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Abstract (limit of 250 words) 

 

One of the therapeutic strategies in HIV neutralization is blocking membrane 

fusion. In this process, tight interaction between the N-terminal and C-terminal 

heptad-repeat (NHR and CHR) regions of gp41 is essential to promote membranes 

apposition and merging. We have previously developed single-chain proteins 

(named covNHR) that accurately mimic the complete gp41 NHR region in its 

trimeric conformation. They tightly bind CHR-derived peptides and show a potent 

and broad HIV inhibitory activity in vitro. However, the extremely high binding 

affinity (sub-picomolar) is not in consonance with their inhibitory activity 

(nanomolar), likely due to partial or temporal accessibility of their target in the 

virus. Here, we have designed and characterized two single-chain covNHR 

miniproteins each encompassing one of the two halves of the NHR region and 

containing two of the four sub-pockets of the NHR crevice. The two miniproteins 

fold as trimeric helical bundles as expected but while the C-terminal covNHR 

(covNHR-C) miniprotein is highly stable, the N-terminal counterpart (covNHR-N) 

shows only marginal stability that could be improved by enginnering an internal 

disulfide bond. Both miniproteins bind their respective complementary CHR 

peptides with moderate (micromolar) affinity. Moreover, the covNHR-N 

miniproteins can access their target in the context of trimeric native envelope 

proteins and show significant inhibitory activity for several HIV pseudoviruses. In 

contrast, covNHR-C cannot bind its target sequence and neither inhibits HIV, 

indicating a higher vulnerability of C-terminal part of CHR. These results may 

guide the development of novel HIV inhibitors targeting the gp41 CHR region.  
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hydrophobic pocket; CD, circular dichroism spectroscopy; ITC, isothermal titration 

calorimetry; DLS, dynamic light scattering. 
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- Design, production and characterization of mini protein HIV inhibitors 

- Engineered disulfide bond increases conformational stability 

- Protein stabilization enhances inhibitory capacity 

- NHR coiled-coil of gp41 is composed of two subdomains with different 

conformational stability 

- Vulnerability of the gp41 CHR region as inhibition target 
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Introduction. 

 

Infection by the human immunodeficiency virus (HIV) is still among the worst 

global pandemics, with nearly 1 million deaths per year directly or indirectly 

associated to the infection and the rate of new infections remains high at 1.7 

million per year. However, only a few vaccine candidates have reached phase IIb or 

III clinical tests with poor or null efficacy. For these reasons, the development of an 

effective, safe and affordable treatment against HIV and new improved antivirals 

or microbicides are highly desirable against the infection. During the last decades, 

antiretroviral therapies have improved considerably the life expectancy of patients 

infected by HIV. Combined therapies with several drugs (HAART) have raised the 

genetic barrier for evolution of viral resistance and have been able to reduce the 

number of copies in the blood stream of patients to undetectable levels, keeping 

the virus latent integrated in the DNA of infected cells. Nonetheless, the emergence 

of multidrug-resistant viral strains has been observed in an increasing number of 

patients 1 and in some cases serious interactions between drugs have appeared 2. It 

is therefore necessary to expand the repertoire of potent inhibitors targeting 

different stages of the HIV replication cycle.  

Current efforts in this field have been focused on preventing the cell-virus fusion 

by blocking the HIV envelope protein (Env) 3; 4. Env is a non-covalently associated 

trimer of heterodimers of two glycoprotein subunits, gp120 and gp41 playing 

crucial roles in HIV cell infection 5; 6; 7. The gp120 sequential binding to CD4 

receptor and one of CXCR4 or CCR5 co-receptors triggers a series of large 

conformational changes in gp41 that lead to membrane fusion and insertion of the 

viral content into the cell cytoplasm 8; 9.  In this process, the gp41 subunits insert 

their N-terminal fusion peptides into the cell membrane and fold into a highly 

stable 6-helix-bundle (6HB) conformation, in which the N-terminal heptad repeat 

(NHR) regions form a central helical trimer and the three C-terminal heptad repeat 

(CHR) regions pack externally over them in an antiparallel orientation 10 ; 11. The 

energy gain from this folding process serves to bring membranes into close 

proximity and facilitiate their fusion. 

Abolishing the whole fusion stage and inhibiting the virus invasion by blocking any 

single step in the fusion process reveal to be effective strategies. Due to its key role 
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in membrane fusion, gp41 constitutes a very attractive target for the identification 

and development of fusion inhibitors. The protein NHR and CHR regions are 

temporarily exposed in a fusion intermediate state before interacting with each 

other, so some appropriate molecules able to recognize NHR or CHR regions could 

interfere with such interaction and act as fusion inhibitors 12. These are mainly 

CHR peptide mimetics 13; 14; 15; 16, artificial D-peptides 17, small compounds 18; 19 and 

also antibodies 18; 19; 20; 21. Currently, only one inhibitor from this type is approved 

for clinical use. T20, also known by its generic name as enfuvirtide, is a 36 amino 

acid polypeptide derived from the CHR and membrane proximal regions of gp41 13; 

22 . Unfortunately, its clinical use has been limited by its short half-life 23 

(proteolysis-sensitive and rapid renal filtration) requiring therefore high dosage 

injections at least twice a day. Moreover, the continuous and expensive treatment 

generates the appearance of T20-resistant viruses. Subsequently, other peptides 

and small molecule compounds directed against the coiled-coil structure of NHR 

have been developed, although very few have reached clinical stage and present 

various difficulties in their development as suitable drugs 24; 25 ; 26 ; 27. 

Even though peptides derived from the gp41 NHR region inhibit the entry of HIV 

by interacting with the CHR region, they show much less inhibitory potency due to 

their low conformational stability and higher tendency to aggregate. However, 

different strategies have succeeded stabilizing the NHR region in a trimeric helical 

conformation, with strong improvements in inhibitory potency 4; 28; 29; 30; 31; 32. 

