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Anomalous Lifshitz dimension in hierarchical networks of brain connectivity
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The spectral dimension is a generalization of the Euclidean dimension and quantifies the propensity of a
network to transmit and diffuse information. We show that in hierarchical-modular network models of the brain,
dynamics are anomalously slow and the spectral dimension is not defined. Inspired by Anderson localization in
quantum systems, we relate the localization of neural activity—essential to embed brain functionality—to the
network spectrum and to the existence of an anomalous “Lifshitz dimension.” In a broader context, our results
help shed light on the relationship between structure and function in biological information-processing complex
networks.
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I. INTRODUCTION

Understanding the interplay between dynamical processes
and the architecture of the networks embedding them is a fun-
damental problem in diverse fields including material science,
genetic regulation, and neuroscience. Dynamical features and
patterns of activity are often affected or controlled by key
structural features of the underlying network, such as the de-
gree distribution, degree correlations, modular organization,
k-core structure, etc. [1–5]. However, given that such features
are usually not independent, a more systematic way to tackle
the problem of the interplay between structure and dynam-
ics relies on the use of spectral-graph characterizations of
the network architecture [6,7] and, importantly, the network
dimension. Statistical mechanics teaches us that dynamical
processes such as diffusion, vibrational excitations, and crit-
ical properties near second-order phase transitions exhibit
universal behavior, which depends crucially on the lattice
(Euclidean) dimension [1–3,8,9]. The case of heterogeneous
networks is more complex, since multiple and diverse gen-
eralizations of the concept of dimension have been proposed
[10–12]. Nevertheless, compelling pieces of evidence show
that dimensionality measures are effective determinants of
dynamics and activity in networked complex systems. The
simplest example is provided by networks with the small-
world property [13–15], which exhibit diameters that grow
only logarithmically with the network size N and, conse-
quently, with diverging Hausdorff dimension. We recall that
the Hausdorff dimension dH, also called the “topological di-
mension” in the literature [16,17], can be computed easily
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starting from the number ui(r) of nodes within distance r from
node i: if 〈ui(r)〉 ∼ rd (where 〈.〉 stands for the average over
all nodes in the network), implying dH = d . Diverging dH

typically implies enhanced transmission, signal propagation,
and high synchronizability.

A somewhat more complex example of how dimension-
ality controls activity patterns in networks is provided by
hierarchical-modular networks, as models, e.g., for brain con-
nectivity [18,19]. It was first pointed out that the hierarchical-
modular organization of brain regions results in network
models of finite Hausdorff dimension dH and, at odds with
small-world graph topologies, with intrinsically large diam-
eters [20]. The large-world property resulting from finite dH

in hierarchical-modular networks, a purely structural feature
of the network, has been linked to signatures of anomalous
activity patterns in brain network models, including, among
others, sustained activity [21], subdiffusive dynamics [22],
localization phenomena and stretched criticality in the form
of Griffiths phases [17,23,24], broad avalanche distributions
[17,25], states of localized and “frustrated” synchronization
[26–30], rounding of first-order phase transitions [31], and
ergodicity breakdown [32,33]. Importantly, some of these
anomalous dynamical traits are, in fact, considered essential
to the ability of brain networks and of brain-inspired hierar-
chical architectures to achieve an optimal balance between
segregation and integration [18], allowing them to conduct
multiple tasks simultaneously, entailing optimal computa-
tional capabilities [34]. Let us also note that a significant part
of the above-mentioned phenomenology uses concepts, such
as Griffiths phases, first introduced to study (Anderson) lo-
calization phenomena in quantum systems described, e.g., by
a random tight-binding Hamiltonian [35], and later extended,
for instance, to the Laplacian matrix of a graph [36,37].

In this paper, we aim at providing a theoretical foundation
for the phenomenological observations of anomalous behavior
and localization effects obtained so far in hierarchical-
modular networks, establishing for the first time a clear link
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between the emergence of such localization patterns of activ-
ity and synchrony and spectral properties of the underlying
graphs.

