2.1 Wave climate projections

Wave projections were generated with the spectral wave model Wavewatch
III (version 5.16; Tolman and The WAVEWATCH III ® Development Group160

(2016)) driven by the atmospheric forcing from the following seven EURO-
CORDEX models (GCM-RCM combinations) for RCP8.5:

Table 1 EURO-CORDEX RCM and driving GCM combinations and notation used.

Institution RCM GCM Notation
CLMcom CCLM4-8-17 CCCma-CanESM2 CCLM4-CanESM2
CLMcom CCLM4-8-17 MIROC-MIROC5 CCLM4-MIROC5

SMHI RCA4 MPI-M-MPI-ESM-LR RCA4-MPI-ESM-LR
SMHI RCA4 NCC-NorESM1-M RCA4-NorESM1-M
SMHI RCA4 CNRM-CERFACS-CNRM-CM5 RCA4-CNRM-CM5
SMHI RCA4 IPSL-IPSL-CM5A-MR RCA4-IPSL-CM5A-MR
SMHI RCA4 MOHC-HadGEM2-ES RCA4-HadGEM2-ES

The EURO-CORDEX ensembles is a large and comprehensive set of simu-
lations particularly suitable for robustness studies of future climate and impact
studies (Kjellström et al., 2016). For further details on the definition and per-165

formance of the Regional Climate Models used in this work, the reader is
referred to Strandberg et al. (2014) for the Rossby Centre regional climate
model RCA4 and Will et al. (2017) for the CLM-Community CCLM4-8-17
model.

The wave model setup consists of a grid with a 10 km resolution over the170

whole Mediterranean basin, with high-resolution nesting on specific areas using
the source terms of growth/dissipation ST4 (Ardhuin et al., 2010; Rascle and
Ardhuin, 2013; Mentaschi et al., 2015). The wave model was forced by 6-hourly
wind field data with 0.11◦ resolution (≈12.5 km) from the models presented
on Table 1.175

The wave climate projections were bias-adjusted by means of distribution
mapping (also known as probability mapping or quantile-mapping) to cor-
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rect the distribution function of the GCM-RCM projections to agree with the
hindcast distributions (Teutschbein and Seibert, 2012; Lemos et al., 2020) as
follows:180

y∗ = F−1hind

(
FhistRCM (y)

)
, (1)

where y∗ are the bias-adjusted values of the original variable, y, Fhind is the
distribution function of the hindcast data and FhistRCM is the distribution func-
tion of each GCM-RCM during the control period (1970-2005).

2.2 Non-stationary stochastic characterization of wave climate for an
individual GCM-RCM185

Multivariate time series of Hs, Tp and θm are stochastically characterized
comprising (i) the fit of univariate non-stationary mixture distributions FHs

,
FTp

and Fθm and (ii) a VAR model to describe the multivariate temporal
dependence following the methodologies of Solari and Losada (2011); Solari
and Van Gelder (2011) and Lira-Loarca et al. (2020).190

The significant wave height Hs distribution usually presents a different
behavior between the central body and the tails. Then, it is fitted by a non-
stationary mixture probability density function, composed by a Generalized
Pareto Distribution (GPD) describing the tails with parameters ξγ and σγ (γ
= l and u for the lower and upper tails respectively) and a Lognormal (LN)195

distribution for the central regime with shape, eµc , and scale, σc, parameters
where µc and σc are the mean and standard deviation of the variable’s natural
logarithm. The peak period Tp, is fitted to a continuous parametric single non-
stationary Lognormal distribution with parameters eµT and σT and the mean
wave direction, θm, is described by a sum of NTN non-stationary truncated200

normal (TN) functions limited to the interval [0, 2π) with parameters µi, σi,
for i = 1, ..., NTN where NTN is the number of main wave directions.

The univariate distributions ofHs, Tp and θm are considered non-stationary
over a reference temporal period of duration Yα where α indicates the number
of years. For this, each parameter of the distribution a (a = ξγ , σγ , µc, · · ·)205

is characterized as a time-dependent function whose Fourier series expansion
truncated to NF oscillatory terms is:

a(t) = a0 +

NF∑
n=1

[
an cos

(
2πnt

Yα

)
+ bn sin

(
2πnt

Yα

)]
, (2)

where a0 is the mean value and an and bn (for n = 1, ..., NF ) are the nth

trigonometric (Fourier) coefficients associated to the harmonic component with
cycle duration Yα/n. In mid-latitudes, the year is the main periodic climate210

variation and, therefore, taking Yα equal to α complete years is the natural
choice as it allows to capture periodic temporal variability in climate signals,
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including the seasonal, yearly and if α > 1, also of several years. Other refer-
ence periods can also be selected, for example, those associated with monsoons
seasons in equatorial regions.215