We have previously designed small protein constructs, called covNHR, consisting 

of a single polypeptide chain with three helical regions folding together to form an 

antiparallel trimeric bundle with a similar structure to the NHR region of gp41 33; 

34. These highly stable and soluble proteins are produced recombinantly by 

expression in E. coli with good yields and do not need any posttranslational 

modifications. The covNHR proteins bind to peptides derived from the gp41 CHR 

region with very high affinity and inhibit HIV cell infection in standardized in vitro 

tests with high breadth and potency (IC50: 5-10 nM), for a wide variety of HIV 

strains 33; 34. The strong anti HIV activities of these and other NHR based constructs 

demonstrate that the CHR region of gp41 is an appealing target for therapeutic 

strategies. 
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The NHR binding surface has been described as composed of four different 

hotspots, namely an N-terminal polar pocket (NTP) 34, a shallow middle pocket 

(MP) 33, a deep and prominent hydrophobic pocket (HP), which has been widely 

used as a drug discovery target 14, and finally a C-terminal pocket (CTP) adjacent to 

the HP 35. We have reported very recently a quantitative dissection of the binding 

thermodynamics between the complementary CHR and NHR regions 36. The 

binding energy is broadly but unevenly distributed along the interface 1 and 

cooperative interactions implying at least two pockets are needed to obtain high 

affinity in the nM range 36. However, the importance of each of these binding 

pockets in the fusion inhibition remains unclear. For example, mutations in a 

covNHR variant abolishing binding at the NTP produce a 105 decrease in affinity 

for CHR peptides but only a small decrease in inhibitory potency 34. 

It is generally accepted that both CHR and NHR regions are exposed in the gp41 

prefusion intermediate and become hidden simultaneously with 6HB formation. 

However, while the formation of an NHR trimeric coiled-coil after receptor 

engagement is a prerequisite for inhibition by CHR peptide mimetics and analogs 

14, it is unclear whether all or part of the CHR region can be accessed by NHR 

mimics at an earlier stage. 

In this study, we have designed two short versions of covNHR proteins, each 

containing only two of the four pockets of the NHR crevice. A miniprotein 

corresponding to the N-terminal part of NHR (covNHR-N) harbors only NTP and 

MP, whereas a second miniprotein mimicking the C-terminal half of NHR (covNHR-

C) exposes only the HP and the CTP. The covNHR-N miniprotein proved to be quite 

unstable and was stabilized by engineering disulfide-bonds. Their biophysical and 

calorimetric characterizations have allowed us to measure the thermodynamic 

contributions to the CHR-NHR interaction in each variant. In addition, the capacity 

of these covNHR proteins to bind directly several versions of Env was assessed, 

and their capacity to inhibit different HIV-1 pseudoviruses, including T20-resistant 

strains was determined. The results improve our understanding of the role of the 

different NHR sub-sites in the inhibition targeting CHR and reveal that steric 

hindrances and conformational flexibility of gp41 are important in the 

vulnerability of the gp41 CHR region to the covNHR proteins. These results could 

serve as guide for the development of novel HIV-1 fusion inhibitors. 
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Results. 

 

Design of covNHR miniproteins 

We designed covNHR miniproteins harbouring only two of the four sub-pockets of 

the NHR crevice using the crystallographic structure of the complex between C34 

and covNHR-VQ (PDB: 6R2G) as template. This covNHR variant binds C34 with 

sub-pM affinity 34. Three different miniproteins were initially designed, one called 

covNHR-N containing the two N-terminal pockets (NTP and MP), a second one 

named as covNHR-M encompassing the two central pockets (MP and HP), and a 

third protein, designated covNHR-C, with the two C-terminal pockets (HP and 

CTP). The molecules were built by clipping the NHR helices and connecting the 

new ends with short loops. The loops were manually built establishing helix 

capping interactions and maintaining favorable backbone psi and phi angles. While 

covNHR-C was easily expressed and purified and proved to be highly stable (see 

below), the initially designed covNHR-N and covNHR-M could not be produced 

because of aggregation and lack of E. coli expression, respectively. The propensity 

of the sequences to aggregation was tested with AGGRESCAN 37. Mutations were 

added to reduce aggregation propensity and stabilize the proteins with success for 

covNHR-N. However, several versions of covNHR-M did not show any expression 

so we abandoned this design. The models were finally energy minimized and 

submitted to Molecular Dynamics simulations to test their stability (Fig. S1) and 

the final sequences are provided in Figure 1b. The molecular weights (including 

the His-tag) are 11909.47 Da for covNHR-N and 12792.82 Da for covNHR-C. 

 

Biophysical characterization of covNHR variants 

The covNHR-N and covNHR-C miniproteins (Fig. 1) were produced recombinantly 

by E. coli expression with good yields. CovNHR-N is highly soluble at physiological 

pH whereas covNHR-C shows some propensity to aggregate at concentration 

higher than 20 M. CovNHR-C is monomeric according to DLS measurements in 

both pH 2.5 and pH 7.4 buffers (50 mM glycine/HCl, pH 2.5 and 50 mM sodium 

phosphate buffer, pH 7.4), showing apparent hydrodynamic radii of 1.8-1.9 nm 

(Fig. S2a and Table S1). While covNHR-N is also monomeric at pH 7.4 (Rh=1.9 nm), 
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its hydrodynamic radius at pH 2.5 is increased up to 3.1 nm, suggesting partial 

unfolding and/or self-association (Fig. S2b and Table S1). 

The two miniproteins show Far-UV CD spectra typical of highly -helical structure 

(Fig. 2a), consistent with the designs. The -helix content of covNHR-N is 64% at 

pH 7.4, slightly lower than the expected value (72%), but appears to be partially 

unfolded at acidic pH (Fig. 2a). In contrast covNHR-C exhibits 70% of -helix at 

acid and physiological pH, close to the theoretical one (74%). 

