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I. THE BRANCHING PROCESS

The standard Branching Process (BP), also called Galton-Watson process, [7, 10, 14, 31] is a stochastic
(Markov) process that describes the evolution of the non-negative integer X(t) at discrete times t =
{0, 1, 2, ...} as

X(t+ 1) =
∑

i=1,...X(t)

xi(t) .

The initial condition is X(0) = 1; xi(t), ∀i, t ∈ N are independent and identically distributed random
variables taking integer values. These random variables are extracted from some arbitrary probability
distribution function P (x), with x ∈ N. This process can be interpreted as a contagion process in a
directed tree, where, starting from one infected seed node, the epidemic propagates to a random number
of nearest neighbors, branching out from the seed node. A single instance of BP is, in the standard
jargon, named avalanche. The integer stochastic variable X can reach at any time step – with some
probability – the absorbing-state value X = 0, from which it cannot possibly escape. The time T when
the system reaches the absorbing state X = 0 is the duration of the avalanche. The total number S of
infected individuals before reaching the absorbing state X = 0 is instead the size of the avalanche

S =
∑

t=0,1,...T

X(t). (1)

The BP is critical if the average value of P (x) is equal to unity, so that for each infected node there is,
on average, one infection, so that there is no intrinsic tendency for the overall number of infected nodes
at a given time to either increase or decrease. In the interpretation of BP as a spreading process on a
directed tree, if for simplicity we assume that each node has kout out-going connections, the critical regime
is obtained by setting the spreading probability along individual edges equal to 1/kout. At criticality,
size and duration probability distribution functions of avalanches can be written as

P (S) ∼ S−τGS(S/SC)
F (T ) ∼ T−αGT (T/TC)

, (2)

with τ = 3/2 and α = 2, where GS(S/SC) and GT (T/TC) are cut-off (scaling) functions, and the cut-off
scales, SC and TC , depend only on the system size (in the case it is finite) [12]. Moreover, the average
avalanche size scales with its duration as 〈S〉 ∼ Tχ, where the exponent χ needs to obey the general
scaling relation [1, 26]

χ =
α− 1

τ − 1
, (3)

and thus χ = 2. A particularly simple proof of these results for the case in which the underlying tree
is homogeneous with kout = 2 can be found in Ref. [6]. A more systematic derivation –for different
types of underlying regular or random tree topologies– can be obtained within the generating-function
formalism [22, 24, 32]; for instance, already back in 1949, Otter computed the solution for the case of a
Poissonian distribution of branches per node [19].

The exponent values τ = 3/2 and α = 2 are extremely universal and robust; they emerge in many
different types of propagation processes such as directed percolation, the contact process, the voter model,
susceptible-infected-susceptible model, susceptible-infected-recovered model, and many others, as long as
the underlying pattern of connections is either a high-dimensional lattice or a sufficiently homogeneous
network [11, 17, 18]. In Ref. [6], this super-universality is explained using an effective Langevin equation,
called the demographic random walker.

Although MF critical exponents appear almost everywhere, some papers [8, 9, 25] pointed out that
there is a simple way to break this extremely robust type of scaling: it suffices to take a distribution
P (x) of possible offspring values with divergent second moment, i.e., a branching number distributed as
a power law with exponent 2 < γ < 3. Specifically, if

P (x) =
1

Z(γ − 1)

{
x−γ , for x ≥ 1
Z(γ − 1)−∑∞x=1 x

−γ , for x = 0
, (4)
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where Z(·) is the Riemann Zeta function, then it can be shown [8, 9, 25] that critical exponents τ and
α become functions of γ as

τ = γ/(γ − 1)
α = (γ − 1)/(γ − 2).

(5)

The expressions in Eq. (5) converge to the standard values 3/2 and 2, respectively, when γ → 3, i.e., when
the second moment of the offspring distribution becomes finite. Critical exponents exhibit anomalous
values for smaller values of γ; further, logarithmic corrections to scaling are observed at the marginal
value γ = 3 [9]. Observe also that the anomalous-exponent values are larger than the standard ones,
implying that the probability of observing large avalanches is smaller in the anomalous case, despite of
the probability of having nodes with very large number of offsprings. Intuitively, this observation stems
from the fact that as large numbers of offspring are possible, this implies that –in order to keep the
average value equal to unity– the probability to have zero offspring must be much larger than in the
standard case, causing then avalanches to die earlier and to be smaller on average. The existence of
anomalous values for the critical exponents of avalanches can be also understood in terms of the effective
Langevin-equation approach [29]. Such an approach includes a standard Gaussian noise, stemming from
the central limit theorem for the addition of stochastic variables with finite variance; however, if the
variance is not finite, the Gaussian noise needs to be replaced by a Levy-stable distribution, leading to
different results [29].

II. NETWORKS

We consider unweighted graphs of size N and topology specified by the adjacency matrix A. The
generic element Aij = 1 if a directed connection i → j exists, whereas Aij = 0, otherwise. We consider
networks with no self-loops, so that Aii = 0 for all i. The in-degree kini =

∑
j Aji of node i is defined as

the total number of connections pointing to node i. Similarly, the out-degree kouti =
∑
j Aij of node i is

defined as the total number of connections departing from node i.
Undirected networks are described in the same exact way as above, with the only difference that the

adjacency matrix A is such that Aij = Aji, for all pairs of nodes i and j. Clearly, no distinction between
in-coming and out-going connections is possible in the case of undirected networks. We just indicate
with ki =

∑
j Aij the degree of node i.

In our analysis, we consider the following types of networks.

A. Synthetic directed networks

We generate instances of a model that has been considered in the context of avalanche dynamics by
Gleeson et al. [8]. In the construction of the model, one imposes the out-degree for every single node in the
network. This information is contained in the imposed out-degree sequence {kout1 , kout2 , . . . , koutN }, with
average value equal to 〈kout〉. For every node i, kouti directed connections are created by choosing kouti

nodes uniformly at random among all nodes in the network. The resulting in-degree distribution P (kin)
is a Poisson distribution with average equal to 〈kin〉 = 〈kout〉. In our analysis, we generate out-degree
sequences composed of random variates extracted from the power-law distribution P (kout) ∼ [kout]−γ

for kout ∈ [4, koutmax] and P (kout) = 0, otherwise. In our analysis, we use γ = 2.1 and two distinct max

values for the out-degree, i.e., koutmax = N−1 and koutmax =
√
N . For both koutmax values, we generate a single

instance of the network model for each of the following network sizes: N = 103, N = 104, N = 105,
N = 106, and N = 107. We use those single instances in all our analyses. Notice koutmax = N − 1 is a hard
cutoff for the degree distribution, but in each realization of the degree sequence the maximum out-degree
is actually of the order of N1/(γ−1) � N .

