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Abstract: Animal behavior is greatly shaped by the ‘landscape of fear’, induced by predation risk,
and the equivalent ‘landscape of disgust’, induced by parasitism or infection risk. However, the role
that carrion may play in these landscapes of peril has been largely overlooked. Here, we aim to
emphasize that animal carcasses likely represent ubiquitous hotspots for both predation and infection
risk, thus being an outstanding paradigm of how predation and parasitism pressures can concur
in space and time. By conducting a literature review, we highlight the manifold inter- and intra-
specific interactions linked to carrion via predation and parasitism risks, which may affect not only
scavengers, but also non-scavengers. However, we identified major knowledge gaps, as reviewed
articles were highly biased towards fear, terrestrial environments, vertebrates, and behavioral re-
sponses. Based on the reviewed literature, we provide a conceptual framework on the main fear-
and disgust-based interaction pathways associated with carrion resources. This framework may
be used to formulate predictions about how the landscape of fear and disgust around carcasses
might influence animals’ individual behavior and ecological processes, from population to ecosystem
functioning. We encourage ecologists, evolutionary biologists, epidemiologists, forensic scientists,
and conservation biologists to explore the promising research avenues associated with the scary
and disgusting facets of carrion. Acknowledging the multiple trophic and non-trophic interactions
among dead and live animals, including both herbivores and carnivores, will notably improve our
understanding of the overlapping pressures that shape the landscape of fear and disgust.

Keywords: carcass; confrontational scavenging; disease risk; facultative scavenger; landscape of
peril; marine ecosystems; parasite risk; predator risk; terrestrial ecosystems

1. Introduction

Recently, Buck et al. [1] and Weinstein et al. [2] formalized a correspondence between
predator and parasite avoidance behaviors. They argued how infection risk must determine
a three-dimensional ‘landscape of disgust’ equivalent to the ‘landscape of fear’ induced
by predation risk (defined by [1] as “the relative levels of predation risk experienced by a
prey individual, represented as peaks and valleys on the landscape”). In this way, animal
behavior is largely shaped by perceived risk (from either predators or parasites), leading
to high-risk sites avoidance and preference for low-risk patches [1,2]. Either jointly or
independently, these natural enemies may lead to fitness costs in their victims through
physiological (e.g., chronic stress [3]) and behavioral (e.g., changes in habitat preferences [4])
effects. Strikingly, these physiological responses and behavioral decisions not only result
from direct encounters with enemies, but frequently rely on indirect cues linked to risk
situations or resources, regardless of actual presence of predators or parasites (e.g., [5]).
Thus, through inducing fear and disgust, predators and parasites lead to a pervasive
‘landscape of peril’ [6] that may indirectly affect individuals and populations, as well as
communities and ecosystems via cascading effects [1,2,6].

If we delve into this integrative, general view, many scary (i.e., related to the landscape
of fear) and disgusting (i.e., related to the landscape of disgust) facets of animal carcasses
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can be inferred. In doing so, it rapidly comes to light that carrion probably represents
ubiquitous—as it is produced in all biomes—hotspots for both predation and infection
risk. On one hand, predators of different trophic levels are usually attracted to carcasses
worldwide [7], which may lead to predation risk to not only herbivores (e.g., [8]), but also
subordinate predators (e.g., [9]). On the other hand, carrion has long been considered
a prominent source of pathogens that can put scavenging animals (e.g., [10]) and other
species that may be present at carcass sites (e.g., [11]) at risk. For instance, the behavioral
and cognitive repertoire of modern humans are probably shaped in part by the exposure of
earliest hominins to the risks of being killed or injured while scavenging large herbivore
carcasses and acquiring parasites when consuming a decaying piece of meat [12–14].
Pressures associated with predation and parasitism risk at carrion resources seem to be
so pervasive that even some plants have taken advantage of them. In particular, species
of genera Rafflesia, Aristolochia, and Helicodiceros, among others, could use thanatosis
(i.e., olfactory feigning of carrion) to not only attract pollinators, but also deter herbivores,
especially during the flowering period [15].

However, we are just starting to uncover the manifold ecological and evolutionary
ramifications of carrion within the context of predation and parasitism risks. Research on
this topic is especially needed given the ongoing global environmental change. Under-
standing how animals thrive in the changing landscape of peril associated with carrion
could provide important insights for the conservation of threatened scavengers. Moreover,
studying how animals behave around carcass sites could reveal key findings of veteri-
nary and epidemiological interest, which is particularly relevant in the current context of
zoonotic diseases [16].