Subsequently, the thermal stability of each protein was measured by monitoring 

the CD signal at 222 nm as a function of temperature (Fig. 2b). CovNHR-C protein 

is extremelly stable at both pH 7.4 and pH 2.5, since no unfolding transitions were 

observed even after heating up to 98°C. In contrast, covNHR-N is relatively 

unstable at pH 7.4 showing its unfolding transition at 41°C (Fig. 2b and Table S1). 

This unfolding process appears to be partially reversible upon a second 

consecutive temperature scan. CovNHR-N is progressively less stable and becomes 

more expanded upon pH decrease (Table S1). Moreover, its stability and helicity 

are slightly reduced with an increase in the buffer ionic strength (Fig. S5a).  

 

Stabilization of covNHR-N by engineering an internal disulfide bond. 

Since the unfolding temperature of covNHR-N is quite low and close to the 

physiological temperature, we seeked to further stabilize it. First, we carried out a 

limited proteolysis study of the protein using thermolysin as protease. The protein 

is quite sensitive to proteolysis at 20°C even at a low 1:10000 protein/protease 

ratio.  Most sensitive cleavage points occur around loop 1 connecting helices 1 and 

2 (Fig. S3-S4) suggesting a higher flexibility for this end of the protein. Then, using 

“Disulfide by Design” web server 38 we found two possibilities for disulfide bond 

creation connecting different structural elements of the protein by X-Cys 

mutations (Fig. 3a): Gly32 at loop 1 and either of Thr92 or Arg93, at the C-

terminus of the third helix. This region is precisely the less stable part of the 

protein according to limited proteolysis, so we decided to produce both disulfide-

bonded mutants. 

Both mutants covNHR-NSS1 (G32C/T92C) and covNHR-NSS2 (G32C/R93C) could 

be produced by E. coli expression with good yields although lower than covNHR-N. 

All purification steps were made in presence of 10 mM -mercaptoethanol and a 
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final oxidation step was carried out by extensive dialysis with buffer without 

reducing agent. Formation of the disulfide bonds was confirmed in both mutants 

using Ellman’s assay (Thermofisher).  

The structure and stability of the proteins were characterized under different 

conditions in presence and absence of 5 mM TCEP (Fig. 3b-c and Table S1). Both 

variants are monomeric in all conditions studied (Fig. S2d). They have -helical 

structure similar to covNHR-N and slightly higher in the oxidized state than in the 

reduced one. The stability of both variants at pH 7.4 in their reduced state is only 

slightly higher than that of covNHR-N, with increases in Tm of +4°C. However, in 

the oxidized state the two variants are much more stable, with additional increase 

of +20°C in Tm. The thermal stability is also strongly increased in all other 

conditions (Table S1). Moreover, the two variants are much more resistant to 

proteolysis with thermolysin at 20°C, persisting uncleaved for several hours even 

in presence of 1:500 protein-to-protease ratio (Fig. S3). These results confirm a 

very similar and strong stabilization of the proteins produced by the disulfide 

bond in both variants.  

 

Binding of the CHR peptides to covNHR variants 

To characterize the interaction between the covNHR proteins and their respective 

CHR target regions in gp41, we analyzed the binding of the Y24L peptide (gp41 

residues 638-661) to covNHR-N and its two disulfide-stabilized variants, as this 

peptide spans the N-terminal pocket (NTP) and MP (middle pocket) binding 

motifs, and the binding of N25S (gp41 residues 616-640) to covNHR-C because it 

encompasses the binding motifs of the C-terminal pocket (CTP) and the 

hydrophobic pocket (HP). 

Far-UV CD spectra of the protein-peptide mixtures were compared with those of 

the free molecules (Fig. 4a). Y24L and N25S exhibit spectra typical of unfolded 

polypeptides. An increase in negative ellipticity was observed in the 

protein:peptide mixtures indicating acquisition of helical conformation for the 

peptide as a consequence of binding onto the NHR groove. The negative ellipticity 

at 222 nm for both complexes is not significantly different suggesting similar -

helical structure in the bound states. Nevertheless, the ellipiticity increase is 
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considerably larger in the case of covNHR-N and its two stabilized variants, 

indicating a greater acquisition of helical structure in these complexes. 

Thermal denaturation experiments of mixtures between Y24L with covNHR-N or 

the disulfide-bonded variants indicate considerable stabilization of the proteins 

produced by peptide binding (Fig. S5b-d). The slopes of the transitions increase, 

indicating an increase in the enthalpy of the denaturation of the complex, as a 

consequence of the interaction, and an increase in the cooperativity of the 

unfolding process. Unfortunately, this kind of analysis could not be performed with 

covNHR-C and N25S because of the extremely high thermal stability of the protein.  

To test whether the N25S peptide binds to the HP of covNHR-C in the expected 

conformation, we recorded the near-UV CD spectra of the free and bound states 

(Fig. 4b). Upon mixing with N25S, the near-UV CD spectrum of covNHR-C exhibits 

an intense shifted negative ellipticity band centered at 293 nm produced by 

sidechains stacking of the CHR tryptophan-rich motif onto the HP, as observed in 

the postfusion structure of gp41 39 and in the complexes between C34 and covNHR 

proteins 33; 34. 

 

Thermodynamics of peptide binding  

To characterize the binding thermodynamics in detail, we performed ITC analysis 

by direct titration of the protein solutions with their corresponding peptides (Fig 5 

a-b). In our recent study, we have shown that Y24L and N25S bind to covNHR-VQ 

36 with different affinities. While the interaction between Y24L and covNHR-VQ has 

been found to be relatively tight (Kd = 90 ± 7 nM at 25°C), a higher dissociation 

constant of 3.0  0.2 M was obtained for N25S 36. 