The short-term multivariate temporal dependence between wave climate
variables is characterized by a stationary VAR(p) model that assumes a linear
relationship between the multivariate sea state at a given time and some past
sea states. The number of previous values to take into account, known as
the order of the model p, is determined as the one with the lowest Bayesian220

Information Criterion (BIC) value. With this approach, the VAR model allows
to characterize the temporal dependencies of the multivariate wave climate at
short timescales ranging from some hours to a few days (Solari and Van Gelder,
2011). For a detailed description of the methods presented here, the reader is
referred to Lira-Loarca et al. (2020).225

2.3 Non-stationary multi-model ensemble characterization

In order to account for the uncertainty regarding the true state of nature, we
adopt a Bayesian approach where the set of parameters of the probability mod-
els proposed in section 2.2 denoted by −→a are random variables themselves. Let
us call X|t the non-stationary maritime random variable under consideration230

(X|t = Hs|t, Tp|t or θm|t) and assume that all the climate models are equally
likely, so that the prior distribution of the parameters, −→a , is a discrete uniform
distribution. Then, the distribution of X|t is a compound variable obtained as
a weighted summation of the fitted distributions of each model, Fm(x|t), with
equal weights, wm = 1/Nm where Nm is the number of models:235

F (x|t) =

Nm∑
m=1

wmFm(x|t). (3)

The use of compound distributions allows to easily compute the nth order,
non-centered moment as an ensemble average of the individual GCM-RCM
moments:

Mn
X|t =

Nm∑
m=1

wmM
n
Xm|t, (4)

and from them other statistics such us the standard deviation, σX|t :

σ2
X|t =

Nm∑
m=1

wmσ
2
Xm|t +

Nm∑
m=1

wm

(
M1
Xm|t −M

1
X|t

)2
. (5)

The temporal dependence of the compound variable at a given time with240

previous values of itself and the other variables is obtained as the ensemble
mean of the matrices that describe the parameters of the VAR model of the
GCM-RCMs.
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3 Application to the case study

The methodology is applied to analyze the projected changes in local wave245

climate in a location of the Mediterranean sea close to the coast of Spain,
more specifically, with coordinates 3.608◦ W - 36.66◦ N (Figure 1) located at
the Alborán Sea.
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Fig. 1 Location of the study area

Wave climate time series of sea state descriptors (Hs, Tp and θm) under
the RCP8.5 scenario with 3-hour resolution from 2006 until 2100 forced by250

7 different EURO-CORDEX GCM-RCMs are used. The results obtained by
Lira-Loarca et al. (2020) using hindcast hourly data from January 1st, 1979
until December 31st, 2018 (Mentaschi et al., 2015) are also presented in this
work for comparison.

3.1 Univariate non-stationary distributions and temporal variability over the255

year

The wave climate projections are fitted to non-stationary distributions for a
1-year reference period, Y1 in order to analyze the temporal variability at
scales that range from days to one year, including the seasonal variabilities.
The Fourier series of the parameters in equation 2 are truncated to the fourth260

order according to the minimum BIC.

3.1.1 Significant wave height

Figure 2 presents a range of percentiles of the empirical and fitted LN-2GPD
distributions of Hs for the hindcast conditions and the projections with re-
spect to a normalized year Y1=[0 - 1] and annual date [01/01 - 31/12]. It can be265
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observed that data is adequately reproduced by the theoretical distributions
for both the hindcast data and the GCM-RCMs projections.
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Fig. 2 Iso-probability percentiles (5, 10, 25, 50, 75, 90, 95, 99, 99.5th) of the empirical
and fitted non-stationary mixture distributions (LN-2GPD) for the significant wave height,
Hs, for hindcast conditions and 7 different GCM-RCMs with respect to a normalized year
Y1=[0 - 1] and annual date [01/01 - 31/12]. Each plot includes an inset of the stationary CDF
for ≈15/March (Y1 = 0.2).

The hindcast data presents a temporal pattern marked by two main sea-
sons, with more likely higher waves around mid-March (Y1 = 0.2) and lower
values in summer (July to end of August, Y1 ≈ 0.5 − 0.65) with rather270

smooth transitions between seasons. This behavior is also present in the RCA4-
HadGEM2-ES, RCA4-IPSL-CM5A-MR and CCLM4-MIROC5 projections with
slight phase shifts, but it is not exactly reproduced by the other models such
as CCLM4-CanESM2 or RCA4-CNRM-CM5 which present a more uniform
behavior throughout the year. For example, CCLM4-CanESM2 shows some275

oscillations from January to August (Y1 ≤ 0.6) for the higher percentiles and
a slight decrease around mid-September (Y1 ≈ 0.7) followed up by a period of
about three months where severe sea states are less likely to occur.

