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Abstract: The current COVID-19 global pandemic has amplified the pressure on the agriculture
sector, inciting the need for sustainable agriculture more than ever. Thus, in this review, a sustainable
perspective of the use of remotely piloted aircraft (RPA) or drone technology in the agriculture
sector is discussed. Similarly, the types of cameras (multispectral, thermal, and visible), sensors,
software, and platforms frequently deployed for ensuring precision agriculture for crop monitoring,
disease detection, or even yield estimation are briefly discoursed. In this regard, vegetation indices
(VIs) embrace an imperative prominence as they provide vital information for crop monitoring and
decision-making, thus a summary of most commonly used VIs is also furnished and serves as a
guide while planning to collect specific crop data. Furthermore, the establishment of significant
applications of RPAs in livestock, forestry, crop monitoring, disease surveillance, irrigation, soil
analysis, fertilization, crop harvest, weed management, mechanical pollination, crop insurance and
tree plantation are cited in the light of currently available literature in this domain. RPA technology
efficiency, cost and limitations are also considered based on the previous studies that may help to
devise policies, technology adoption, investment, and research activities in this sphere.

Keywords: drone; precision agriculture; remote sensing; RPA; UAV; plant growth; crop monitoring;
vegetation index; agriculture 4.0; sustainable agriculture

1. Introduction

The world is going through rapid technological shifts and innovations. The agriculture
sector has also been benefiting from such technological advancements for many years. An
indispensable way of accomplishing more by utilizing fewer resources and exerting little
effort is considered as innovation [1]. It is very well argued that enriching raw material by
innovation ensures production efficiency, contributes to economic growth, food safety and
security [2].

In recent years, the use of technology in agriculture has gained momentum of which
GIS (Geographic Information System), satellites, air vehicles, autonomous robots, GPS
(Global Positioning System) and various other communication technologies have made
their way into farming. With the innovation and implementation of such technologies,
new terms like “precision agriculture”, “precision farming”, “precision approach”, “digital
farming” and “agriculture 4.0” etc. have appeared on the horizon. The precision agriculture
is defined as information and technology based agricultural production system that is
used in order to analyze, determine, and manage field factors like spatial and temporal
variability for obtaining maximum sustainability, profit, and environmental protection [3].

Precision agriculture that paves the way to make efficient plans for pest control,
harvest, irrigation, disease control, and optimum fertilization etc. is an emerging technology
and is related to the development of technology for obtaining and analysing data that in
turn results in the implementation of adequate solutions [3,4]. Remote sensing (a technique
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of collecting information about objects without establishing any physical contact with
them [5]) has proven itself an integral part of precision farming. Although, it was initially
linked to photogrammetry with the usage of balloons for aerial observation as first ever
aerial photographs captured thus date backs to 1858 aboard a hot-air balloon [6]. Various
platforms are used for remote sensing and can be classified as aerial platforms (i.e., planes,
helicopters, drones, balloons) and spatial platforms (i.e., satellites) that use sensors for
measuring reflected or emitted electromagnetic radiations from the object under study.
Consequently, they can be classified according to the radiations they register into passive
(cameras, scanners, etc.) and active (radar and LIDAR) ones. The formers are limited
to collecting the electromagnetic energy reflected or emitted by the surface, while the
latter discharge radiations towards the observed surface and collect the energy reflected
by it. A refined definition for remote sensing according to the scope of this article could
thus be: a set of techniques that analyse the data obtained by sensors on aerial or spacial
platforms, including the acquisition of data from earth’s surface as emitted or reflected
radiations followed by its subsequent reception, correction and distribution, as well as its
final treatment by experts for the extraction of useful information in which the end user
can support their decision-making.

Satellites and drones are the most commonly used tools in precision farming. With the
launch of Landsat-1 satellite in 1972 [7], a new era of remote sensing began. Nevertheless,
given the recent technological advancements, the use of drones has become widespread
and is gaining popularity due to the number of benefits they offer, explicitly integrated
sensors and imagery system [2,8]. Remotely Piloted Aircraft (RPA), commonly known
as drone, refers to a remotely controlled or autonomously flown, unpiloted, unmanned
aircraft that is based on complex dynamic automation systems [3]. The incorporation of
drones into precision farming is a growing agricultural trend with a potential of invoking
novel agricultural and economical trails. Although, today’s research is slanted towards the
employment of novel tools and sensors capable of remote surveillance of soil properties
and crops in quasi-real-time [3].

To ensure global food security for the cumulating world population, there is an
immense need for closing the gap between actual and potential crop yields. The most
prominent factors contributing to this gap include interactions among the crop genotype,
environment, and management: G × E ×M [9]. For instance, a difference in soil affects
fertilizer uptake even if the crop response to fertilizer application is known, thereby
contributing to this yield gap. Similarly, on practical basis farmers usually apply excessive
fertilizers than the desired amount, even for areas of high potential yield, resulting this
excessive fertilizer to be accumulated in the ground and deteriorating water quality [10,11].
International controls on the use of fertilizers in agriculture not only ensure the safety of
humans but also the environment. That’s why it is very important not to exceed these
limits by over-fertilizing the land. For improved crop yield, as nitrogen (N) is the most
limiting crop nutrient, so N based fertilizers are applied frequently [12]. However, this
also augments the N losses to the environment via leaching or gaseous emissions. For
example, fertilizer nitrate (NO3

–) leaching pollutes the surface and ground water [13].
Ultimately, these NO3

– ends up in our diet. In human body NO3
– is converted to NO2

– and
then eventually to nitrosamine compounds and NO in acidic environment (specifically in
stomach). These compounds are responsible for methemoglobinemia that further provokes
cancers, diabetes and thyroid disorders [14]. To nip the evil in the bud precision agriculture
is the answer. Precision agriculture presents on site-specific information with optimized
solutions for which drones are anticipated to play a key role thereby minimizing the yield
gaps while widening up the room for scientific exploration and development [15]. RPAs
are facilitating us in this domain too by furnishing the estimates of total N concentration in
water, so that only the required amount of N fertilizer be applied avoiding the potential
harmful impacts and saving the economic loss to farmers. One such practical example
of using drone equipped with hyperspectral cameras to assess the N concentration in
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water has recently been reported [13]. Although the lower adoption rates of precision
technologies than expected comprise of various factors including economical ones [15,16].

An overview of RPA technology with a prospective of sustainable agriculture is
conveyed in this article. The current technology available for precision agricultural is
discoursed along with examples. The promising feature of RPA technology with practical
cases from the available literature and future perspectives are highlighted in this study. This
study may help in better adoption of RPA technology, development of policy regulations,
identifying the future research areas, and hinting towards the need for advancement of this
mature technology given the challenging circumstances provoked by COVID-19 pandemic.

2. Remotely Piloted Aircraft (RPA)

Remotely Piloted Aircraft (RPA) or Unmanned Aerial Vehicle (UAV) refer to auto-
piloted multipurpose aircraft. Although, the term UAV is considered obsolete because
of the use of this term by aviation organizations and the operational complexity that
they represent [17]. Whereas, the term RPA is acceptably used in Europe [18]. Other
terminologies frequently used for referring to drones include: Dynamic Remotely Operated
Navigation Equipment (DRONE), Remotely Piloted Vehicles (RPV), Remotely Piloted
Aircraft Systems (RPAS), Remotely Operated Aircraft (ROA), and Unmanned Aircraft
Systems (UAS) [17].

