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ABSTRACT

MicroRNAs are regulators of gene expression. A
wide-spread, yet not validated, assumption is that the
targetome of miRNAs is non-randomly distributed
across the transcriptome and that targets share
functional pathways. We developed a computational
and experimental strategy termed high-throughput
miRNA interaction reporter assay (HiTmIR) to facili-
tate the validation of target pathways. First, targets
and target pathways are predicted and prioritized by
computational means to increase the specificity and
positive predictive value. Second, the novel webtool
miRTaH facilitates guided designs of reporter assay
constructs at scale. Third, automated and standard-
ized reporter assays are performed. We evaluated
HiTmIR using miR-34a-5p, for which TNF- and TGFB-
signaling, and Parkinson’s Disease (PD)-related cat-
egories were identified and repeated the pipeline for
miR-7-5p. HiTmIR validated 58.9% of the target genes
for miR-34a-5p and 46.7% for miR-7-5p. We confirmed
the targeting by measuring the endogenous protein
levels of targets in a neuronal cell model. The stan-
dardized positive and negative targets are collected
in the new miRATBase database, representing a re-
source for training, or benchmarking new target pre-
dictors. Applied to 88 target predictors with different

confidence scores, TargetScan 7.2 and miRanda out-
performed other tools. Our experiments demonstrate
the efficiency of HiTmIR and provide evidence for an
orchestrated miRNA-gene targeting.

INTRODUCTION

MicroRNAs (miRNAs) are small non coding RNAs, which
regulate the gene expression post-transcriptionally (1).
Specifically, miRNAs repress protein translation of target
mRNAs by binding to target sequences mainly in 3′ un-
translated regions (3′UTRs) and less commonly in 5′ un-
translated regions or open reading frames of their target
mRNAs (2,3). Aberrant expression of miRNAs is not only
a hallmark of various cancers and can be detected in tu-
mor cells and body fluids including urine, saliva, and blood
(4–6), but also in solid tissue, cerebrospinal fluid, and blood
of neuropathological disorders like Alzheimer’s Disease and
Parkinson’s Disease (PD) (7–10).

While miRNA gene targeting relies on a complementary
binding of the seed region to the target gene, non-canonical
binding between gene and miRNA also seems to have a de-
terministic influence on the targeting process (11,12). The
limited understanding of the true complexity of the inter-
actions between miRNAs and genes poses substantial chal-
lenges for the computational prediction of miRNA targets.
In response to this challenge, many tools have been de-
veloped including TargetScan (13), PicTar (14), miRanda
(15) and other consensus methods like miRWalk (16), which
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in turn combines the predictive power of several other pre-
dictors. The expectable number of targets per miRNA has
not yet been reliably determined as a single miRNA can tar-
get between a few up to several hundred genes. Considering
an overall search space of 62.5 million possible miRNA-
gene interactions (25 000 human genes × 2500 human miR-
NAs) and the estimated number of targets of single miR-
NAs, a substantial class imbalance exists. Learning from
imbalanced data however still poses challenges for machine
learning in life sciences and beyond (17,18). When the a pri-
ori likelihood of a positive event gets small and the speci-
ficity is not close to an optimal value, the positive predictive
value, i.e. the likelihood that a predicted event is actually
positive, becomes extremely low (19).

Accumulating evidence suggests that the targetome of a
miRNA is not randomly distributed across the transcrip-
tome and that it covers genes of shared biochemical path-
ways. This information can support the design of predic-
tion tools by increasing the specificity of target predictions
while at the same time maintaining the sensitivity. Based on
this assumption we previously developed the miRNA target
pathway dictionary (20), which we subsequently extended
into the miRPathDB (21), now existing in the second ver-
sion (22). The wide-spread assumption that miRNAs tar-
get complex networks in an orchestrated manner to facili-
tate the discovery of new true positive targets has not yet
been validated at scale. However, respective computational
approaches, which use consensus prediction and target en-
richment by pathways, motivate a systematic and standard-
ized experimental validation of predicted targets. To vali-
date miRNA targets, different experimental approaches ex-
ist with inherent advantages and disadvantages. One of the
most common choices are reporter assays (23,24). As for
the majority of similar technologies, limitations of reporter
assays are known (25). In addition, manuscripts frequently
report only one validated gene or small sets thereof. The
miRTarBase in the most recent update 2020 (26) indicates
that 6046 manuscripts describe 9679 human miRNA/gene
pairs (including duplications) validated by reporter assays.
Thus, on average, manuscripts validate only 1.6 targets. Ad-
ditionally, 97% of the database entries are positive associa-
tions while negative results of reporter assays are frequently
not reported.

To address the challenge of identifying true miRNA tar-
gets in the overall search space of 62.5 million possible
miRNA-mRNA interactions, we developed an approach
termed high-throughput miRNA interaction reporter as-
say (HiTmIR). Our approach combines computational and
experimental work steps into a new pipeline. In the com-
putational part, targets are first predicted by a consensus
approach relying on well-established tools. Subsequently,
targets are filtered by enriched pathways or diseases using
the GeneTrail (27) pathway analysis software. From the en-
riched targetome a novel web-based software (miRTaH) can
automatically design reporter sequences for luciferase re-
porter assays at scale, a task that is challenging and time
consuming when performed manually. The final reporter
assay target sequences can be obtained from various ven-
dors and get handled by an automated microfluidic device.
Therefore, our pipeline allows to identify a higher fraction

of true miRNA target interactions than previously reported
in an efficient manner. The identified targets and target
pathways used to benchmark a variety of target prediction
tools and databases in a low, medium, and high stringency
set-up have been stored in the miRATBase data warehouse.
The overall workflow of our study together with the main
contributions to the field are shown in Figure 1.

We applied the HiTmIR workflow to two strongly con-
served miRNAs, miR-34a-5p and miR-7-5p, which are both
known to be deregulated in cellular PD models and brain
tissue of PD patients (28–33). While miR-34a-5p is upreg-
ulated in PD, downregulation of miR-7-5p has been previ-
ously demonstrated to effect �-synuclein and to contribute
to neurodegeneration (28,34). PD is the second most com-
mon neurodegenerative disorder following Alzheimer’s Dis-
ease. Its prevalence strongly increases with age, resulting
in 2% of the female world population and 7% of the male
world population affected being over 85 years old (35). The
clinical symptoms are caused by the loss of dopaminer-
gic neurons within the substantia nigra pars compacta and
coupled to the accumulation of �-synuclein into intraneu-
ronal structures, known as Lewy bodies and Lewy neurites
(36,37). In the last decade, the role of deregulated miRNAs
in the pathogenesis of PD has been characterized, for exam-
ple by the identification of several disease associated miR-
NAs involved in the progression of PD (38).

MATERIALS AND METHODS

We here describe an overview of the applied methods and
analyses. Further details on each of them are available in the
supplement and online methods (Supplemental document).