The fundamental concept allowing us to develop our ap-
proach is the spectral dimension ds of a graph—as well
as an important extension of it, which we call the Lifshitz
dimension—which can be defined and measured by simple
random-walk (RW) analyses [38–40]. Given the probability
Pi j (t ) that a random walker starting at time t0 = 0 from node
i arrives at node j after t steps, one can compute the average
return probability as R(t ) = ∑N

i=1 Pii(t )/N . If a real positive
ds exists, such that R(t ) ∼ t− ds

2 , ds is defined as the (average)
spectral dimension of the network [40]. While for infinitely
large networks further complications arise due to the possibil-
ity of transient random walks [39], here we focus on networks
of finite, albeit very large size N , so that the above definition
is intended to hold asymptotically, in the limit of large N
and large t . The spectral dimension, not unlike the Hausdorff
dimension introduced above, is a generalization of the concept
of dimension. Actually, in discrete lattices ds = dH, so that
both generalizations agree with the Euclidean dimension of
the embedding continuum space. This equivalence does not
hold in general in heterogeneous networks, nor does it in de-
terministic fractals [8]. We notice in particular that while dH is
a purely structural measure, ds is an observable of a diffusion
process operating on the network, and as such it provides us
with a probing tool for dynamical signatures of localization
and slowing down, and a first approximation in cases, like
that of brain activity, with much more complex dynamics.
The relationship between different definitions of a network di-
mension and their use to predict the emergence of anomalous
dynamical patterns thus remains an open question to be fully
clarified. For example, it was initially conjectured that Grif-
fiths phases—characterized by string localization features—in
heterogeneous networks can only occur in the finite-dH case
[16,17]; however, this view was challenged by Millán et al.,
who found that even networks with infinite dH can exhibit
similar dynamical regimes, provided that ds is finite instead
[41].

II. RESULTS

With the above considerations in mind, we analyze the
spectral dimension of hierarchical-modular network models
of brain connectivity [17], with the objective of quantify-
ing how the basic traits of brain activity localization, which
are captured by these simple network models, are reflected
by ds and stochastic diffusion null models. To this end, we
conducted very-large-scale RW simulations in hierarchical-
modular network models of tunable Hausdorff dimension dH

and computed the average return probabilities R(t ).
We chose to work with the model proposed in [17,42]

for the generation of synthetic hierarchical-modular networks;
this model comes with a single effective parameter α (the
connectivity strength) and an additional parameter s fixing
the number of hierarchical levels. In this model the aver-
age network degree 〈k〉 and (asymptotically) the Hausdorff
dimension dH are both proportional to α so that sparser net-
works have smaller Hausdorff dimension. While other models

FIG. 1. Return probabilities for hierarchical-modular networks
with N = 225, s = 23, and increasing α. Even at large sizes, no clear
power-law decay is visible and the asymptotic behavior is dominated
by a slower (stretched-exponential) tail, before the finite-size cutoff
takes over. Similar results have been found for smaller sizes and
different choices of s.

proposed in the literature might differ in the choice of pa-
rameters [21,25,43,44], we believe that the conclusions of
the current work remain unchanged. In order to capture the
large network size limit of the system, we performed random-
walk computer simulations on networks of sizes up to 225 ≈
3 × 107, and for time windows large enough as to ensure that
all walkers return to the starting node (which, we recall, is
possible because N is finite in our case).

Figure 1 shows the return probabilities for a typical choice
of parameters (N = 225, s = 23), and for increasing values
of α and, thus, increasing Hausdorff dimension dH. One can
immediately see the anomaly in the asymptotic behavior of
R(t ): while for intermediate t the curves develop a heavy tail,
resembling a power law, the slope of such tails apparently de-
creases in absolute value upon increasing α, and later develops
a nontrivial large-t bump, significantly before the finite-size
cutoff appears. In cases in which the spectral dimension is
defined, we would expect the slope to increase in absolute
value with α, implying that ds increases with dH and one
would expect that behavior to be the asymptotic (t → ∞) one.
In the present study, instead, one is forced to conclude that
dynamical slowing down is so radical that the asymptotics
are given by the excess returns at very large t (the bump in
the curves above) and the average spectral dimension is, as a
consequence, undefined.

The absence of a well-defined spectral dimension is an
already interesting result within the study localization and
dynamical slowing down in models of brain connectivity. Sup-
pression of diffusion and free flow are considered signatures
of anomalously slow dynamical regimes, which ensure the
balance between global integration and functional modularity
of brain activity [20,22,45]. To proceed, let us first elucidate
the nature of the asymptotic behavior of the return probabil-
ities. Figure 2 reveals that the large t dependence of R(t ) is
dominated by a stretched-exponential behavior R(t ) ∼ e−tβ

