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ABSTRACT

The development of an organism is modulated by multiple factors, with genes and diet being
examples of such factors. Previous studies on preclinical models have shown that giving
supplemental choline - an essential nutrient to mammals - during the embryonic period
improves performance on memory tasks during adulthood. However, the effects of an early
intervention on the development of cognitive functions in the immature brain have not been
widely studied. In addition, it has been well established that short-term memory in rats emerges
at an earlier stage (14-15 days postnatal) than long-term memory (around 30 post-natal). The
aim of this work was to examine the effect of prenatal dietary choline supplementation on long-
term memory development in rats. In order to assess long-term memory, we used an object-
recognition task, which evaluates the ability to recall a previously presented stimulus. Pregnant
rats were fed with the diets AIN 76-A standard (1.1 g choline/Kg food) or supplemented (59
choline/Kg food) between embryonic days (E) 12 and E18. On the first post-natal day (PN 0),
male offspring of the rats fed with the supplemented and standard diet were cross-fostered to
rat dams fed a standard diet during pregnancy and tested at the age of PN21-22 or PN29-31
applying 24-hour retention tests. The supplemented animals spent less time exploring the
familiar object after a 24-hour retention interval, an effect that was observed in both the group
tested at PN21-22 days of age and that tested at PN29-31 days. The non-supplemented rats only
showed this effect in the group tested at PN29-31 days. These results suggest that prenatal
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supplementation with choline accelerates the development of long-term memory in rats.

Introduction

During the early post-natal period, the brain undergoes
rapid growth, with different areas of the brain developing
at different speeds. The oldest phylogenetic areas such as
the corpus striatum and motor area, emerge functionally
earlier than other areas associated with superior cognitive
processes such as the hippocampus and frontal cortex [1].
This process occurs in all mammal species with similar
developmental trends, including human, primates, and
rats [2]. The brain, in its early stages of development, is
highly sensitive and experience provokes lasting changes
in the organism. Development is considered to be a
dynamic process through which both the structure and
biological functionality of an organism is defined through
complex interactions between the genes and the context
[3]. Moreover, diet is considered to be a determining fac-
tor in this developmental process [4,5], where nutrients
carrying methyl groups, such as choline, are related to life-
long changes in gene expression [6].

Several studies using rodents have shown that prena-
tal supplementation with choline, which is an essential

nutrient for human and non-human animals [7,8],
facilitates cognitive functions during adulthood [9].
Choline supplementation during embryonic days El1
to E17 significantly improves spatial and temporal
memory as well as attention [10,11; for a review see
12] and spatial memory when the manipulation is car-
ried out on PN 16-30. Likewise, it has been observed
that these effects remain during the life of the animal,
protecting them against cognitive deficits related to
aging [13,14].

The novel object recognition (NOR) task has long
been employed to study recognition memory in rodents.
This test is based on the spontaneous tendency of
rodents to spend more time exploring a novel object
than a familiar one. In the standard NOR procedure
rats are initially exposed to two identical objects for a
given time (Familiarisation phase), whereupon one of
the familiar objects is removed and, after a retention
interval, the rat is given a test with both the familiar
object and a novel object (Test phase) and the time
that the animal spends exploring each one is recorded.
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Because rats prefer to explore the new stimulus rather
than the familiar object, it is inferred that they remember
the previously known stimulus. Hence, NOR is a para-
digm where the spontaneous preference for novelty is
used as an index of retention in rodents. The NOR test
has certain advantages such as the fact that spontaneous
preference is common in mammals, and this allows for
interspecies comparisons; it is not based on positive or
negative reinforcers such as food or electric shocks;
and it is not associated with high levels of stress or phys-
ical activity [15]. Furthermore, depending on the reten-
tion interval between the familiarisation and test phase,
we can evaluate both short (e.g. seconds or minutes)
and long-term (e.g. hours or days) memory. Conse-
quently, this test can be usefully applied with neuroscien-
tific approaches such as lesions, immediate-early gene
imaging, or pharmacological studies, leading to a better
understanding of memory in rats [16].