Our general aim is to examine the role that carrion plays in the landscapes of fear
and disgust, which has been largely overlooked in the scientific literature despite its
crucial eco-evolutionary, epidemiological, and management implications. Through a
bibliographic review, we will identify the main ways in which carrion may be scary and
disgusting, namely the principal interaction pathways between carcasses and their visitors
(both carnivores and herbivores) that expose the former to predators and parasites at carcass
sites. Here, predators and scavengers are defined as gatherers and miners, respectively,
of live animals [17], with parasites including macroparasites, protists, fungi, bacteria,
and viruses [18]. Then, we will determine the main knowledge gaps and provide ideas for
future investigation on this emerging and highly promising research topic.

2. Material and Methods

Following guidelines provided by Haddaway et al. [19], we used the Web of Science
to conduct a systematic review of the scientific literature on the landscapes of fear and
disgust associated with carrion. Specifically, using the “Topic search” (i.e., title, abstract,
and keywords), we searched for “articles” appearing prior to November 2020 that included
the following combinations of terms: “landscape of fear” OR “fear” OR “predat* risk”
AND “carrion” OR “carcass” OR “scaveng*”; and “landscape of disgust” OR “disgust”
OR “parasit* risk” OR “parasit* avoidance” OR “disease risk” OR “disease avoidance” OR
“infection risk” OR “infection avoidance” AND “carrion” OR “carcass” OR “scaveng*”
(Appendix A). We further restricted our search in a two-steps process (e.g., [20]). First, title
and abstract were screened to ensure we only included empirical studies dealing with
the general topic of this review. Second, we read the full content of the selected articles,
excluding articles mentioning only superficially in the introduction and discussion the
searched terms, e.g., to motivate the study or suggest future research needs. Through this
procedure, we obtained 26 articles. Then, we used Google Scholar to identify additional
papers, restricting the search to the first 30 papers for each combination of terms. This com-
plementary search provided 26 articles not identified previously in the Web of Science.
In total, we obtained a final set of 52 articles for in-depth review (see References A1 for a
complete list of reviewed references), which we consider sufficient to infer global patterns
of research effort and relative differences among distinct interaction pathways.
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We divided the selected articles in two main groups, depending on whether they
were concerned with fear or disgust. Then, from each article, we obtained the following
information. First, we extracted general data: year of publication; ecosystem under study
(terrestrial, coastal, marine, freshwater); geographic location (i.e., the country where the study
was conducted); period under study (prehistorical, historical); animals involved in the study
(i.e., scavengers and non-scavengers that may feed or inspect around carcasses; vertebrates,
invertebrates); the type of effects—studied, detected, or presumed—that the fear or disgust
exerted on such species (behavioral, physiological, demographic, non-specified), and study de-
sign (field study, observational; field study, experimental; field study, quasi-experimental; mesocosm
experiment; other). “Quasi-experimental” studies refer to those in which carcasses or artifi-
cial nests were placed in locations selected by the researchers, but no other condition was
manipulated. For each field and mesocosm study, we also recorded the observation method
(direct observation, camera-trap, other). Second, we identified the ways in which carrion and
visitors to carrion sites could lead to predation or parasitism risk to these or other visitors.
This, along with other key reviews on the topic (e.g., [21–27]), was the basis to elaborate
a conceptual framework on the main interaction pathways around carrion resources that
are related to fear and disgust. In the latter case, we distinguished consumptive (trophic)
and non-consumptive (non-trophic) processes. We represented the framework separately
for herbivore and carnivore carcasses, given that their decomposition process, persistence
time in the environment, and associated risks are neatly different [28]. Third, we recorded
the number of articles selected in the review that were related to each pathway, with the
aim of identifying major knowledge gaps that could be key targets for future research.