In 1930, RPAs or drones were known as “Queen Bees” [19] and were initially used
by military followed by their disposition for civil use [20]. One of the earliest recorded
use of RPAs was by the Austrians in July 1849, after around two hundred bomb-mounted,
unmanned hot air balloons were launched in the city of Venice [21]. In agricultural context,
use of RPAs for Montana’s forest fires monitoring was tested in 1986, followed by the
documentation of enhanced image resolution captured using RPA named “Predator” in
1994 [20]. The first RPA model “Yamaha RMAX”, for pest control and crop monitoring
applications, was developed by Yamaha [22]. By the year 2020, given the current uses of
drones from hobbyists to industrialists, their market is anticipated to reach upto $200 bil-
lion [23]. Although, the pandemic caused by COVID-19 can certainly affect these estimates.

Currently, RPAs are gaining popularity as an integral part of precision agriculture
and ensuring agricultural sustainability [24]. The agriculture sector is in demand of RPAs
with diverse features to ensure better crop yields and for overcoming several challenges of
farmers [23]. In forestry and agriculture, RPAs are increasingly becoming part of remote
sensing and imaging applications with simultaneous analysis of data through mapping
spatial variability in the field thereby paving the way for improved farm productivity [25].
For example, a quad-copter is reported to conduct crop scouting, map field tile drainage
and monitor fertilizer trials [26]. Furthermore, the use of RPAs for biophysical variables’
(i.e., chlorophyll and biomass determination) control is also of particular interest [25].

The number of advantages of RPAs that they endow is the reason for their increasing
demand in agriculture sector. The accessibility, flexibility and efficiency are their promising
features. For example, RPAs are the cheapest means of land monitoring with high resolution
images (up to 0.2 m) providing complete spatial coverage without worrying about the
clouds interference compared to satellites and traditional aerial photography systems [4].
Similarly, the 3-D maps for soil and field analysis help farmers for their irrigation and
nitrogen level management for better yield [23]. RPAs offer a prominent advantage over
other aerial imagery means i.e., satellites and airplanes. The images taken by an RPA are
44 times better than satellite images and in terms of resolution, RPA camera offers over
40,000 times better resolution. Satellites and planes can equally suffer to bad weather and
clouds. Furthermore, RPAs offer the freedom of flight scheduling and the flexibility to re-fly
as per needs [27]. Additionally, low costs, agility, manoeuvrability, real-time data hunting
for better yields, time saving by tremendously reducing inspection times, use of geographic
information system (GIS) mapping for input cost management, high resolution imagery to
overcome the pixel demixing problem, yield increase and resource management, the use
of Infrared, normalized difference vegetation index (NVDI), and multispectral sensors for
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monitoring the crop health are few of the salient features of RPAs that make their use in
agriculture attractive and sustainable [3,19,23].

2.1. Classification of RPAs

There are various RPAs in the commercial market to date including for military use
but based on the use of RPAs in agriculture, they are largely categorized into rotary wing
and fixed wing RPAs, Figure 1. Although both of these kinds have their own benefits and
limitations. For example, structurally simple fixed wing RPAs lack hovering and require
a runway for take-off and landing while offering high-speed flights for longer durations.
Whereas, with structurally complex rotary wings RPAs exhibit low-speed flights for shorter
duration, they are also capable of hovering, vertical takeoff, and landing with nimble
maneuverability [22].Agronomy 2020, 10, x FOR PEER REVIEW 5 of 29 
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By the type of control, Pino [21] has classified the RPAs as:

(a) Autonomous: An autonomous RPA doesn’t need a human pilot to control it from the
ground. It is guided by its own integrated sensors and systems.

(b) Monitored: In this case, a human technician is needed. The job of this person is to
provide information and control the feedback of the RPA. The drone directs its own
flight plan and the technician can decide what action to take. This system is common
in precision agriculture and photogrammetry work.

(c) Supervised: It is piloted by an operator, although it can perform some tasks au-
tonomously.

(d) Preprogrammed: It follows a previously designed flight plan and there is no way to
modify it to accommodate possible changes.

(e) Remotely controlled (R/C): It is piloted directly by a technician through a console.

However, Vroegindeweij, et al. [19] have categorized drones in the following types;

1. Fixed wings and flying wings RPAs (having limited maneuverability) that use a jet
engine for thrust and wings for lift, Figure 1A.

2. Vertical take-off and landing (VTOL) RPAs (being very maneuverable) that use a rotor
system for thrust and lift.

3. Micro RPAs, as their name indicate of very small sizes i.e., in the range of centimeters.
They may use either rotors or flapping wings for thrust and lift.

4. Airships and parafoils (having lower maneuverability) that use balloons or parachutes
for the flight.

5. Novel concepts and combinations that could be based on the previous principles to
obtain the desired benefits, Figure 1C.

There is also a notable difference in the landing gears of fixed wings and rotary wings
RPAs as the former ones may use wheels or magnetic levitation while the later ones have
simple supporting structures. The rotary winged RPAs can further be of a helicopter,
quadcopter, hexacopter, and octocopter, based on the number of rotors they have. The
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rotor movements are responsible for the lift of these copters as two of the four rotors, in a
quadcopter specifically, move in clockwise direction and other two in the anticlockwise
direction. Two configuration models plus (+) and cross (X) are used in quadcopters, of
which the latter is more stable and common than former [22] (Figure 2).
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2.2. Basic Architecture of an Agricultural RPA

Usually following are the basic components of a RPA aimed for agricultural use [28].

A. Frame
B. Brush-less motors
C. Electronic Speed Control (ESC) modules
D. A control board
E. An Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS)
F. Payload sensors (i.e., Light Detection and Ranging LiDAR systems, thermal camera,

multispectral camera, RGB camera etc.) and altimeter (i.e., ultrasonic sensor, laser
altimeter, barometer etc.)

G. Transmitter and receiver modules

All of these components are necessary not only for a steady flight but also for field
monitoring and collecting various field data. The parameters like the normalized difference
vegetation index (NDVI), leaf water content, ground cover, leaf area index (LAI) and chloro-
phyll content are quantified using multispectral cameras embedded on drones [28]. For
example, a drone embedded with a thermal camera (thermovision A40M) and multispectral
sensor (MCA-6 Tetracam) is a practical system for vegetation monitoring [29].

Similarly, the Digital Surface Model (DSM) or the Digital Terrain Model (DTM):
digitization of the terrain surface of the monitored area is obtained using the components
like LiDAR systems and RGB cameras. One such example of the enactment of these tools is
previously reported [30,31].

Software programs intended for data processing and image analysis are not usually
considered as a physical component of a drone but they play a crucial role in management,
decision making and planning [32]. Various software, open-source solutions as well as
marketable, are commercially available developed on the vendors’ policies. Some key
features that such software programs should have include: data collection (imageries
and videos assembly from drone and their storage in database), analysis and reports
(production of valuable information after analysing the data like yield prediction etc.),
map generation (creating 3D field models and high resolution maps), and flight planning
and automation (real-time flight planning, scheduling and route optimization within the
program) [32].
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2.3. Choosing an Appropriate Drone

Given the market range, numerous drones with various features are available. As men-
tioned earlier, the simplest of the drone comes with a digital camera (e.g., Canon or GoPro)
along with different filters. Although the choice of an appropriate drone for a farmer
depends upon many factors. For example, an orchard growing farmer is more interested in
the crop status than weed pressure while for a cash crop farmer it’s the opposite case [27].

With the intention of using a drone for PA, it should be capable of flying according
to waypoints definition, of controlling its flight altitude, of landing automatically given
the battery status, of sensing and avoiding the obstacles during its flight and of acquiring
stabilized images. The Parrot Bluegrass has been reported to fulfil such requirements and
is anticipated to be employed for PA practices [28]. A few of the commercially available
drones for agricultural use are summarized in the Table 1.

Table 1. Characteristics of a few drones applied in agriculture field [23].