Here, we have found that Y24L binds to covNHR-N with 1:1 stoichiometry, as 

expected, since the covNHR proteins were engineered to bind a single peptide unit 

on the crevice between the two parallel helices 33. The binding shows a 

considerable negative binding enthalpy and a significantly reduced affinity (Kd = 

0.79 ± 0.02 M at 25°C) compared that of covNHR-VQ for this peptide at the same 

temperature (Table 1) 36. The binding enthalpy is considerably more negative by 

about −25 kJ mol−1 (Fig. 5c) and there is a strong increase in binding heat capacity 

compared to the complete covNHR-VQ protein.  
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These changes in the thermodynamic magnitudes of binding may be related to a 

considerable influence of a structural stabilization of covNHR-N upon interaction 

with the Y24L peptide. This conformational stabilization upon binding was already 

suggested by the CD thermal unfolding experiments (Fig. S5b).  

To further investigate the possible structural changes induced by peptide binding 

to covNHR-N, NMR 1H-15N-HSQC spectra of the labelled protein were recorded in 

the absence and in complex with unlabelled Y24L peptide (Fig. 6). The spectrum of 

free protein (at a concentration of 800 μM) presents a poor resolution due to 

considerable line broadening and low signal dispersion. This indicates a low 

conformational stability and a certain tendency to aggregate at the high 

concentration of the NMR experiment. Drastic increases in chemical shift 

dispersion and signal resolution are observed in the HSQC spectrum in presence of 

Y24L at a saturating concentration (molar ratio 1:2), indicating strong 

conformational stabilization induced by complex formation. These data also 

corroborate perfectly the DLS experiments performed with covNHR-N at different 

concentrations and in complex with Y24L that also reveal a less expanded 

structure upon addition of Y24L (Fig. S2c). These experiments confirm a significant 

conformational instability of the covNHR-N miniprotein. 

The thermodynamic magnitudes of Y24L binding are virtually identical for the 

covNHR-NSS1 and covNHR-NSS2 mutants and quite similar to those of covNHR-N 

(Fig. 5c and Table 1), except for slightly lower binding enthalpies and significantly 

less negative heat capacities of binding. This is consistent with their higher 

conformational stability produced by the disulfide bonds, as demonstrated by the 

considerable improvement of the chemical shift dispersion observed in the free 

covNHR-NSS1 HSQC spectrum (Fig. S6). Anyhow, the conformational stabilization 

produced by the disulfide-bonds has a small impact in the binding affinity of the 

proteins for the peptide. 

The dissociation constant of the complex between N25S and covNHR-C is also 

relatively high (Kd = 1.9 ± 0.3 M at 25ºC) but in this case the value is comparable 

to that of covNHR-VQ with the same peptide (Kd = 3 ± 1 M at 25ºC). Although the 

two complexes differ in binding enthalpy by about 15 kJ.mol-1 at equal 

temperature (Fig. 5d), their binding heat capacities are identical (Table 1) 36 

suggesting a similar mode of binding of N25S to both proteins.  
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In summary, the miniproteins bind their respective complementary CHR peptides 

with moderate affinity. While the C-terminal domain encompassing the HP and the 

CTP retains a high stability and similar interactions with the CHR peptide when 

isolated from the parent molecule, the N-terminal domain, harbouring the NTP and 

MP, is intrinsically unstable and its affinity for its CHR target becomes considerably 

affected compared to covNHR-VQ. 

 

Binding to envelope proteins  

To investigate the interactions of the covNHR proteins to their respective gp41 

CHR targets in a context more akin to a native-like envelope (Env) spike, we 

carried out binding experiments with several soluble stabilized Env proteins in 

precursor and cleaved forms (Table S2). Due to the low thermal stability of 

covNHR-N, these ELISA experiments were carried out at 25°C. 

The three covNHR-N proteins showed a significant level of binding to all Envs (Fig. 

7a). The binding level is similar for the three proteins and varies depending on the 

Env variant but in all cases the binding is weaker than for the parent protein 

covNHR-VQ. These results indicate that the C-terminal part of the gp41 CHR region 

from the different Envs in both uncleaved and cleaved trimeric pre-fusion 

conformations is accessible to interaction by the covNHR proteins encompassing 

the MP and NTP. In contrast, covNHR-C did not bind to any of the tested Env 

proteins indicating that the N-terminal region of CHR is less accessible in Envs pre-

fusion conformation.  

 

HIV-1 inhibition 

Despite the fact that covNHR-C did not show any binding to Env proteins, there is a 

possibility that the CHR target could become temporarily exposed during the 

fusion process and accessible to inhibition. The inhibitory activities of the proteins 

were analyzed using the conventional TZM-bl assay and compared to that of T20. 

We have used two different HIV-1 pseudovirus strains (SF162 and MW956.26) 40 

and two pseudoviruses designed for resistance to T20 (pNL4.3 and pNL4.3 DIM) 34.  

As shown in Figure 7b and Table 2, covNHR-C did not show detectable inhibitory 

activity for any tested strain, whereas weak inhibition was obtained for covNHR-N. 



 13 

Noteworthily, these experiments were carried out at 37°C since physiological 

temperature is necessary for fusion and infection between viruses and cells. Due to 

the low thermal stability of covNHR-N (Tm ~ 41°C), the effective concentration of 

the functional protein is most likely affected at this temperature because of protein 

unfolding, resulting in overestimated IC50 values. This may be confirmed by the 

significantly higher inhibitory activities of the two disulfide-stabilized variants. 

Nevertheless, compared to the parent protein covNHR-VQ, containing the four 

NHR binding pockets, the inhibitory activities of the covNHR-N proteins are more 

than 10 fold diminished certainly because of their much lower affinity for their 

CHR target.  