3. Results and Discussion
3.1. General Results

We obtained more articles concerned with fear (75%, n = 39) than with disgust (25%,
n = 13). No article empirically explored simultaneously both types of risk. Moreover, scien-
tists became interested later on disgust than on fear, according to the year of publication
of these articles (Figure 1A). Most articles on fear, and all articles on disgust, involved
terrestrial ecosystems or mesocosms. Thus, representation of articles dealing with aquatic
environments was scarce (Figure 1B). Most articles focused on present-day assemblages,
while all studies concerned with prehistorical times were related to the predation (mainly)
and infection risk faced at carcass sites by early hominins (Figure 1C). There were more
articles studying vertebrates than invertebrates (Figure 1D), with the latter being mainly as-
sociated with marine and freshwater systems. Effects on visitors to carrion sites, as recorded
in the reviewed articles, were mostly behavioral; only a few articles involved demographic
effects (in all cases, related to bird nest predation), and none explored physiological effects
on visitor species (Figure 1E). Studies on predation risk were mostly observational and
quasi-experimental, though experimental approaches (all in mesocosm systems) were fre-
quently used to assess parasitism risk. In addition, the intentional deployment of carcasses
(and artificial nests) was normally associated with the use of camera-traps for monitoring
bait use by animals, especially in disgust-related studies (Figure 1F). Most present-day
studies were conducted in Australia, USA, and Europe, while all studies on early hominins
were done with material from eastern Africa (Figure 1G).
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3.2. Interaction Pathways and Research Effort

Figure 2 shows our conceptual model for the main fear- and disgust-based interac-
tion pathways associated with carcasses of carnivore and herbivore species. In general,
while animals may be mainly disgusted by carcasses themselves, scare is genuinely related
to other animals that may be attracted to the carcass for any reason or present by chance in
its vicinities.
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Figure 2. Animal carcasses may be both disgusting and scary. However, the parasite and predator risks vary widely ac-
cording to the species identity of the carcass and its visitors. (A) Carnivores visiting carnivore carcasses may face both 
predation and infection risk. Parasites may be transmitted to carnivores by either the carcass or other carnivore visitors, 
with the probability of transmission being proportional to their phylogenetic relationship [29,30]. (B) Herbivore carcasses 
are relatively safe for carnivores in terms of direct parasite transmission (at least, regarding direct life cycle parasites), but 
these carnivores may still be subject of parasite and predation risk from other carnivores. Herbivores may be at predation 
and parasitism risk at both carnivore and herbivore carcass sites, with the latter representing comparatively higher risk of 
acquiring parasites. Interactions among carnivores are more frequent at large carcasses [31] and in the absence of vultures 
[32], which are highly efficient scavengers [33,34]. Arrow width is roughly proportional to the intensity of risk. 

Figure 2. Animal carcasses may be both disgusting and scary. However, the parasite and predator risks vary widely
according to the species identity of the carcass and its visitors. (A) Carnivores visiting carnivore carcasses may face both
predation and infection risk. Parasites may be transmitted to carnivores by either the carcass or other carnivore visitors,
with the probability of transmission being proportional to their phylogenetic relationship [29,30]. (B) Herbivore carcasses
are relatively safe for carnivores in terms of direct parasite transmission (at least, regarding direct life cycle parasites),
but these carnivores may still be subject of parasite and predation risk from other carnivores. Herbivores may be at
predation and parasitism risk at both carnivore and herbivore carcass sites, with the latter representing comparatively
higher risk of acquiring parasites. Interactions among carnivores are more frequent at large carcasses [31] and in the absence
of vultures [32], which are highly efficient scavengers [33,34]. Arrow width is roughly proportional to the intensity of risk.
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Among the different pathways associated with carnivore carrion, only the risk of
acquiring parasites through intra-guild and, especially, intra-specific scavenging received
some scientific interest within the reviewed articles (e.g., [35–37]; Figure 3A).
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Regarding herbivore carcasses (Figure 3B), most studies have focused on the predation
risk affecting species that are present in the vicinities of carcass sites, both herbivores
(e.g., [8,38–40]) and, mostly, carnivores (e.g., [9,41–47]). Within these articles, several studies
explored how Plio/Pleistocene hominins were subject of predation risk while exploiting
large carcasses (a process called confrontational/aggressive/active/power scavenging),
according to paleontological evidences and behavioral, ecological, and energetics modelling
(e.g., [13,48]), behavioral studies of modern human hunter-gatherer societies [49] or other
primates [50], and other procedures [51]. Other studies have focused on several aspects of
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parasitism, especially the risk of acquiring parasites from meat consumption by carnivores
(e.g., [52–54]).