Drone Parameter Value

Honeycomb AgDrone
Drone type Fixed wing

Material Kevlar Exoskeleton
Wingspan and Battery 1.2 m; 8 Ah Lipo

Coverage 34,722,000 m2

Trigger Method Automatic Dual Camera Electrical Signal

Flight Specifications Cruise Speed: 12.7 ms−1

Max Speed: 22.7 ms−1

DJI Matrice 100

Drone Type Fixed Wing Quadcopter
Battery 5.7 Ah LiPo 6s

Video Output USB, HDMI-mini

Flight Specifications Max Speed: 5 ms−1 (Ascent)
Max Speed: 4 ms−1 (Descent)

Operating Temperature −10 °C to 4 °C
Others Intelligent Flight Battery, Advanced Flight Navigation System

DJI T600 Inspire

Material Carbon Fiber
Interface Type Detachable

Battery 4.5 Ah LiPo 6s

Camera Features

Image: 4000 × 3000
ISO Range” 100-3200 (Video)

Photography Modes: Single, Burst, Auto Exposure, Time-Lapse
Video Modes: UHD, FHD, HD

File Formats: JPEG, DNG, MP4, MOV
MEMORY Card: 64 GB (Max)

Flight Operations Max Speed: 5 ms−1 (Ascent)
Max Speed: 4 ms−1 (Descent)

Flight Time 18 min /40 min with additional battery
Others Easy Navigation

Agras MG-1- DJI

Drone Type Octocopter
Material High Performance Engineered Plastics

Coverage 4000–6000 m2 in 10 min
Liquid Tank 10 Kg (Payload), 10 L (Volume)

Nozzle 4
Battery MG-12000
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Table 1. Cont.

Drone Parameter Value

Flight Parameters

Max Take Off Weight: 42.5 Kg
Max Operating Speed: 8 ms−1

Max Flying Speed: 22 ms−1

Flight Modes: Smart, Manual Plus Mode and Manual
Operating Temperature 0 to 40 °C

Others Y-type Folding Structure

EBEE SQ- SenseFly

Drone Type Detachable Wings with Low-Noise, Brushless and Electric Motor

Flight Operations
Max Flight Time: 55 min
Linear Landing with 5 m

Flight Planning Software: eMotion Ag
Sensors 4 Spectral Sensors, GPS, IMU, Magnetometer, SD Card

Camera
4–1.2 MP Spectral Camera

1 fps
16 MP RGB Camera

Others Automatic 3D Flight Planning, Problem Identification During Flight

Lancaster 5 Precision Hawk

CPU 720 MHz Dual Core Linux
Interface Analog, Digital, Wi-Fi, Ethernet, USB

Wing Fixed Wing with Single Electric Motor
Battery 7 Ah

Sensors Humidity, Temperature, Pressure, Incident Light
Plug and Play sensors

Flight Parameters
Altitude: 2500 m

Max Speed: 21.9 ms−1

Survey Span: 50–300 m
Operating Temperature 40 °C

Others Smart Flight Controls, Open Source Technology

SOLO AGCO Edition

Flight Controller PIXHAWK
Material Self-Tightening Glass-Fortified Nylon Props

CPU 1 GHz On-board Computer
Video Full HD Streaming to Mobile Devices

Flight Parameters
Max Speed: 24.5 ms−1

Flight Time: 25 min
Auto Take Off and Landing

Camera 2 Cameras: GoPro 4 Hero4 Silver for RGB
NIR GoPro

Others Field Health Mapping (NDVI)
Management Zone Mapping

Similarly, one is not restricted to solely rely on the commercially built drone packages
(RPAs with cameras). RPAs can be modified as per needs by customizing the required cam-
eras needed. For example, at various crop’s stages a farmer can be interested in different
crop data (like crop’s irrigation need or crop health status) for which a thermal, multispec-
tral, hyperspectral etc. camera might be required. Thus, a customized desired camera can
be mounted on RPA. Most commonly used RPA cameras, as reported previously [6], with
their fundamental characteristics are quoted in Table 2.
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Table 2. Representative cameras for RPAs.

Visible Band Cameras

Name Pixel Size (µm)
Sensor Type and

Resolution
(MPx)

Size (mm2) Weight (kg) Frame Rate
(fps) Speed (s−1)

iXA 180 5.2 CCD 80 53.7 × 40.4 1.70 0.7 4000 (fp),
1600 (ls)

IQ180 5.2 CCD 80 53.7 × 40.4 1.50 - 1000 (ls)
H4D-60 6.0 CCD 60 53.7 × 40.2 1.80 0.7 800 (ls)
NEX-7 3.9 CMOS 24.3 23.5 × 15.6 0.35 2.3 4000 (fp)

GXR A16 4.8 CMOS 16.2 23.6 × 15.7 0.35 3 3200 (fp)

Multispectral Cameras

Name Pixel Size (µm)
Sensor Type and

Resolution
(MPx)

Size (mm2) Weight (kg) Spectral Range (nm)

MiniMCA-6 5.2 × 5.2 CMOS 1.3 6.66 × 5.32 0.7 450–1050
Condor-5 UAV-285 7.5 × 8.1 CCD 1.4 10.2 × 8.3 0.8 400–1000

Hyperspectral Cameras

Name Pixel Size (µm)
Sensor Type and

Resolution
(MPx)

Size (mm2) Weight (kg) Spectral
Range

Spectral
Bands and
Resolution

Hyperspectral
Camera (Rikola Ltd.) 5.5 CMOS 5.6 × 5.6 0.6 500–900 4010 nm

Micro-Hyperspec
X-series NIR 30 InGaAs 9.6 × 9.6 1.025 900–1700 6212.9 nm

Thermal Cameras

Name Pixel Size (µm) Resolution
(MPx) Size (mm2) Weight (kg) Spectral

Range

Thermal
Sensitivity

(mK)

FLIR TAU 2 640 17 640 × 512 10.8 × 8.7 0.07 7.5–13.5 ≤50
Miricle 307K-25 25 640 × 480 16 × 12.8 0.105 8–12 ≤50

Laser Scanners

Name Scanning Pattern Angular Res.
(deg) FOV (deg) Weight (kg) Range (m) Laser Class

and λ (nm)

IBEO LUX 4 Scanning
parallel lines

(H) 0.125
(V) 0.8

(H) 110
(V) 3.2 1 200 Class A

905

HDL-32E 32
Laser/detector Pairs

(H) –
(V) 1.33

(H) 360
(V) 41 2 100 Class A

905

VQ-820-GU 1 Scanning line (H) 0.01
(V) N/A

(H) 60
(V) N/A - ≥1000 Class 3B

532

2.4. Flight Planning and Data Collection

Flight planning is an important and preliminary step for quality data acquisition.
There are various ways to accomplish this. For example, software can be used to design
and send the designed flight plan to the drone that is known as downlinking [17]. Similarly,
applications can also be used on smartphones and tablets, for this purpose, facilitating
the mission planning even minutes before the flight. These applications and software
act as ground control station (GCS) for drones. Generally, the compatible software and
application, to plan and execute missions, comes with the drone by the respective company.
For example, in a study corresponding applications eMotion 2, the Mission Planner and
DJI-Phantom were utilized for eBee, X8 and Phantom 2 drones [17]. On the other hand,
there are plenty of free and open-source GCS available on the internet and one can choose
according to his needs. A software interface of QGroundControl, an open source, and
MAVLink enabled software, installed on windows, can be seen in Figure 3.
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waypoints for flight planning.