The inhibitory potency of T20 is relatively high for the SF162 and MW956.26 

strains but much lower for the pNL4-3 strains, which harbor mutations at the NTP 

pocket conferring resistance to CHR-derived peptides. In contrast, the covNHR-N 

proteins showed greater inhibitory activity against the T20-resistant strains.  

 

Discussion. 

 

NHR coiled-coil is composed of two subdomains of different intrinsic stability 

In this study, we have reported the subdivision of the covNHR-VQ protein into two 

well-defined miniproteins each representing about a half of the NHR coiled coil. 

Both proteins have similar molecular size, the same folding topology and are 

monomeric at physiological pH. However, covNHR-N is significantly less stable 

than covNHR-C. The complete covNHR-VQ protein already contains several 

stabilizing mutations, most of them at its N-terminal half 33, but the N-terminal 

miniprotein needed additional mutations engineering and a disulfide-bond to 

acquire significant conformational stability. In contrast, the covNHR-C miniprotein 

is highly stable without any further engineering. This indicates that the C-terminal 

half of the NHR helix trimer has a much greater intrinsic stability than the N-

terminal region.  

This is consistent with the crystal structure of a soluble, cleaved Env trimer 

construct (BG505 SOSIP.664) 41, which has reported that the N-terminal half of 

NHR is partially disordered, while the C-terminal half is structured as a helix 

trimer within the Env. However, a more recent cryo-EM structure of a native JRFL 
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Env trimer with only the C-terminal tail deleted showed the first half of the NHR 

also in helical conformation 42. The authors attributed this difference to the I559P 

mutation presents in the SOSIP construct, which destabilizes the helix. 

Nonetheless, the first half of the NHR region is rather flexible and exposed in all 

prefusion structures and does not form trimer contacts, which are essential for the 

interaction with its complementary CHR region to acquire a stable 6HB coiled-coil 

structure. We observe in fact some reminiscency of this in the structural tightening 

of covNHR-N associated with binding of the Y24L peptide, as observed in the NMR 

spectra and manifested by a considerable negative binding enthalpy being partially 

compensated by negative binding entropy. Both magnitudes and the negative 

binding heat capacity (ΔCp) are much greater than those observed for the binding 

of the same peptide to covNHR-VQ 36.  

 

Accessibility of the CHR region for interaction 

Despite their different structural stability, both miniproteins are able to interact 

with their respective CHR peptide targets with similar micromolar-range 

dissociation constants. Therefore, these miniproteins constitute very convenient 

probes to test the vulnerability of each half of the CHR region of gp41 as a binding 

target to block fusion and inhibit HIV-1. 

CovNHR-C binds its corresponding CHR peptide (N25S) with an affinity very 

similar to the parent molecule covNHR-VQ 36. Previous thermodynamic studies 

performed with the stabilized trimeric NHR construct, IQN17, and short cyclic or 

D-peptides targetting the gp41 HP have reported Kd values in the same order of 

magnitude 43; 44. The HP has been reported critical to the stabilization of 6-HB 10 

and, therefore, has represented during decades the most important target for 

identification of small-molecule HIV-1 fusion and entry inhibitors 14. In spite that 

covNHR-C contains the HP and could bind its complementary CHR peptide in 

solution, it did not interact with any of the Env molecules tested in the ELISA 

experiments, suggesting an inaccessibility of its target sequence in the context of 

the prefusion spike. 

High-resolution structures of different Env spikes in prefusion conformation have 

shown that the HP and CTP binding motifs are engaged in a tryptophan clasp 

involving the side chains of Trp623 (CTP motif), Trp628 and Trp631 (HP motif) 
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that locks the fusion peptide proximal region in its pre-fusion conformation 41; 42. 

This interaction prevents therefore accessibility of covNHR-C binding to its target. 

In contrast, the three covNHR-N proteins could bind all soluble native Envs tested, 

although the level of binding measured was lower than that of the parent covNHR-

VQ molecule containing the four NHR pockets, consistently with its lower affinity 

for the Y24L peptide. This indicates that its target region corresponding to the C-

terminal part of the α9 helix in prefusion Envs is at least partially accessible. Also, 

this region is not glycosylated downstream of N651, in contrast to the first half of 

CHR, which is much more protected by glycans. Moreover, the CHR region near the 

MPER has been described as highly flexible 45; 46; 47. This suggests that covNHR-N 

proteins may be able to interact with the CHR region without the need of CD4 and 

co-receptor attachment. A similar observation has been made for 5-Helix 48; 49.  

 

Miniproteins as potencial HIV-1 inhibitors 

The covNHR-C protein was unable to inhibit any of the HIV-1 strains used in the 

assays, despite its high stability and the moderate affinity for its target CHR 

sequence, even though its target region may become transiently accessible during 

the fusion process. It is possible that micromolar affinity for its target is not 

sufficient to compensate for this transient exposure. 

However, we have found that covNHR-N and its disulfide-stabilized mutants have 

similar affinities for Y24L as covNHR-C for N25S, and yet they show significant 

inhibitory activities. Remarkably, the two stable disulfide-bonded mutants reach 

IC50 values of 30-40 nM for T20-resistant strains and moderate sub-micromolar 

IC50 values for the other pseudoviruses, well below the measured dissociation 

constants for the Y24L peptide (low micromolar). This is in contrast with other 

CHR-targetting inhibitors such as 5-helix and our covNHR-VQ molecule, which 

show sub-picomolar Kd for CHR peptides but only low-nanomolar IC50 values for 

virus inhibition. 