The results for the different GCM-RCMs show an overall decrease of the
probability of occurrence of larger wave heights Hs with respect to historical280

data in agreement with previous studies (Collins et al., 2019; Morim et al.,
2019). A decrease of ≈ 3− 10% with respect to hindcast data is observed for
the different models for the highest percentiles except for CCLM4-CanESM2
for which slightly higher values (≈ 4%) are observed. Regarding the variability
for the rest of the year with respect to historical conditions, it can be high-285

lighted that some models such as RCA4-MPI-ESM-LR, RCA4-CNRM-CM5
and particularly RCA4-NorESM1-M present an increase in the probability of
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higher values of Hs during August-October (Y1 = 0.6 − 0.85) ranging from
≈ 10 to 35%.

The temporal variability of the projections and hindcast data can be fur-290

ther explored on the amplitudes and phases of the components of the Fourier
expansion of the parameters of the distributions (Eq. 2) that are shown in
Figures 3 and 4. The figures include the representation of the parameters of
the hindcast, each projection and the ensemble mean. The first column de-
picts the total time-dependent values of the parameters described by its mean295

value, on the 2nd column, and the oscillatory terms on the following columns.
The parameters of the Lognormal distribution fitted to the central body are
shown in Figure 3. The parameters of the GPD distribution for the upper tail
are also presented in Figure 4 as they are indicative of the more severe sea
state climate. This information helps to unravel the changes in wave climate300

at different periodic time scales.
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terms.

For the LN distribution, the mean values of the models (a0 in Eq. 2) are
quite similar and close to 0.7 and 1, for the scale and shape, respectively.
Regarding the scale parameter, hindcast data and RCA4-HadGEM2-ES show
a similar seasonal variability (n = 1) while the remaining models, except305

CCLM4-MIROC5 and RCA4-NorESM1-M, show an amplification and a clear
phase shift that, on average, is about three months. The ensemble mean shows
slightly lower values than hindcast data and are shifted ≈ 2.6 months. This
phase lag can be observed directly in the peak of the intermediate percentiles
of the compound distribution shown in Figure 5 and its effect on the position310

of the maximum values of the highest percentiles. This means that severe
sea states are likely delayed about 2-2.6 months compared with the historical
conditions.
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The semi-annual oscillations (n = 2) are amplified in almost all the mod-
els and, in general, are in phase with the corresponding hindcast component315

(except for CCLM4-CanESM2 which shows a shift of more than 2 months).
Due to this, the iso-probability compound distribution percentiles show ex-
tra shorter-term oscillations that manifest themselves particularly from June
to the end of December leadind to an increased frequency of storms during
summer and autumn due to climate change.320

The remaining components (of four and three months periods) are also
amplified and show a phase shift with respect to hindcast data with the en-
semble mean being out of phase. A similar behavior is observed for the shape
parameter with the ensemble mean showing a similar pattern to hindcast for
n = 1, 3 but phase shifted and out of phase, respectively, for 6- and 3-months325

variability (n = 2, 4). However, they have smaller amplitudes and their effect
is less noticeable in the compound distribution.

Regarding the upper tail of the distribution (Fig. 4), almost all the models
show a similar seasonal behavior with some phase shifts with respect to hind-
cast data in the scale parameter (σu) and, again, the component of CCLM4-330

CanESM2 is twice as large and out of phase. The shape parameter (ξu) pre-
serves the phase and is amplified in all the models for n = 1.

0.75

1.00

1.25

σ
u

0.8

1.0

n : 0

−0.25

0.00

0.25

n : 1

−0.05

0.00

0.05

n : 2

−0.05

0.00

0.05

n : 3

−0.025

0.000

0.025

n : 4

−0.3

−0.2

−0.1

ξ u

0.0 0.5 1.0

−0.20

−0.15

0.0 0.5 1.0

−0.1

0.0

0.1

0.0 0.5 1.0

−0.025

0.000

0.025

0.0 0.5 1.0

−0.025

0.000

0.025

0.0 0.5 1.0

−0.02

0.00

0.02

0.0 0.5 1.0
Normalized year

5

10

15

−
σ
u
/ξ
u Normalized year

CCLM4-CanESM2

CCLM4-MIROC5

RCA4-MPI-ESM-LR

RCA4-NorESM1-M

RCA4-CNRM-CM5

RCA4-IPSL-CM5A-MR

RCA4-HadGEM2-ES

ensemble mean

hindcast

Fig. 4 Time-dependent values of the parameters of the GPD distribution of the upper-tail
of Hs. The first column is the complete Fourier series of the corresponding parameter, the
second column represents the mean coefficient and the following columns are the oscillatory
terms.