B. Synthetic undirected networks

We create synthetic undirected networks using the configuration model [16]. The model is very similar
to the one described in the previous section. The model requires that a degree sequence {k1, k2, . . . , kN}
is imposed. Connections are randomly created by selecting pairs of stubs. In our implementation of
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Network Type N M koutmax ν1 ωN ωN−1 θ2M Ref. Url

AS Caida Undirected 26, 475 53, 381 2, 628 0.020 69.64 51.13 59.41 [13] url

Twitter 15M Directed 82, 253 5, 890, 705 30, 825 0.248 384.82 181.90 655.51 [3] url

Youtube Directed 509, 332 4, 272, 379 27, 286 0.012 208.41 161.85 184.93 [15] url

Table I. Summary table of the real-world networks considered in our analysis. From left to right, we report:
name of the network, type of network, number of nodes N , number of edges M , maximal value of the outdegree
koutmax, second smallest eigenvalue ν1 of the graph Laplacian, largest ωN and second largest ωN−1 eigenvalues of
the adjacency matrix, largest eigenvalue θ2M of the non-backtracking matrix, reference to the paper where the
dataset has been first considered, url of the website where we downloaded the dataset. The numerical values
appearing in the table refer to the largest strongly connected component of the graphs.

the model, we discard eventual multiple connections and self-loops appearing in the graph; this means
that the imposed degree sequence may not be exactly reproduced in the resulting instance of the model.
For simplicity, we restrict our attention to cases where effective values of node degrees do not differ
much from those initially imposed in the creation of the model instances. Specifically, we consider the
case where the imposed degrees are random variates taken from the power-law distribution P (k) ∼ k−γ
for k ∈ [4,

√
N ] and P (k) = 0, otherwise. Setting the maximal value of the degree to

√
N leads to a

negligible fraction of discarded multiple connections and self-loops during the generation of individual
instances of the model [4]. In our analysis, we use γ = 2.1 to generate a single instance of the network
model for each of the following network sizes: N = 103, N = 104, N = 105, and N = 107. We use those
single instances in all our analyses.

C. Real networks

We consider three real-world networks: (a) an undirected graph representing a snapshot of the Internet
at the Autonomous system level [13]; (b) the directed Twitter network of the Spanish 15M movement [3];
(c) a directed graph representing a portion of the Youtube social network [15]. A summary of the
topological features that regard the largest strongly connected component of the various networks is
provided in Table I. The degree distributions of the networks are displayed in Figure 1. We find that
the outdegree distribution of all networks is compatible with P (kout) ∼ [kout]−γ with γ = 2.1 for all
networks.
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Figure 1. Degree distribution of the three real-world networks considered in our analysis: (a) a snapshot of the
Internet at the Autonomous system level [13]; (b) the Twitter network of the Spanish 15M movement [3]; (c) a
portion of the Youtube social network [15]. For the two directed networks, we plot the distributions of the out-
and indegrees. In the various panels, the black dashed lines indicate power-law decay with exponent γ = 2.1.
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III. MODELS FOR AVALANCHE DYNAMICS

We consider different models originating avalanche dynamics in networks. Regardless of the specific
model considered, we focus our attention on the size S and duration T of the avalanches generated by
individual randomly chosen nodes. In the following, we describe the various models and their implemen-
tation in our numerical simulations. For every model, we provide definitions of avalanches, and avalanche
duration and size.

Together with this paper, we release source code with the implementation of all the processes described
below. The code is available at http://homes.sice.indiana.edu/filiradi/resources.html.

A. Competition-Induced-Criticality (CIC) model

We consider the model introduced by Gleeson et al. to describe meme dynamics in networks [8].
The model runs on a directed and unweighted network with adjacency matrix A and total number of
nodes N . The following description and implementation of the model are identical on both directed and
undirected networks.

The state σi(t) of node i at time t is a discrete-valued variable corresponding to the arbitrary index
of a meme. At each elementary step of the dynamical process, one node i is selected at random. With
probability µ, the state of node i changes to a new value not already present in the network. This step
corresponds to the creation of a new meme by node i. Then, regardless of the fact that a new meme
was created or not by node i, the meme of node i is shared to all its neighbors. Sharing means that
we set σj(t + dt) = σi(t), for all j such that Aij = 1. The state of all other nodes not involved in the
elementary dynamical step remains unchanged. A reasonably good definition for the time increment dt
is based on the assumption that the dynamics is given by a standard Poisson process where the rate of
sharing events per unit of time equals 1/N , so that dt is a random variate extracted from the exponential
distribution P (dt) ∼ exp [−dt/N ]. Alternatively, one can assume that exactly one sharing event happens
at every regular interval of time dt = 1/N .

Two basic meme-based measures are of interest in the model: 1) the popularity S of the meme,
corresponding to the total number of times a meme is actually shared; 2) the duration or lifetime T of
the meme, corresponding to the total amount of time that a meme is present in the network before it
is forgotten. Both these quantities are considered for memes originated from a single randomly chosen
node in the network, and they are interpreted in terms of BP observables: S represents the size of the
avalanche generated by the meme in the network; T is instead its duration. Please note that on a finite
network and for µ = 0, after a sufficiently long time, a single meme will occupy the states of all nodes
in the network for ever. This event corresponds to an avalanche of infinite size and duration. Infinite
avalanches are excluded from our analysis.

An ad litteram implementation of the above model is computationally expensive. The reason is that
one needs to account for the simultaneous dynamics of a multitude of competing memes. However, given
that the focus is on the properties of avalanches associated with individual memes, one can greatly speed-
up computations required for the simulation of the process by looking at the dynamics of one meme at
a time. Assuming that we are observing a single meme only, the state of the generic node i is a de facto
a binary variable: σi(t) = 1 means that node i is occupied by the observed meme at time t; σi(t) = 0
indicates that node i is not occupied by the observed meme at time t. On the basis of the configuration
of the system at time t and the topology of the network, we can divide the nodes in three disjoint sets:
the set C(t) composed of nodes in state 1; the set F(t) composed of nodes in state 0, but having at least
one connection pointing to a node in the set C(t); the set O(t) composed of all other nodes. As nodes in
the set O(t) do not contribute to dynamics of the observed meme directly, their actual evolution doesn’t
need to be explicitly simulated by the algorithm. Only three elementary events that lead to the change
in the total number of nodes having state equal to 1 can happen:

1. A randomly selected node in the set C(t) shares the meme with its neighbors. This event happens
with probability (1−µ) |C(t)|/(|C(t)|+ |F(t)|), where we indicated with |C(t)| and |F(t)| the size of
the sets C(t) and F(t), respectively. This event corresponds to the sharing of the observed meme,
thus popularity increases as S → S + 1.

2. A randomly selected node in the set C(t) creates a new meme, thus its state changes to 0; the new
meme is shared with the neighbors of the selected node. Please note that some of the neighbors of
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the selected node can be part of the set C(t). This event happens with probability µ |C(t)|/(|C(t)|+
|F(t)|).

3. A randomly selected node in the set F(t) shares a meme to other nodes in the set C(t). This event
happens with probability |F(t)|/(|C(t)|+ |F(t)|).