Automated dual luciferase reporter assay

For this assay 2–2.5 × 104 HEK 293 T cells were seeded out
per well of a 96-well plate (Eppendorf, Hamburg, Germany)
by the liquid handling system epMotion 5075 (Eppendorf,
Hamburg, Germany). HEK 293 T cells were transfected
with 50 ng/well reporter vector with or without 3′UTR and
200 ng/well pSG5 empty vector or pSG5-miR-34a expres-
sion plasmid. Forty-eight hours after transfection cells were
lysed and the cell lysates were prepared according to manual
of the Dual-Luciferase® Reporter Assay System (Promega,
Madison, USA) and measured with the GlowMax nav-
igator microplate luminometer (Promega, Madison,
USA).

miRNA expression plasmid and reporter constructs

The pSG5-miR-34a expression vector (Eurofins Genomics,
Ebersberg, Germany) contains the nucleotides 9 151 617–
9 151 816 of chromosome 1. The pSG5-miR-7 expression
vector (Eurofins Genomics, Ebersberg, Germany) contains
the nucleotides 88 611 724–88 612 046 of chromosome 15.
For miR-34a-5p target gene validation, the sequences of
the 191 3′UTRs of the TNF-, TGFB-signaling and the
PD-related target genes were synthetized and the ∼490 nt
long inserts were cloned into the pMIR-RNL-TK vector
(Eurofins Genomics, Ebersberg). The 3′UTR sequences of
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Figure 1. Study set-up, rational and contribution. The main goals of our study are to demonstrate an orchestrated targeting of miRNAs on specific
pathways by experimental means and to provide novel useful resources for the scientific community. Originally, we increased the specificity of miRNA target
interactions by in-silico approaches alone (green curve and green vertical arrow). By combining improved target selection strategies, we provide evidence
for a higher specificity and validation rate in this study (blue curve and blue vertical arrow). We also provide evidence that in iterative improvements the
specificity and validation rate can be further increased by improved target selection using advanced machine learning and pattern recognition techniques
(orange curve and orange vertical arrow). Besides the main contribution of validated target pathways (1), our approach includes (2) a novel online tool
miRTaH that facilitates reporter assay design at scale and (3) a database of validated pathways as well as positive and negative targets for single miRNAs.
Finally, we demonstrate that a standardized target database is a valuable source for (4) evaluating the performance of individual tools and (5) improving
target prediction and thus can support the development and evaluation of current and new miRNA target tools.

CREB1 1 mut, CREB1 2 mut, TNFSF14 mut, DNM1L 1
mut, DNM1L 2 mut, AKT2 mut, SMAD7 mut, BMP8B
mut, SMAD2 1 mut, SMAD2 2 mut, TGFB2 mut and
EP300 mut, with mutated binding sites were synthetized
and the inserts were cloned into the pMIR-RNL-TK vec-
tor. For miR-7-5p target validation, the sequences of the 160
3′UTRs of the PD-related target genes were synthetized and
the ∼690 nt long inserts were cloned into the pMIR-RNL-
TK vector (BGI, Shenzhen, China).

Cell lines, tissue culture

Lund human mesencephalic (LUHMES) cells were pur-
chased from the American Type Culture Collection (ATCC)
and transfected for GFP-expression. The cells were cul-
tured as previously described by Scholz et al. (39) in flasks
pre-coated with 50 �g/ml poly-L-ornithin and 1 �g/ml Fi-
bronectin. HEK 293T cells were cultured as described previ-
ously (40). SH-SY5Y cells were cultivated in DMEM (Life
Technologies GmbH, Darmstadt, Germany) supplemented
with 20% fetal bovine serum (Biochrom GmbH, Berlin,
Germany), Penicillin (100 U/ml), and streptomycin (100

�g/ml). All cell lines were cultured for less than 3 months
after receipt.

Differentiation of LUHMES cells

For differentiation of LUHMES cells towards dopaminer-
gic neurons, cells were cultured in advanced DMEM/F12
(Life Technologies GmbH, Darmstadt, Germany) supple-
mented with 1% N2-Supplement, 2 mM L-glutamine, 1 mM
dibutyryl cAMP, 2 ng/ml GDNF and 1 �g/ml tetracycline.
After 48 h, cells were trypsinized and seeded with 7.5 × 104

cell/cm2 in pre-coated flasks.

Neurotoxin treatment and RNA isolation

To induce a PD-like phenotype, LUHMES cells were
treated with 10 �M 1-methyl-4-phenylpyridinium (MPP+;
Sigma Aldrich, Munich, Germany) 6 days after initiation
of differentiation for 48 hours. Control cells were supple-
mented with H2O. For RNA-Isolation, cells were lysed by
QIAzol Lysis Reagent (Qiagen, Hilden, Germany) and total
RNA was isolated using the miRNeasy Mini Kit (Qiagen,
Hilden, Germany).

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/1/127/6030235 by U

niversidad de G
ranada - Biblioteca user on 23 February 2021



130 Nucleic Acids Research, 2021, Vol. 49, No. 1

Immunocytochemistry

For immunocytochemistry staining of TH and D2R,
LUHMES cells were cultured and seeded on pre-coated 8-
well �-slides (ibidi GmbH, Gräfelfing, Germany) with 7.5
× 104 cells/cm2. Medium was exchanged 48 hours after re-
seeding. The primary antibodies were diluted in PBS con-
taining 1% bovine serum albumin and incubated at 4◦C
overnight. TH was stained using a polyclonal rabbit anti-
body (Cat# ab112, RRID: AB 297840, abcam, Cambridge,
UK) and D2R was detected using a goat polyclonal anti-
body (Cat# ab32349, RRID: AB 2094849, abcam, Cam-
bridge, UK). Images were taken with a Leica TCS SP8 mi-
croscope (Leica Microsystems, Wetzlar, Germany) and ana-
lyzed using LAS X software (version 3.5.5.19976, Leica Mi-
crosystems, Wetzlar, Germany).

miRNA Microarray

miRNA expression profiles after MPP+ treatment in
dopaminergic neurons were monitored by using Agilent
miRNA Complete Labeling and Hyb Kit as well as Agi-
lent SurePrint G3 Human miRNA 80 × 60K Microarrays
(Cat. No. G4872A, miRBase release 21.0, Agilent Tech-
nologies, Santa Clara, CA, USA) as described previously
(41). The raw microarray data has been deposited at the
GEO database (GSE135151).

Western blot

For western blot analysis of JNK3, SMAD2, SMAD7,
CREB1, TH, CLOCK, PARK2 and GRIA4 4.5 × 105

SH-SY5Y cells were seeded out per well of a six well
plate. After 24 hours the cells were transfected either
with the Allstars Negative Control (ANC) or with hsa-
miR-34a-5p miScript miRNA Mimic (MIMAT0000255:
5′UGGCAGUGUCUUAGCUGGUUGU). For endoge-
nous miR-34a-5p inhibition, cells were transfected with
miScript Inhibitor Negative Control or anti-hsa-miR-34a-
5p miScript miRNA Inhibitor (MIMAT0000255: 5 ′UG
GCAGUGUCUUAGCUGGUUGU). Quantification of
the western blots was carried out with Image Lab Soft-
ware Version 5.2.1 (Bio-Rad Laboratories Inc., Hercules,
CA, USA).