The lack of correlation between target binding affinity and inhibitory potency in a 

series of 5-helix and CHR-peptide mutants has been explained by Root and 

coworkers according to a kinetic dependency of fusion inhibition 50; 51. According 

to their model, inhibitor binding to gp41 would only occur after CD4 activation in 

the fusion intermediate state, which transiently exposes the target epitope. For 
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tightly binding inhibitors, IC50 is limited to a minimum of kf/kon, i.e., the ratio 

between rates of target epitope occlusion and inhibitor association. On the other 

hand, for low affinity inhibitors, with much higher dissociation rates (koff), binding 

equilibrium would be established during the window of target epitope exposure 

and then IC50 is correlated to the equilibrium dissociation constant KD. This results 

in IC50 ≥ KD, as observed for 5-helix variants, covNHR-VQ and different CHR-

derived peptides. However, for the covNHR-SS1 and covNHR-SS2 proteins, IC50 is 

much lower than KD (about 5 μM at 37°C, extrapolated from parameters of Table 

1). 

A possibility that explains the relatively high inhibitory efficiency of our 

miniproteins is that CHR accessibility in the fusion intermediate may be 

considerably higher than for larger molecules, such as 5-helix or covNHR-VQ in the 

context of the virus. This would give them a fundamental advantage as fusion 

inhibitors, since less restricted access to their target would provide a broader 

margin for affinity optimization to improve their inhibitory activity. 

A second possibility is that the covNHR-N miniproteins could be able to block 

fusion at an earlier stage than the CD4-activated fusion intermediate. We have 

shown here that covNHR-N proteins containing the NTP and MP can bind native 

Envs, whereas covNHR-C protein cannot and this binding ability correlates with 

inhibitory activity. Binding to the flexible second half of CHR may perturb the four-

helix collar of gp41 that grasps gp120 N- and C-termini, thus producing 

destabilization of the spike. It has been reported that MPER-targeting neutralizing 

antibodies, as well as antibodies targeting a conformational epitope mainly 

composed by HR2 (CHR) regions from two gp41 protomers, act by destabilizing 

the Env trimer and producing shedding 52; 53. The possibility that this mechanism 

also applies to the covNHR-N miniproteins deserves further investigation. 

Therefore, there is considerable margin for improvement of the covNHR-N 

miniproteins by engineering new modifications increasing their stability, as well as 

by improving the modest binding affinity for their target adding, for instance, new 

motifs targeting the nearby MPER region.  

 

In conclusion, we have designed, produced and characterized two single chain 

covNHR miniproteins each mimicking one of the halves of the gp41 NHR region. 
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These miniproteins fold autonomously and represent subdomains of NHR, with 

very different intrinsic stability. Although both covNHR proteins can bind their 

respective complementary CHR peptides with similar affinity, the C-terminal 

protein cannot bind its target in soluble prefusion Env spikes and does not show 

any HIV-1 inhibitory activity in vitro. In contrast, the N-terminal proteins show 

significant capacity to bind the Env spikes and are capable to inhibit HIV-1 with a 

relatively high potency, suggesting that their small size confers them a particular 

advantage to access their target in the virion context. These results show a special 

vulnerability of the flexible C-terminal end of the gp41 CHR region to novel fusion 

inhibitors.  

 

Materials and Methods. 

 

Protein and peptide samples 

The NHR and CHR gp41 sequences used in this work are described in Figure 1. The 

reference gp41 sequence was taken from the full gp160 precursor glycoprotein of 

the HIV-1 BRU isolate (Swiss-Prot entry sp|P03377|ENV_HV1BR). The covNHR 

miniproteins were computationally designed using SwissPDBviewer 54 and 

YASARA software 55. The DNA encoding the protein sequences were synthesized 

and cloned into pET303 expresion vectors (Thermofisher Scientific, Waltham, USA). 

To facilitate purification by Ni-Sepharose affinity chromatography, the protein 

sequences were histidine tagged at the C-terminus with the sequence 

GGGGSHHHHHH. The covNHR proteins were produced and purified following the 

protocol previously described 33. Synthetic CHR peptides, both N-acetylated and C-

amidated, were acquired from Genecust (Luxembourg), with a purity > 95%. 

Protein and peptide concentrations were determined by UV absorption 

measurements at 280 nm using the extinction coefficients calculated according to 

their respective amino acid sequences with the ExPasy ProtParam server 

(https://web.expasy.org/protparam/) 56. 

 

Circular dichroism 

CD spectra were recorded in a Jasco J-715 spectropolarimeter (Jasco, Tokyo, 

Japan) equipped with Peltier-thermostatic cell holder. Measurements of the far-UV 
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CD spectra (260–200 nm) were made with a 1 mm path length quartz cuvette at a 

protein concentration of ~20 M. Spectra were recorded at a scan rate of 100 

nm/min, 1 nm step resolution, 1 s response, and 1 nm bandwidth. The resulting 

spectra were usually the average of five scans and the percentage of -helical 

structure was estimated from the far-UV CD spectra as described elsewhere 57. In 

thermal melting experiments, the CD signal was monitored as a function of 

temperature at 222 nm.  

Near-UV CD spectra (350–250 nm) were measured at a protein concentration of 

~15 M using a 5 mm cuvette and were typically the average of 20 scans. Each 

spectrum was corrected by baseline subtraction using the blank spectrum 

obtained with the buffer and finally the CD signal was normalized to molar 

ellipticity ([], in deg·dmol–1·cm2). The interaction experiments with CHR peptides 

were carried at a 1:2 molar ratio between the proteins and the corresponding 

peptide. 

 

Dynamic light scattering 

The particle sizes of the covNHR proteins were assessed by DLS measurements 

using a DynaPro MS-X instrument (Wyatt, Santa Barbara, CA). Dynamics software 

(Wyatt Technology Corporation, Santa Barbara, CA, USA) was used in data 

collection and processing. Sets of DLS data were measured at 25°C with an average 

number of 50 acquisitions and an acquisition time of 10 seconds.  

