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Abstract. Data Acquisition (DAQ) and Data Quality Monitoring (DQM) are key parts in
the HEP data chain, where the data are processed and analyzed to obtain accurate monitoring
quality indicators. Such stages are complex, including an intense processing work-flow and
requiring a high degree of interoperability between software and hardware facilities. Data
recorded by DAQ sensors and devices are sampled to perform live (and offline) DQM of the
status of the detector during data collection providing to the system and scientists the ability
to identify problems with extremely low latency, minimizing the amount of data that would
otherwise be unsuitable for physical analysis. DQM stage performs a large set of operations
(Fast Fourier Transform (FFT), clustering, classification algorithms, Region of Interest, particles
tracking, etc.) involving the use of computing resources and time, depending on the number of
events of the experiment, sampling data, complexity of the tasks or the quality performance. The
objective of our work is to show a proposal with aim of developing a general optimization of the
DQM stage considering all these elements. Techniques based on computational intelligence like
EA can help improve the performance and therefore achieve an optimization of task scheduling
in DQM.

1. Introduction
The experimental research of multi-messenger accelerator-driven particle physics, studying
from the largest-scale structures in the observable, to the most fundamental particles, and
accelerated and non-accelerated based High Energy Physics (HEP) facilities must be supported
by sustainable software (s/w) and hardware (h/w) that address tremendous technical challenges.
A fundamental part of the HEP data chain is related to Data Acquisition (DAQ) and Data
Quality Monitoring (DQM). DAQ/DQM are key parts in this software chain where the data are
acquired, processed and analyzed in the early stages of the HEP experiments. DQM aims to
fill the gap between the fast, high-bandwidth on-line monitoring with a limited and fixed CPU
budget, and off-line processing which has access to substantially more resources but is much less
agile. Hence, DQM is an indispensable tool to identify problems with the experiments and to
reduce data loss. In this sense, DQM provides an information interface for quality monitoring
management through measurements, parameters, or histograms.

The tasks performed in DQM involve a very large computational load (related to time
consumption and computing resources), so they must be carefully selected to provide results



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012063

IOP Publishing

doi:10.1088/1742-6596/1525/1/012063

2

with adequate performance constraints. The tasks performed in DQM can be abstracted as
a flow of operations that are applied to the data coming from the DAQ, with the objective of
delivering processed outputs and results of the state of the experiment. In this article we present
a proposal for the optimization of the general data processing in the DQM stage that allows to
improve the performance of the execution of workflows in aspects such as the use of computing
resources or the processing time of operations. With this proposal, a decision making tool for
DQM is obtained, through which it is possible to select how the processing will be done in the
most optimal way considering all the objectives of the study.

2. Problem description
DQM is a key stage of information processing in the early phases of virtually all experiments in
the HEP context. As shown in Figure 2, multiple algorithms are performed to compute results
for scientists and engineers. The general idea is to execute a complete workflow consisting of
smaller interconnected algorithms, grouped in tasks, that share data inputs and outputs (see
Figure 1). The processing elements in DQM are as follows:

Algorithms - It refers to algorithms performed in the DQM workflow such as FFT or the
identification of Region of Interest. Algorithms can be executed on different architectures
and computing resources (CPUs, GPUs, FPGAs/ASICs [6], Cloud providers, ...).

Task - It corresponds with a set of algorithms that perform a function or operation, for example
the validation of a procedure, the calculation of some parameters or the obtaining of
graphical results of the DQM.

Workflow - DQM perform a set of computationally intensive operations that generally result
in a complete workflow, containing different tasks (T ) and algorithms (A) in each step.

In addition, all these elements are subject to parameterization, constraints and inter-
dependencies among them. The computational cost of the overall process is high, which means
that the workflow must be carefully scheduled in order to provide light processing time and
balanced resource consumption. In this sense, an adequate planning of the execution of the set
of tasks and algorithms, shaping a workflow, can improve the general performance. We are faced
with a combinatorial problem of type NP-Complete [1], where there is a wide search space and to
obtain an optimal global solution becomes a very complex task. To solve this type of problems
different proposals for resource planning have been approached, particularly with great success
the proposals based on Evolutionary Algorithms (EA) [3]. Thus, we think that a conveniently
designed EA would also work well for the problem of concern. In the following sections we define
all the necessary elements to consider.

Alg 0 Alg 1

Alg 2

Alg 3

Alg 4

Alg 4

Params

Plots

Results

Task 0 Task 1 Task 3

Figure 1. Example of a workflow composed
of tasks and algorithms, which produce a set
of results in the same way that in DQM stage.

Figure 2. DQM processing stage in
protoDUNE [8] where it comprises a group
of operations that shape a data processing
workflow.
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3. Methodology
The goal of the proposal is to offer a decision-making tool that allows optimizing the processing
workflow described in section 2.

3.1. Multi-objective optimization
To solve optimization problems, algorithms are used to find a solution that maximize or minimize
the value of a function for a given problem. In many real problems and in particular resource
planning problems, different objective functions are involved. To tackle this problem, multi-
objective algorithms have been designed [5, 2], allowing several objectives to be optimized at
the same time. The solutions to a multi-objective optimization problem are the set of non-
dominated solutions called the Pareto set [11]

In this context, the goal of optimization is to determine how, when and where the processing
for the DQM stage will be optimally executed. This depends on many criteria that can
be contradictory or conflicting and in addition have associated constraints. The general
mathematical model for specifying a multi-objective optimization problem consists in finding
a vector x∗ = [x∗1, x

∗
2, · · · , x∗n]T that satisfies m constraints (i = 1, 2, · · · ,m) of gi(x) ≥ 0,

and p constraints (i = 1, 2, · · · , p) of hi(x) = 0 and finally optimize the vector function

f(x) = [f1(x), f2(x), · · · , fk(x)]T where x = [x1, x2, · · · , xn]T is the decision variable vector.