The relevance of the cholinergic system’in the NOR
task has been widely demonstrated withrats. For
instance, an increase in levels of synaptic-acetylcholine
(ACh) caused by systemic treatment with, inhibitors of
the enzyme that degrades the neurotransmitter acetyl-
cholinesterase (AChE) had the effect of reducing the
deficit in NOR that is otherwise observed in aged rats
[17,18]. In contrast, the selective destruction of cholin-
ergic neurons in the perirhinal cortex with the saporin
immunotoxin 192"IgG, has been shown to cause a
deterioration in" NOR. performance [19]. Further, the
use of cholinergic receptor antagonists and agonists has
pointed to the.importance of ACh in the object recog-
nition task. For instance, systemic administration [20]
and to the perirhinal cortex [21] of scopolamine, a
cholinergic muscarinic receptor antagonist, has been
shown to impair discrimination between a novel and
familiar object on a NOR task. Additionally, other
studies have found that an intraperitoneal injection of
a nicotinic agonist before or after the familiarisation
phase, or prior to the test phase, resulted in better
NOR performance [22]. More specifically, nicotine injec-
tions administered to either the hippocampus or the
perirhinal cortex prior to the familiarisation phase
improved performance on a NOR task [23]. These latter
findings imply a role for the nicotinic receptors in the
acquisition, consolidation, and retrieval of object
information.

To date, studies of supplementation with prenatal
choline have focused mainly on evaluating the long-
term effects on different cognitive functions during
adulthood. However, to the best of our knowledge, the
effects of an early intervention on the development of
cognitive functions in the immature brain have not

been widely studied, except for the work conducted by
Mellott et al. [24]. These authors showed that prenatal
choline supplementation advanced the emergence of
rat§ ability to use spatial cues to navigate in a water
maze, demonstrating for the first time an acceleration
of hippocampal function and development following
prenatal choline supplementation. Cognitive skills
emerge sequentially in an order of increasing complexity,
whilst simpler skills emerge before those of a higher
order, in accord with the development of the neural sys-
tems that are involved in the processes [25]. For instance,
short-term memory emerges before long-term memory.
The latter depends on the maturity of the hippocampal
system along with the motor and sensory systems. In
fact, Rudy & Morledge [26] found that the short-term
memory representation of a context (30 s) that mediates
conditioned fear emerges in 18-day-old rats, whilst
long-term memory (24 h) was only observed in 23-
32-day old rats. Developmental studies suggest that cog-
nitive skills emerge once the brain system that supports
them (or connections to such systems) is mature [27].
The ability to demonstrate basic cognitive abilities
such as memory in a prescribed task requires the sen-
sory systems, which develop sequentially, and in the
rat, are fully functional around the second week of
life. It has been found, using classical conditioning para-
digms, that the capacity to associate stimuli depends on
the maturity of the sensory modality involved. The
smell, taste, or somatosensory [28,29] auditory [30],
and visual systems [31,32] typically develop around
PNI12 and PN15. Such skills are evident when the test
is conducted shortly after acquisition (short-term or
procedural memory). For its part, long-term memory
usually emerges around 30 days after birth in rats. Find-
ings relevant to this issue come from studies showing
that it is possible to establish a conditioned response
to a visual [33] or contextual [26] stimulus with con-
ditioning procedures in PN16-PN18 rats. However,
when the retention tests are conducted after long
periods of time (24h or a week), the conditioned
response (CR) is only observed when the rats are con-
ditioned at around 30 days old [34-36].

The aim of the current study was to assess whether
choline supplementation during gestation days 12-18
affects the development of long-term object recognition
memory in rats, which, as mentioned, emerges around
PN30 for many visuo-spatial tasks. Given our previous
results, which show that prenatal choline supplemen-
tation enhances performance on NOR in adult rats, we
hypothesised that it could also facilitate the development
of long-term object recognition memory. For this pur-
pose, PN21-22 pups, whose sensorial systems (for
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example, the visual system) are fully mature, or PN29-31
pups from rats that were fed a supplemented or standard
diet between E12-E18, were tested on a NOR task with a
retention interval of 24 h between the familiarisation and
test phases.