 

Limited proteolysis 

Proteolysis experiments were carried out using thermolysin as protease (Sigma, St 

Louis, MO) in 50 mM HEPES, 100 mM NaCl, 5 mM CaCl2 pH 7.2. Aliquots of the 

covNHR proteins at 30 µM concentration, previously dialyzed in the buffer and 

equilibrated at the desired temperature, were mixed with thermolysin at different 

protein:protease ratios and incubated in a thermoblock at 20ºC. The reaction was 

stopped at different times by adding EDTA to reach 20 mM concentration and the 

sample aliquots were immediately frozen. The samples were analyzed by SDS-

PAGE in Tris/Tricine buffers and by HPLC coupled to ESI-MS in a WATERS LCT 

Premier XE instrument equipped with a time-of-flight analyzer. Fragments were 

identified using the ExPasy Findpept tool (https://web.expasy.org/findpept/). 
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Isothermal titration calorimetry 

ITC measurements were carried out in a Microcal VP-ITC calorimeter (Malvern 

Instruments, Worcestershire, UK). The protein solutions were titrated with 25 

injections of 5 L of the peptide solution at 480 sec intervals. Protein 

concentration in the cell was around 20 μM, while the ligands in the syringe were 

typically at 200-300 μM. The experiments were carried out in 50 mM sodium 

phosphate buffer, pH 7.4. As a blank, an independent experiment with only buffer 

in the calorimeter’s cell was performed with the same peptide solution to 

determine the corresponding heats of dilution. The experimental thermograms 

were baseline corrected and the peaks were integrated to determine the heats 

produced by each ligand injection. Finally, each heat was normalized per mole of 

added ligand. The resulting binding isotherms were fitted using a binding model of 

identical and independent sites, allowing the determination of the binding 

constant, Kb, the binding enthalpy, ΔHb, and the binding stoichiometry, n, for each 

interaction. From these values, the Gibbs energy and entropy of binding could be 

derived as ΔGb = −RT·ln Kb and T·ΔSb = ΔHb − ΔGb. Binding heat capacities were 

determined from the slope of the dependences of the binding enthalpies measured 

at different temperatures. 

 

NMR spectroscopy  

NMR experiments were performed on a Varian Direct Drive 600 MHz spectrometer 

(Varian, California, USA). The protein samples were labelled with 15N following a 

protocol established elsewhere 58. The protein was dissolved at 0.8 mM in 50 mM 

sodium phosphate pH 7.4, containing 10% D2O. To prepare a protein-peptide 

mixture, the lyophilized peptide was dissolved in H20 at a concentration of 1.6 mM 

and the pH was adjusted to pH 7.4. Then this peptide solution was further 

lyophilized. Subsequently, the newly lyophilized peptide was dissolved with the 

protein solution to reach a final concentration of 1.6 mM.  1H-15N 2D-HSQC spectra 

were acquired with 2K points and 32 increments and processed with NMRPipe 59. 
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Binding to HIV-1 envelope spikes 

The capacity of the covNHR proteins to bind soluble HIV-1 envelope proteins (Env) 

was determined by ELISA. Briefly, 96-well ELISA plates (Maxisorp, Nunc) were 

coated at 4 °C overnight with various Envs (Table S2) in 0.1 M bicarbonate buffer 

(pH 9.6). After saturation with 2% BSA, 0.05% Tween in PBS for 1.5 h at 25°C, 0.01 

µM of covNHR molecules (100 µL diluted in 1% BSA 0.05% Tween solution) were 

added and incubated for 2 h at room temperature. The plate was then washed five 

times and covNHR binding was detected with 100µL anti-6X Histag antibody 

conjugated to horseradish peroxidase (HRP) (Abcam) at 1/10000 dilution 

incubated for 1 hour at room temperature. Antibody binding was then revealed 

with tetramethylbenzidine (TMB) substrate buffer, the reaction was stopped with 

1M H2SO4 and optical density was read at 450 nm with a Molecular Device Plate 

Reader equipped with SoftMax Pro 6 program. Backgound binding was measured 

in plates without Env and subtracted from the data. The percentage of binding was 

calculated using the readings with wells coated with His-tagged Env incubated 

with PBS buffer instead of covNHR molecules as control 100% binding.  

 

HIV-1 inhibitory assays 

The inhibition of HIV replication was determined using the conventional TZM-bl 

assay measured as a function of reductions in Tat-regulated Firefly luciferase (Luc) 

reporter gene expression 60. Pseudoviruses expressing different Env were tested 

for HIV inhibitory potential 40. The IC50, the concentration (in nM) of inhibitor 

inducing a 50% decrease in relative luminometer units (RLU), corresponding to a 

50% decrease in virus replication was calculated by non-linear regression using a 

sigmoidal Hill function, as implemented in Origin software (Originlab, 

Northampton, MA). 
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Figure Legends. 

 

Figure 1. Design of covNHR miniproteins. (a) Crystallographic structure of 

covNHR-VQ in complex with C34 (pdb: 6R2G). CovNHR-VQ is represented in 

golden color and the C34 peptide in blue and red. The subdomains corresponding 

to covNHR-N and covNHR-C are respectively underlined by the green and magenta 

dashed boxes. Models of covNHR-C (magenta) and covNHR-N (green) are shown. 

(b) Sequence alignment of the covNHR proteins. Residues in bold indicate 

mutations engineered in the original design of covNHR-VQ. Mutations in red were 

engineered in this work. (c) Sequences of the CHR peptides used for binding 

experiments in this study. Residues corresponding to the different binding pocket 

motifs are colored as follows: CTP in orange, HP in cyan, MP in blue and NTP in 

red. 

 

Figure 2. Secondary structure and thermal stability of covNHR-N and covNHR-C. 

(a) Far UV CD spectra of covNHR-N (black lines) and covNHR-C (grey lines) at pH 

2.5 (dashed lines) and pH 7.4 (solid lines). (b) Thermal unfolding of covNHR-N 

(black line) and covNHR-C (grey line) followed by monitoring the CD signal at 222 

nm.  

