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Abstract: In this paper, we discuss a new stochastic diffusion process in which the trend function
is proportional to the Lomax density function. This distribution arises naturally in the studies of
the frequency of extremely rare events. We first consider the probabilistic characteristics of the
proposed model, including its analytic expression as the unique solution to a stochastic differential
equation, the transition probability density function together with the conditional and unconditional
trend functions. Then, we present a method to address the problem of parameter estimation using
maximum likelihood with discrete sampling. This estimation requires the solution of a non-linear
equation, which is achieved via the simulated annealing method. Finally, we apply the proposed
model to a real-world example concerning adolescent fertility rate in Morocco.

Keywords: stochastic differential equation; lomax distribution; trend functions; statistical inference;
simulated annealing; adolescent fertility rate

1. Introduction

Stochastic diffusion models are used to analyze the evolution of phenomena in multi-
ple fields of science, including biology, finance, energy consumption and physics. In ad-
dition to traditional applications, stochastic diffusion processes (SDPs) have attracted
considerable attention as analytical tools in areas such as cell growth, population growth
and environmental studies. In this respect, see for example: Lognormal [1]; Gompertz [2];
Logistic [3]; Hyperbolic [4]; Rayleigh [5]; Pearson [6]; Weibull [7] and Brennan–Schwartz [8].

However in most of these studies, the processes considered are time homogeneous,
in other words, the present state of the process depend only on the previous states and not
on time. In contrast observations from many fields such a as neuroscience, finance and
biology, suggest otherwise. Various non-homogeneous SDPs have been proposed to reflect
this time dependent behavior, see for example: Lognormal [9], Gompertz [10], Vasicek [11],
Brennan–Schwartz [12], and Gamma [13] processes.

In most of the aforementioned studies, the statistical inference is based on the maxi-
mum likelihood function, which is the product of transition densities. However, in some
cases the closed form of the transition density is unknown, or has complicated expres-
sion, so the maximum likelihood method remains difficult to implement. Therefore many
methods based on an approximation of the maximum likelihood were developed, such as:
Prakasa-Rao [14], Kloeden et al. [15], Bibby et al. [16] and among others.

The Pareto type (II) distribution or Pearon type (IV) distribution, also called Lomax
distribution, was introduced and studied by Lomax [17]. This distribution is commonly
used in reliability and many lifetime testing studies. It is also used to analyze business data.
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The density function of a Lomax distribution on [0,+∞[ with β > 0 (scale parameter),
and α > 0 (shape parameter) is given by:

f (t) =
α

β

(
1 +

t
β

)−(α+1)
. (1)

This distribution is a special case of a more general one called the Generalized Pareto
distribution, the density function of which has the following form:

g(t) =
1
σ

(
1 +

k(t− µ)

σ

)(− 1
k−1)

,

where µ and k are real parameters and σ > 0. This distribution encompasses the Pareto

distribution as a special case since if we set µ = 0 and k =
1
α

we obtain the Equation (1).
In the present paper, we introduce a new Stochastic Lomax Diffusion Process (SLDP)

as a non-homogeneous extension of the lognormal process, and which presents a trend
function that is proportional to the Lomax density function. Moreover, the term adopted
for the model we study will be improved by stochastic calculus. In this work, we will
present a detailed and complete study of the Lomax Model. To this end, we will proceed as
follows: In Section 2, we define the model in terms of stochastic differential equation (SDE),
we then give the analytical expression of the solution of the proposed model. After which,
we determine the Transition Probability Density Function (TPDF) and the trend functions.
In Section 3, we deal with the problem of parameter estimation using Maximum Likelihood
(ML) in the basis of discrete sampling. In this case, the system of likelihood equations
does not have an explicit solution, so as a result the ML estimators cannot be given in the
closed form. Then, one possible way to solve this basic problem is the use of numerical
methods. In Section 4, we propose the simulated annealing method approximating the ML
estimator then we show the results of the simulation of the process in Section 5. Moreover,
in Section 6, we illustrate the results obtained by this method by reference to real data,
namely the adolescent fertility rate in Morocco. Finally, we summarize the main conclusions
drawn from this work.