The other important factors for flight planning include estimation of flight area and
surroundings, identification of potential hazards, preparation and configuration of equip-
ment and weather conditions. The weather condition, as wind speed, can highly influence
the drone flight. Similarly, presence of poles, trees, windmills, nearby roads, vehicles and
populated areas are also considered before flying drones. Another important thing is to
comply with the local and national laws regulating the drones’ flight.

Generally, to ensure the accuracy and quality of the data, image overlapping is per-
formed. Although, few software do not facilitate the lateral and forward overlap. In this
context, a study indorsed the greater overlap (lateral 50% and forward 80%) for orthomo-
saic preparation [17]. Nevertheless, higher overlays increase the image capturing time
that further result in higher amounts of point cloud and therefore extended processing
time. Siebert and Teizer [33] recommended at least 70 and 40% longitudinal and transverse
coverage areas respectively. Anyhow, the need for a greater amount of overlap should be
evaluated depending upon the respective drone used and its application. The flight plan,
once completed, should be saved and by connecting a tablet or phone with the drone´s
remote control, the desired mission can be executed.

2.5. Image Processing and Software

Various open source and commercial software are in the market for pre-processing of
images and automatic assembly of the orthomosaic and even facilitate a person with no
prior expertise to extract meaningful information, in a shorter time as compared to con-
ventional photogrammetry, of Digital Elevation Model (DEM), orthomosaic and DSM [17].
For example, Open Drone Map (ODM) is an open-source image processing software that
allows to create and visualize orthomosaic, 3D models, point clouds, DEM, and other
products (Figure 4).
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Figure 4. Screenshots of interface of open source image processing software WebODM (demo version). (A) Represents the
user interface (B) Orthophoto of a certain area of Brighten beach can be distinguished (C) Represents the 3D model of the
terrain (D) Represents a DSM for a certain area of Brighten beach [34].

According to a study the estimated time frame for flight plan and image acquisition,
collecting GCPs, and photogrammetric processing are 25%, 15% and 60% respectively. This
indicates the dire need of better, speedy and automatic software especially for processing
tasks [6].

A semi-automatic workflow is used to process images acquired through drones. Dur-
ing this camera calibration, images alignment, cloud points generation is done ultimately
producing the DEM and Digital Surface Model (DSM). These models are then used for 3D
modelling, acquisition of metric information (i.e., heights, area calculation, volume etc.)
and orthomosaics [17].

Supervised classification techniques can be applied on the obtained data to analyze
the image and extract information e.g., soil use classification through object-oriented image
analysis or by examination of the spectral bands of images [35,36]. Such studies of map
generation using vegetation indexes have been reported [37,38].

Drones get an enhanced spatial resolution at low altitudes but remain unable to cover
large extensions as orbital platforms. That’s why a large number of high-resolution images
are recommended to cover larger fields. This extensive data to generate mosaic image of
the field needs to be pre-processed. Interestingly, an automated method for the mosaic
preparation was developed, to reduce the cumbersome and lengthy processing time, that
implements the pre-processing of these images [17]. An overview of processed images
of olive crop using multispectral camera (parrot sequoia) and thermal sensor mounted
on Yuneec Typhoon H hexacopter drone, flown at a height of 40 m and 80 m respectively,
are represented in Figure 5. Mission planner was used for flight planning followed by
orthomosaic generation using Pix4D software and ultimately using QGIS for generating
NDVI (image B), NDRE (image C), and thermal map (image D).
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hexacopter drone. (Images facilitated by MC Biofertilizantes).

For various field operations (i.e., planting, spraying, nutrient application etc.) geo-
referencing is used. A method of automatic geo-referencing, with 0.90 m accuracy, has been
reported [11]. Since this margin of 0.90 m can prompt errors, hence further studies are sug-
gested in this regard. Similarly, ground control points (GCPs), that are the representative
points of the terrain like corners of a building and road crossings etc., pertain an indispens-
able importance with regard to enhancing maps accuracy and geometric correction of data
acquired by the virtue of remote sensing. Use of global positioning system (GPS) receiver
of Post-Processed Kinematic (PPK) or Real Time Kinematic (RTK) is recommended for
taking coordinates. Using minimum GCPs for drones favors good results. As for example,
a position error around ±0.20 m vertically and ±0.05 m horizontally was reported for
30 × 50 m area, when 24 GCPs were set with dual-frequency GPS RTK [39]. Similarly,
when 23 GCPs were set with dual-frequency GPS RTK in another study for an area of
125 × 60 m, around 0.03–0.04 m vertically, and 0.04–0.05 m horizontally root mean square
values for error were reported [40].

3. Implementation of Drone Technology in Agriculture

An increase in the application of drones in agriculture has been witnessed in recent
times along with the development of novel strategies and modules for data acquisition and
analysis. For example, a new Pulse Width Modulation (PWM) controller for RPA along
with a software was developed by [41]. A wireless telemetry system was used to control
commands of PWM controller between the ground control station and the RPA helicopter.
LabVIEW 8.2 was used to test and validate the PWM controller and after several analyses,
the researchers claimed a higher precision and efficiency in spray application of pesticide.
Similarly, for total biomass and yield estimation of rice, an unmanned helicopter was
used based on low-altitude remote sensing (LARS) platform [42]. The LARS platform was
reported as a promising substitute for airborne remote sensing and satellite-based methods
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to estimate the rice crop biomass and yield as a function of its nutrient status. In this, they
used a radio-controlled helicopter with a multispectral camera for image acquisition at a
height of 20 m. Additionally, another RPA based on the octocopter platform was developed
for Precision Viticulture (PV) capturing visible, multispectral and thermal imagery [43].
The visible imagery captured by a DSLR camera (Canon 550D) was processed to create
Digital Surface Models (DSMs) using photogrammetric software. A Tetracam mini-MCA
multispectral camera was also mounted on the same camera mount and vegetation indices
were calculated based on the vegetation reflectance in critical wavelengths. They also
attached a FLIR Thermal Infrared (TIR) camera to this mount for surface temperature
measurements. Although the selection of cameras to be used in RPAs should be made
keeping in mind its dynamic range that measures the shot noise (randomness of the photons
acquisition) and the temporal dark noise (error in the discretization of the light in a pixel),
and its signal to noise ratio (SNR) [25].

Furthermore, in another study the use of RPA for monitoring experimental plots by
using a remote-controlled RPA and its additional advantage of lower costs in maintenance,
operation and acquisition of aerial images was reported [44]. Likewise, scientists have
also reported a remote sensing platform that works totally in an autonomous manner [45].
This study opened further doors for research and practical applications of drones in
agriculture as the study was reported to assess the stress, irrigation and fertilization
status of plants in real time using computational routines. Similarly, various research
projects were undertaken after few initial reports on the use of RPA to investigate the
data acquisition platforms and sensors in order to improve the technology for ensuring
precision and sustainability in agriculture field. In 2013, a new Fabry Perot interferometer
(FPI) based spectral camera was evaluated to be used in an RPA [46]. Researchers presented
the assessment chain of this FPI spectral camera for DSM extraction, supervised biomass
estimation, spectral data cube generation, radiometric correction and image orientation.

In the same way, to obtain the multispectral photographs of pasture enclosures, a
Tetracam MCA (Multispectral Camera Array) and a consumer grade Canon PowerShot
digital camera were used on a hexacopter and a quadcopter—two remotely controlled
platforms, and were reported to be efficient in generating high quality (multispectral)
image data which lead to better assessment of biomass and pasture quality cover [47].
Correspondingly, another study presented the configuration and specifications of an RPA
(fitted with a six-band multispectral camera, two different sensors and a still visible camera)
for remote sensing, for Early Season Site Specific Weed Management (ESSWM) [48]. Owing
to the low flight altitude and flexibility, the RPA was shown to be capable of operating on
demand according to the flight mission planned and capture ultra-high spatial resolution
photographs. Currently, most of the applications of RPAs in agriculture are focused
on maps generation for monitoring of crop stress, yield prediction, biomass estimation,
weed infestations, and coverage. For example, execution of hyperspectral imagery for
quantifying the chlorophyll per unit area, which directs towards plant’s photosynthetic
capacity [25]. In a similar fashion, barley and wheat crops’ exhibit different vegetation
densities based on the amount of fertilizer and seeds hinting towards the corresponding
growth stage and health of crop [25].