 

Figure 3. Engineering a disulfide bond into covNHR-N protein. (a) Model of 

covNHR-NSS1 (G32C/T92C) showing the location of the residues choosen for 

mutations. (b) Far UV CD spectra of covNHR-NSS1 (black lines) and covNHR-SS2 

(grey lines) in the presence (dashed lines) and absence (solid lines) of 5 mM TCEP. 

(c) Comparison of the thermal unfolding of reduced (black circle symbols) and 

oxidized (black square symbols) covNHR-NSS2 with covNHR-N (grey symbols) 

followed by monitoring the CD signal at 222 nm. Symbols represent the 

experimental data and the solid lines correspond to the best fitting carried out 

using a two states unfolding model.  
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Figure 4. Interaction between covNHR proteins with the corresponding peptides 

monitored by far-UV and near-UV CD. (a) Far UV CD spectra of free covNHR 

proteins and 1:2 mixtures of the proteins with the corresponding CHR peptide. 

Spectra are normalized per mole and represented as follow: 1:2 mixtures (solid 

lines); free covNHR variants (dotted lines); free peptide (dashed lines); sum of the 

spectra of the free molecules (dashed-dotted lines). Protein concentrations used 

were 20 µM. (b) Near UV CD spectra of isolated covNHR-C and in complex with 

N25S at a ratio 1:2. 

 

Figure 5. Isothermal titration calorimetry experiments of CHR binding. 

Thermograms and ITC binding isotherms of Y24L binding to covNHR-N (a) and of 

N25S binding to covNHR-C (b) at 20°C. The symbols correspond to the 

experimental heats and the lines represent the fittings using a binding model of n 

identical and independent sites. (c-d). Comparison of the thermodynamic binding 

parameters of Y24L (c) and N25S (d) to the covNHR proteins at 25°C. The values 

have been calculated from the parameters taken from Table 1. 

 

Figure 6. 1H-15N HSQC spectra of covNHR-N free (a) and bound with an excess of 

Y24L at a ratio 1:2 (b). 

 

Figure 7. (a) Binding of covNHR proteins to different soluble Envs measured by 

ELISA. CovNHR binding to Env was detected using anti-Histag Ab as primary 

antibody. Background binding was measured without Env and subtracted from the 

data. 100% positive control was measured with wells directly coated with a His-

tagged Env. Data correspond to mean ± S.D. values of three independent 

measurements. (b) HIV-1 inhibitory activity of covNHR miniproteins and T20 on a 

T20 resistant variant. In vitro inhibition of pNL4-3 DIM pseudovirus infection of 

TZM-bL cells by fusion inhibitors added at different concentrations. Data are the 

mean ± S.D. of three independent measurements. Regression curves were plotted. 

using a non-linear regression using a sigmoidal Hill function, as implemented in 

Origin software (Originlab, Northampton, MA). 
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Table 1. Thermodynamic parameters of binding of gp41 CHR peptides to covNHR 
proteins measured by ITC. 
	
  

Protein Peptide Temp. 
(°C) 

Kd  
(µM) 

ΔHb  
(kJ.mol-1) n ΔCpb 

(kJ.K-1.mol-1) 

covNHR-VQa 
Y24L 25 0.090 ± 0.007 -63 ± 1 0.83 -1.6 ± 0.1 
N25S 25 3 ± 1 -34 ± 2 1 -1.5 ± 0.2 

covNHR-N Y24L 

10 0.23 ± 0.02 -46 ± 0.4 0.86 

-2.8 ± 0.2 
15 0.29 ± 0.02 -61 ± 0.6 0.84 
20 0.44 ± 0.02 -76 ± 1.4 0.8 
25 0.79 ± 0.02 -88 ± 0.5 0.91 

covNHR-
NSS1 Y24L 

10 0.27 ± 0.02 -47.6 ± 0.5 1.04 

-2.0 ± 0.4 
15 0.37 ± 0.02 -57.2 ± 0.4 0.83 
20 0.5 ± 0.7 -66.0 ± 1.2 1.04 
25 1.1 ± 0.2 -79.6 ± 2.1 1.1 

covNHR-
NSS2 Y24L 

10 0.21 ± 0.01 -48.3 ± 0.3 0.99 

-2.1 ± 0.3 
15 0.29 ± 0.02 -59.5 ± 0.5 0.94 
20 0.51 ± 0.02 -69.5 ± 0.4 1.16 
25 1.1 ± 0.3 -85 ± 4 1.0 

covNHR-C N25S 

10 0.24 ± 0.4 -28 ± 0.8 0.84 

-1.5 ± 0.2 
15 0.31 ± 0.06  -32 ± 1 0.8 
20 0.48 ± 0.09 -42 ± 1.4 1.03 
25 1.9 ± 0.3 -49 ± 2.6 0.94 

Errors correspond to 95% confidence intervals of the fittings. 
a. Data taken from Jurado et al., 2020 36. 
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Table 2. In vitro HIV-1 inhibition by covNHR proteins and T20. Inhibitory activity 
(IC50 nM ± S.D. of triplicates) was measured with the standard TZM-bl assay using 
different pseudoviruses.  

Pseudovirus covNHR-N covNHR-
NSS1 

covNHR-
NSS2 

covNHR-
C 

covNHR-
VQb T20b 

pNL4-3 XCS 740 ± 100 37 ± 6  39 ± 4 - 2.0 ± 0.3 182 ± 25 

pNL4-3 (DIM)a 284 ± 15 32 ± 7 37 ± 3 - 3.1 ± 0.3 490 ± 260 

SF162 - 162 ± 14 126 ± 26 - 8 ± 2 51 ± 1 

MW965.26 740 ± 260 188 ± 36 220 ± 9 - 2 ± 1 4 ± 1 

a. T20-resistant strain 
b. Data taken from Jurado et al., 2019 34 
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