,
governed by a nontrivial positive β < 1 (for ease of nota-
tion, we measure t in dimensionless units). We call β the
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FIG. 2. Quantitative analysis of the stretched-exponential behav-
ior found in Fig. 1. (a) Semilogarithmic-scale plot of the return
probability. For each curve (each value of α) the value of β is chosen,
which makes the stretched-exponential tail appear as a straight line.
Color scheme is as in Fig. 1. (b) The values of β used in (a) (N = 225,
s = 23, blue line) as well as for a smaller system (N = 224, s = 22,
gray line).

anomalous exponent, as its value quantifies the dynamical
slowing down with respect to the standard scenario where a
spectral dimension is defined. To confirm this view, Fig. 2 also
shows the dependence of β on α and thus on the Hausdorff
dimension of the network. Sparser networks exhibit stronger
anomalous behavior, with the anomaly exponent loosely pro-
portional to the Hausdorff dimension.

In order to make analytical progress, we exploit well-
known methods of spectral graph theory [6,7]. Let us write
the exact master equation, describing a random walk as a
time-continuous Markov process on a generic undirected and
unweighted network, encoded in an adjacency matrix A, as
follows:

q̇(t ) = −LRW q(t ), (1)

where q(t ) is the column vector, whose generic element qi(t )
represents the probability of the random walker to reach node
i at time t , and LRW is the random-walk Laplacian matrix with
elements LRW

i j = δi j − Ai j/k j with i, j ∈ 1, 2, . . . , N . Here Ai j

is the generic element of A, equal to 1 if nodes i and j are
linked and 0 otherwise, and k j = ∑N

i=1 Ai j is the degree of
node j. In order to compute the solution to Eq. (1), one can
introduce the normalized Laplacian L, defined by the similar-
ity transformation LRW = D

1
2 LD− 1

2 , where D is the (diagonal)
degree matrix of generic element Di j = δi jk j . L is symmet-
ric and diagonalizable, and by virtue of their similarity, L
and LRW have the same spectrum of eigenvalues, albeit with
different eigenvectors [6]. The solutions of Eq. (1) can then
be written through the eigen-decomposition of L, as qi(t ) =∑N

j=1 k1/2
i Ki j (t − t0)k−1/2

j q j (t0), in which we introduced the
heat kernel K(t ) of generic element [46]:

Ki j (t ) =
N∑

m=1

e−λmtVimVjm, (2)

where λm is the mth eigenvalue of L, Vim is the ith component
of the eigenvector of L associated with λm, and t0 = 0 with-
out loss of generality. This well-known identity allows us to
connect the spectral perspective with random-walk simulation
results: one can easily see that the average return probability

R(t ) is related to the trace of K(t ) (or heat trace) through the
simple relationship [46]

R(t ) = 1

N

N∑
i=1

Kii(t ) = 1

N

N∑
m=1

e−λmt . (3)

The eigenvalues λm are all real and non-negative and, under
the assumptions that the network is undirected and connected,
the 0 eigenvalue is unique and one can always choose the
labeling 0 = λ1 < λ2 � λ3 � · · · [6]. As a consequence, a
random walk always reaches a steady state above a timescale
given by the smallest nonzero eigenvalues [6]. By making a
continuum spectrum approximation for λ � λ2, one can in-
troduce the density of states (eigenvalue density distribution)
ρ(λ), so that Eq. (3) can be approximated by its continuum
limit

R(t ) ≈
∫

ρ(λ)e−λt dλ, (4)

where the integral is dominated by the contribution of the
lower spectral edge. Thus, under the present assumptions, the
density of states ρ(λ) and the return probability are related
through a simple Laplace-transform operation. In lattices,
which are endowed with an integer spectral dimension, this
result is well known and leads to ρ(λ) ∼ λ(ds/2)−1, which
shows the relationship between the Laplacian spectra and
the spectral dimension [40]. This result is also well known
in terms of vibrational frequencies ω ∝ √

λ in lattices and
deterministic fractals, leading to a power-law density of states
ρ̃(ω) ∼ ωds−1 [8].