Depending upon the purpose, sensors are selected for crop monitoring whereas;
the most commonly used sensors in RPAs detect the following electromagnetic waves’
bands [24]:

(a) Thermal Infra-Red band
(b) Red, Green, and Blue (RGB) bands
(c) Near Infra-Red (NIR) band
(d) Red Edge band (RE)

Where, (a) is used for the yield forecasting, analyzing plant physiology and irrigation
scheduling. (b) are implied for visual inspection of the crop field, modeling elevation
and counting the number of plants. (c) is aimed at the assessment of crop health, water
management, soil moisture analysis, plant counting and erosion analysis. (d) is used
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for crop health assessment, water management and plant counting purposes [24]. These
are few commonly associated studies with regard to the bands of electromagnetic waves,
although the use of these sensors is not limited to these bands and holds enormous prospect
for further investigation.

4. Applications of Drones in Farming

With the developing technologies and invention of novel sensors, drones are finding
numerous application in agriculture field. The ease and autonomy that RPAs offer is
their prominent feature. For example, they can either be flown manually or put on GPS
programmed pre-determined paths where learning to pilot is not more than a few hours
job with the possibility of one touch takeoff and ground steering. Self-leveling programs
further facilitate their autonomy by helping in the acquisition of stabilized images while
adjusting the drones to the wind [27]. Few of their most common applications along with
novel areas of application are discussed below.

4.1. Crop Monitoring and Health Assessment

RPAs have been anticipated for counting plants, monitoring growth, phenology and
chlorophyll measurement among other potential applications [21]. For this purpose, RPAs
like SenseFly’s eBee Ag, having NDVI or near infrared (NIR) sensors, have replaced the
conventional farm scouting by significantly minimizing the human error [49]. RPAs are
also highly efficient sources of monitoring crops especially in hilly areas that are otherwise
challenging for conventional scouting [24]. The most commonly used vegetation indices
for crop monitoring and health assessment are summarized in Table 3.

Table 3. Summary of commonly used Vegetation Indices (VIs).

Name Abbrev. Requires Function Equation Ref.

Ratio vegetation
index RVI Red–NIR

Estimation of green
biomass

and monitoring

NIR
Rred

[50]

Perpendicular
Vegetation Index PVI Red–NIR

Simulation of GVI in Red,
NIR 2D

data

√(
ρsoil − ρveg

)2

Rred
−
(
ρsoil − ρveg

)2

NIR
[51]

Normalized
difference vegetation

index
NDVI Red–NIR Crop monitoring and

empirical studies
NIR−Rred
NIR+Rred

[52]

Soil-Adjusted
Vegetation Index SAVI Red-NIR

Improving the sensitivity
of NDVI to soil
backgrounds

(1+0.5)(NIR−Rred)
NIR+Rred+0.5

[53]

Modified soil
adjusted vegetation

index
MSAVI Red–NIR Reduction of bare soil

influence on SAVI

0.5{2·NIR + 1−√[
(2·NIR + 1)2 − 8 (NIR− Rred)

]} [54]

Optimized
Soil-Adjusted

Vegetation Index
OSAVI Red-NIR

Calculation of the
aboveground

biomass, leaf nitrogen
content, and chlorophyll

content

NIR – Rred
NIR+Rred+X [55]

Enhanced vegetation
index EVI Vis–NIR

Monitoring of
vegetation’s ecological

environment

2.5(NIR−Rred)
NIR+6·Rred−7.5·Rblue+1

[56]

Triangular vegetation
index TVI Vis–NIR Prediction of leaf N

status 0.5
[
120
(

NIR− Rgreen
)
− 200

(
Rred − Rgreen

)]
[57]

Second modified
triangular

vegetation index
MTVI2 Vis–NIR Prediction of leaf N

status

1.5
[
2.5
(

NIR− Rgreen
)
− 2.5

(
Rred − Rgreen

)]
/√[

(2 ∗ NIR + 1)2 − 6 ∗ NIR− 5 ∗
√

Rred − 0.5
] [58]
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Table 3. Cont.

Name Abbrev. Requires Function Equation Ref.

Chlorophyll
vegetation index CVI Vis–NIR

Representation of the
relative abundance of

vegetation and soil
NIR ∗ Rred

R2
green

[59]

Green normalized
difference

vegetation index
gNDVI Green–NIR Estimation of photo

synthetic activity
NIR−Rgreen
NIR+Rgreen

[60]

Chlorophyll index –
green CI-G Green–NIR Determination of leaf

chlorophyll content
NIR

Rgreen
− 1 [61]

Normalized green
red difference

index
NGRDI Vis Estimation of nutrient

status
Rgreen−Rred
Rgreen+Rred

[62]

Green leaf index GLI Vis Estimation of chlorophyll
content

2·Rgreen−Rred−Rblue
2·Rgreen+Rred+Rblue

[63]

Visible
atmospherically

resistant
index

VARI Vis

Mitigation of
illumination differences
and atmospheric effects

in visible spectrum

Rgreen − Rred
Rgreen + Rred − Rblue [64]

Normalized
difference red edge

index
NDREI RE–NIR Monitoring crop health NIR−Rre

NIR+Rre
[65]

Chlorophyll index –
red edge

CI-
RE RE–NIR Estimation of leaf

chlorophyll content
NIR

rededge − 1 [61]

MERIS total
chlorophyll index MTCI RE–NIR Estimation of chlorophyll

content
R750−R710
R710−R680

[66]

Modified chlorophyll
absorption

reflectance index
MCARI Red–RE Measurement of

chlorophyll activity
[(R700 − R670)− 0.2(R700 − R550)]

(
R700
R670

)
[67]

Transformed
chlorophyll
absorption

reflectance index

TCARI Red–RE
Assessment of

chlorophyll content and
related studies

3
[
(R700 − R670)− 0.2(R700 − R550)

(
R700
R670

)]
[68]

Triangular
chlorophyll index TCI Red–RE Quantification of

vegetation in an area 1.2(R700 − R550)− 1.5(R670 − R550)·
√

R700
R670

[69]

Combined index
with TCARI - Red–RE–NIR

Assessment of
chlorophyll content and

related studies

TCARI
OSAVI [58]

Combined index
with MCARI - Vis–RE–NIR

Assessment of
chlorophyll content and

related studies

MCARI
MTVI2 [70]

Triangular greenness
index TGI Vis Prediction of crop canopy

−0.5[(λred – λblue)
(

Rred – Rgreen
)
−

( [
(
λred – λgreen

)
(Rred – Rblue)

[71]

Atmospherically
Resistant Vegetation

Index
ARVI Red-Blue-NIR Reduction of atmospheric

interference
NIR – Rblue
NIR+Rblue

[72]

Wide Dynamic
Range Vegetation

Index
WDRVI Red-NIR Enhancement of the

dynamic range of NDVI
αρnir – ρred
αρnir+ρred

[73]

Crop Water Stress
Index CWSI NIR

Measurement of canopy
temperature changes and

dynamics

Tcanopy – Tnws
Tdry – Tnws

[74]

Photochemical
Reflectance Index PRI NIR Detection of disease

symptoms
R531 – R570
R531 – R570

[51]

Where: NIR is the near infrared band reflectance, Rred is the red band reflectance; Rblue is the blue band reflectance; Rgreen is the green band
reflectance; GVI refers to green vegetation index; ρsoil is the soil reflectance; ρveg is the vegetation reflectivity; Rx is the reflectance at the
given (x) wavelength in nanometer (nm); Tcanopy is the temperature for the canopy of leaves under sunlight; Tnws is the temperature for the
canopy of leaves under sunlight when the crop is well-irrigated; Tdry is the temperature for the canopy of leaves under sunlight when the
crop is under drought stress.
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Several vegetation indexes, for example NDVI, are in play to assess the disease, water
deficiency or nutrient stress in crops and present useful information like even the presence
of algae etc. [15]. Psirofonia, et al. [75] have also reported an effective way of pest or disease
infestation detection and mapping in olive and palm plantations, using RPAs. Moreover,
the use of drones in the early detection of disease or deficiency in crops has also been
suggested to timely mitigate the stress [24].