Quantitative real-time PCR (qRT-PCR)

qRT-PCR was performed using miScript Primer Assay
for hsa-miR-34a-5p, hsa-miR-7-5p, hsa-miR-181a-3p, hsa-
miR-134-5p, hsa-miR-129-5p, hsa-miR-129-1-3p, hsa-miR-
335-3p, hsa-miR-106b-3p, hsa-miR-412-5p, and Custom
miScript Primer for hsa-miR-4284 (Qiagen, Hilden, Ger-
many) and the StepOnePlus Real-Time PCR System (Ap-
plied Biosystems, Foster City, United States) following the
manufacturer’s protocol. RNU6B (Qiagen, Hilden, Ger-
many) served as endogenous control. Statistical signifi-
cance of differentially expressed miRNAs in MPP+ treated
LUHMES as well as miR-34a-5p over-expression was ana-
lyzed by paired, two-tailed t-tests.

Automated reporter assay construct generation using miR-
TaH

To facilitate the bioinformatics aided design of several hun-
dred reporter assays we implemented miRTaH (miRNA
Target assay Helper). In brief, miRTaH receives a paired
list of miRNAs and genes as input query and searches for
known miRNA-target interactions from public databases.
Next, seed binding sites for each miRNA in the correspond-
ing target gene 3′UTRs are searched. For a list of selected
pairs, the 3′UTR sequences are displayed along with the
detected miRNA binding sites and potential cut sites of
restriction enzymes. Long sequences can be automatically
split into any number of chunks, which then can be pro-
cessed independently. Finally, the tool generates a report of
the generated sequence inserts to be synthesized and cloned
into reporter plasmids. As organisms, our web service sup-
ports H. sapiens and M. musculus. miRTaH is freely avail-
able online (https://www.ccb.uni-saarland.de/mirtah). Fur-
ther descriptions on the tool are available from the supple-
mental materials.

miRATBase––a database for validated targets and target
pathways of miRNAs

To make the validated targets and target pathways accessi-
ble we implemented a data warehouse termed miRNA Re-
porter Assay Database (miRATBase). In this data ware-
house we store for each miRNA the validated target path-
ways and the positive and negative target data sets. mi-
RATBase is freely available online (https://www.ccb.uni-
saarland.de/miratbase). In its current release, miRATBase
contains over 500 target associations for four miRNAs. For
each entry we also link to miRTarbase (26), miRBase (42),
miRCarta (43) and MirGeneDB (44).

MiRNA target prediction

Consensus lists of predicted miRNA targets were obtained
using the online interface of miRWalk 2.0 (16). The pre-
diction tools in addition to miRWalk comprise microT v4,
miRanda, mirBridge, miRDB, miRMap, miRNAMap, Pic-
Tar2, PITA, RNA22, RNAhybrid and TargetScan (45–55).
Target transcripts were sorted by the number of algorithms
predicting a target and aggregated on the gene level for all
entries surpassing the applied cut-offs. For TargetScan the
version used during study conception and implementation
(6.2) was benchmarked to the currently most recent version
7.2. To this end, all miRNA targets showing a conserved
and a non-conserved target site were downloaded from the
TargetScan website and processed in the same manner as
the targets from version 6.2. Further, aggregated predictions
have been extracted from the recent mirDIP release 4.1 (56).
Specifically, we made use of 25 tools in the low, medium and
high stringency set-up. The final list of evaluated tools thus
comprises 88 (25 × 3 + 13) prediction tools with different
stringencies.

Statistical analysis

Analysis of microarray data was performed with Gene-
Spring (version 14.9, Agilent Technologies, Santa Clara,
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CA, USA). Statistical analysis of qRT-PCR and western
blots was performed with Prism7.04 (GraphPad Software,
La Jolla, USA) applying paired, two tailed t-tests. Quan-
tification of the western blots was carried out with Im-
age Lab Software Version 5.2.1 (Bio-Rad Laboratories Inc.,
Hercules, California, USA). Statistical analysis, including
evaluation of the automated dual luciferase reporter as-
says, was performed with R version 3.6.3 applying two-
tailed, one-sample t-tests. Heatmaps were generated using
the pheatmap R package while all remaining plots were
compiled with the ggplot2, cowplot and RColorBrewer
packages. The association mining of predicted and vali-
dated targets was performed using the apriori function of
the arules package. For data handling and transformations,
the R packages tidyr, dplyr, stringr, data.table and openxlsx
were utilized. To test the hypothesis whether 3′UTR lengths
systematically influence the results we computed a ratio for
each gene using the long and short assay RLUs and per-
formed a one-sample, two-sided Student’s t-test while set-
ting � equal to 1.

RESULTS

Overview on HiTmIR: a novel pipeline for validating target
pathways of single miRNAs

Our HiTmIR protocol, which was applied to two miRNAs,
consists of three computational filters to increase the speci-
ficity of the target prediction and to reduce the size of the
predicted targetome stepwise, followed by one experimen-
tal step (Figure 2A). The first computational filter includes
a consensus target prediction (16). We then performed an
over-representation analysis using GeneTrail2 (27) to iden-
tify enriched target pathways. Third, we added the disease
association to the pathway information. Based on the sig-
nificant categories, we built a consensus target gene set to
narrow the experimental search space. A novel web-service
supports the design of reporter constructs that are cloned
into target plasmids and subjected to systematic experimen-
tal testing. To this end, a liquid handling system was pro-
grammed to perform an automated luciferase reporter as-
say in a 96-well format containing the commercially ob-
tained constructs. This pipeline allows to detect and validate
complete pathways for single miRNAs, which we exemplify
for miR-34a-5p and miR-7-5p. The validated target path-
ways as well as the positive and negative targets are stored
in a data warehouse, miRATBase, a resource for testing and
evaluating new target prediction tools.

Selecting microRNAs implicated in aging-related diseases to
be screened with HiTmIR

To demonstrate the performance of HiTmIR we selected
PD as role model. To further elucidate the role of miR-
NAs in PD, we differentiated lund human mesencephalic
(LUHMES) cells to dopaminergic neurons and subse-
quently induced a PD-like phenotype using the neuro-
toxin MPP+ (1-methyl-4-phenylpyridinium). We verified
the dopaminergic phenotype after differentiation by im-
munocytochemistry using tyrosine hydroxylase (TH) in
combination with D2 receptor (D2R) as markers for
dopaminergic neurons (Figure 2B and C). We analyzed four

replicates each after stimulation with MPP+ and four ac-
cording controls without MPP+ stimulation and identi-
fied 686 expressed miRNAs by genome-wide miRNA ex-
pression profiling. Following the stimulation by MPP+, we
found 13 significantly deregulated miRNAs encompassing
four down-regulated miRNAs including miR-7-5p and nine
up-regulated miRNAs including miR-34a-5p (adjusted t-
test P-values at an alpha level of 0.05) (Figure 2D and
E). We validated the expression changes by qRT-PCR for
10 selected miRNAs comprising seven of the significantly
deregulated miRNAs and three of the miRNAs with high
fold-changes. The qRT-PCR analysis confirmed the dereg-
ulation for eight miRNAs including an up-regulation of
miR-34a-5p and a down-regulation of miR-7-5p (Figure 2F,
Supplemental Table S1). Since miR-34a-5p plays a crucial
role in cancer and in neuropathologies, we investigated its
abundance and dependency on age in blood of patients and
controls. Analyzing a collection of 4393 individual blood
samples (57), we examined miRNA expression of individ-
uals who were between 30 and 80 years old (Figure 2G).
We found a steady increase of miR-34a-5p expression over
lifetime (P < 2.2 × 10−16). Since the observations sug-
gest a prominent role of miR-34a-5p and miR-7-5p in neu-
ropathological processes, these miRNAs were selected for
systematic target pathway validation using the HiTmIR
pipeline.