While the approximation in Eq. (4) holds in many cases,
we expect the conclusions regarding ds to be radically differ-
ent in the case of hierarchical-modular networks, for which
our numerical results reveal anomalous stretched-exponential
tails of the return-probability function R(t ). This anomaly is
indeed reflected in the lower spectral edges and in particu-
lar in ρ(λ) as we show below. It was hypothesized in the
past [17] that low eigenvalues of L in such networks form
a continuous spectral tail, a Lifshitz tail, in analogy with the
random Hamiltonian operators in a tight-binding Schrödinger
equation [37]. In particular, it was noted that Lifshitz tails may
be relevant to assess the subcritical dynamics in models of epi-
demic spreading, in the framework of a linearized quenched
mean-field approximation [23]. The random-walk problem
that we study here, instead, can always be mapped exactly to
the quantum problem, with the energy eigenvalues Em of the
quantum problem being replaced by the Laplacian eigenvalues
λm [37]. Under the hypothesis of Lifshitz tails, the integrated
density of states of L (i.e., the cumulative eigenvalue density
distribution) is expected to exhibit a tail of the general form
[35]

N (λ) = c1exp
[
c2(λ − λ0)−

dL
2
]
, (5)

where λ0 is the lower bound of the continuum spectrum,
which we can set equal to 0 in the case of hierarchical-modular
networks, as they possess vanishing spectral gaps (0 < λ2 �
1) [17], and c1 and c2 are constants. The real number dL

coincides with the space Euclidean dimension in the origi-
nal Lifshitz argument for continuum quantum problems. In
the present discrete classical case, since that we cannot yet
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provide a Lifshitz-like argument, we simply name dL the
Lifshitz dimension of the problem. In the light of the above
considerations, the density of states ρ(λ) = dN /dλ is domi-
nated by the following low-λ tail:

ρ(λ) ∼ exp
(
c2λ

− dL
2
)
. (6)

Observe that Eq. (6) differs significantly from the above
power-law relationship for lattices ρ(λ) ∼ λ(ds/2)−1. Is such
a difference a spectral signature of the anomalous behavior
[i.e., the stretched-exponential tail of the return probabilities
R(t ) and the lack of a well-defined spectral dimension ds]
encountered in RW simulations? As the two representations
connect through Eq. (4), one can compute R(t ) as in Eq. (4),
using the hypothesis of a Lifshitz tail from Eq. (6). While
the integral involved in the calculation, of the form w(t ) =∫

eg(λ,t )dλ with g(λ, t ) = c2λ
−dL/2 − λt , is highly nontrivial

in the case of real dL, here we are only interested in its
asymptotic t → ∞ behavior, which is captured by the values
of λ for which g(λ, t ) is maximum. This is readily obtained
through the saddle-point approximation w(t ) ≈ eg(λ∗,t ), with
λ∗ the location of such maximum, leading to the final result

R(t ) ∼ exp
( − t

dL
2+dL

)
. (7)

Equation (7) remarkably recovers a stretched exponential tail
behavior, as reported above for computer simulations, con-
firming for the first time that the dynamical slowing and lack
of spectral dimension can be attributed to the existence of
Lifshitz tails and providing us with an interpretation of the
anomalous exponent in terms of the Lifshitz dimension, dL:

β = dL

2 + dL
. (8)

We can conclude that in the present hierarchical-modular net-
work model, not only Lifshitz tails explain the anomalous
dynamics and the lack of a well-defined spectral dimension,
but also dL provides us with a meaningful dimensionality
measure, generalizing the behavior of quantum systems in the
continuum, where the Lifshitz dimension identifies the spatial
dimension.

So far, we have only hypothesized that the lower spectral
edge of L exhibits a Lifshitz tail of the form given by Eqs. (5)
and (6). Now we corroborate such a hypothesis by verifying
not only that the integrated density of states N (λ) obeys the
tail behavior in Eq. (5) but also that the exponent dL/2 govern-
ing it generates the anomalous exponent β of the dynamical
simulation, as predicted by the result in Eq. (8). To this end,
we notice that according to the prediction above, one expects

ln[− lnN (λ)] ∼ (dL/2) ln 1/λ (9)

for large 1/λ. We obtain dL = 2β/(1 − β ) from Eq. (8), and
using the values of β obtained from the initial random-walk
simulations one can easily verify Eq. (9) by computing the
lower spectral edges of hierarchical-modular networks of the
same type. Computational results, shown in Fig. 3, clearly
confirm the linear dependence predicted by Eq. (9) for small
values of λ. In other words, the prediction based on the
Lifshitz tails assumption is correct: the spectra of hierarchical-
modular networks exhibit Lifshitz tails, with an associated

FIG. 3. Lower spectral edge of L. Using the rescaling from
Eq. (9), Lifshitz tails appear as straight lines. By choosing values
of dL obtained from the RW simulation results through Eq. (8), Lif-
shitz tails collapse in a single curve, confirming that the anomalous
dynamical behavior has its origin in the spectral properties of L.

Lifshitz dimension dL, and their concomitant anomalous dy-
namical behavior is controlled by dL.