Recently, Parrot RPA is proposed for effective crop assessment in terms of determina-
tion of the density of green on a patch of land. The RPA camera uses the light reflectance
from plant (i.e., chlorophyll and leaves) for the determination of their spatial distribution.
Following is proposed for calculating NDVI [25]:

NDVI =
NIR− RED
NIR + RED

where, the spectral reflectance measurements acquired in near-infrared and red regions are
indicated by NIR and RED respectively. Higher the value of NDVI, the denser and healthier
will be the vegetation. Whereas the range of NDVI varies from−1 to +1. Although, different
cameras provide different NDVI values for the same field and time of flight, which could
mislead the user. Agricultural cameras, however, can provide a standard NDVI that is
comparable to other agricultural cameras such as those on satellites. An illustration for a
drone equipped with NIR and other sensors for taking data from soil, plant and weeds is
presented in Figure 6.

Agronomy 2020, 10, x FOR PEER REVIEW 17 of 29 

 

et al. [75] have also reported an effective way of pest or disease infesta-
tion detection and mapping in olive and palm plantations, using RPAs. 
Moreover, the use of drones in the early detection of disease or defi-
ciency in crops has also been suggested to timely mitigate the stress 
[24]. 

Recently, Parrot RPA is proposed for effective crop assessment in 
terms of determination of the density of green on a patch of land. The 
RPA camera uses the light reflectance from plant (i.e., chlorophyll and 
leaves) for the determination of their spatial distribution. Following is 
proposed for calculating NDVI [25]: 

𝑁𝐷𝑉𝐼 ൌ 𝑁𝐼𝑅 − 𝑅𝐸𝐷𝑁𝐼𝑅 + 𝑅𝐸𝐷 

where, the spectral reflectance measurements acquired in near-infrared 
and red regions are indicated by NIR and RED respectively. Higher the 
value of NDVI, the denser and healthier will be the vegetation. Whereas 
the range of NDVI varies from −1 to +1. Although, different cameras 
provide different NDVI values for the same field and time of flight, 
which could mislead the user. Agricultural cameras, however, can pro-
vide a standard NDVI that is comparable to other agricultural cameras 
such as those on satellites. An illustration for a drone equipped with 
NIR and other sensors for taking data from soil, plant and weeds is pre-
sented in Figure 6.  

 
Figure 6. A basic illustration for a drone equipped with multispectral camera (with NIR and RGB bands) and 
other sensors that uses the light absorbance and reflection from vegetation and soil to generate data that on 
further analysis produce useful information about weeds, crops and soil. 

Figure 6. A basic illustration for a drone equipped with multispectral camera (with NIR and RGB bands) and other sensors
that uses the light absorbance and reflection from vegetation and soil to generate data that on further analysis produce
useful information about weeds, crops and soil.
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The data collected by crop monitoring, if integrated with soil fertility and weather
forecast data, can predict harvest time and yield of crop that in turn can be a vital source
for bureaucrats and farmers to accordingly plan for storage and marketing [24].

4.1.1. Variable-Rate Fertility

For refining variable-rate applications (VRA) like Potassium, Phosphorus and Nitro-
gen, satellite or ground-based images are considered more useful although RPAs do have
their uses. For example, drone generated VRA maps are reported to be useful for in-season
fertilizer applications on corn and other crops thereby adding up for increased yield [49].
Similarly, novel VIs are being investigated for remote detection of macronutrients. For
example, hyperspectral remote sensing was used to monitor N, P and S in Oryza sativa L.
reporting novel spectral algorithms especially for P (P_670_1092 and P_670_1260) and S
(S_670_1090), as the previously reported VIs did not entail better accuracy for them [76].
Such advancements are really productive in precision agriculture favoring accuracy in real
time monitoring. Figure 7 represents the practical example of the data taken for a field of
olive plants, using multispectral camera (Parrot Sequoia) mounted on Yuneec Typhoon
H hexacopter drone flown on a height of 40 m, and the recommended areas of treatment
depending upon the generated maps.

Agronomy 2020, 10, x FOR PEER REVIEW 18 of 29 

 

The data collected by crop monitoring, if integrated with soil fer-
tility and weather forecast data, can predict harvest time and yield of 
crop that in turn can be a vital source for bureaucrats and farmers to 
accordingly plan for storage and marketing [24].  
4.1.1. Variable-Rate Fertility 

For refining variable-rate applications (VRA) like Potassium, 
Phosphorus and Nitrogen, satellite or ground-based images are consid-
ered more useful although RPAs do have their uses. For example, drone 
generated VRA maps are reported to be useful for in-season fertilizer 
applications on corn and other crops thereby adding up for increased 
yield [49]. Similarly, novel VIs are being investigated for remote detec-
tion of macronutrients. For example, hyperspectral remote sensing was 
used to monitor N, P and S in Oryza sativa L. reporting novel spectral 
algorithms especially for P (P_670_1092 and P_670_1260) and S 
(S_670_1090), as the previously reported VIs did not entail better accu-
racy for them [76]. Such advancements are really productive in preci-
sion agriculture favoring accuracy in real time monitoring. Figure 7 
represents the practical example of the data taken for a field of olive 
plants, using multispectral camera (Parrot Sequoia) mounted on 
Yuneec Typhoon H hexacopter drone flown on a height of 40 m, and 
the recommended areas of treatment depending upon the generated 
maps.  

 
Figure 7. Drone generated maps for olive crop using QGIS. (A) Map for ‘chlorophyll a’ representation gener-
ated based on GNDVI. (B) Map for vegetation status generated based on NDVI. (C) Map for humidity contents 
of the crop generated based on NDWI. (D) Representation of recommended treatment zones in the crop field. 
(Images facilitated by MC Biofertilizantes). 

4.1.2. Disease Surveillance 

Figure 7. Drone generated maps for olive crop using QGIS. (A) Map for ‘chlorophyll a’ representation generated based on
GNDVI. (B) Map for vegetation status generated based on NDVI. (C) Map for humidity contents of the crop generated based
on NDWI. (D) Representation of recommended treatment zones in the crop field. (Images facilitated by MC Biofertilizantes).



Agronomy 2021, 11, 7 17 of 25

4.1.2. Disease Surveillance

There is a possibility that crop withering and destroying pathogens evade detection
due to the lack of careful inspection. Here comes the role of drones as they can easily
distinguish the yellowing plants from the green ones [77]. In a study where drone was
used to monitor the canola crop, the mapped region was reported to exhibit reductions in
NDVI and leaf area index (LAI) hinting towards its inspection for nutrient deficiency, so
that the subsequent pest and disease can be detected beforehand [17].