With a negative shape parameter, the upper limit of the GPD is given by
max(Hs) = −σu

ξu
. The values of this parameter over the year are also shown

in Figure 4. As this parameter is obtained through a non-linear combination335

of the original parameters, its Fourier decomposition is not shown. By defi-
nition, relatively higher significant wave heights are obtained for the lowest
and/or highest values of ξu and σu, respectively. CCLM4-CanESM2, CCLM4-
MIROC5 and RCA4-MPI-ESM-LR show almost always larger values of this
parameter with respect to hindcast data, with a time shift of the highest340

peak and more oscillations throughout the year, highlighting the changes in
seasonality of the most severe sea state climate. The combined effect of the
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amplification of the amplitude of the yearly component of ξu and the shift of
the location parameter produces a delay of the peak of the highest percentiles
to the end of April. The ensemble average presents, in general, slightly lower345

values than hindcast data. The maximum values of −σu/ξu are found in winter
but slightly phase shifted, e.g around mid-March for the hindcast and approx-
imately in the beginning February for the ensemble average. This is consistent
with the behavior described for the central regime.

Figure 5 presents the non-stationary stochastic annual behavior of the hind-350

cast data and the compound variable defined as in Eq. 3 with equal weights.
The figure also depicts the first order moment M1 (Eq. 4) and standard devia-
tion σ (Eq. 5). In addition to the changes described previously, the compound
variable presents a decrease of the probability of occurrence of larger wave
heights Hs during winter with respect to historical conditions (≈ 5 − 10%)355

and slightly higher Hs for lower percentiles. On the other hand, the compound
variable shows higher Hs values (≈ 17− 20%) during the traditionally calmer
months. In summary, it shows a more uniform behavior over the year but still
showing slight seasonal changes, in contrast with the already mentioned clear
seasonal pattern of the hindcast data.360
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Fig. 5 Iso-probability percentiles (5, 10, 25, 50, 75, 90, 95, 99, 99.5th) of the empirical
and fitted non-stationary mixture distribution (LN-2GPD) for the significant wave height,
Hs, for hindcast conditions and compound variable projections including the uncertainty
(one standard deviation of the different GCM-RCMs percentiles). Time-dependent values
of the first-order moment and standard deviation of the fitted distribution functions for the
hindcast, each GCM-RCM and the compound variable.

The first order moment of the probability distribution of the compound
variable corresponds to its mean. The maximum presents a phase shift of
about three months with respect to the hindcast maximum value. It also
shows another incipient peak around mid-September (Y1 ≈ 0.7) not present in
the historical data. A similar behavior is observed for the standard deviation365

with higher values for the compound variable during the traditionally warmer
months indicating a higher spread of the data from the expected value.
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3.1.2 Peak period

Figure 6 presents the annual variability of some percentiles of the empirical and
fitted non-stationary LN distribution of Tp for the hindcast and the compound370

distribution including the uncertainty of the different GCM-RCM projections,
quantified with one standard deviation. The results for each individual GCM-
RCM can be found in the Supplementary Information.
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Fig. 6 Iso-probability percentiles (5, 10, 25, 50, 75, 90, 95th) of the empirical and fitted
non-stationary distributions (LN) for the peak wave period, Tp, for the hindcast time series
and compound variable including the uncertainty (one standard deviation of the different
GCM-RCMs percentiles).

The hindcast higher percentiles show a pronounced peak around mid-
March (Y1 ≈ 0.2). During summer, the lower percentiles show a peak from375

end of May to mid-September (Y1 ≈ 0.4 − 0.7), while the higher percentiles
show a smooth valley. This means that in summer the range of variation of
Tp is almost restricted to values from 3 to 7 s. The compound distribution,
accordingly with the behavior shown for most of the models, presents a more
uniform behavior throughout the year for the higher percentiles, with ≈ 4%380

more likely shorter waves from February to April (Y1 ≈ 0.1−0.3) with respect
to hindcast data. It can be highlighted that the projections present an increase
in wave periods from August until mid-October (Y1 ≈ 0.6 − 0.8) of ≈ 9% in
comparison to hindcast data.
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3.1.3 Mean wave direction385

Figure 7 shows the non-stationary empirical and fitted 2-TN distributions
of θm, for hindcast data and compound variable distribution including the
uncertainty of the GCM-RCMs percentiles defined as one standar deviation.

Fig. 7 Iso-probability percentiles (10, 20, 30, 40, 50, 60, 70, 80, 90th) of the empirical and
fitted non-stationary distribution (2-TN) for the mean wave direction θm, for the hindcast
time series and compound variable including the uncertainty (one standard deviation of the
different GCM-RCMs percentiles).