3.3. Carrion Is Disgusting

Mammalian carnivores avoid feeding on other carnivore carcasses, especially of
conspecifics, likely to reduce exposure to parasites [35–37]. These findings highlight that the
risk of direct infection is higher among phylogenetically close organisms, which share more
parasite species [1,29,30,37]. In turn, the carnivore carrion-avoidance behavior of carnivores
enables a wide array of indirect ecological effects, both consumptive (e.g., scavenging of
mammalian carnivore carcasses by a well-structured community of insects) and non-
consumptive (e.g., hair collection by birds for nest construction), linked to carnivore
carcasses [37,55]. This, together with the observation that grazers avoid foraging near
herbivore carcasses to prevent infectious risk (e.g., [2,53,56]), indicates that dead animals
may disgust both scavenging and non-scavenging species (Figure 3). However, effects
of carrion on vegetation growth may lead to increased disease risk for herbivores that
are attracted to carcass sites once carrion has been removed, in a sort of ecological trap
that favors infection by highly resistant pathogens [11]. Regarding the mechanism by
which scavengers may discriminate risky carcasses, some carnivores such as mammalian
meso-carnivores seem to rely on carrion odor (e.g., to distinguish intra- from inter-specific
carrion [37]), while others such as ants and beetles may detect the presence of certain
pathogens by smelling or tasting their metabolites in the carcass [52].

In addition to meat-borne parasites, other pathogens present at carcass sites could be
transmitted to any animal that approaches at a sufficient distance [11,53,57]. In addition,
carcasses may indirectly favor parasite transmission among the scavengers that come
into contact while scavenging, a circumstance that would be especially plausible in the
absence of vultures [32], which are specialized, obligate scavengers that quickly remove
carcasses [33,34,58]. However, these and other mechanisms of carcass-mediated infection
risk (Figure 3) remain largely speculative and need further empirical support.

Besides carcass type, carrion-related infection risk—and the duration of the infective
period—may be dependent on many other factors, such as parasite identity, carcass origin,
the degree of starvation shown by the scavenger, and climatic conditions (e.g., [35,41,59]).
Given the important ecological, evolutionary, and sanitary implications of the management
of wild [60] and domestic animal carcasses [61], these issues require urgent scientific atten-
tion.

3.4. Carrion Is Scary

Herbivore carcass sites may be avoided by other herbivores because of high proba-
bility of predator–prey encounters (e.g., [8,38,40]; Figure 3B). Indeed, the probability of
predation of ground-nesting birds increases near both predictable and unpredictable car-
rion resources [39,62]. The increased predation risk around carcasses is mainly explained
by the fact that most predators behave also as facultative scavengers that are, to a greater
or lesser extent, attracted to carrion [63,64]. This predation risk is likely higher at large
carcasses because they are visited by more and larger predator species than smaller car-
casses [7,31]. In addition to herbivores, small and medium-sized carnivores also avoid
carcasses to prevent the risk of confronting dominant predators (e.g., [5,9,43,45,47,65]).
In fact, the risk of being attacked by a larger predator, such as lion (Panthera leo) and spotted
hyaena (Crocuta crocuta), may be so high that certain sympatric mammalian carnivores,
such as cheetahs (Acinonyx jubatus) and wild dogs (Lycaon pictus), very rarely scavenge [66].
Cheetahs, even leave their own kills once satiated, no matter how much meat may be
left [67].

However, how carnivores and herbivores behave at carnivore carcasses in relation to
predation risk is virtually unknown (but see [41,65]; Figure 3A). In these cases, carcasses of
predators may also be scary by themselves, as other scavengers that are within the prey
base of the dead predators might even avoid the risk of inspecting such carcasses.
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The risk that a given animal, either scavenger or not, is willing to accept at a carcass
site may depend on several factors, such as sociality. For instance, spotted hyaenas are able
to even displace lions from a carcass provided that the former outnumber the latter by a
factor of 4 and no male lions are present at the carcass [68]. Coyotes (Canis latrans) may also
displace wolves (C. lupus) from their kills when the former are in numerical advantage [9].
In addition, both hyaenas and (alpha) coyotes may trade off greater risk for high-quality
carrion, as dominant carnivores may also facilitate carrion supply and detection [9,68].
Finally, hungry, sick, unexperienced, or senescent scavengers are probably more prone to
face risky situations (e.g., [44,65,69]), though this needs further empirical confirmation.