4.1.3. Airborne Pathogens Surveillance

Another captivating use of drones is monitoring airborne pathogens (e.g., Phytoph-
thora or Fusarium). For this purpose, spore samples are collected using drones that later
are grown in the laboratory and analyzed by the researchers. Virginia Tech University is
undertaking this novel project [27].

4.1.4. Bird Pest Surveillance

An interesting use of drones is their potential in bird control strategies that is signif-
icant problem in agricultural community. Here too, drones have been demonstrated as
an effective remedy to psychologically fight off the bird pests in vineyard, where ravens,
silvereyes, and cockatoos were kept off [78].

4.2. Irrigation and Fertilization

RPAs are also serving to save water in agriculture. For substantial growers having
various outstretched fields, management of multiple irrigation pivots is a quite a challenge.
For example, in case of sorghum or jowar crops when they acquire certain heights, the
watering system (the nozzles and sprinklers) observation becomes a critical task. Therefore,
the use of RPA technology comes in handy for such situations by providing useful informa-
tion for precise application of water quantities in the required area. For example, studies
on apple crop with half of the field irrigated and the rest under water stress, resulted in
establishment of substantial correlation between drone thermal images and radiometers’
measured field data, where the trees under stress demonstrated significantly higher tem-
peratures [79]. Furthermore, farmers can efficiently opt for various rates of irrigation water
instead of the same rate throughout the field thus avoiding water wastage, provided the
right irrigation technology [49]. Furthermore, irrigation scheduling has also been proposed
based on the data obtained through drones [24].

Drought and irrational water use are provoking water scarcity in California, thus
requiring the formulation of modest irrigation management strategies [21]. In this respect,
use of drones can do the job. As for instance, satellite-derived evapotranspiration (ET)
maps and the ratio of real ET to reference (f RET) based on images of the Earth’s surface
temperature (LST) from remote sensors have been reported very useful to control crop
water use and stress in vineyards [80]. This suggests that using high-resolution images
from drones, better evapotranspiration maps can be established thus favoring precision
agriculture. Currently available evapotranspiration (ET) models that estimate ET with the
use of drone technology require, in addition to the selected Red and NIR spectral filters,
the incorporation of a temperature sensor along with information from the local weather
station [21].

It is commonly found that the water absorption is uneven i.e., some parts may get
missed while others may work faster. Thermographic and spectroscopic studies can
disclose the dry point of crop wilting. Apart from these, imaging can also serve the purpose
by the detection of leaks. To effectively assess the topography of the land, farmers can
benefit from the laser scanning technology or software capable of stitching hundreds of
high-quality aerial imageries into 3D maps. These 3D maps thus generated indicate the
water flow direction at the bottom of each tree in the orchard along with the identification
of other features [77].
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The chemicals or pesticides used in agriculture usually get absorbed by the crops
and natural resources including water and soil and ultimately become part of the food
chain thereby inflicting severe health impacts and pollution risks for the environment. The
excessive use of fertilizers is further responsible of soil degradation, loss of soil fertility and
subsequent degradation of water-related ecosystems. Therefore, RPAs have the potential
to minimize such dangers by helping in the administration of fertilizers and pesticides
in the specifically needed area rather than throughout the field. Such smart and targeted
irrigation and fertilization using RPAs is previously reported [15]. Employment of RPAs
in spraying fertilizers also paves the way towards sustainable agriculture. Not only this,
their operation rate is faster and cheaper as compared to other methods [24]. Psirofonia,
et al. [75] reported a very sophisticated use of RPA (DJI Phantom 3) to spray pesticide in the
nominated areas using electronic traps (E-Traps), which counts the insects and transmits
the data to the server that in turn directs the RPAs. Similarly, an efficient use of drone
was reported to control Spodoptera frugiperda, an invasive sugarcane crop pest, by spraying
pesticides with the help of 3WWDZ-10A, XAG [81]. Considering these studies, it is evident
that RPAs promise efficiency and low-cost in agriculture field.

4.3. Soil and Field Analysis

A variety of sensors can be mounted on RPAs that can help in the acquisition of soil
related data i.e., fertility levels of the soil, terrain conditions, nutrients content and moisture
content. This data further helps in management decision, planning, fertilizer application,
irrigation scheduling etc. [24]. Soil moisture at the spatial surface can be an important
indicator of crop conditions in cultivation lands, but its continuous estimation remains
a challenge due to the approximate spatial and temporal resolution of existing remote
sensing products [21]. However, environmental conditions, calibration, and terrain settings
can affect the measurements from sensors. Similarly, a novel methodology, which can
pave the way to minimize the erosion problem in agricultural fields, was proposed for
the classification of the field’s plowing depths using an RGB-D sensor capable of easy
integration into commercially available RPAs [82]. The other useful feature of RPA is that
the problems of plough pan formation and subsoil compaction can be effectively avoided
if RPAs are used for spraying and sowing purposes [24]. Thus, conserving the soil for
better yield.

Likewise, the excessive crop residues are mostly set to fire, thereby degrading soil and
adding up to environmental pollution. Using RPAs for spraying decomposing microbial
formulations on crop residues is an effective and environmentally friendly way to manage
the crop residues [24].

4.4. Weeds Management

It is a common problem that farmers do not have an idea of how critical the weed
issue was until they harvest their crop. By the mercy of drones, this problem can efficiently
be resolved by identifying the high-intensity weed growth regions and distinguishing them
from healthy crops [49]. RPAs have also been proposed effective for timely removal of
weeds to avoid resource depletion for the actual crop [24].

The use of drones for weed mapping encounters two major challenges: (a) distinction
between vegetation and bare soil, (b) distinction between weeds and crops. To overcome
these, three types of spectral values (i.e., weeds, crop and bare soil) are extracted from
pre-defined sampling areas [25]. Similarly, herbicides resistant weeds can also be identified
using data obtained by the mercy of agricultural RPAs [77]. This can effectively pave the
way to precision agriculture. Furthermore, RPAs can also be used to direct field robots to
remove weeds [19].

4.5. Crop Harvest

RPAs can effectively predict and indicate the optimum harvesting time of a crop or
fruit by analyzing the data taken by crop monitoring [24]. Few scientists have also proposed



Agronomy 2021, 11, 7 19 of 25

their application for fruit picking and aerial transport [19] that need further research in
this field. A practical example of this application is the prediction of maize yield using
MiniMCA12 camera [83]. More and more studies are being undertaken in this domain, as
yield prediction is an indispensable factor for both the farmer and the insurance companies.

4.6. Crop Insurance

In case of a natural disaster, it is very difficult to survey the large fields and obtain the
accurate data for insurance companies. RPAs are highly efficient for insurance companies
in aiding them to rank the percentage of field damage i.e., 70% or 90%, after a natural
disaster [27]. They also serve in saving a lot of material resources, manpower and thus
considerably reducing claim time limits [77]. The use of drones for survey purposes aimed
for state governments and insurance companies is also reported [24]. It is evident that
drone technology is being incorporated into the agriculture sector through the doors of
insurance companies as it meets their economic ends.

4.7. Mechanical Pollination

Robots can serve as pollinators. Although bee robots may not be of that much help,
they do have the potential of lending a hand to real bees. Recently, a pollen dump drone
pollinating fruits (i.e., apples, cherries and almonds) was developed by a New York based
startup that is optimistic about its future sales. Similarly, a few fruit growers are also
hopeful of the possible application of RPAs in their orchards [77].

4.8. Crops and Trees Plantation

Global warming is a pressing issue now a days. One way to combat this problem is by
planting new trees. RPAs are the best option here as they are labor cost effective and save
humans from the drudgery. Not only for trees or forests, they can be implied for sowing
crops thereby saving fuels and helping to reduce greenhouse gases emissions, as tractors
will not be used. Biodegradable seedpods or seed bombs can also be delivered using RPAs
for reforestation and for afforestation activities likewise [24].