All the time series preserve the clear bimodal distribution with more likely
values around 100◦ (ESE) and 250◦ (WSW) typical of the region (Losada et al.,390

2011; Lira-Loarca et al., 2020). The future climate shows a change from the
historical bi-modal wave conditions towards more likely easterly wave through-
out the year. The hindcast data presents values close to 100◦ more likely than
the 250◦ highest percentiles. The range of values from the 2nd quadrant widens
in spring (Y1 ≈ 0.3) and the same occurs for directions from the 3rd quadrant395

from mid-July to November (Y1 ≈ 0.5 − 0.85). However, during this period
of time, the dominant direction is close to 100◦. This main seasonal varia-
tion in the historical conditions occurs at the end of May (Y1 = 0.4) and
mid-October (Y1 = 0.8) and is also observed in the projections, with the tran-
sitions shifted in time with respect to hindcast. The compound distribution400

shows predominant ESE directions (θm ≈ 100◦) throughout the year, with
the 50th percentile not longer showing the change to westerly waves during
spring as in the historical conditions. In addition, the compound projection
shows a more pronounced seasonal transition compared to the hindcast data
with changes in trends around August and the end of November (Y1 = 0.6 and405

0.9). The standard deviation of the percentiles of the compound distribution
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largely varies throughout the year for the central body and also for the upper
tail in summer time. This uncertainty is associated to the differences between
GCM-RCMs model results for this particular variable, which are included in
Supplementary Information.410

3.1.4 Multivariate temporal dependence

The VAR(p) model captures the dependence of one variable at a given sea
state with p previous values of all the variables. Several orders were tested
and the one with the smallest BIC value was selected, indicating the number
of past hours that hold the strongest temporal dependence. Figure 8 shows,415

on the top, a dimensionless linear BIC value with respect to the number of
past hours taken into account in the model, τ(h), for each GCM-RCM and
the hindcast data. The optimum orders for each case are shown with symbols.
For hindcast data, a given sea state is dependent on the values over the past
τ = 24 hours. For the GCM-RCM wave climate projections, the optimum420

orders range from 30 to 54 hours with an average value close to 42 hours,
indicating that wave climate at a given sea state is, on average, influenced by
values of previous 42 hours on future wave climate under RCP8.5. Despite this
apparent difference between projections and hindcast, for τ > 18 hours, the
values of the coefficients for all GCM-RCMs are very close to zero, and differ425

approx. 10−4 from the preceding values.

Figure 8 presents, on the bottom, the values of the coefficients that show
the dependence of the variables at t with values at t− τ , up to τ = 18 h. For
the significant wave height, its dependence with Tp and θm is relevant, showing
that wave climate severity is associated to the mesoscale and synoptic atmo-430

spheric time scales (De Leo et al., 2020). For example, the dependence of Hs(t)
with Hs(t − τ) is higher, in absolute values, for τ ≤ 3 hours for the hindcast
data and τ ≤ 9 hours for the projections. It is important to underline that the
hindcast data is an hourly time series whereas the projections contain data ev-
ery 3-hours. Therefore, it seems that the temporal dependence is given by the435

previous 3 sea states regardless of the temporal resolution of the time series.
In the case of the dependence of Hs(t) with Tp(t− τ), the projections show a
higher dependence for more sea states and past hours (9 hours, 3 sea states)
than the hindcast data (1 hour, 1 sea state). A similar behavior is observed
for the dependence of Hs(t) with θm(t − τ), as well as the dependence of Tp440

and θm with themselves and the other variables where the highest coefficients
are obtained for the past hour (1 sea state) for the hindcast data and between
3-9 hours (1-3 sea states) for the projections.
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Fig. 8 Normalized Bayesian Information Criterion (BIC) with respect to the past τ hours
(VAR model p) for the hindcast data and the different GCM-RCMs (top). Value of the
parameters of the VAR model between the different variables and time points and with
respect the past τ hours up to 18 (bottom).
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3.2 Long-term variability throughout the 21st century

3.2.1 Long-term temporal variability of Hs445

Wave climate usually shows longer term oscillations than the annual variabil-
ity and inter-annual variability. Therefore, in order to analyze future long-term
changes, the non-stationary analysis was also done taking 10 years as the ref-
erence time period, Y10. Figure 9 shows the results of empirical and fitted
LN-2GPD distributions for the 10-year reference period, and the 10-year os-450

cillatory term of the parameters of the fitted LN (central body) and GPD
(upper-tail) distributions for three GCM-RCM projections. For the sake of
simplicity, only results obtained for the significant wave height are shown. All
the models show the already described yearly oscillation (see section §3.1.1)
and they also reveal longer period variabilities. The 10-year oscillatory terms455

are of the same order of magnitude that the fourth order yearly term. This
10-year periodic pattern might be associated to the North Atlantic Oscilla-
tion (NAO) (Lionello and Sanna, 2005; Izaguirre et al., 2010) with similar
magnitude as the seasonally pattern. The variability is particularly marked
for RCA4-NorESM1-M with both the central regime and upper tail showing460

a similar 10-year behavior.