Three computational filters decrease the predicted targetome
size to 1% of the transcriptome

The HiTmIR workflow was designed to start with a sensi-
tive set of potential target genes, increasing the specificity in
each of the computational steps (Figure 3A, Supplemental
Table S2). One challenge in miRNA target prediction re-
search are enormous sets of target genes for single miRNAs
as exemplified for miR-34a-5p (Figure 3B). Seven of the 12
tools predict 20% or more of the transcriptome each. Con-
sidering the union of all target prediction algorithms basi-
cally the full transcriptome is identified as target for miR-
34a-5p while each individual gene is only predicted by 2.4 of
the 12 tools on average. The union of predictions thus rep-
resents a highly sensitive but very unspecific––and therefore
unrealistic––representation of the targetome, calling for a
more specific target set. While requiring more complex in-
tersections, the number of targets predicted by a respective
number of tools decreases significantly (Figure 3B). Around
75% of targets are already excluded by requiring an inter-
section of four tools to predict a gene, leaving 5198 target
genes. At the same time, each of the genes is predicted on
average by 5.2 tools. Still, this set is too unspecific and does
likely not represent a reasonable targetome of miR-34a-5p.
To add specificity, we next performed a pathway predic-
tion as second filter step. By running an over-representation
analysis in GeneTrail2 we detected a significant enrichment
of target genes in 4507 pathways and biological processes
(Supplemental Table S3). This analysis reduced the target
gene set further by 33%. Yet again, the remaining number of
3475 genes likely represents an overestimation of the actual
targetome. We then dissected targets enriched for pathways
being pivotal for neurological diseases or for biological cat-
egories that have been associated with PD as a third filter.
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Figure 2. HiTmIR overview and representative selection of miR-34a. (A) Combined experimental and computational workflow of HiTmIR. Three com-
putational steps are carried out consecutively before target gene sets are validated by an automated reporter assay. (B) Immunocytochemistry of D2R
expression in differentiated LUHMES cells. (C) Immunocytochemistry of TH expression in differentiated LUHMES cells. (B, C) Expression of dopamin-
ergic markers in differentiated LUHMES cells were analyzed by immunocytochemistry with antibodies against TH and D2R. The nuclei were visualized by
DAPI staining. Scale bars are 25 �m. (D) Heatmap of the 50 most down-regulated miRNAs in LUHMES cells that were differentiated toward dopamin-
ergic neurons and treated with MPP+ to induce a PD-like phenotype. (E) Heatmap of the 50 most up-regulated miRNAs. (D, E) Shown are z-scores of
quantile-normalized expression values. (F) Validation of microarray results by qRT-PCR of up-regulated and down-regulated miRNAs. Bars present the
log2 fold change between PD-like and controls together with the respective standard deviation. (G) Increased expression of miR-34a-5p in the blood of
patients, spanning an age range from 20 to 80 years. The orange line shows a smoothed spline with 8 degrees of freedom and the shaded area represents
the 95% confidence interval.
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A B
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Figure 3. Application of HiTmIR to miR-34a-5p and miR-7–5p. (A) Adapted from the workflow in Figure 2A, the actual numbers of the application to
miR-34a-5p (blue numbers) and miR-7-5p (green numbers) in the context of PD are shown. (B) Histogram of the number of predicted targets dependent
on the number of tools predicting this target for miR-34a-5p. Most targets are predicted by one tool only. From the histogram, setting a threshold between
three and five tools is a reasonable starting point because large parts of the unspecific hits are already excluded. We then set the initial number of predictions
by requiring at least four tools to predict a target. The line represents a smoothed spline. The right-hand side plot of the panel displays the number of target
predictions of the 12 individual tools. (C) The four experimental steps of the automated reporter assay required to validate target genes in a high-throughput
manner. (D) Overview on HiTmIR results for miR-34a-5p in the TNF- and TGFB-signaling pathways. (E) Overview on HiTmIR results for miR-34a-5p
in the PD-related categories. (F) Overview on HiTmIR results for miR-7-5p in the PD-related categories. (D–F) The x-axis displays the RLU while the
y-axis depicts the density of experimental results. For each set, four curves of experimental transfection designs for targets of miR-34a-5p are shown; two
times empty control plasmids (gray), empty miR plasmid + target control 3′UTR (light gray), miR-34a-5p plasmid + empty target control plasmid (blue),
and the miR-34a-5p + target control 3′UTR plasmid (orange). The experimental transfection design for miR-7-5p was performed analogously.
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Specifically, we found 45 predicted miR-34a-5p target genes
in the TNF-pathway and 32 in the TGFB-pathway, both
of which have been studied in connection to neurological
diseases (Supplemental Table S4). We further investigated
categories relevant for PD. Here, GeneTrail2 highlighted a
significant enrichment of 274 initially predicted miR-34a-
5p targets in 14 PD categories, 10 of which are related to
dopamine.

We compared the performance of the pipeline if applied
to individual tools. For all 12 tools, we thus performed the
exact same pathway analysis as for the consensus prediction
(Supplemental Table S5). Here, we observed a higher con-
cordance as compared to the gene-level prediction. On aver-
age, the pathways were predicted by 8.2 tools while using the
above sketched consensus approach only 5.2 tools predicted
a gene (P < 10−5). While most of the more complex KEGG
pathways were covered by basically all tools (Dopaminer-
gic synapse by all tools, TNF signaling pathway and TGF-
beta signaling pathway by 11 tools), some of the smaller yet
important Gene Ontology biological processes would have
been missed by individual tools (Dopamine metabolism (six
tools), Pink/Parkin Mediated Mitophagy (four tools) or
dopamine catabolic process (three tools)). These results sug-
gest that incorporating the information of different tools
can add to the identification of relevant pathways, especially
if these pathways are small.