Moreover, even if not explicitly analyzed here, the eigen-
values in the Lifshitz tail have strongly localized eigenvectors,
meaning that their components vanish almost everywhere ex-
cept in specific network locations such as moduli [6,17]. This
property, known as eigenvector localization [35], is analogous
to the case of disordered quantum systems, where localiza-
tion stands for absence of diffusion, and has been observed
in models of epidemic spreading on networks [23,47–49],
as well in problems inspired by brain connectivity [17,44]
and biological materials [50]. In the particular case of brain
dynamics, localization can play a key role in allowing for task
segregation.

III. DISCUSSION AND CONCLUSIONS

It is noteworthy that the emergence of classical Lifshitz
tails in network spectra has been rigorously proved in Erdős-
Rényi graphs below the percolation threshold [37], i.e., for
networks that have not yet developed a giant connected
component. Our results suggest a remarkable property of
hierarchical-modular networks, which exhibit Lifshitz tails
while being connected, i.e., while possessing a single con-
nected component. We believe that Lifshitz tails, and the
resulting anomalous dynamical behavior, may be observed
in general in network models exhibiting similar localization
properties, such as hierarchical trees displaying patchy per-
colation [51], and dense hierarchical Dyson networks [34],
where ergodicity is known to break down in the thermody-
namic limit [32,33]. In fact, we propose the emergence of
Lifshitz tails and their associated Lifshitz dimension as a
criterion for the existence of localization in networks.

Our focus on the spectral dimension and its undefined
nature in hierarchical networks allows us to establish a con-
nection between network structural properties and anomalous
dynamics in systems such as brain networks, where the on-
going structure versus function debate has long dealt with
the issues of relating activity patters to specific anatomical
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arrangements, or alternatively presenting them as emergent, or
self-organized. Our results clearly show a connection between
dynamical slowing down, localization properties, and Lapla-
cian spectra; let us emphasize that such a correspondence is
clean-cut because of the simplicity of the random-walk model,
and possibly because of the simplifying assumptions in the
choice of our network model. While diffusion—lacking any
form of nonlinearity—is arguably a very crude simplifica-
tion of neural dynamics on the structurally complex human
connectome [19], it has been found that the eigenvectors of
a diffusion problem on the connectome are relevant in pre-
dicting functional patterns of neural activity [52,53]. More
in general, the Laplacian matrix provides the linearization of
oscillator models near a synchronization transition [54] and
the relevance of its spectrum in the problem of brain syn-
chronization has been discussed in the literature and related
to the observation of frustrated synchronization [26–28,41].
While some of those results were based on the hypothesis
of the existence of Lifshitz tails, here we are able to prove
such a hypothesis and rationalize those results within a proper
theoretical framework, where the slowing down of synchro-
nization processes is governed by the Lifshitz dimension dL,
which effectively tunes the dynamical anomalies. Let us also
note that while the approach here resorts to unweighted net-
works, the Laplacian formalism lends itself to the introduction
of weights [32,33], a quantity that in neuroimaging encodes
the number of connections between pairs of brain regions.
Beyond the case of pairwise interactions, recent advances in
integrating the concepts of diffusion and spectral dimension
within the broader field of algebraic topology and simplicial
complexes [55–57] provide a promising avenue to strengthen
the theoretical framework for the localization phenomena that
we discuss here to describe, for instance, systems with higher-
order interactions between their components or nodes.

In conclusion, we have established a theoretical framework
for the prediction of anomalous dynamics in hierarchical net-
work models of interest in brain modeling. To our knowledge,
hierarchical-modular networks constitute the first heteroge-
neous network model displaying Lifshitz tails above the
percolation threshold, and the first not to exhibit a power-law
behavior for the average return probability and a well-defined
spectral dimension. Being able to connect these two singular
features allows us to rationalize previous experimental obser-
vations of activity localization in the brain and their numerical
models, where spectral anomalies and Lifshitz tails were only
hypothesized. We believe that these results will stimulate in-
terest and further work, in, e.g., computational neuroscience,
as a way to advance the knowledge on how the brain achieves
an optimal balance between segregation (localization on spe-
cific moduli) and integration. In particular, we plan to extend
our approach to novel network models of brain connectivity,
including important architectural features such as a prominent
core-periphery or rich-club organization [58–60]. Finally, we
are confident that the present framework will provide us with
more powerful tools for the tunability and controllability of
network models exhibiting strong localization, relevant in the
design of synthetic networks for brain-inspired neuromorphic
computing.
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