This analysis shows the capability of the methodology to capture, with
the non-stationary distributions, time scale variations equal or smaller than
the reference period Yα. However, it implicitly neglects the presence of longer
time scales trends. Assuming that such longer variations are more gradual465

than Yα, it is possible to split the time series into several segments of length
equal to a multiple value of Yα with a certain overlap between them and to
apply the methodology to each one in order to see a longer scale evolution as
it is illustrated in section 3.2.2.

3.2.2 Along-century variability of Hs over a year reference period470

The yearly reference is of particular interest for management purposes. The
analysis presented for Y1 in section 3.1 includes the annual data from the range
2006-2100. The results show, therefore, an overall effect of climate change on
the sea state descriptors at a yearly scale. Nonetheless, as it was seen previ-
ously, there are longer temporal variabilities present in the projections and475

therefore, the annual behavior is not expected to be uniform but to evolve
throughout the 21st century. In an attempt to capture such evolution, the
non-stationary stochastic distribution for the annual reference period (Y1) has
been obtained for all the GCM-RCMs, using 20-year windows every 5 years.
Figure 10 presents the results of this analysis for model CCLM4-CanESM2480

while the remaining models and compound variable are provided in the Sup-
plementary Information. It can be observed for CCLM4-CanESM2, that the
lower percentiles show relatively small variations over time but the higher ones
do present important changes in magnitude and temporal variability through-
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Fig. 9 Iso-probability percentiles (5, 10, 25, 50, 75, 90, 95, 99, 99.5th) of the empirical and
fitted non-stationary mixture distributions (LN-2GPD) for the significant wave height, Hs,
for 3 different GCM-RCMs for a 10-year reference period (top). 10-year oscillatory term of
the parameters of the LN (central regime) and GPD (upper-tail) distributions of Hs for
each GCM-RCM.

out the century which is crucial for the implementation of short- and mid-term485

coastal adaptation and mitigation plans.
Figure 11 shows the corresponding evolution throughout the 21st century of

the non-stationary 99th percentiles for the models CCLM4-CanESM2, RCA4-
HadGEM-ES and the compound variable. Each line represents, therefore, the
variation in time of the wave height whose probability of exceedance is 0.01 for490

a 20-year period. The x-axis indicates the middle year of the period. Although
all the curves have the same scale, a colormap indicating the values of the
significant wave height has also been included for reference. Some arrows have
also been inserted to guide the reader in the interpretation of the results for
CCLM4-CanESM2.495

For this model, it is observed that the projected wave climate stochastic
features evolve over the century. A clear bi-seasonal behavior can be observed
in the first two periods under consideration (2006-2026 and 2011-2031) with
a defined severe climate period (Hs ≥ 3.8 m) of 4-5 weeks starting around
February (Y1 ≈ 0.1) for the first period and about four weeks later for the500

second one. In both periods, there is a second time window with Hs ≤ 3.4 m
that lasts about 5 months. For the third period (2016-2036), the most severe
window is delayed to mid-March and extends for about 2.5 months, showing
another incipient peak at the end of April. More oscillations are found during
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Fig. 10 Iso-probability percentiles (5, 10, 25, 50, 75, 90, 95, 99, 99.5th) of the empirical
and fitted non-stationary mixture distribution (LN-2GPD) for the significant wave height,
Hs, for 20-year rolling windows for the CCLM4-CanESM2 projection. The results for the
rest of the models and the compound variable can be found in the Supporting Information.
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Fig. 11 Iso-probability 99th percentile of the fitted non-stationary mixture distribution
(LN-2GPD) for the significant wave height, Hs, for 20-year rolling windows for the CCLM4-
CanESM2 (top), RCA4-HadGEM2-ES (middle) and compound variable (bottom) projec-
tions. The x-axis depicts the middle year in the 20-year window period. The results for the
rest of the models can be found in the Supporting Information.

the rest of the year and the least severe month seems to be November. During505

the next three analyzed periods (2021-2041, 2026-2046 and 2031-2051), the
two most severe peaks persist and are visible from mid-March to the end of
May and for the rest of the year, more pronounced oscillations are present but
still November remains as the month where the probability of occurrence of
the highest storms is smaller (even up to the 12th period ranging from 2061 to510

2081). In the 7th period (2036-2056) there is a tendency for increased severity
of storms in May and another severe time window appears around July. This
behavior of two well-distinguished severe time intervals is maintained until
the 13th period (2066-2086). From the 14th period (2071-2091) until the end
of the century, the first peak disappears and the second one is delayed to the515

beginning of August. The lasts two intervals (2076-2096 and 2081-2101) show
an incipient 2nd peak at the end of October.