To identify novel miR-34a-5p targets we relied on the in-
formation from the original consensus prediction but ex-
cluded all predicted target genes that did not have canoni-
cal binding sites and those targets, which were already vali-
dated by others according to the miRTarBase (58). Thereby,
we obtained a final set of 150 target genes. For some of the
predicted target genes, sequence analysis revealed multiple
miRNA binding sites within the 3′UTR. To cover longer
3′UTRs that harbor multiple target sites, we split the se-
quence stretches into different segments to allow for testing
of the miRNA effect on each target site separately (Sup-
plemental Table S6). To this end, 3′UTR segments were
cloned and separately tested. The respective segments were
numbered consecutively starting at the 5′ end, with the
number of the corresponding segment added to the plas-
mid name (as for example pMIR-CLOCK 1 and pMIR-
CLOCK 2). In sum, we cloned 30 predicted target 3′UTRs
for the TNF-pathway, 23 for the TGF-beta-pathway and
138 for genes associated with PD pathways. In generating
the reporter assay constructs (cf. Supplemental Table S6) we
recognized the need for a tool that automates this step and
implemented the miRNA target assay helper tool miRTaH.
The tool, which is freely available as web service (https:
//www.ccb.uni-saarland.de/mirtah), generates reporter con-
struct sequences for arbitrary miRNA gene target pairs for
H. sapiens and M. musculus. miRTaH supports binding site
matching, restriction enzyme site analyses, and selection as
well as modification of target sequences. The final sequences
can be stored, exchanged, and downloaded easily.

We repeated the above described computational strat-
egy for miR-7-5p. The consensus prediction yielded 5710
unique target genes (Supplemental Table S7). The analo-
gous over-representation analysis returned 4484 pathways
and functional categories (Supplemental Table S8). Since
miR-7-5p is well described in the context of PD by target-

ing �-synuclein (34), we focused on the predicted targets
for the same set of PD-related categories as screened for
miR-34a-5p (Supplemental Table S9). Following the filter-
ing with the same criteria, we generated reporter construct
sequences and split 3′UTRs accordingly to a different size
of ∼700 nts (Supplemental Table S10). Altogether, 150 and
92 genes were tested by automated dual luciferase assays for
miR-34a-5p and miR-7-5-p, respectively.

HiTmIR performance is comparable to manual reporter as-
says

We tested all 351 selected target gene 3′UTRs using the ex-
perimental part of HiTmIR (Figure 3C). To control the va-
lidity of the assay, each 96-well plate contained two positive
controls in variable wells to exclude positioning-effects. The
miR-34a-5p positive controls of the TNF/TGFB-signaling
assays showed similar RLU distributions to those of the
PD-related categories (Figure 3D and E, Supplemental Ta-
ble S11). Upon co-transfection with miR-34a-5p, the posi-
tive control pMIR-TCRA showed a significant down regu-
lation of the relative luciferase activity (relative light units;
RLU) to 54.7% for TNF/TGFB-assays (P ≤ 0.001) and
to 52.5% for PD related assays (P ≤ 0.001), comparable
to previous effects obtained by manual assays (59). Next,
we repeated the experiments for miR-7-5p. Following co-
transfection of miRNA and target plasmid we also found
a clear downshift of the RLU values to a mean of 38.6%
(Figure 3F, Supplemental Table S12).

HiTmIR validates 40% of miR-34a-5p targets in TNF-
/TGFB-signaling pathways

Out of the 30 tested 3′UTR sequences of the TNF-signaling
pathway, 12 (40%) reporter constructs showed a signifi-
cant RLU down regulation upon co-transfection with miR-
34a-5p (Figure 4A, Supplemental Table S13). For TGFB-
signaling, 9 of 23 (39%) tested target 3′UTRs showed a
significant RLU reduction (Figure 4B). To verify the di-
rect binding of miR-34a-5p to its predicted target sites,
we mutated the binding sites and performed compara-
tive HiTmIR experiments between the wild type constructs
and the mutated reporter vectors (Figure 4C and D, Sup-
plemental Table S14). For each signaling pathway, we
chose six positively tested target gene segments. In sum,
we tested CREB1 1, CREB1 2, TNFRSF14, DNM1L 1,
DNM1L 2 and AKT2 from TNF-signaling, and SMAD7,
BMP8B, TGFB2, SMAD2 1, SMAD2 2 and EP300 from
TGFB-signaling. We verified the binding of miR-34a-5p
to its predicted target sites for six 3′UTRs showing a sig-
nificant difference in RLU after mutation. For the non-
significant cases, the assay results still suggested a trend to
lower RLU values upon a knockout of binding sites.

HiTmIR validates 60% of PD-related pathways for miR-34a-
5p and miR-7-5p

We applied the experimental pipeline of HiTmIR to the pre-
dicted and PD-related 3′UTR target genes of miR-34a-p
and miR-7-5p (Supplemental Tables S13 and S15). Upon
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Figure 4. Detailed experimental results of HiTmIR for miR-34a-5p in TNF- and TGFB-signaling. (A, B) RLU values for eight replicates for each 3′UTR
from selected target genes. The dashed line shows the normalized reference level, i.e. the expected level with no effect. (A) Results for pre-selected genes
from TNF-signaling. (B) Results for pre-selected genes from TGFB-signaling. (C, D) RLU values for eight replicates for each wild-type and mutated
(binding-site knock-out) 3′UTR from selected target genes. The dashed line shows the normalized reference level, i.e. the expected level with no effect. (C)
HiTmIR results for binding-site knockout mutants of selected genes from TNF-signaling pathway. (D) HiTmIR results for binding-site knockout mutants
of selected genes from TGFB-signaling pathway.

co-transfection with miR-34a, we detected a significant re-
duction (P < 0.05) of the RLU for 119 target 3′UTRs pre-
dicted by at least one algorithm (86.2%). Grouping the plas-
mids into RLU ranges, we found 51 cases in the range be-
tween 33% (KIF5C) and 70% (GSK3B 1) (Figure 5A). We
observed a less pronounced decrease between 70% and 80%
for 28 target 3′UTRs (Figure 5B). We next evaluated how
the cut-off for the minimal number of consensus predic-
tions potentially influences the results. Employing the cut-
off, which we already used in the TNF-/TGFB-signaling

validation, we observed a slight drop of the validation rate
to 84.4%. However, only 39 (32.8%) genes that were pre-
dicted by at least four algorithms were removed due to non-
detectable binding sites as compared to the 235 (68.7%)
genes that were predicted by at least one algorithm. These
results suggest an inflated false-positive rate for the genes
predicted by a small number of tools only.

Of the 160 sequences tested for miR-7-5p, 106 (66.3%)
were significant (P < 0.05). Mapping the constructs into the
ranges of mean RLUs we only observed 24 targets under
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Figure 5. Detailed experimental results of HiTmIR for miR-34a-5p and miR-7–5p in PD-related categories. (A–D) RLU values for eight replicates for each
3′UTR from selected target genes. The dashed line shows the normalized reference level, i.e. the expected level with no effect. (A) Results for miR-34a-5p
in the PD-related gene sets. Shown are the genes for which mean RLU was less or equal than 70%. (B) Analogous to (A) but with mean RLU between 70%
and 80%. (C) Results for miR-7-5p in the PD-related gene sets. Shown are the genes for which mean RLU was less or equal than 70%. (D) Analogous to
(C) but with mean RLU between 70% and 80%.