3.2. Evolutionary algorithms
Meta-heuristics based on EA are widely used in resources scheduling with constraints [10] offering
a good balance between promising solutions and computational performance compared to other
traditional proposals [5]. A proposal based on the multi-objective optimization with EA for the
problem described in section 2 has been developed.

The basic principles of EA, as well as the general working scheme of operation and algorithms
are defined in different published works [4, 5, 2]. In this type of problems an individual (or
chromosome) encodes a solution to the optimization problem where all the details are specified
about what, when, how and where each operation will be performed. The algorithm manages a
set of solutions, called population. The overall quality of the solutions is expected to improve
along successive generation of populations through the operations of selection, crossover and
mutation.

Figure 3. Solution proposal for DQM workflow scheduling with time (t) and mode (m).

4. A multi-objective Evolutionary Algorithm for DQM optimization
The modeling of this type of algorithms for DQM optimization involves the aspects developed
in the following subsections.

4.1. Representation of the solution
It is necessary to represent the DQM workflow (tasks, algorithms, dependencies and resources)
(Figure 1) as a chromosome (individual or solution) that is manageable by the EA. The solution
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Figure 4. Detail of the components into
which the execution mode is divided. Arch
is the target architecture used. Units refers
to the set of the infrastructure available
from PilotJobs [7], virtual nodes o bare-metal.
Then, params corresponds to groups of hyper-
parameters of the algorithm.
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Figure 5. Example of resources availability,
requirement, and feasibility profiles. Negative
segments indicates parts of schedule is not
feasible.

representation proposal is composed of two elements, start time (t) and mode of execution (m) as
shown in the Figure 3. The time t corresponds to the start of the task or algorithm with respect
to its predecessor in the hierarchy of the workflow scheme (see Figure 1), and the mode m is the
set of resources used/required for each algorithm. The resource set (m) is composed of a vector
(r) with: a) the type of architecture where the algorithm is executed (CPU, GPU, FGPA, Cloud
provider and others), b) the number of computing units of the type of architecture available, c)
the group of parameters of the algorithm execution. The details of the mode components within
a solution are shown in Figure 4.

4.2. Genetic operators
Genetic operators are functions used to generate new solutions from the current population.
Operators for initialization (IO), crossover (CO), mutation (MO), repair (RO) and selection
(SO) have been considered. IO makes a random allocation of t and m values. The CO combines
two solutions to give a new one, merging a part of one solution with another part of the other
solution from one random point. The MO changes a part of the solution randomly, taking valid
values within the range of resources for each part of m and values of t. RO is necessary when
solutions violate integrity restrictions on resource allocation or use, in this way the OR changes
the solution to meet all constraints, and it is applied to a percentage of the population in each
iteration. SO selects which of the solutions will remain in the next generation [9].

4.3. Objective functions
The measurement of the performance of the solutions corresponds to two parts: a) the
satisfaction of the constraints, and b) the performance of the scheduling in terms of time and
use of resources of the DQM workflow.

4.3.1. Constraints. Resource scheduling in DQM is subject to different constraints, such as
the number of computing resources, data dependency between tasks, or their availability at any
given time, including the provision of algorithm implementations on different infrastructures.
In Figure 5, an example of modeling of constraints due to resource and time availability can be
seen. The degree to which constraints are violated determines how feasible the schedule is.
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4.3.2. Objectives. Two objectives have been considered. They are to be minimized:

(i) Time of the workflow execution (Tw): it is the total estimated time of a complete workflow.
Seeing the DQM task scheduling as an acyclic directed graph (DAG) G = (V,E), the total
time is the largest path cost in G, calculated as: for each operation v ∈ V in linearized order
Tops(u) = max(u,v)∈E {Tops(u) + Top(u, v))}, being Tops the start time with respect to the
preceding task in the workflow, Top the set of operations to be performed in the workflow
such as Top = Tei + Tli + Tti , where Te the estimated execution time of the algorithm, Tl

the estimated latency time and Tt the time to transfer data.

(ii) Resource utilization (Ru). It is the indicator of the total resources used by the execution of
the algorithms, calculated as follows: Ru =

∑n
i=0Ropi =

∑n
i=0(Rcpu +Rgpu +Rfpga), being

n the total number of operations, Rcpu, Rgpu and Rfpga the resource use indicators of the
execution of the algorithm on the different selected architectures.

5. Conclusions
Data processing in DQM is a critical stage in identifying problems and reducing data loss in
early processing stages of HEP experimentation. In order to mitigate this problem, the proposal
developed allows an optimization of the entire workflow in DQM, with two clear objectives, on
the one hand to reduce the execution time of DQM processing tasks, offering better planning
of them, and on the other hand, the minimization of the use of computing resources used by
the workflow. With this proposal, is possible to carry out a global optimization of the workflow
data processing in DQM, allowing to use it as a decision making tool for scientists to decide
more efficiently the DQM processing stage.
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