The results in Figure 11 for RCA4-HadGEM2-ES show less variations in
regards to the seasons. The valleys, with the least severe waves, are centered
around August, with some variability throughout the century. The main peak520
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corresponding with a more likely severe climate remains in winter, with its
peak advancing progressively until the 8th period (2051) where is found at the
beginning of April and seems to go back in time in the subsequent periods,
widening its duration until mid-May. It can also be highlighted that a peak
starts to develop in the 4th period (2031) around October and it is accentuated525

until the 10th period (2061), and then it starts to attenuate until the end of the
century when it can hardly be observed. Regarding the compound variable,
the behavior of the 99th percentile is quite uniform in all the analyzed periods
but slight changes in seasonality are observed as in the individual models. In
the first period (2016), the most likely severe waves are found at the end of530

February and delayed and reduced in magnitude in the following periods up
to the 6th period (2041) where the most severe waves are found in mid-March.
Different variabilities are observed for the following periods up to the end of
century where the highest waves are found from mid-April until the end of
May. In addition, for the periods at the end of the 21st century (2081, 2086,535

2091), other incipient peaks are found later in the year around August and
October.

4 Discussion

The methodology for the non-stationary stochastic ensemble average charac-
terization of multi-model bias-adjusted wave climate projections was applied540

to analyze the future wave climate temporal variability. It uses time series of
sea state descriptors, in particular, the significant wave height Hs, wave peak
period Tp and mean direction θm. For the sake of simplicity, only these three
variables have been included, but additional ones such as the mean wind speed
and mean wind direction can also be included in the multivariate analysis. The545

methodology can also be applied to other set of climate variables. The results
are presented for a point in the Mediterranean sea but, given the statistical
character of the methodology, it is suited to be applied to any other location of
the ocean where projections are available, as long as the data has an adequate
length to perform a reliable analysis.550

Following the recommendation given by Lemos et al. (2020) and as cus-
tomary for climate and hydrological impact studies (Teutschbein and Seibert,
2012), wave data was bias-adjusted. In this work the distribution mapping
methodology was applied using fitted stationary distribution functions for each
variable, but any other bias-adjustment method can be used or, given the lack555

of consensus on the use of bias corrections methods for sea climate variables,
raw data from GCM-RCMs can be the input for the presented methodology.
The non-stationarity is accounted for by approximating the time-dependent
functions that describe the temporal variations of the parameters of the dis-
tributions to truncated Fourier expansions (Eq. 2) as in Solari and Losada560

(2011). This choice is suitable as the given temporal functions are continuous
and do no show abrupt changes. Alternative approaches can be used for other
type of variables if continuity cannot be guaranteed.
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The wave climate temporal variability was analyzed taking 1 year and 10
years as reference periods. The analysis over Y10 (presented only for Hs projec-565

tions), captures longer time scales variations, probably associated to the NAO
oscillation (Lionello and Sanna, 2005; Izaguirre et al., 2010). With the avail-
able time series length for the projections, it is not possible to analyze, with
enough statistical confidence, longer periods of time. In addition, the method-
ology implicitly assumes that the time series do not contain time variations570

longer than the reference time period. To overcome this limitation, it is also
proposed to analyze the long-term evolution throughout the century of the sea
state descriptors taking Y1 as a reference time unit given its interest for several
management purposes. For that case, 20-years duration rolling-windows every
5-years were used. If longer reference periods (α > 1) are needed, longer time575

series have to be used to obtain statistically representative results.
The use of a compound variable with equal weights assigned to each model

associated to the commonly used rule of ’one model-one vote’, as recommended
by the IPCC (Stocker et al., 2013) attenuates the temporal variability of mod-
els which individually show strong variations. This choice, however, implicitly580

assumes that individual models are independent from each other (Tegegne
et al., 2020), when in fact some of them share procedures and parameters to
model particular processes (Sanderson et al., 2017), which questions this as-
sumption. The proposed methodology can be used with any other combination
of weights, depending on the specific site and knowledge about climate change585

processes. The analysis of the selection of weights, is, however, out of the scope
of this paper.

The strongest and more significant short-term temporal dependence is ob-
tained for the preceding 1-3 sea states for both hindcast and projections and
ranges up to 24 and 42 hours for the hindcast and projections, respectively.590

This highlights the need to include multivariate analysis in future wave cli-
mate characterization. This short-term temporal dependence is related to the
storms duration and has important implications on damage evolution of coastal
structures and coastal erosion, among other issues. Considering the different
climate processes involved in the frequency and persistence of extreme events,595

there is still low confidence on the regional storm changes (Oppenheimer et al.,
2019) but this methodology can be used to shed some light into short period
changes in storminess.