70% (Figure 5C) and 40 targets (Figure 5D) of moderate
reduction. These results suggest the validation rate of HiT-
mIR to primarily depend on the chosen cut-offs as well as
the miRNAs under investigation. To elaborate on the rela-
tion between high validation rates and the chosen cut-off
(standard) parameters per miRNA, we enumerated a set of
thresholds for both the minimum mean RLU and the mini-
mum P-value cut-offs and computed the corresponding val-
idation rates (Supplemental Table S16). We found that even
with permissive cut-offs (P < 0.005 & mean RLU < 80%)
the validation rates for the PD-related target sets of miR-
34a-5p and miR-7-5p remained competitive with 55% and

35%, respectively. After showing a significant decrease of
target expression upon miRNA transfection, we next asked
whether the protein expression levels are decreased accord-
ingly.

miR-34a-5p effects target protein expression in SH-SY5Y
cells

To investigate the effects of miR-34a-5p targeting on the
endogenous protein levels, SH-SY5Y cells were transfected
by miR-34a-5p mimics or by ANC as a non-targeting con-
trol. We confirmed the over-expression of miR-34a-5p in
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the transfected SH-SY5Y cells by qRT-PCR (Supplemen-
tal Table S17). We next analyzed the endogenous protein
levels of JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK,
GRIA4 and PARK2 each in three independent experiments
by western blotting using specific antibodies (Supplemen-
tal Table S18). We observed significantly reduced endoge-
nous protein levels for all tested proteins (Figure 6A–F)
ranging from 46% for CREB1 (0.001 ≤ P-value ≤ 0.01)
to 76% for CLOCK (P-value ≤ 0.05) (Figure 6G). To fur-
ther validate miR-34a-5p endogenous targeting, we trans-
fected SH-SY5Y cells with miR-34a-5p inhibitor or an in-
hibitor control and analyzed the endogenous protein lev-
els of JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK,
GRIA4 and PARK2 each in three independent experiments
(Supplemental Table S19). In line with the previous obser-
vations, we found significantly induced endogenous protein
levels for all of the tested proteins ranging from 118% for
TH (P-value ≤ 0.05) to 163% for CLOCK (0.001 ≤ P-value
≤ 0.01) (Figure 7).

Variation in cloned 3′UTR lengths does not lead to a system-
atic bias

Since the validation rates of HiTmIR varied between miR-
34a-5p and miR-7-5p, we asked whether this is confounded
by the fact that 3′UTR splits of varying lengths were trans-
fected. As independent control experiments we selected nine
target 3′UTRs of miR-34a-5p and created reporter con-
structs containing the full-length 3′UTR sequence. The full-
length 3′UTR sequences (∼991 nts) were approximately two
times the length of the shorter sequence chunks (∼477 nts)
(Supplemental Table S20). Although several cases could be
identified where the shorter 3′UTR sequence showed either
a better or worse mean RLU, these differences were not sig-
nificant on the overall distribution (P = 0.9962, cf. Materi-
als and Methods). As a conclusion, the length of the 3′UTR
reporter constructs does not significantly skew the distribu-
tion of RLU values obtained, as long as the technically up-
per limit (∼1500 nts) is not surpassed.

Evaluating the performance of single tools toward a more ac-
curate consensus prediction

By design, the HiTmIR system facilitates validation of
miRNA targets that are predicted and prioritized by in sil-
ico methods. In turn, it does not only provide a set of val-
idated target pathways but also positive and negative sets
of targets for miRNAs. These can be used to evaluate the
performance of individual target predictors, utilized to test
new individual tools, or used to evaluate consensus predic-
tion. First, we calculated the performance of the individual
tools that were originally contained in the target gene selec-
tion step to determine whether and how performance varies
between the tools (Figure 8A). Our results suggest one set
of tools (mirbridge, miRDB, miRNAMap and Pictar2) to
be very specific. While this specificity is on a level we are
seeking for, it here comes at the price of a sensitivity of only
9%. On the other extreme, RNAhybrid shows a sensitivity
of 99.4% but also zero specicitity on our data set. As pre-
viously suggested, TargetScan (6.2) and miRanda show a
well-balanced specificity and sensitivity. The only other tool

that performs similarly well is MicroT v4. However, it is in
the nature of successful tools that they are constantly im-
proved. Therefore, we evaluated more recent programs (56).
Altogether, 25 tools were tested and most notably for these
tools low (Figure 8B and C), medium (Figure 8D and E)
and high (Figure 8F and G) confidence sets of targets were
acquired to evaluate the performance. Additionally, we in-
cluded the 12 original tools and TargetScan 7.2. In total we
evaluated 88 tools at varying levels of prediction stringency.
For each of the tools, we computed the specificity, sensi-
tivity, balanced accuracy, and other measures such as pre-
cision, recall, and the F1 score (Supplemental Table S21).
As expected, the number of predicted targets generally de-
creases with stringency increasing. Still, the most stringent
sets yield targetome sizes over 20% of the transcriptome.
The high confidence set retained a sensitivity, specificity and
balanced accuracy of 47%, 60% and 53%. The medium con-
fidence set 39%, 67% and 53%, respectively. The low confi-
dence set yielded 39%, 68% and 53%, almost identical to the
medium confidence set. Most importantly, the original set
we used reached 46%, 58% and 52% sensitivity, specificity
and balanced accuracy, similar to the high confidence set of
mirDIP (Figure 8H). The most remarkable difference be-
tween the four groups of tools was the increased sensitivity
of the high confidence sets, at the cost of the lowest speci-
ficity. Of note, there was no tool that clearly outperformed
all others, i.e. reaching exceptional specificity and sensitiv-
ity. The best-balanced accuracies, exceeding values of 60%,
were reached for microrna.org, miRDB, miRanda and Tar-
getScan (7.2).