After one of these events happens, time increases as t→ t+dt. Please note that the new sets C(t+dt)
and F(t + dt) can be updated with local operations only. The simulation starts by building the initial
sets C(0) and F(0) depending on the initial configuration σi(t = 0) for all i. Our initial conditions are
such that for all nodes i we have σi(t = 0) = 0. Then, one random node i is selected for the creation
of the observed meme, i.e., σi(t = 0) = 1; the creation of the meme is followed by a first sharing event
to all neighbors of the initial node, so that σj(t = 0) = 1 for all j such that Aij = 1. Also, the initial
value of popularity is S = 1. The simulation then proceeds until C(t = T ) = ∅. As mentioned earlier,
there are potentially two slightly different ways of defining the time unit in the model. Assuming that
the dynamics is described by a Poisson process, the increment of time dt considered at each of the
above steps is a random variable extracted from the exponential distribution P (dt) ∝ exp [−dt/τ ], with
τ = |C(t)| + |F(t)|. Alternatively, one can consider a time increment dt = R/N , where R is a random
variable extracted from the geometric distribution with probability of success equal to (|C(t)|+|F(t)|)/N .
This second scenario corresponds to the case in which exactly one sharing event is performed at every
regular interval of time 1/N .

B. Voter model (VOT)

This model is very similar to the CIC model described above. The only difference regards how sharing
is performed. The description and implementation of the model on undirected networks is identical to
the one provided below for directed networks.

A generic node i can be found at time t in two possible states, either σi(t) = 1 or σi(t) = 0. Each
elementary step of the dynamics consists in choosing a node i at random; then, one in-coming connection
of node i is chosen at random, with node j found on the other side of the edge. Sharing happens following
the direction of the connection, so that σi(t+dt) = σj(t). The state of all other nodes remains unchanged.
Also in the voter model, one can define the increment of time dt in the two ways, as explained above for
the CIC model.

For simplicity, we use an implementation of the model very similar to the one described for the CIC
model. We still rely on the three sets C(t), F(t) , and O(t), defined exactly as in the CIC model. For
the voter model, possible events that may lead to a change of the nodes in state 1 are:

1. A node i in the set C(t) is randomly selected. One random neighbor j is selected too. This event
happens with probability |C(t)|/(|C(t)|+ |F(t)|). The state of node i evolves as σi(t+ dt) = σj(t).
If the state of node j is σj(t) = 1, then popularity increases as S → S + 1.

2. A node i in the set F(t) is randomly selected. One random neighbor j is selected too. The state
of node i evolves as σi(t+ dt) = σj(t). If the state of node j is σj(t) = 1, then popularity increases
as S → S + 1. This event happens with probability |F(t)|/(|C(t)|+ |F(t)|).

After one of these events happens, time increases as t→ t+dt. Please note that the new sets C(t+dt)
and F(t + dt) can be obtained by updating C(t) and F(t) with local operations only. The simulation
starts by building the initial sets C(0) and F(0). Our initial conditions are such that one random node
i is selected. The state of node i is set as σi(t = 0) = 1; all other nodes j 6= i are instead in the state
σj(t = 0) = 0. Popularity is initially set as S = 1. The simulation then proceeds until C(t = T ) = ∅.
Increments of time dt can be defined exactly as in the case of the CIC model.

C. Invasion process (IP)

The invasion process is a sort of inverse version of the voter model. Still, node i can influence node
j only if a directed connection i → j exists in the network. The description and implementation of the
models on undirected networks is identical to one provided below for directed networks.

6



A generic node i can be found at time t in two possible states, either σi(t) = 1 or σi(t) = 0. Each
elementary step of the dynamics consists in choosing a node i at random; then, one out-going connection
of node i is chosen at random, with node j found at the end of the edge. Sharing goes in the same
direction as the one indicated by the edge, so that σj(t + dt) = σi(t). The state of all other nodes
remains unchanged. Also here, one can define the increment of time dt as in the CIC model.

For simplicity, we use an implementation of the model very similar to the one described for the CIC
and the voter models. We still rely on the three sets C(t), F(t) , and O(t). The set F(t) is now composed
of all nodes in state 0 with at least one in-coming connection from nodes in the set C(t). There are only
two possible events that may lead to a change in the number of the nodes in state 1. These are:

1. A node i in the set C(t) is randomly selected. One random neighbor j is selected too. This event
happens with probability |C(t)|/(|C(t)|+ |F(t)|). The state of node j evolves as σj(t+ dt) = σi(t).
Popularity increases as S → S + 1.

2. A node i in the set F(t) is randomly selected. One random neighbor j is selected too. The state of
node j evolves as σj(t+ dt) = σi(t). This event happens with probability |F(t)|/(|C(t)|+ |F(t)|).

After one of these events happens, time increases as t→ t+dt. Please note that the new sets C(t+dt)
and F(t + dt) can be obtained by updating C(t) and F(t) with local operations only. The simulation
starts by building the initial sets C(0) and F(0). Our initial conditions are such that one random node
i is selected. The state of node i is set as σi(t = 0) = 1; all other nodes j 6= i are instead in the state
σj(t = 0) = 0. Popularity is initially set as S = 1. The simulation then proceeds until C(t = T ) = ∅.
Increments of time dt are defined exactly as in the case of the CIC and the voter model.

D. Link dynamics (LD)

We consider also link dynamics, a model with characteristics similar to those of the voter model and the
invasion process. The description and implementation of the model on undirected networks is identical
to one provided below for directed networks.

A generic node i can be found at time t in two possible states, either σi(t) = 1 or σi(t) = 0. Each
elementary step of the dynamics consists in choosing an edge at random, say i → j. Then the state of
node j evolves as σj(t+ dt) = σi(t). The state of all other nodes remains unchanged. Also here, one can
define the increment of time dt as in the CIC model.

For simplicity, we use an implementation of the model very similar to those considered for the voter
model and the invasion process. We rely on the three sets C(t), F(t) , and O(t). In this case, the sets do
not contain nodes but edges. In particular, the set C(t) is the set of all edges having both nodes at the
ends of the edge in state 1; the set F(t) is the set of all edges having one node at the end of the edge in
state 1 and the other in state 0; O(t) is the set of all other edges, where both nodes at the ends of the
edge are in state 0. There are only two possible events that contribute to the evolution of the avalanche.
These are:

1. An edge e = i → j is chosen at random from the set C(t). This happens with probability
|C(t)|/(|C(t)|+ |F(t)|). Popularity increases as S → S + 1.

2. An edge e = i → j is chosen at random from the set F(t). This happens with probability
|F(t)|/(|C(t)|+ |F(t)|). The state of node j evolves as σj(t+ dt) = σi(t). If the state of node i is
σi(t) = 1, then popularity increases as S → S + 1.

After one of these events happens, time increases as t→ t+dt. Please note that the new sets C(t+dt)
and F(t + dt) can be obtained by updating C(t) and F(t) with local operations only. The simulation
starts by building the initial sets C(0) andF(0). Our initial conditions are such that one random node
i is selected. The state of node i is set as σi(t = 0) = 1; all other nodes j 6= i are instead in the state
σj(t = 0) = 0. Popularity is initially set as S = 1. The simulation then proceeds until C(t = T ) = ∅.
Increments of time dt are defined exactly as in the case of the CIC and the voter model.