The climate change effects over the incoming wave direction have impor-
tant implications in dynamics of the coastal area under study, particularly at600

deltas where the equilibrium planform strongly depends on the alternation of
easterlies and westerlies sea states (Losada et al., 2011).

Finally, this methodology provides the elements for the full temporal sim-
ulation of multivariate wave climate under different RCPs, which is crucial
to study, from a probabilistic and long term perspective, many processes of605

interest in coastal engineering and perform risk analysis. This is the case when
addressing cumulative processes such as damage progression in maritime struc-
tures (Lira-Loarca et al., 2020) and coastal evolution planform (Baquerizo and
Losada, 2008; Félix et al., 2012), and also in harbor operativity and manage-
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ment studies (Solari et al., 2011; Garćıa Morales et al., 2014; Garćıa-Morales610

et al., 2015).

5 Conclusions

The methodology presented for the non-stationary multivariate stochastic en-
semble average characterization has been applied to a EURO-CORDEX GCM-
RCM multi-model set of seven bias-adjusted wave climate projections under615

RCP8.5 at a location close to the Spanish Mediterranean coast in the Alborán
sea using 1 and 10 years as reference time periods. The analysis of the full
available time series (2006-2100) shows the overall expected climate change
effects over wave conditions. The analysis shows the capability of the method-
ology to capture the non-stationary stochastic wave climate variability over620

different temporal scales.
On an annual scale, projections show a clear modification of the typical

bi-seasonal behavior of the wave climate in the area, showing changes in all
the analyzed sea state descriptors (Hs, Tp, θm). Most of the GCM-RCMs show
a time shift and an reduction/amplification of the quantiles seasonal variation625

with respect to hindcast data, and some of them include additional pronounced
shorter variations that have already been observed in historical data and in the
along-century evolution analysis. This seasonal shift in the future climate in
the Mediterranean regions has also been observed by Rocha et al. (2020) in the
precipitation pattern. While the projected peak period presents a similar tem-630

poral pattern with respect to hindcast data -although with more variability for
higher periods-, wave direction shows a significant change from the historical
bi-modal wave conditions towards more likely easterly waves throughout the
year. The 10-year analysis captures decadal temporal variabilities that might
be associated with the North Atlantic Oscillation.635

The VAR model allows to analyze the multivariate (Hs, Tp, θm) wave
climate at shorter timescales (from hours to a couple of days). The results
showed that a given sea state has the strongest temporal dependence with the
previous 24 hours in the case of the hindcast data. For the projections, the
main temporal dependence is given for a mean value of 42 hours, although from640

18 hours onward, insignificant changes are obtained. Nonetheless the highest
values of the parameters of the model are present for the preceding 1 to 3 sea
states for all the cases.

The temporal variability over longer time scales is also analyzed over 20-
year rolling windows every 5 years, using Y1 as a reference period. Results645

of the 99th percentile are presented for two individual GCM-RCMs with a
clear differentiated behavior and also for the compound distribution. The
RCA4-HadGEM2-ES projection, maintains, in general terms, the bi-seasonal
behavior, with peak values almost in the same position of the year, but with
changes in the duration and showing incipient additional peaks. The results650

for CCLM4-CanESM2 are rather surprising as they show a consistent shift in
time of the peaks of the seasons, combined with a widening of their duration
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with certain periodicity over the century. Also, an extra peak around the so
called Indian Summer (already reported by Rizou et al. (2015), among others)
is present in the first quarter of the century and consistently grows and de-655

lays along the remaining years. Regarding the compound variable, it shows a
more uniform behavior throughout the year with significant winter temporal
variabilities along the century and more likely severe waves during summer at
the end of the century.
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Garćıa-Morales RM, Baquerizo A, Ángel Losada M (2015) Port management
and multiple-criteria decision making under uncertainty. Ocean Engineering
104:31 – 39

IPCC (2013) Annex I: Atlas of Global and Regional Climate Projections, Cam-
bridge University Press, Cambridge, United Kingdom and New York, NY,710

USA, book section AI, p 1311–1394
IPCC (2019) Summary for Policymakers, Cambridge University Press, Cam-

bridge, United Kingdom and New York, NY, USA, chap SPM
Izaguirre C, Mendez FJ, Menendez M, Luceño A, Losada IJ (2010) Extreme

wave climate variability in southern europe using satellite data. Journal of715

Geophysical Research: Oceans 115(C4)
Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun
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