2. The Model and Its Characteristics
2.1. The Model

The proposed model is the one-dimensional non-homogeneous SDP {x(t), t ∈ [t1, T],
t1 ≥ 0} taking values on [0, ∞] and with drift and diffusion coefficients:A1(x) = − α

t + β
x ,

A2(x) = σ2x2 ,
(2)

where σ > 0, β > −t1 and α are real parameters.
Alternatively, the process defined above can be considered as the unique solution to

the following SDE:

dx(t) = − α

t+β
x(t)dt + σ x(t)dw(t), x(t1) = xt1 , (3)

where w(t) is the one-dimensional standard Wiener process and xt1 is fixed in R∗+.

2.2. Distribution of the Process

The SDE in Equation (3) has a unique solution (see Kloeden et al [15]). In order to
obtain this solution, we consider the appropriate transformation y(t) = log(x(t)), then, by
means of Itô formula, the Equation (3) becomes:
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dy(t) =
(
− α

t + β
− σ2

2

)
dt + σdw(t),

y(t1) = ln(xt1).

The solution to which is:

y(t) = y(s) +
∫ t

s

(
− α

θ + β
− σ2

2

)
dθ + σ(w(t)− w(s)).

For s ∈ [t1, t]. Hence, we deduce the expression of the solution to SDE in Equation (3):

x(t) = xs

(
s + β

t + β

)α

exp
[
−σ2

2
(t− s) + σ(w(t)− w(s))

]
, (4)

then x(t)|x(s) = xs follows a Lognormal distribution:

x(t)|x(s) = xs ∼ Λ
(

log(xs) + αlog
(

s + β

t + β

)
− σ2

2
(t− s), σ2(t− s)

)
.

where Λ is the Lognarmal distribution. As a result, the TPDF of this process is found to be:

f (x, t|xs, s) =
1

x
√

2π(t− s)σ2
exp

−
[
log
(

x
xs

)
+ αlog

(
t+β
s+β

)
+ σ2

2 (t− s)
]2

2σ2(t− s)

.

2.3. Trend Functions

From the properties of the Lognormal distribution, the main characteristics of the
process can be determined, in particular the r-th conditional moment of the process is
given by:

E(xr|x(s) = xs) = exp
[

r
(

log(xs) + αlog
(

s + β

t + β

)
− σ2

2
(t− s)

)
+

r2

2
σ2(t− s)

]
.

Then, by considering the case where r = 1 in the previous expression, the conditional
trend function of the process is:

E(x(t)|x(s) = xs) = xs

(
s + β

t + β

)α

. (5)

In addition, taking into account the initial condition P(x(t1) = xt1) = 1, the trend
function of the process is:

E(x(t)) = xt1

(
t1 + β

t + β

)α

. (6)

We note here that:

• The trend function as defined in Equation (6) is proportional to the Lomax density
function Equation (1).

• Otherwise, in the absence of white noise (i.e., σ = 0) the solution to equation
Equation (3) is
x(t) = xs(

s+β
t+β )

α which is proportional in this case to the Lomax density func-
tion [18], with shape parameter α and scale parameter β, which can be denoted
P(I I)(β, α, µ = 0).
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3. Maximum Likelihood Estimation

We consider a discrete sample of n observations of the process x(t) which we denote
here (xi)i=1,...,n, let (t0 < t1 < ... < tn) denotes the moments when the process was
observed with xi = x(ti) moreover we set ti − ti−1 = h, and finally θ = (α, σ) is the
parameters vector.

We know that the likelihood function l(x, θ) is the product of the densities functions:

l(x, θ) =
n

∏
i=2

f (xi, ti|xi−1, ti−1)

=
n

∏
i=2

1

x
√

2πhσ2
exp

−
[
log
(

xi
xi−1

)
+ αlog

(
ti+β

ti−1+β

)
+ σ2

2 h
]2

2σ2h

.

The Log-likelihood is given by:

L(x, θ) = log(l(x, θ))

=
n

∑
i=2
−log(xi)−

1
2

log(2πh)− 1
2

log(σ2)

− 1
2σ2h

[
log
(

xi
xi−1

)
+ αlog

(
ti + β

ti−1 + β

)
+

σ2

2
h
]2

= −n− 1
2

log(σ2)− n− 1
2

log(2πh)−
n

∑
i=2

[
log(xi) +

1
2σ2h

(
Ci,α,β +

σ2

2
h
)2]

,

where Ci,α,β = log
(

xi
xi−1

)
+ αlog

(
ti+β

ti−1+β

)
.