Materials and methods
Subjects and diet

A chronogram of the treatment and the experimental
dietary groups, supplemented (SUP) and control
(CTL), as well as the behavioural training period is
shown in Figure 1. Twelve pregnant Wistar rats were
fed with a basal purified modified diet AIN 76-A. The
rats were individually housed in cages (54 x 33 x
18 cm) with a room temperature between 22 and 23 °C
and were maintained on a light/dark 12 h cycle. Water
and food were available ad libitum during pregnancy.
On the afternoon of day E-11, the rats were divided
into two groups and fed with the diets AIN 76-A stan-
dard (CTL, n =6) or supplemented (SUP; n'= 6), which
contained 1,1 g/Kg choline chloride or 5'g/Kg choline
chloride respectively. The dietary treatment continued
until day E18. This concentration represents a 4.5-fold
increase in choline compared-with the standard diet
(1,1 g/Kg) and this increase, as demonstrated in Meck
and Williams’ laboratory [12], enhances cognitive per-
formance in rodents  when they are prenatally sup-
plemented during E12-18. Food and water were
available ad libitum, and the food was weighed during
the dietary manipulation to determine daily
consumption.

After the intervention ended on E18, the dams were
fed AIN 76-A (standard diet). On the day of birth
(PNO0), 32 male pups were cross-fostered by the CTL
dams to control for differences in maternal care. The
female pups were then used to carry out other studies
in our laboratories. Each foster dam (n = 4) raised a litter
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of 8 non-biologically related pups (4 CTL and 4 SUP).
On PN21 (weaning), the offspring were assigned to
cages based on their experimental group membership
(SUP or CTL), with 4 from the same experimental
group to each cage. Cages were randomly assigned to
be tested in the PN21-22 or the PN29-31 conditions,
resulting in 8 CTL and 8 SUP animals tested in each con-
dition on the NOR task. Two rats were excluded from the
study (PN21-22/CTL y PN29-31/SUP) due to the lack of
exploration during the familiarisation phase. After the
test, the animals were euthanized using an overdose of
anesthesia (>1.5'mL equithesin/kg body weight, i.p.) fol-
lowed by cervical dislocation. All the procedures in this
study were approved by the Ethics Committee for Ani-
mal Research of our University (procedures 93-CEEA-
OH-2015) and were conducted in compliance with the
European Council directive 86/609/EEC and the Spanish
law (R.D. 53/2013).

Apparatus

The objects used in the NOR task were two jars that
differed in shape. One of the objects was a small rounded
cup (6.5 cm in height by 6.8 cm wide) with a handle,
while the other object was a small elongated jug
(8.8 cm in length by 5.7 cm wide) without a handle.
The exploration box was adapted to the age (size) of
the pups in order to facilitate exploration (32 x 52 x
30 cm). The boxes were wrapped with black lining to
avoid any distraction in the testing room, and the
floors of the boxes were covered with sawdust. The
objects were fixed to the floor of the boxes with Velcro
(fast opening and closing system) in the corresponding
location to avoid any movement of the objects during
the task. A camera was positioned above the box to
record the sessions. The box area was lit with a lamp
in order to limit access to contextual information from
the laboratory room.

I:] Dietary Manipulation
:I Standard Diet

Behavioural
Procedure

PN 21-22

Cross Fostered
Gr. PN 21-22 E0 E12 E18 PNO
Gr. PN 29-31 E0 E12 E18 PNO

Cross Fostered

PN 29-31

Behavioural
Procedure

Figure 1. Chronogram of the experimental procedure. The dietary manipulation was applied on gestation day 12 until Day 18 (E12-18).
On the first postnatal day (PNO), cross fostering was carried out. The behavioural procedure was conducted with two groups at different

ages, PN21-22 or PN29-31.
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Behavioural procedure

The trials began when the rats were at PN21-22 or PN29-
31. The procedure involved three phases; habituation to
the box, familiarisation, and the object recognition mem-
ory test. The animals received three habituation sessions
during which they were allowed to freely explore the
empty box for 10 min, and then, they were placed in
the laboratory room. The first two habituation sessions
were carried out on the same day, one in the morning
(9 am) and one in the afternoon (2 pm). The third ses-
sion took place on the morning of the next day (9 am).
On the following morning at the same time, the familiar-
isation session began in which the animals were allowed
to freely explore two identical objects placed in the box
for a period of 5min. For half the subjects in each
group, these were the elongated jugs and for the other
half these were the rounded cups. We conducted the
test session 24 h later. For this test, one of the objects
from the familiarisation phase was replaced by a novel
object (elongated jugs or rounded cups). For half the sub-
jects this was the object on the left, and for the other half
this was the object on the right. The subject was exposed
to the two objects for 3 min. Exploration was defined as
the contact time with the objects (when the nose was
2 cm away from the object and there were movements
of the vibrissae).