We then evaluated how an updated algorithm improved
the results on the example of TargetScan and compared
version 6.2 (the available version when we originally im-
plemented HiTmIR) with the most recent version 7.2. We
specifically asked whether a tool update has an impact on
single target genes and on the validation success rate. With
respect to the original gene sets we observed an overlap
of 3384 target genes, for which the newer version had an
additional 1000 targets while 444 former targets were not
predicted anymore. Most intriguingly, the pathway predic-
tion was 100% concordant between TargetScan 6.2 and Tar-
getScan 7.2 (Supplemental Table S5). In predicting more
targets, we might expect also an increased false positive rate
but for the genes involved in our study we observed three
more true positives and two more true negative genes. For
TargetScan 6.2 we computed 124 TP, 32 TN, 32 FP and 54
FN. For TargetScan 7.2 the numbers slightly changed to 126
TP (+2), 33 TN (+1), 31 FP (–1) and 52 FN (–2). The bal-
anced accuracy improved from version 6.2 (59.8%) to 7.2
(61.2%) by 1.4% and in a non-significant manner (P > 0.05).
Although the overall improvement is statistically not signif-
icant, the data nonetheless indicate that advancing individ-
ual target tools can improve the accuracy further. The vary-
ing performance of the single tools and limitations in con-
sensus approaches as applied in our study also motivates the
question whether the obtained wet-lab results in turn can be
used to rank the prediction tools used in the first step. To
this end, we concatenated the predictions of the 12 tools for
miR-34a-5p and miR-7-5p to create a binary matrix. Next,
we filtered for the combination of miRNA and validated
targets and added a binary response vector (1 = validated,
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Figure 6. Western blot analysis of JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK, PARK2 and GRIA4 in miR-34a-5p over-expressing cells. SH-SY5Y
cells were transfected either with ANC or miR-34a-5p mimic. Forty-eight hours after transfection, the endogenous protein levels were analyzed by western
blotting using specific antibodies against the aforementioned proteins. GAPDH or �-Actin served as loading control. One representative western blot out
of three independent experiments is shown, respectively. All three western blots were quantified by densitometry using the Image Lab Software. (A) Western
blot results for JNK3. (B) Western blot results for SMAD7. (C) Western blot results for SMAD2 and CREB1. (D) Western blot results for TH. (E) Western
blot results for CLOCK. (F) Western blot results for GRIA4 and PARK2. (G) Combined expression analysis for genes from (A) to (F) tested by western
blot analysis. The y-axis displays the relative expression levels with respect to the ANC (100%, dashed line). Each blue bar represents the triplicates (black
dots) of a gene with mean (orange dot) and a range of two times the standard deviation (orange lines). P-values shown in parenthesis were computed using
two-tailored, paired Student’s t-tests.
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Figure 7. Western blot analysis of JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK, PARK2 and GRIA4 in miR-34a-5p inhibitor transfected cells.
SH-SY5Y cells were transfected either with inhibitor control or miR-34a-5p inhibitor. Forty-eight hours after transfection, the endogenous protein levels
were analyzed by western blotting using specific antibodies against the aforementioned proteins. GAPDH or �-Actin served as loading control. One
representative western blot out of three independent experiments is shown, respectively. All three western blots were quantified by densitometry using
the Image Lab Software. (A) Western blot results for JNK3. (B) Western blot results for SMAD7. (C) Western blot results for SMAD2 and CREB1. (D)
Western blot results for TH. (E) Western blot results for CLOCK. (F) Western blot results for GRIA4 and PARK2. (G) Combined expression analysis for
genes from (A) to (F) tested by western blot analysis. The y-axis displays the relative expression levels with respect to the control inhibitor (100%, dashed
line). Each blue bar represents the triplicates (black dots) of a gene with mean (orange dot) and a range of two times the standard deviation (orange lines).
P-values shown in parenthesis were computed using two-tailored, paired Student’s t-tests.
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Figure 8. Performance evaluation of individual tools and association rules. (A) The scatter plot shows the specificity and sensitivity of the 12 individual
tools and the association rules. The point size of the tools and rules correspond to the balanced accuracy. (B) Targetome sizes for the most stringent
parameters for the new set of tools. (C) Specificity and sensitivity of the most stringent parameter set for the new set of tools. (D) Targetome sizes for the
medium stringent parameters for the new set of tools. (E) Specificity and sensitivity of the medium stringent parameter set for the new set of tools. (F)
Targetome sizes for the least stringent parameters for the new set of tools. (G) Specificity and sensitivity of the least stringent parameter set for the new set
of tools. (H) Balanced accuracy, specificity, and sensitivity for the four tool groups presented in A, C, E, G.
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0 = not validated) using the standard cut-off (P < 0.05)
on the experimental HiTmIR results. Based on an associ-
ation mining procedure, we searched for a set of rules with
high confidence to indicate tools or combinations of such,
which are most informative towards the outcome vector. Af-
ter setting a stringent cut-off for the confidence (≥80%) and
a moderate level for the minimal support (≥25%), we com-
puted nine rules (sets of tools) that could help to improve
the validation rate in a retrospective manner (Supplemental
Table S22). For example, the rule to combine the predic-
tions of miRanda and TargetScan has the largest effect on
the validation rate. These results suggest that several com-
binations of the tools incorporated in our pipeline give a
better consensus prediction. Also, this means that the likeli-
hood of a validation to turn out positively is higher than for
any other single tool or combination of such. By contrast,
negating the binary values of the outcome vector and re-
peating the association analysis did not yield any signature
with high confidence (≥0.4) or support (≥0.3). This shows
that non-validated targets are not predicted systematically
by any subset of tools. We recommend to potential HiTmIR
users to compare the global consensus prediction with the
predictions obtained from the derived signatures of tools.

DISCUSSION

With millions of theoretically possible interactions between
miRNAs and mRNAs the known human miRNA targe-
tome is far from being complete. Thus, novel methods com-
bining high-throughput experimental and computational
methods are in great demand to bring the field closer to-
wards a comprehensive characterization of the targeting
mechanisms of miRNAs. Although >100 prediction tools
have been proposed, performance largely varies and even
well performing tools typically report between several hun-
dred and many thousand targets per miRNA (60). In the
light of an expected low a priori likelihood of a miRNA
targeting a gene, the specificity is of crucial importance.
Considering a scenario with a low a priori likelihood and
a specificity below 80%, the positive predictive values gets
extremely low. To partially address this issue, consensus pre-
dictions of multiple predictors were used to further sharpen
the set of predicted genes. Nonetheless, the methodological
similarity of the approaches and their feature sets certainly
influence the effectiveness of this filtering technique, still
leading to high number of potential target candidates. Re-
searchers face the situation to validate either a small set of
selected candidates using traditional low-throughput tech-
niques like reporter assays or to perform unbiased genome-
wide assays that exhibit high levels of noise and complicate
down-stream analysis. In addition, recent findings suggest
that miRNAs orchestrate entire target pathways, an obser-
vation that has been claimed repeatedly, but never system-
atically been shown (59,61).

Therefore, we developed the novel HiTmIR pipeline,
specifically designed to close the gap by mapping pre-
dicted targets to enriched pathways. The pipeline allows to
rapidly design hundreds of recombinants based on 3′UTR
sequences, which are tested using an automated parallel
dual luciferase assay system. Our requirements for targets
to be predicted by at least four tools followed by the filtering

of enriched pathways or gene sets, improves state-of-the-art
validation rates.

As for the experimental arm of our strategy, we imple-
mented an automated dual luciferase reporter assay for
high-throughput miRNA target gene validation. Although
luciferase-based target validation has its inherent limita-
tions, reporter assays provide an important piece of ev-
idence whether a miRNA directly binds to its predicted
mRNA target site. Here, we addressed two major limi-
tations of reporter assays. First, cloned target sequences
mostly do not represent the entire sequence context of the
target site. Second, miRNAs are over-expressed in a non-
physiological context (62). Examining the effects of differ-
ent 3′UTR length on the results of reporter assays, we de-
tected altered RLUs for varying 3′UTR lengths but no sys-
tematic bias that significantly influences the overall results.
Moreover, we confirmed physiological targeting by miRNA
inhibition. Using western blotting on transfected cells, we
confirmed miRNA targeting for all of the proteins that were
indicated as miR-34a-5p targets by reporter assays. To date,
there is no gold-standard method for defining target gene
regulation by miRNAs. Other high-throughput approaches
like the combination of immunoprecipitation of argonaute
(AGO) family members with next-generation sequencing
(AGO-HITS-CLIP) do only provide evidence of miRNA-
mRNA interaction but do not reflect the functional con-
sequences (63). Comparable, high-throughput approaches
that are also based on dual luciferase assays reported a
significantly lower conformation rate for positive miRNA–
mRNA-interactions (63,64). HiTmIR combines the com-
putational target prediction, pathway analysis, automated
reporter construct design as well as automated dual lu-
ciferase reporter assay for the identification of miRNA tar-
gets within a cellular signaling pathway and yields improved
target validation rates.