We differentiate this function with respect to the elements of vector θ to obtain the
following equations:

n

∑
i=2

(
Ci,α,β +

σ2h
2

)
log
(

ti + β

ti−1 + β

)
= 0, (7)

(
n

∑
i=2

C2
i,α,β

)
− (n− 1)σ2h− n− 1

4
σ4h2 = 0, (8)

n

∑
i=2

Ci,α,β +
σ2h

2
(ti + β)(ti−1 + β)

= 0. (9)

Equation (8) is a second-degree equation in σ2, which admits two solutions (since
the discriminant is δ = (n − 1)2h2 −

(
∑n

i=2 C2
i,α,β

)
(n − 1)h2 > 0). Therefore, from the

non-negative solution corresponding to σ2, the estimator σ̂2 is given by:

σ̂2 =
2
h

(1 +
1

n− 1

n

∑
i=2

C2
i,α,β

)1/2

− 1

. (10)

By replacing σ2 by σ̂2 in Equation (7), the estimator of α is satisfying the following
non-linear equation:

n

∑
i=2

Ci,α,β +

(
1 +

1
n− 1

n

∑
i=2

C2
i,α,β

)1/2

− 1

log
(

ti + β

ti−1 + β

)
= 0, (11)



Mathematics 2021, 9, 100 5 of 9

On the other hand, substituting σ2 by σ̂2 in Equation (10),

n

∑
i=2

Ci,α,β +
(

1 + 1
n−1 ∑n

i=2 C2
i,α,β

)1/2
− 1

(ti + β)(ti−1 + β)
= 0. (12)

Obviously, this is a set of non-linear equations whose solutions may be difficult to
find. To address this problem we use numerical resolution methods.

4. Computational Aspects

In this paper we suggest the simulated annealing (SA) method for solving the equa-
tions Equations (11) and (12). Hereafter is the description of the method.

Simulated annealing is a stochastic optimisation algorithm, developed in 1983 by [19],
which approaches the global optimum of a given cost function by means of a random
search. The fundamental idea of the algorithm is inspired by the process of annealing of
metals in metallurgy. At each step of the simulated annealing algorithm a new point is
randomly generated, if the new point improves the cost function it is accepted, otherwise,
it is accepted with a probability exp(−∆ f /T), where f is the cost function and T is the
temperature. Accepting points tat don’t improve the cost function allows the algorithm
to escape local optima. The main disadvantage of this method is that the adjustment of
the parameters (initial temperature, minimum temperature, cooling process and stopping
conditions ...) considerably affects the time required to reach the extremum.

5. Simulation

To illustrate the process described by Equation (3), let us consider an equidistant
discretisation of the interval [s, T] with ti = ti−1 + (i− 1)h for i = 2, ..., N. Let (t1 = s) and
assume a discretisation step h = T−s

N where N denotes the size of the sample. A total of
25 trajectories of the process were simulated, with s = 0, T = 1000 and N = 2000 and
xs = 100.

The results of the simulation, together with the Estimated Trend Function (ETF) of the
process, are illustrated in Figure 1.

0 200 400 600 800 1000
t 

0

20

40

60

80

100

x(
t)

ETF
Sample paths

Figure 1. Simulated sample paths vs. the Estimated Trend Function (ETF) for α = 1.5, β = 90
σ = 0.01.

Using the simulated annealing method to solve Equations (11) and (12), we obtained
the estimators α̂i , β̂i and σ̂i

2 of each trajectory, and then considered the mean values of the

estimators given by α =
1

25

25

∑
i=1

α̂i, β =
1

25

25

∑
i=1

β̂i and σ2 =
1

25

25

∑
i=1

σ̂i
2.

The values obtained used this method are α = 1.511872058, β = 90.002739556 and
σ2 = 0.000099480. We then calculated the mean value of the simulated paths at each time
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step, namely, x̄(ti) =
1
m

m

∑
j=1

xj(ti), where xj is the sample path j, ti is the time step i and m

is the number of simulated trajectories. We also obtained the estimated trend functions of
the process using each method, the result are plotted in Figure 2.

0 200 400 600 800 1000
t 

0

20

40

60

80

100
x(
t)

Estimated trend function
Mean values

Figure 2. ETFs vs. the mean values of simulated data.