E. Susceptible-Infected-Susceptible (SIS) model

In the case of the SIS model, our implementation coincides with the following description. The state of
node i at time t can assume two values: σi(t) = 1 meaning that the node is infected; σi(t) = 0 meaning
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that the node is susceptible. At each time t, we consider two sets: C(t) is the set of all nodes in state 1;
E(t) is the set of all directed edges e = i → j such that i ∈ C(t) and j /∈ C(t). At time t, one the two
events may happen:

1. With probability λ|E(t)|/[λ|E(t)| + |C(t)|], a random edge e = i → j is selected from the set E(t).
Node j changes its state as σj(t+ dt) = 1, and popularity increases as S → S + 1.

2. With probability |C(t)|/[λ|E(t)| + |C(t)|], a random node i is selected from the set C(t). Node i
changes its state, i.e., σi(t+ dt) = 0.

After one of these two events happened, the sets C(t) and E(t) are updated with local operations only.
The initial configuration considered in our simulations consists in choosing a random node i and set
σi(t = 0) = 1; for all j 6= i instead we have σj(t = 0) = 0. The size of the avalanche is initially set as
S = 1. Every simulation proceeds until C(t = T ) = ∅, with T duration of the avalanche. At each stage
of the algorithm, time increases by the increment dt. This is chosen to be a random variable extracted
from the exponential distribution P (dt) ∝ exp [−dt/(λ|E(t)|+ |C(t)|)]. This consists in assuming that
infections happen at rate λ per unit time, and one infected node becomes susceptible per unit of time.

F. Susceptible-Infected-Recovered (SIR) model

The description, and implementation, of the SIR model is very similar to the one of the SIS model.
The main difference is that the state of node i at time t can assume three values: σi(t) = 1 meaning that
the node is infected; σi(t) = 0 meaning that the node is susceptible; σi(t) = 2 meaning that the node is
recovered. At each time t, we consider two sets: C(t) is the set of all nodes in state 1; E(t) is the set of
all directed edges e = i→ j such that i ∈ C(t) and j /∈ C(t) and σj(t) = 0. At time t, one the two events
may happen:

1. With probability λ|E(t)|/[λ|E(t)| + |C(t)|], a random edge e = i → j is selected from the set E(t).
Node j changes its state as σj(t+ dt) = 1, and popularity increases as S → S + 1.

2. With probability |C(t)|/[λ|E(t)| + |C(t)|], a random node i is selected from the set C(t). Node i
recovers, i.e., σi(t+ dt) = 2.

After one of these two events happened, the sets C(t) and E(t) are updated with local operations only.
The initial configuration considered in our simulations consists in choosing a random node i and set
σi(t = 0) = 1; for all j 6= i instead we have σj(t = 0) = 0. The size of the avalanche is initially set as
S = 1. Every simulation proceeds until C(t = T ) = ∅, with T duration of the avalanche. At each stage
of the algorithm, time increases by the increment dt. This is chosen to be a random variable extracted
from the exponential distribution P (dt) ∝ exp [−dt/(λ|E(t)|+ |C(t)|)]. This consists in assuming that
infections happen at rate λ per unit time, and one infected node on average recovers per unit of time.

G. Contact process (CP)

In the case of the contact process, our implementation of the model is an ad litteram adaptation of
the following description. The state of node i at time t can assume two values: σi(t) = 1 meaning that
the node is infected; σi(t) = 0 meaning that the node is susceptible. At time of t, a node i is extracted
at random from the set of infected nodes C(t). Then, one the two following events happens:

1. With probability λ/(1 +λ), a random connection of node i is selected. If j is the index of the node
at the end of the selected connection, then the state of that node becomes σj(t + dt) = σi(t). If
σj(t) = 0, then popularity increases as S → S + 1.

2. With probability 1/(1 + λ), the node i changes its state, i.e., σi(t+ dt) = 0.

After one of these two events happened, the set C(t) is updated with local operations only. The initial
configuration considered in our simulations consists in choosing a random node i and set σi(t = 0) = 1;
for all j 6= i instead we have σj(t = 0) = 0. The size of the avalanche is initially set as S = 1. Every
simulation proceeds until C(t = T ) = ∅, with T duration of the avalanche. The increment of time dt is
chosen as a random variable from the exponential distribution P (dt) ∝ exp [−dt/|C(t)|]. Alternatively,
one can assume that dt = R/N , with R random variate from a geometric distribution with success
probability |C(t)|/N .
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IV. RESULTS OF NUMERICAL SIMULATIONS

We performed numerical simulations of all the processes described above on different networks topolo-
gies. For each network and dynamical model, we always measured the size S and the duration T of
avalanches seeded by a single randomly chosen node. Dynamical processes are set as close as possible
to their critical regime. Specifically, for the models VOT, IP and LD, our implementation is such that
models are exactly at their critical point. In CIC, we set the probability µ = 0 to be in the critical
regime. For CP, we set the rate λ = 1 to set the model in its critical regime. In SIS we approximated the
critical regime by setting λ = 1/ωN , with ωN largest eigenvalue of the adjacency matrix of the graph.
For SIS, we set λ = 1/θ2M , where θ2M is the largest eigenvalue of the non-backtracking matrix of the
graph.

A. Synthetic networks

We performed numerical simulations of the various models described above on networks created us-
ing the directed and undirected version of the configuration models, described in Secs. II A and II B,
respectively. For each network and model, we compute the distributions P (S) and P (T ) of avalanche
size S and duration T , respectively, as well as the relation 〈S〉 vs. T . Numerical results are obtained by
simulating 106 avalanches; each avalanche is seeded by a single randomly chosen node. We considered
different network sizes N , and compare with the expected scaling in the standard and anomalous BPs.
Results are reported in Figs. 2, 5, 8, 11, 14, 17, 20 for the directed configuration model, and in
Figs. 4, 7, 10, 13, 16, 19, 22 for the undirected configuration model. We summarize our results in
Table II.

Avalanche model Network model Universality Class Figure

CIC Directed CM, koutmax = N − 1 Anomalous 2

CIC Directed CM, koutmax =
√
N Standard 3

CIC Undirected CM Standard 4

VOT Directed CM, koutmax = N − 1 Anomalous 5

VOT Directed CM, koutmax =
√
N Standard 6

VOT Undirected CM Standard 7

IP Directed CM, koutmax = N − 1 Standard 8

IP Directed CM, koutmax =
√
N Standard 9

IP Undirected CM Standard 10

LD Directed CM, koutmax = N − 1 Anomalous 11

LD Directed CM, koutmax =
√
N Standard 12

LD Undirected CM Standard 13

SIS Directed CM, koutmax = N − 1 Anomalous 14

SIS Directed CM, koutmax =
√
N Standard 15

SIS Undirected CM Standard 16

SIR Directed CM, koutmax = N − 1 Anomalous 17

SIR Directed CM, koutmax =
√
N Standard 18

SIR Undirected CM Standard 19

CP Directed CM, koutmax = N − 1 Standard 20

CP Directed CM, koutmax =
√
N Standard 21

CP Undirected CM Standard 22

Table II. Summary table for avalanche statistics on synthetic networks models. From left to right we report the
following information: acronym of the avalanche model, name of the network model, universality class observed for
the combination avalanche/network models, number of the figure where the results of the numerical simulations
are visualized. Universality class is determined on the basis of visual inspection of the numerical results.
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Figure 2. CIC on directed synthetic networks. Networks are constructed with the CM as described in section II A.
Here koutmax = N − 1. We then simulate 106 avalanches seeded by a single randomly chosen node. In the various
panels, the red dashed line indicates standard BP exponents, whereas the black full line serves as a reference
for anomalous BP exponents. (a) Probability distribution of the number of spreading events S. (b) Probability
distribution of cascade duration T . (c) Average number of spreading events 〈S〉 as a function of the avalanche
duration.
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Figure 3. CIC on directed synthetic networks. Networks are constructed with the CM as described in section II A.
Here koutmax =