To demonstrate the performance of HiTmIR we selected
miR-34a-5p and miR-7-5p as use cases in the context of
PD-related pathways. Besides specific evidence for an al-
tered miRNA expression associated with PD, there is a sys-
temic increase of miR-34a-5p with age correlating with the
prevalence of neurodegenerative diseases along the lifespan.
Also, the observed down-regulation of miR-7-5p has been
previously described to effect �-synuclein and to contribute
to neurodegeneration (34). Also in a MPTP induced PD
model in mice, this miRNA was reduced (33). For both
miRNAs, we showed up-scaled reporter assays to resemble
the performance of manually performed experiments. Fur-
thermore, automation allows to test batches of targets un-
der replicable conditions. For TNF- and TGFB-signaling
selected from our computational workflow, HiTmIR vali-
dated about 40% of target genes for miR-34a-5p. Validation
rates were further improved for the PD-related categories,
with a mean validation rate of 60% when considering both
miRNAs. Moreover, we independently validated many of
the targets for miR-34a-5p using binding site knockout as-
says and western blots with miRNA mimics and inhibitors.
We then elaborated to which extent the performance de-
pends on several parameters in the pipeline and argued that
it can be miRNA specific. For the sake of simplicity, we cal-
culated the validation rate primarily on a per 3′UTR ba-
sis as there is no gold-standard to compute it per gene. Ac-
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cording to a technical limitation of reporter assays, several
3′UTRs had to be split into smaller constructs, an auxiliary
technique that seems not to cause a systematic bias on the
validation rates. Thereby, several justifiable ways exist to ag-
gregate the HiTmIR results to compute a validation rate on
the gene-level. For example, a simple rule could be to clas-
sify a gene as validated if at least one 3′UTR sequence of
that gene is regulated by the chosen miRNA. Using the pro-
posed stringent cut-offs (P < 0.005 & mean RLU < 80%) in
combination with this rule yields a validation rate of 58.9%
for miR-34a-5p and 46.7% for miR-7-5p on the gene-level
for the PD-related pathways.

Our computational analysis highlighted TNF- and
TGFB-pathways as target sets for miR-34a-5p and further
14 PD-related categories for miR-34a-5p and miR-7-5p.
Regulation of different target genes by these miRNAs in the
context of PD has been described only for a limited num-
ber of genes (30,34,65). Applying our new computational
and experimental strategy HiTmIR, we demonstrate a com-
plex regulation of cellular pathways for both miRNAs. This
has been broadly claimed, but has never been proven to
such an extent, especially in a disease-specific context. Via
multiple points of interaction, deregulation of these miR-
NAs strongly impacts the signaling pathways and likely
promotes cell death of dopaminergic neurons. As for ex-
ample, TNF-signaling and TGFB-signaling regulate crucial
processes in the central nervous system including synapse
formation, synapse regulation, neurogenesis, regeneration
and general maintenance of neuronal cells (66–69). Thus,
a reduced TGFB-signaling by miR-34a-5p could promote
nigrostriatal degeneration (68). Beyond this, we identified
not only several PD-associated target genes for miR-34a-
5p and miR-7-5p but also multiple targets that are crucial
for dopamine metabolism and signaling. In this context,
we identified the tyrosine hydroxylase, which converts L-
tyrosine to L-dihydroxyphenylalanine (L-DOPA) and is a
key enzyme of the dopamine metabolism as direct target
of miR-34a-5p. Loss of TH is found within the striatum
in 90% of postmortem samples obtained within a five-year
period of diagnosis (70). As for miR-7-5p, which has been
described as regulator of �-synuclein, HiTmIR identified
key components of the PI3K/AKT signaling pathway like
AKT3 and GSK3B as direct target genes. Balanced regu-
lation of this signaling pathway is crucial for neuronal cell
proliferation, migration, and plasticity (71). In general, the
proposed pipeline allows the identification of a large num-
ber of target genes for a single miRNA in several cellular
pathways and offers the possibility to discover previously
hidden parts of the complex regulation network for con-
served miRNAs.

Although some of the work steps of HiTmIR such as
the consensus prediction and the validation by reporter as-
say are already described in the literature, the entire proto-
col, i.e. the combination of computational and experimen-
tal techniques to a systematic pipeline, is novel. With this
pipeline, a new web service was developed to facilitate (i)
the rapid design of potential reporter plasmid inserts by
automating the steps of finding and excluding already val-
idated targets, (ii) the search for all annotated transcripts
and 3′UTRs per gene and (iii) the search for canonical bind-
ing sites in selected targets in real-time. Moreover, we in-

corporated functionality to split 3′ UTRs at different user-
defined sequence locations and to highlight cut sites of re-
striction enzymes as well as a list of restriction enzymes
without a cut motif in the target. These features were ex-
tensively fine-tuned and tested to improve the practical us-
ability for massively parallel reporter assays and to reduce
time intensive manual labor as much as possible. To the best
of our knowledge there is no comparable free available tool
published to date.

We implemented a data warehouse storing validated tar-
get pathways as well as positive and negative target gene
sets. Especially negative target genes are lacking in the lit-
erature. Of 9679 reported target gene associations for H.
sapiens in the miRTarBase, 9357 (97%) are positive and
only 322 (3%) negative. In turn this highlights that neg-
ative targets are to a large extent not reported. However,
such negative results are essential for developing new tar-
get predictors. Another challenge is that reporter assay re-
sults in databases such as the miRTarBase often come from
heterogenous sources. Each manuscript contained in miR-
TarBase validates on average 1.6 target genes. This might
pose challenges in the training process of individual target
prediction programs. Our highly standardized positive and
negative data set thus represents a valuable source to train
or evaluate miRNA target prediction programs.

To further improve the sensitivity of our approach, it
could be useful to include the analysis of synergistic ef-
fects due to multiple binding sites in the target 3′UTRs.
As further down-stream validation strategy, miRNA target
pathways additionally could be examined in a tissue-specific
context (72,73). Other future developments include the ex-
tension from two miRNAs to a multitude of miRNAs that
co-regulate the same signaling cascade in a systemic manner
and to consider the dynamics of regulatory processes by ex-
ploring quantitative regulatory signals over time. Moreover,
the setup of HiTmIR can be broadened to a more holis-
tic approach, e.g. through testing of non-canonical binding
sites.
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