Statistical analyses

In order to analyse the intake of the rats during the diet-
ary treatment in-the E12-E18 period, we conducted a 2
(Diet: SUP, CTL)x7 (Day: E12 to E18) mixed
ANOVA with diet as the between-subjects factor and
day as the within-subject factor. Multiple comparisons
were used to compare the mean consumption of the
rats between E12 and E18 during pregnancy. The Bon-
ferroni correction was applied to correct the alpha
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inflation. We also analysed object exploration time
during the familiarisation and test phases by means of
a2 (Age: PN22, PN31) x 2 (Diet: SUP, CTL) x 2 (Object:
Novel, Familiar) mixed ANOVA with age and diet as
between-subject factors and object as the within-subject
factor. The interactions between factors were explored
with simple effects analyses. A significance level of p <
0.05 was adopted for all statistical analyses.

Results

During the dietary treatment (E12-E18 period), an
increase inthe intake of the rats between days was
observed in both groups, SUP and CTL. The mixed
ANOVA with Diet (SUP vs CTL) as the between-sub-
jects factor and Day (from E12 until E18) as the
within-subject factor revealed a significant effect of day,
(F(6,60) = 15.82, p<.05). The main effect of diet was
not significant (F(1,10) = 1.01, p>.05), and neither was
the interaction between Diet and Day (F<1) (6,60).
Multiple comparisons with Bonferroni correction
revealed that there was a significantly higher intake
during the last two days of the manipulation, E17-E18,
compared with consumption on days E12-15. The time
spent exploring the objects during the familiarisation
phase is displayed in Figure 2. Both objects, Familiar 1
and Familiar 2, were explored equally. A mixed
ANOVA with Age (PN21-22 vs PN29-31) and Diet
(SUP vs CTL) as between-subject factors and Object
(Familiar 1 vs Familiar 2) as the within-subject factor,
revealed no significant differences, highest F(1, 26) =
1.35, p = 0.265.

The time spent exploring the familiar and novel object
during the test phase for each age group, PN21-22 or
PN29-31, for the dietary treatments (SUP or CTL) are
shown in Figure 3. Supplemented animals showed better
recognition (less exploration) of the familiar object

OFamiliar 1
16 PN29-31 M Familiar 2
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=12
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= 10
s
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Control Supplemented
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Figure 2. Familiarisation phase. Exploration time means (£SEM) for each identical object (Familiar 1 and Familiar 2) during the fam-
iliarisation phase for the groups (PN21-22 and PN29-31) with different dietary treatments (Control and Supplemented).
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Figure 3. Test phase. Mean exploration times (+SEM) for the familiar and novel object during the test phase for the groups (PN21-22
and PN29-31) with different dietary treatments (Control and Supplemented).

compared with those that were fed with the standard diet
for the age groups PN21-22. In contrast; for the age
group PN29-31, animals in both Group SUP and CTL
recognised the familiar object. These impressions were
confirmed by conducting a mixed ANOVA with Age
(PN21-22, PN29-31) and Diet (SUP. CTL) as between-
subject factors and Object (familiar, novel) as the
within-subject factor, which revealed a main effect of
object (F(1, 26) = 27.98, p.<.05);-a significant interaction
between Object and Diet (F(1, 26) = 6.67, p <.05) and a
significant 3-way interaction between Object, Diet, and
Age (F(1, 26)=5.25, p.<.05). No other main effect or
interaction was significant, with the highest F(1, 26) =
2, p>.05. A simple effects analysis for each of the age
groups revealed 'a main effect of object for Group
PN21-22 (F(1,13) = 7.36, p <.05) and a significant inter-
action between Object and Diet (F(1, 13)=11,65, p
<.05), whilst the main effect of Diet was not significant
(F<1). The analysis of the interaction revealed signifi-
cant differences between the familiar and novel object
in the SUP Group (F(1, 13) =18.10, p <.05) but not in
the CTL Group (F<1). For Group PN29-31 the main
effect of object was significant (F(1, 13) =22.92, p <.05)
but not the main effect of Diet or the interaction between
Object and Diet (Fs < 1).