√
N . We then simulate 106 avalanches seeded by a single randomly chosen node. In the various

panels, the red dashed line indicates standard BP exponents, whereas the black full line serves as a reference
for anomalous BP exponents. (a) Probability distribution of the number of spreading events S. (b) Probability
distribution of cascade duration T . (c) Average number of spreading events 〈S〉 as a function of the avalanche
duration.
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Figure 4. CIC on undirected synthetic networks. Networks are constructed with the UCM as described in
section II B. We then simulate 106 avalanches seeded by a single randomly chosen node. In the various panels,
the red dashed lines indicate standard BP exponents, whereas the black full lines serve as a reference for anomalous
BP exponents. (a) Probability distribution of the number of spreading events S. (b) Probability distribution of
cascade duration T . (c) Average number of spreading events 〈S〉 as a function of the avalanche duration.
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Figure 5. VOT on directed synthetic networks. The description of the various panels is the same as in Fig. 2.
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Figure 6. VOT on directed synthetic networks. The description of the various panels is the same as in Fig. 3.
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Figure 7. VOT on undirected synthetic networks. The description of the various panels is the same as in Fig. 4.
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Figure 8. IP on directed synthetic networks. The description of the various panels is the same as in Fig. 2.
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Figure 9. IP on directed synthetic networks. The description of the various panels is the same as in Fig. 3.
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Figure 10. IP on undirected synthetic networks. The description of the various panels is the same as in Fig. 4.
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Figure 11. LD on directed synthetic networks. The description of the various panels is the same as in Fig. 2.
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Figure 12. LD on directed synthetic networks. The description of the various panels is the same as in Fig. 3.
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Figure 13. LD on undirected synthetic networks. The description of the various panels is the same as in Fig. 4.
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Figure 14. SIS on directed synthetic networks. The description of the various panels is the same as in Fig. 2.
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Figure 15. SIS on directed synthetic networks. The description of the various panels is the same as in Fig. 3.
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Figure 16. SIS on undirected synthetic networks. The description of the various panels is the same as in Fig. 4.
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Figure 17. SIR on directed synthetic networks. The description of the various panels is the same as in Fig. 2.
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Figure 18. SIR on directed synthetic networks. The description of the various panels is the same as in Fig. 3.
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Figure 19. SIR on undirected synthetic networks. The description of the various panels is the same as in Fig. 4.
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Figure 20. CP on directed synthetic networks. The description of the various panels is the same as in Fig. 2.
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Figure 21. CP on directed synthetic networks. The description of the various panels is the same as in Fig. 3.
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Figure 22. CP on undirected synthetic networks. The description of the various panels is the same as in Fig. 4.
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B. Test of robustness

To properly assess and interpret the results obtained for avalanche dynamical models on synthetic
networks, we considered two additional tests.

First, we quantified the role of finite-size effect in the determination of critical exponents for the
pure branching process. Specifically, we performed simulations of a branching process where the the
probability of creating x new branches is given by

P (x) =


1−

(∑xmax

x=xmin
x−γ

) (∑xmax

x=xmin
x−γ+1

)−1
, if x = 0

x−γ
(∑xmax

x=xmin
x−γ

) (∑xmax

x=xmin
x−γ+1

)−1
, if xmin ≤ x ≤ xmax

0 , otherwise

(6)

The former probability reduces to the one of Eq. (4) for xmin = 1 and xmax = ∞. In our tests, we set
xmin = 4, and xmax = N , with N assuming the same values as those of the networks considered in our
numerical simulations. Results are displayed in Fig. 23 for γ = 2.1 and in Fig. 24 for γ = 2.5. We note
that the scalings for P (T ) and 〈S〉 vs. T predicted by theory are not reproduced for γ = 2.1. This fact
is in line with what observed in results reported above for avalanches in finite-size networks. In the case
of BP with xmax = ∞, the issue may be due to other types of finite-size effects, including the lack of
proper divergence for the moments of random variates generated in computer algorithms [23]. Scaling
exponents for P (T ) and 〈S〉 vs. T closer to those theoretically predicted are obtained for γ = 2.5. In
this case, however, the distinction between anomalous vs. standard exponents for P (S) becomes almost
unnoticeable.
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Figure 23. Simulations of the branching process with branching probability defined as in Eq. (6). We set xmin = 4,
and consider different values xmax = N . Here, the power-law exponent is γ = 2.1.

100 104 108

S

10−14

10−7

100

P
(S

)

a

N = 104

N = 105

N = 106

N = 107

N =∞

100 102 104

T

10−12

10−6

100

P
(T

)

b
100 102 104

T

100

104

108

〈S
〉

c

Figure 24. Same as in Fig. 23, but for γ = 2.5.

Second, we considered some of the dynamical avalanche models on synthetic directed networks gener-
ated with kmin = 4, kmax = N − 1, and γ = 2.5. Results are provided in Fig. 25 for CIC, and in 26
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for VOT. For this value of γ it is impossible to distinguish anomalous from normal scaling of the size
distribution, but instead one can see evidence of anomalous scaling in the dependence of P (T ) and 〈S〉
on T .
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Figure 25. CIC on directed synthetic networks. Same as in Fig. 2, but for networks with degree exponent γ = 2.5.
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Figure 26. VOT on directed synthetic networks. Same as in Fig. 5, but for networks with degree exponent
γ = 2.5.

C. Real-world networks

We performed numerical simulations of avalanche dynamics running on top of the real-world topologies
of Table I for a selection of dynamical models. Results are reported in the main manuscript and Figures 27
and 28. Numerical results are obtained by simulating 106 avalanches, each seeded by a single randomly
chosen node.

V. LANGEVIN EQUATIONS FOR AVALANCHE DYNAMICS IN COMPLEX NETWORKS

We derive here Langevin equations describing the dynamics of all models considered above, except for
SIR, which is excluded being the only model where nodes are not described by binary variables. In spite
of this fact, numerical results for the SIR model are consistent with those obtained for the other models.
We assume that dynamics is taking place on a network with adjacency matrix A and N nodes. The
section is organized as follows. First, we describe the general procedure to derive Langevin equations
for a model in which nodes can assume only two states. Then, we explicitly illustrate the procedure for
the CIC and SIS models. Properties of the other models can be derived by mapping them to the case of
either CIC or SIS.
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Figure 27. Avalanches in real-world networks. We consider the following networks: (a) undirected graph rep-
resenting a snapshot of the Internet at the Autonomous system level [13]; (b) directed Twitter network of the
Spanish 15M movement [3]; (c) directed graph representing a portion of the Youtube social network [15]. We
measure the distribution P (T ) of avalanche duration T for some dynamical models. Different symbols and colors
refer to different avalanche dynamical models. The red dashed line represent standard BP critical exponents,
while the full black line indicates the power-law decay expected for the anomalous BP. Note that the out-degree
distributions of these networks are all well modeled by power laws with exponent γ = 2.1.
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Figure 28. Same as in Figure 27, but for the relation between the average value of the size of the avalanche 〈S〉
and its duration. The red dashed line represent standard BP critical exponents, while the full black line indicates
the power-law decay expected for the anomalous BP. Note that the out-degree distributions of these networks
are all well modeled by power laws with exponent γ = 2.1.