4.9. Applications in Forestry

Initially, drones were employed for managing and monitoring forest fires. Even an
RPA, capable of flying up to 24 hours, was presented by the US Forest Service and National
Aeronautics and Space Administration (NASA). This shows the quick adoption of RPA
technology in this field. Additionally, other areas of RPAs application in forestry includes
research applications, mapping canopy gaps, quantifying spatial gaps, mapping forests
and biodiversity, measuring forest canopy height and attributes, precision forestry and
sustainable forest planning management, mapping diseases and estimating post-harvest
soil displacement [84,85]. One such example is the high-throughput phenotyping approach
that was implied to examine the phenology in the seedlings of conifer [86].

4.10. Applications in Livestock

By late-90s, cattle employment was added by many farmers to diversify their farms
during the days of low commodity rate. Drones are equally serving this field of agriculture.
Their uses include monitoring herds for their health and protection particularly during
night [49]. For example, an automated activity tracking of goats was achieved using
drone [87]. Similarly, drones also facilitate the ranchers to monitor the animals at a distant
pasture [27]. Equally, drones equipped with night cameras and thermal imager also help
to find the herd attacking and harassing animals. In the same way, human poachers can
also be monitored by these drones. One such example is their practically employment
in Kaziranga National Park India [77]. Another use of drones using thermal cameras is
stipulated as geo-fencing [24].
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5. Economical Aspects

At the beginning of the use of RPAs, it was projected that these technologies would
be closely integrated into agricultural activities at an accelerated rate and would become
a ubiquitous and low-cost tool for such operations [21]. However, several years later,
it is widely recognized that this available technology has not yet been integrated into
agriculture as expected despite the multiple offerings of the platform. Farmer’s lack of
awareness, complexity of use and higher costs are few of the reasons for slower adoption
of this technology in agriculture sector. Although their price start from as low as $10 but in
the context of agricultural RPAs it is not the case. For a starter system, agricultural drones
can range from $1000 and depending upon the cameras and other features can go up to
$10,000 or $20,000 [27]. For smallholder farmers, such costs are an impeding step towards
the adoption of this technology.

Nevertheless, drones are regarded as cost effective as they pay for themselves in few
usages considering the larger land holdings. Usually there is a possibility to replace their
parts in case of a crash. Similarly, they are fairly cost effective as compared to per hour price
of a piloted airplane, and application of fertilizers and pesticides further adds up into the
cost effectiveness [27]. One such example of cost effectiveness, of using drones, is reported
by Psirofonia, et al. [75] where they used drones to spray pesticide. In another study,
three RPAs models, eBee (fixed wing), Phantom 2 (rotary wing) and X8 (fixed wing), were
tested to monitor palm cultivation for oil extraction. Infrared images were used to monitor
punning and disease identifications. Of these eBee equipped with NIR was reported as an
efficient model in monitoring pathologies e.g., analysis of chlorosis. Although eBee was
reported expensive economically, with flight time of 45 min and coverage of 100 ha per
flight at 150 m altitude. The Phantom 2 was regarded as cheapest economically, with flight
time of 25 min and coverage of 12 ha per flight at 150 m altitude. The X8, having a flight
time of 45 min and coverage of 100 ha per flight at 150 m altitude, was regarded in medium
range economically [17].

Another excellent example where RPAs are efficiently aiding in the economy is weed
management. A cost of 16–45 € per ha was saved by efficient use of herbicides in in maize
field based on the RPA post-emergence image data [88]. This study also strengthens the
efficiency of PA thereby not only reducing the input costs but also ensuring the uniformity
of application. Similarly, the use of RPAs in forestry for recording the vegetation dynamics
was regarded as highly economical given the possibility of their year-round use and
providing high resolution images [89].

Integrated RPA Technology

RPAs do promise a high temporal and spatial resolution but considerably lower
spectral resolution, as it depends upon the amount of spectral ranges or bands and the
sensor detected wavelength. Sensors are usually costly and thus make a RPA expensive.
A low spectral resolution sensor is cheaper, with red (0.62–0.70 µm), green (0.49–0.58 µm)
and blue (0.45–0.49 µm) bands and taking images only in visible range, as compared to a
multispectral sensor that also measures the infrared (IR; 0.78–10.0 µm) bands thus providing
a better vegetation index, i.e., such as NDVI. Sensors measuring thermal radiations from
mid-infrared (MIR) to the far-infrared (FIR) are also available based on their perspective
use [17].

NIR cameras have been used in several studies [38,46,88,90–92], although these sensors
are costly. For this reason, cameras with only visible bands are preferred [36,37,92,93] that
are relatively cheaper. Consequently, a modified photochemical reflectance index (MPRI)
using only red and green band was proposed. A study was undertaken in São Carlos to
investigate the temporal and spatial variability of the MPRI vegetation index of grass, and
demonstrated its potential for grass cultivation management and control [17].

In another study of wheat mapping, six spectral indices including VEG, CIVE, Woebbe-
cke index, ExGR, ExG, and NGRDI were studied using a RPA carrying a conventional
low-cost camera. Of these, VEG and ExG with values varying from 83.74% to 87.82% at
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60 m flight altitude and from 87.73% to 91.99% at 30 m flight altitude were regarded as
optimum [37]. Similarly, a study reported the use of conventional RGB camera but with its
red filter removed. Thus, modifying the camera to capture green, blue and NIR bands that
promise a useful tool for plant health, vegetation and phenology monitoring [17]. Such
findings are further straightening up the way for making the technology more efficient and
economically accessible for small farmers for real time inspections, monitoring and decision-
making. With rapid progress of technological inventions, sensors, cameras, gimbles and
basic RPA architecture are becoming more and more efficient, thus promising a greener
and more sustainable agriculture. A summary of applications of drones in agriculture is
presented in Figure 8.
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6. Conclusions and Future Prospects

The use of RPAs in agriculture has seen several advancements in the last decade.
Being a component of clean technology, it is an excellent contender for sustainable and
precision agriculture. RPAs have the potential to actively to contribute to close the yield
gap and to ensure food security. Similarly, the benefits like land and crop monitoring,
high quality images, real time analysis, cost effectiveness etc. that RPA technology offers
makes it fit for agricultural sustainability. Basically, fixed wings and rotary wings RPAs are
used in agriculture equipped with multispectral cameras and sensors as per need of the
farmers, of which rotary winged RPAs with better maneuverability, and vertical landing
and takeoff abilities are preferred. They are effectively being employed in agriculture and
their applications include crop monitoring, disease surveillance, irrigation and fertilization,
soil analysis, weeds management, crop harvest, crop insurance, mechanical pollination,
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crops and trees plantation along with their numerous uses in forestry and livestock, thereby,
ensuring the sustainability and economical gains.

With the novel technological and technical developments, adoption of RPAs is be-
coming easier; although there is further need of thorough investigation to help this transi-
tion economically feasible, sustainable and smooth. Likewise, novel algorithms, devised
through artificial intelligence and machine learning can effectively contribute for applica-
tion maps. There is a lack of simulation data and interpretation of the data and images
taken by RPAs. Equally, sensors used in RPAs need to be effectively optimized and able
to rectify the bogus inputs. This will not only make the RPAs more economical but will
also render them more efficient. The interface used for RPA technology further needs to be
simplified so as to facilitate the farmer in their use and understanding the data without any
assistance of a pilot or a researcher. Similarly, applications and software are needed for the
fast processing and real time data sharing. Studies on autonomous RPAs have also begun,
thereby providing more autonomy to the farmer, but they still are in their nascent phase.
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