These results show that those animals supplemented
with choline were capable of recognising the object
after a long retention interval at an early (PN21) age
compared with non-supplemented animals, for whom
this ability was evident when tested a week later.

Discussion

We observed that prenatal choline supplemented rats
had good 24 h memory retention at 21-22 days of age
in contrast with rats fed the control diet that show

24 h retention of the object when the test was conducted
a week later at 29-31 days of age. This result could be
taken to suggest that prenatal choline availability acceler-
ates the development of long-term memory, at least
when expressed as performance on an object recognition
task. In contrast, both of the older aged groups (PN29-
31) that were in the SUP or CTL groups, showed a pre-
ference for the novel object without any significant
differences between them (Figure 3).

Object recognition is one of the first mnemonic abil-
ities observed in rodents. Kriiger et al. [37] found that the
ability to detect the presence of a novel object or to
recognise a familiar one emerges once the maturation
of the visual, tactile, and motor systems has been
reached, that is, for rats at the PN14-15 age. According
to this hypothesis, ontogenetic studies using an object
recognition task have found that PN17 [38], PN18
[39], and PN20-23 rats [40,41] are capable of recognising
a familiar object between 1 min and 1 h after the fam-
iliarisation phase. However, there are a limited number
of studies examining the ontogeny of long-term memory
using an object recognition memory task. The only avail-
able results have shown that the expression of long-term
memory, as measured by NOR, emerges on PN29-40 rats
[40], which requires the hippocampal circuit to have
reached maturity [42]. Consistent with these results, in
the present study PN21-22 non-supplemented rats
(Group CTL) failed to recognise the familiar object
after a long retention interval (24 h), and only those ani-
mals that were tested a week later could perform the task
correctly (Figure 3). Similarly, using a place recognition
memory task, PN21 rats spent more time exploring
objects that had been moved to a location that was differ-
ent to that used for familiarisation after a 5-min reten-
tion interval, whereas only rats that were a week older
were able to retain information about the place where
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the object had been presented 24 h prior to the test [37].
Several mechanisms may be considered to account for
the effects of early life choline. As a multifunctional
micronutrient, choline is a methyl group donor in the
metabolic pathway of monocarbon compounds.
Additionally, choline is a precursor of the membrane
phospholipids, phosphatidylcholine (PC) and the acetyl-
choline neurotransmitter. Given its functions, the behav-
ioural potentiation caused by prenatal dietary choline
has been associated with epigenetic changes in the pat-
tern of DNA methylation [43] and the metabolism of
the cholinergic system through an increase in the choline
reserves as membrane phosphatidylcholine in the brain
[44]. It has also been associated with the facilitation of
the synthesis and release of acetylcholine [45,46],
which is a neurotransmitter involved in memory pro-
cesses [47] and attention [48].

A relevant contribution of the present study.is that it
demonstrates that an early intervention i.e. a dietary cho-
line manipulation, is able to advance the manifestation of
cognitive processes. The results of previous studies sup-
port the possibility of modifying the functional develop-
ment of the hippocampus. In ‘fact, the increased
depolarisation time of the AMPA glutamatergic recep-
tors in the hippocampus, induced by a positive allosteric
modulator [49], advanced the emergence of spatial navi-
gation (dependent on the hippocampus) in PN17-19
rats, which is usually ‘expressed around PN30 [50].
Specifically, Mellott et al. [24] found evidence for an
enhanced activation (measured by phosphorylation) of
both MAPK and CREB, in hippocampal slices of P18-
P25 rats supplemented with prenatal choline, which
were able to navigate using relational cues three days ear-
lier than control rats. Thus, this capacity of choline to
cause an advancement in tasks relaying on the cholin-
ergic function is compatible with our findings, and con-
sistent with the suggestion that prenatal choline facilities
the maturation of long-term memory.