A. Summary of the approach

We follow a procedure similar to one described in Ref. [2]. The state of the node i at time t is a
random time-dependent variable σi(t). The variable can assume two possible values, namely σi(t) = 0, 1.
Its evolution can be described by the equation

σi(t+ dt) = σi(t) ζi(dt) + (1− σi(t)) ηi(dt) . (7)

The variables ζ(dt) and η(dt) are dichotomous random variables taking values

ζi(dt) =

{
0 , with probability Pζi(0)

1 , with probabilityPζi(1) = 1− Pζi(0)
(8)

and

ηi(dt) =

{
1 , with probability Pηi(1)

0 , with probabilityPηi(0) = 1− Pηi(1)
. (9)
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In the notation above, Pζi(0) is the probability to observe the transition σi(t) = 1 → σi(t + dt) = 0;
Pηi(1) is the probability to observe the transition σi(t) = 0 → σi(t + dt) = 1. The values of the
probabilities Pζi and Pηi depend on the details of the stochastic dynamical model under consideration.

Here, we will focus on the global (network-wide) average of the variables σi(t), i.e.,

ρ(t) =
1

N

∑
i

σi(t) . (10)

Neglecting correlations and assuming finite variance of the σi, we can invoke the central limit theorem,
and assume that ρ(t) obeys a normal distribution. Its dynamics can be therefore approximated by the
Langevin equation

dρ(t)

dt
= Ψ[ρ(t)] +

√
D[ρ(t)] ξ(t) . (11)

In the equation above, ξ(t) is a stochastic variable extracted from a standard normal distribution. The
drift term is defined as

Ψ[ρ(t)] = lim
dt→0

〈∆ρ(t)|~σ(t)〉
dt

=
1

N

∑
i

Ψi[~σ(t)] ,

whereas the elements that compose the diffusion term are

D[ρ(t)] = lim
dt→0

〈[∆ρ(t)]2|~σ(t)〉
dt

=
1

N2

∑
i

Di[~σ(t)] ,

with ~σ(t) = [σ1(t), σ2(t), . . . , σN (t)]T a vector that encodes the state of all node variables at time t
and ∆ρ(t) := ρ(t+ dt)− ρ(t). The functions Ψi[~σ(t)] and Di[~σ(t)] are defined explicitly below.

Because of the boolean nature of the variables ζi and ηi, their average values coincide with the prob-
ability of these variables taking value 1, i.e. 〈ζi〉 = Pζi(1) and 〈ηi〉 = Pηi(1). For the models we have
considered here, we can always write these probabilities in terms of a gain and a loss function, χi and
`i, respectively, as

Pζi(1) = 1− dt `i
Pηi(1) = dt χi

. (12)

Each model will be entirely specified by the choice of χi and `i. However, the general expressions (12)
allow to explicitly compute the general form of the Langevin equation (11).

The drift term is given by

〈∆ρ(t)|~σ(t)〉 =
1

N

∑
i

[σi〈ζi〉+ (1− σi)〈ηi〉 − σi] =
dt

N

∑
i

[(1− σi)χi − σi`i] ,

so that

Ψi[~σ(t)] = (1− σi)χi − σi`i .

To compute the diffusion term, note that

〈[∆ρ(t)]2|~σ(t)〉 = 〈[ρ(t+ dt)]2|~σ(t)〉 − 〈ρ(t+ dt)|~σ〉2 ,

thanks to the properties of conditional variance. Both these terms can be written as a diagonal sum
over a single node and an off diagonal sum over all distinct couples (i, j). By using 〈ζiζj〉 = 〈ζi〉〈ζj〉 and
similar relations for ηi, the off diagonal terms equal. By also noting that σ2

i = σi, (1− σi)2 = (1− σi)
and σi(1− σi) = 0, the difference among the diagonal terms can be written as

〈[∆ρ(t)]2|~σ(t)〉 =
1

N2

∑
i

σi
(
〈ζ2i 〉 − 〈ζi〉2

)
+ (1− σi)

(
〈η2i 〉 − 〈ηi〉2

)
.
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Finally, note that the second moment of ζi and ηi equals the first and that, thanks to the expressions (12),
〈ηi〉2 = O(dt2) and 〈ζi〉2 = 1− 2 dt `i +O(dt2). It is then immediate to see that

D[ρ] =
1

N2

∑
i

[σi`i + (1− σi)χi] .

In summary then, the dynamics of the density is described by the following set of equations:

dρ(t)/dt = Ψ[ρ(t)] +
√
D[ρ(t)]ξ(t)

Ψ[ρ(t)] =
1

N

∑
i Ψi[~σ(t)] =

1

N

∑
i[(1− σi)χi − σi`i]

D[ρ(t)] =
1

N2

∑
iDi[~σ(t)] =

1

N2

∑
i[(1− σi)χi + σi`i]

. (13)

Please note that we didn’t write explicitly the time dependence of the various variables to keep the
notation as simple as possible.

Whereas Eqs. (13) can be used to describe the approximate behaviour of the system at arbitrary time
t, we will mostly focus our attention on the long-term behavior of the dynamics. To understand the
long-term dynamics of the system, we will look at the ensemble average value (over an infinite number
of realizations of the dynamics) of the variables si(t) := 〈σi(t)〉 only. We refer to this approximation as
the individual-based mean-field approximation (IBMFA) [21]: taking the expectation value of Eq. (7) we
obtain an equation involving 〈σi(t)χi(t)〉 and analogously for the other term on the rhs of the equation.
The IBMFA consists into assuming that 〈σi(t)χi(t)〉 = 〈σi(t)〉〈χi(t)〉. The IBMFA dynamical equations
read as

dsi(t)

dt
= [1− si(t)]gi(t)− si(t)li(t) . (14)

In the equation above, gi(t) := 〈χi(t)〉 and li(t) := 〈`i(t)〉 are the average values (over an infinite number
of simulations of the model) of the gain and loss terms defined earlier. Please note that si, gi and
li are deterministic variables, and they differentiate from their stochastic counterparts σi, χi and `i,
respectively.

In the following, we will use the IBMFA for two main purposes: (i) establishing the amount of time
necessary before the system enters in its long-term dynamical regime; (ii) determining the properties of
the system in the long-term dynamical. We will then use this knowledge into the Langevin formalism
to derive statistical properties that describe only avalanches that are long (large) enough to reach the
long-term dynamical regime of the system.