3.5. Conclusions and Directions for Further Research

Overall, this review highlights the manifold inter- and intra-specific interactions
linked to carrion via predation and parasitism risks, which may affect not only carrion
consumers, but also non-consumers. Animal carcasses are an outstanding paradigm of
how predation and parasitism pressures can concur in space and time, which is a major
gap in predator- and parasite-avoidance scientific knowledge [1]. Carcasses may represent
hotspots of infection and predation risk to both carnivores and herbivores, although the
risk is highly dependent on a number of factors, such as carcass identity (Figure 2) and the
size of the animals visiting carcass sites. For instance, large herbivores and top predators
will be more reactive to parasite than to predator risk [1]. Thus, the multiple predator
and parasite risk pathways that may arise around carnivore (Figure 2A) and herbivore
carrion (Figure 2B), which are far more diverse than previously recognized, may differ
qualitatively and quantitatively.

However, fully understanding of animal behavior around carrion resources requires
exploring simultaneously different sources of risk [1], as avoiding one risk may increase [70]
or decrease [71] another. Furthermore, Buck et al. [1] argue that “because predators are
generally more mobile than parasites, the predator-induced landscape of fear might be
more dynamic than the parasite-induced landscape of disgust”. We highlight that, given the
generally unpredictable and ephemeral nature of carrion [63,64,72], the very different life
cycles of different parasite species [73], and the seasonality associated with their infective
stages [74], carcass-induced landscape of disgust may be also highly dynamic.

The conceptual framework of the landscape of peril might also benefit from empirical
evidence of aquatic ecosystems addressing key issues that differentiate them from terrestrial
ones. For example, parasites in aquatic environments are more mobile than in terrestrial
ecosystems, due to both active (i.e., locomotion and motility) and passive (e.g., currents
and tides) transport through water [18]. Other relevant differences between terrestrial and
aquatic systems relate to the cues to detect predators and parasites, which may differ quali-
tatively and quantitatively between air and water. In general, while visual, auditory and
mechanosensory cues play a more prominent role in terrestrial environments, chemical cues
are substantially more used by aquatic animals [18]. Comparative studies on how animals
perceive and avoid predation and parasitism risk at carcass sites in terrestrial vs. aquatic
environments are virtually absent, which opens exciting avenues for further research.

The conceptual model we present here (Figure 2) allows formulating predictions
about how the landscape of fear and disgust around carcasses might influence animals’
individual behavior and ecological processes, from population to ecosystem functioning.
This could be especially useful in the current global change scenario, which includes high
rates of species extinctions, invasions, and re-colonizations of both predators and parasites
(e.g., [75]), as well as a growing evidence of the effect of human footprint on scavenger
guilds [7]. In addition, our literature review has clearly shown that the research effort
so far on predator and parasite risks associated with carrion has been highly unevenly
distributed through the different interaction pathways, with most studies dealing with
predation risk at vertebrate herbivore carcasses in terrestrial ecosystems (Figure 3). Thus,
there is ample room and motivation for future investigation. Furthermore, most research
has focused on behavioral responses (particularly, avoidance) of different species in relation



Diversity 2021, 13, 28 9 of 14

to fear and disgust. However, to which extent are these behaviors innate or learned is an
open question [36]. Moreover, other individual responses (e.g., physiological), as well as
the effects at the population, community, and ecosystem levels remain largely unexplored
and require further empirical evidence. While physiological responses have not been
explored so far in a carrion context (to our knowledge), it is reasonable to think that the
risks associated with carrion may exert different physiological costs (e.g., transitory and
chronic stress) on animals visiting carcass sites, such as prey and subordinate predators.
Future research might benefit from the application of novel (including experimental)
methods in scavenging ecology and its interaction with different disciplines, as well
as from the spatiotemporal quantification of carrion biomass [28,76] and the long-term
monitoring of carcasses and scavenger guilds in different ecosystems [7]. Finally, besides
freshwater and marine studies, terrestrial studies from tropical biomes would be especially
welcome, as most research (for the historical period context) so far has focused on temperate,
Mediterranean, and boreal systems.

In conclusion, future research should study the trade-offs and synergistic effects of
both predator and parasite risk associated with carcasses of different nature and size in
contrasting ecosystems and seasons, as well as the relative importance of these and other
selective pressures. These ecological processes may have important consequences for
animals facing predator and parasite risks, with individual costs ranging from diminished
feeding rate to death, which may lead to wide ecological, evolutionary, epidemiological,
forensic, and conservation implications. Acknowledging the multiple trophic (e.g., [64])
and non-trophic (e.g., [77]) ways in which dead animals directly and indirectly interact
with living animals, including both herbivores and carnivores, will notably improve our
understanding of the overlapping pressures that shape the landscape of fear and disgust.
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