Previous studies in rodents support a well established
role of the perirhinal cortex and the parahippocampal
cortex in object recognition memory [51]. Hence, a
plausible explanation for the worse performance of the
younger group is the delayed developmental course of
these areas. Accordinly, a late development of the para-
hippocampal areas has been reported in relation with
visual memory functions in spatial cognition [52,53].
The implication of the cholinergic system in the NOR
task is supported by the findings of previous studies
showing that NOR acquisition and memory perform-
ance depend on the activity of the brain cholinergic sys-
tem (see [54] for a review). Consistent with this,
perirhinal cortex cholinergic depletion induces deficit
in NOR tasks [19] and perirhinal microinjections of

the cholinergic muscarinic receptor blocker scopolamine
impair visual recognition memory in monkeys [55] and
rats [21]. Moreover, systemic [22] and perirhinal [23]
injections of the cholinergic agonist nicotine improve
performance in NOR tasks. And given that prenatal cho-
line supplementation increases the synthesis of acetyl-
choline from the stores in the phospholipidic
membrane components [56], this could explain the
enhancement-of long-term memory in the early stages
of development found in this study.

Our <results also suggest that this effect of choline
could be temporary, which is shown by the performance
of PN21-22 and PN29-31 rats in the SUP group, which
matched the results observed in animals in the CTL
group when they reached 30 days of age. This ‘washing
out’ effect over time could negate the benefits of the diet-
ary intervention. However, it has been found that the
facilitating effect of prenatal choline on memory is evi-
dent when the demand is increased [57,58]. These results
could suggest that particularly challenging tasks are
required in order to see an effect of early choline sup-
plementation in mature rats. Further studies will be
necessary in order to determine the effect of prenatal
choline on recognition memory in immature rats versus
mature rats.

There are certain limitations in the present study. The
first of these is the absence of a demonstration of intact
short-term memory at 21-22 days of age in the CTL
group. In this regard, it is important to point out that
an unpublished study carried out in our laboratory
using the same procedure revealed that rats at 21-22
days of age recognised the familiar object after a short
retention interval (1 h), thus confirming previous results
[38-41]. The second limitation is the use of only male
rats. It is well known that sex steroid hormones are
important regulators of object recognition memory in
rodents (see [59] for a review). However, Cost et al.
[60] observed an advantage in gonadally intact adult
females in relation to male rats, but only when circulat-
ing levels of ovarian steroids, estradiol, and progesterone
are elevated during the estrous cycle. Due to the fact that
we used infant rats, we can dismiss the possibility that
hormonal factors would have had an impact on the
results reported here. Nevertheless, in future studies it
will be of interest to use both female and male infant rats.

In summary, this study suggests that supplementation
with choline during E12-18 modulates the development
of long-term recognition memory in rats, as measured in
male offspring using a novel object recognition task.

These results could be relevant for evaluating the
effect of pre-natal choline supplementation on human
cognitive development. A study with healthy human par-
ticipants found no effect of pre-natal choline
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administration on spatial-visual and episodic memory in
children between 10 and 12 months of age [61]. How-
ever, a recent trial has demonstrated that infants from
pregnant women supplemented with 930 mg choline/
day during the third trimester of pregnancy exhibited bet-
ter information-processing speeds when compared with
infants from pregnant women fed with 480 mg choline/
day [62]. These authors argue that, unlike the previous
study their study controlled the dietary intake of choline
and other nutrients. Further, Fantz, [63] showed the
capacity of newborns to fixate their gaze and examine sur-
rounding stimuli by using the recognition paradigm (see
also, [64]). Likewise, several studies have shown that
visual recognition of stimuli (objects and /or faces)
emerges and is retained for short periods that can take
seconds or minutes during the first month of life
([65,66]; see [67], for a review). In addition, evidence
has been found for the existence of long-term memory
(days and weeks) using novelty preference protocols in
children from as young as 4-5 months of age [68], and
imitation protocols (declarative memory)-in-infants as
young as 10 months[69]. Therefore, when studying pre-
natal choline consumption as it relates to the development
of specific cognitive abilities in-human-infants, it will be
important to choose the correct ages as well as age-appro-
priate tasks. In particular, it .could be of interest to apply
choline supplementation to-infants born preterm, where
a memory deficit observed during subsequent develop-
ment is associated with hippocampal damage [70-72].
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