B. CIC model

We consider first the case of the CIC model. According to the rules of CIC dynamics, the probabilities
Pζi and Pηi are

Pζi(0) = dt [µ+ µ
∑
j

Aji + (1− µ)
∑
j

Aji(1− σj)] = dt [µ(kini + 1) + (1− µ)
∑
j

Aji(1− σj)] , (15)

and

Pηi(1) = dt (1− µ)
∑
j

Ajiσj , (16)

Please note that we didn’t write explicitly the time dependence of the variables σs to keep the notation
as simple as possible. In the following, we will continue to use this light notation; explicit time dependence
of variables will appear only in some cases to give emphasis to such a dependence. The first term in
Eq. (15) accounts for the probability that node i creates a new meme; the second term accounts for the
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probability that a neighbor of node i creates and shares a new meme; the last term is the probability
of a neighbor of node i to share the meme already in its memory, being this meme different from the
one under observation. The r.h.s. of Eq. (16) accounts for the fact that a neighbor of node i shares the
meme under observation. The above equations take the form (12) for

χi = (1− µ)
∑
j

Ajiσj (17)

and

`i = µ(kini + 1) + (1− µ)
∑
j

Aji(1− σj) . (18)

1. Individual-based mean-field approximation

Insights regarding the physical behavior of the system can be obtained by working under the IBMFA,
and write Eq. (14) as

dsi
dt

= −µ(1 + kini ) si + (1− µ)
∑
j

Aji [sj(1− si)− si(1− sj)] . (19)

This equation arises from the fact that the average values of Eqs. (17) and (18) are

gi := 〈χi〉 = (1− µ)
∑
j

Ajisj .

and

li := 〈`i〉 = µ(kini + 1) + (1− µ)
∑
j

Aji(1− sj) ,

respectively. We note that the summation in the r.h.s. of Eq. (19) can be manipulated as

∑
j

Aji[sj(1− si)− si(1− sj)] =
∑
j

Aji(sj − si) =
∑
j

(Aji − kini δji)sj = −
∑
j

Lji sj .

In the equation above, we made use of the Kronecker delta function, δji = 1 if j = i, and δji = 0,
otherwise. Further, we indicated with L = Kin − A the Laplacian operator of the graph, with Kin

diagonal matrix containing the in-degree of the nodes [5, 30]. We note that Eq. (19) can be rewritten as

dsi
dt

= −µ(1 + kini )si − (1− µ)
∑
j

Lji sj , (20)

or in matrix-vector format as

d~s

dt
= −µ(I +Kin)~s− (1− µ)LT ~s . (21)

Here I is the identity matrix and LT is the transpose of the graph Laplacian. In essence, under the
mean-field approximation, the dynamics of a meme in the CIC model is described by a simple diffusion
equation with a dissipative term. Let us now consider the system at the critical point µ = 0.
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Figure 29. We consider the CIC model for µ = 0 on directed networks constructed according to the model
described in section II A. We consider initial conditions where si(t = 0) = 0 for all i, except for a single seed node
j such that sj(t = 0) = 1. (a) We construct a network with N = 104 and koutmax = N − 1. Then, we numerically
integrate Eq. (21) and plot r(t) = 1/N

∑
i si(t) as a function of t. The three different lines correspond to different

initial conditions where the selected seed nodes have radically different out-degree values kout. (b) Dependence
of the asymptotic value r∗ on the out-degree of the initial seed kout. We consider two network sizes, N = 103

and N = 104. The dashed line is proportional to kout. (c) and (d) Same as in panels a and b, respectively, but

for networks generated according to the directed configuration model with koutmax =
√
N . (e) and (f) Same as in

panels a and b, respectively, but for networks generated according to the undirected configuration model with
kmax =

√
N . In all cases the exponent of the out-degree distribution is γ = 2.1.

a. Undirected networks
If the network is undirected the matrix L is symmetric and the solution of Eq. (21) can be written

using the eigendecomposition of L as

~s(t) =
∑
n

[~vn · ~s(0)] e−νnt ~vn . (22)
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In the above equation, ~vn is the n-th eigenvector of the matrix L corresponding to the n-th eigenvalue νn
and ~vn ·~s(0) is the scalar product between the vectors ~vn and the initial condition ~s(0). We remind that
the eigenvalues of L are such that 0 = ν1 ≤ ν2 ≤ · · · ≤ νN , where the multiplicity of the null eigenvalue
represents the number of connected components in the network [30]. For simplicity and without lack
of generality, we assume that the entire network is composed of a single connected component. From
Eq. (22) ~s converges exponentially fast, after a timescale 1/ν2, to the stationary value

~s∗ = [(~v1)T · ~s(0)]~v1 , (23)

Since the eigenvector ~v1 has all components equal ~v1 = 1√
N

(1, . . . , 1)T , this means that all si converge

to the same stationary value

si = r∗ = ‖[(~v1)T · ~s(0)] · ~v1‖ = N−1. (24)

The form of the ~v1 implies that r∗ does not depend on which node is the initial seed.
Note also that the sum over i of Eq. (20) at the critical point µ = 0 equals 0 in the case of undirected

network, pointing out that the density is a conserved quantity in CIC model under the IBMFA. All these
results are numerically confirmed in Figure 29(e-f).
b. Directed networks
If instead the network is directed, the eigenfunction expansion generally doesn’t hold. Assuming that

the network is composed of a single strongly connected component, then the asymptotic value of each si
has been computed in Ref. [30] as

si = [(~v
(l)
1 )T · ~s(t = 0)] (~v

(r)
1 )i , (25)

where now ~v
(l)
1 and ~v

(r)
1 are the first left and right eigenvectors of LT , respectively. In particular, ~v

(r)
1 is

again proportional to ~1, so that all variables s tend to a common value given by r∗ = ‖[(~v(l)1 )T ·~s(0)]·~v(r)1 ‖.
In this case this asymptotic value depends on the initial seed. Figure 29 shows that for the random
directed networks considered in our work the value of r∗ is proportional to the initial seed’s out-degree
kout.

2. Langevin approach

For µ = 0, we know, from the previous description of the individual-based mean-field theory, that
if t is large enough, then si = r∗. Recall that each variable si is defined as the average of σi over an
infinite number of realizations of the process. Consequently, si is a deterministic realization-independent
variable. To preserve the stochastic nature of the variables σi and, at the same time, exploit the lesson
we learn from the IBMFA, we make a further approximation: instead of considering the full stochastic
nature of the σi as prescribed by Eq. (7), we approximate these variables, in the long-term limit, as
Bernoulli random variables with a success probability P (σi = 1) = r∗.This probability does not depend
on i, in analogy with the IBMFA description, nor it depends on time because of the nature of this
approximation (long-term limit).

Finally, we perform what is usually called adiabatic approximation [2]: as the IBMFA suggests, we
assume that the microscopic degrees of freedom have reached a stationary state in which they weakly
fluctuate around their average values, allowing to replace them with their averages and preserving the
stochastic nature of the macroscopic variable only, which is the density ρ in our case. In the present
framework, the average does not need to be taken over multiple realizations: it can be thought as a
temporal average over each realization, under the constraint that the temporal average is taken entirely
in the stationary limit of large times. Under the previous approximation of Bernoulli variables, we set
σi = ρ∗. This choice of the notation aims to remind to the reader that the variable ρ∗ is inspired by the
deterministic variable r∗, but is defined in the context of the stochastic Langevin description.