6. Application
6.1. Data Description

In this application, we examined the variable x(t) defined by the adolescent fertility
rate, which is the number of births per 1000 women aged 15 to 19, these data are annual
and are available on the site: https://data.worldbank.org/. The average value for Morocco
during the period from 1979 to 2018 is 42.395655 with a minimum value of 30.6810 in 2018
and a maximum value of 92.9376 in 1979. Table 1 illustrates the observed values, as well as
the ETF and Estimated Conditional Trend Function (ECTF) during this period.

In Figure 3, real data are plotted against trend functions (conditional and unconditional).
The unconditional trend function provides a good estimates for the real values, the accuracy
of those estimates can be more accurate if we consider the conditional trend function.

Table 2 shows the estimated data for the years from 2016 to 2018 that were not used in
the modeling and the actual data.

6.2. Goodness of Fit of the Model

The absolute mean error in percentage (MAPE) is the average of the deviations in
absolute value compared to the observed values. It is a practical indicator of comparison,
it makes it possible to evaluate the forecasts obtained from the models. We denote by yi,
ŷi and n respectively the real values, the values predicted by the model and the number of
predictions, so we have:

MAPE =
1
n

n

∑
i=1

|ŷi − yi|
yi

× 100.

The symmetric mean percentage absolute error (SMAPE) is a measure of precision
based on relative errors and is defined as follows:

SMAPE =
100
n

n

∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

.

The values obtained for the MAPE and SMAPE are: 1.756265 and 1.759680, respectively.
The MAPE value is less than 10, so according to Lewis [20] the values obtained by this
model are “very precise”.

https://data.worldbank.org/
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Table 1. Table of adolescent fertility rate data by year.

Year Data TF CTF Year Data TF CTF

1979 92.9376 92.9376 92.9376 1998 35.0552 37.3231 34.2368
1980 85.9524 77.139 77.4169 1999 35.2894 36.7257 34.495
1981 78.9672 68.4703 76.4049 2000 35.5236 36.1646 34.751
1982 71.982 62.7125 72.3839 2001 35.7578 35.636 35.0052
1983 66.6672 58.4969 67.1766 2002 35.992 35.1368 35.2577
1984 61.3524 55.2209 62.9552 2003 35.3362 34.6643 35.5087
1985 56.0376 52.5705 58.4222 2004 34.6804 34.2161 34.8799
1986 50.7228 50.3627 53.6944 2005 34.0246 33.7901 34.2491
1987 45.408 48.4826 48.8365 2006 33.3688 33.3844 33.6166
1988 43.7456 46.8537 43.8876 2007 32.713 32.9973 32.9824
1989 42.0832 45.4225 42.4135 2008 32.894 32.6275 32.3468
1990 40.4208 44.1505 40.9082 2009 33.075 32.2737 32.5376
1991 38.7584 43.0093 39.3787 2010 33.256 31.9346 32.7279
1992 37.096 41.9769 37.8303 2011 33.437 31.6092 32.9175
1993 36.641 41.0364 36.2668 2012 33.618 31.2966 33.1067
1994 36.186 40.1744 35.873 2013 33.1012 30.996 33.2954
1995 35.731 39.3801 35.472 2014 32.5844 30.7065 32.7923
1996 35.276 38.6448 35.0651 2015 32.0676 30.4274 32.2886
1997 34.821 37.9611 34.6531

1980 1985 1990 1995 2000 2005 2010 2015
Years

30

40

50

60

70

80

90

Da
ta

Conditional trend function
Data
Trend function

Figure 3. Real data vs. trend function and conditional trend function.

Table 2. Forecasted values by year.

Year Data TF CTF

2016 31.5508 30.1582 31.7841
2017 31.034 29.8982 31.279
2018 30.681 29.6468 30.7733

7. Conclusions

In this study of the stochastic Lomax diffusion process, from a theoretical point of
view, we conclude that we can determine the basic probabilistic characteristics of the model
and we obtain its parameter estimators. Using the maximum likelihood method in the
basis of discrete sampling, we obtained a series of non linear equations which were solved
by computational methods. We used the simulated annealing method to estimate the
parameters of the model. Hence, a set of statistical results are obtained and show that the
proposed process is enable to be applied to real data.

The Lomax model is applied to fit data for adolescent fertility rate in Morocco. The ETF
presented a good description of the changing levels of the fertility rate. Furthermore, the pe-
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riod from 2016 to 2018 improved good forecasts. Then, the resulting values obtained by
the MAPE and SMAPE were calculated and showed good results. Taking into account
these points, we deduced that the methodology applied in the study of this new model
was efficient and present a high degree of accuracy.
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