Replacing σi with ρ∗ the drift term in Eq. (11) is automatically zero. The i-th component of the
diffusion term appearing in Eq. (13) reads as

Di[~σ] =
∑
j

Aji (σi(1− σj) + σj(1− σi)) =
∑
j

Aji (ρ∗(1− ρ∗) + ρ∗(1− ρ∗)) = 2 kini ρ∗(1− ρ∗) .
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The diffusion term is then

1

N2

∑
i

Di[~σ] =
2 ρ∗(1− ρ∗) ∑i k

in
i

N2
= 2 ρ∗(1− ρ∗) 〈k〉

N
,

where 〈k〉 is the average degree of the network. Under the adiabatic approximation of the (approximated)
Bernoulli variables, the Langevin equation takes the form

dρ

dt
= ξ

√
ρ (1− ρ)

√
2〈k〉
N

. (26)

Eq. (26) is identical to the equations considered in Ref [6], thus allowing us to state that duration
and size of avalanches obey power-law distributions characterized by exponents typical of the mean-field
branching process.

C. Link Dynamics

Link Dynamics can be treated similarly. According to the rules of the dynamics, the probabilities Pζi
and Pηi are

Pζi(0) =
dt

〈k〉
∑
j

Aji(1− σj)

and

Pηi(1) =
dt

〈k〉
∑
j

Ajiσj .

The factor dt/〈k〉 is the rate at which each link is selected [28]. The above equations take the form (12)
for

`i =
1

〈k〉
∑
j

Aji(1− σj) ,

and

χi =
1

〈k〉
∑
j

Ajiσj .

Equations (17) and (18) are identical to the above expressions for µ = 0 apart from a factor 〈k〉−1.
Rescaling time by this factor, results for the CIC model apply.

D. Voter Model

Also the Voter model can be treated similarly. According to the rules of the dynamics, the probabilities
Pζi and Pηi are

Pζi(0) =
dt

kini

∑
j

Aji(1− σj)

and
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Pηi(1) =
dt

kini

∑
j

Ajiσj .

In this case the term 1/kini is the probability of picking one among the kini links pointing to node i.
These equations correspond to the choice

`i =
1

kini

∑
j

Aji(1− σj) ,

and

χi =
1

kini

∑
j

Ajiσj .

If we apply the IBMFA, we obtain

d~s(t)

dt
= −LT ~s(t) , (27)

where L is the normalized graph laplacian, i.e.,

L = K−1in L .

The kernel of this matrix is spanned by the same vectors that span the kernel of the graph laplacian
L [5]. Thus, each si will converge exponentially fast to a constant value. All considerations valid for the
CIC model can be extended to the Voter model as well.

E. SIS model

We consider here the SIS model with recovery rate equal to one, and epidemic rate equal to λ. We
can write

Pζi(0) = dt

and

Pηi(1) = dt λ
∑
j

Ajiσj ,

implying

χi = λ
∑
j

Ajiσj (28)

and

`i = 1 . (29)
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Figure 30. Same as in Figure 29, but for the SIS model. Results are obtained by numerically integrating Eqs. (30).
In panels a and b, we consider instances of the directed configuration model with koutmax = N − 1. In panels c
and d, we consider instances of the directed configuration model with koutmax =

√
N . In panels e and f instead, we

consider instances of the undirected configuration model.

1. Individual-based mean-field approach

As for the case of the CIC model, insights regarding the physical behavior of the system can be
obtained by working under the individual-based mean-field approach, and write Eq. (14) as

dsi(t)

dt
= −si(t) + λ[1− si(t)]

∑
j

Ajisj(t). (30)

The equation above follows immediately from the fact that gi(t) := 〈χi(t)〉 = λ
∑
j Ajisj(t) and

li(t) := 〈`i(t)〉 = 1.

27



As the phase transition of the SIS model is continuous, in the vicinity of the critical point the whole
density of infected individuals is small. So will be each si. We can thus linearize the previous equation
to obtain

dsi
dt

= −si + λ
∑
j

Ajisj . (31)

The entire system of equations for every node can be therefore written in the compact matrix-vector
form as

d~s

dt
= (λAT − I)~s . (32)

The endemic state will start to emerge when the largest eigenvalue of the operator λAT − Iequals one
so that the critical value of the epidemic rate is given by

λc =
1

ωN
, (33)

with ωN the largest eigenvalue of the matrix A 1.
a. Undirected networks
We can repeat an argument similar to the one used for the CIC model, expanding the solution as

~s(t) =
∑
n

(~wn · ~s(0)) e−t/τn ~wn , (34)

where ~wn is the n-th eigenvector of A with associated eigenvalue ωn, ~s(0) is the initial condition. The
coefficient associated with the n-th eigenvector decays exponentially fast to zero, over a typical time scale
equal to τn = ωN/(ωN − ωn). The relaxation time to the stationary state is thus due to the exponential
decay to zero of the second eigenmode, whose decay time is t∗ = τN−1 = ωN/[ωN − ωN−1]. For t � t∗

the components of the vector ~s are hence proportional to those of the principal eigenvector of the matrix
A

si = s∗ wN,i , (35)

where s∗ = ~wN · ~s(0).
We take as initial condition si(0) = δi,iseed , where iseed is the node where the avalanche is seeded.

Hence s∗ = wN,iseed . For γ < 5/2 [20] the components of the principal eigenvector are

wN,i =
ki

[N〈k2〉]1/2 . (36)

As a consequence, in the stationary state the variables si reach the asymptotic value,

si = wN,iseedwN,i =
kikiseed
N〈k2〉 . (37)

At odds with the case of CIC dynamics, in the stationary state the variables si do not reach the same
asymptotic value, being si dependent on ki and thus, in general, s∗ 6= r∗. For the same reason the value
of r∗ depends on the initial seed, and in particular it is proportional to kseed. In Fig. 30 (e,f) we plot
r∗ = 1/N

∑
i si: according to Eq. (37) this quantity is equal to kseed〈k〉/N〈k2〉. The figure confirms this

prediction.

1 We restrict ourselves to the case γ < 5/2. For γ > 5/2 the SIS epidemic transition is due to a completely different
mechanism and Eq. (33) is not a good estimate of the critical value [21].
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b. Directed networks
As in the previous case, we set λc = 1/ωN and note that the stationary solution of Eq. (32) is again

proportional to the principal (right) eigenvector of AT , ~w
(r)
N . This can be simply understood in a discrete-

time description, where the stationary solution emerges as a consequence of the repeated application of
the matrix λAT − I.

We show in Fig. 30 (upper panels) that also in the directed case the constant r∗ is proportional to
kout of the initial seed, but with a different scaling with the system size N . As Eq. (36) states for the
undirected case, it is safe to presume that the stationary value of si again depends on i, i.e. that the

vector ~w
(r)
N is not constant.

2. Langevin approach

As in the CIC case, the IBMFA tells us that, in the long time limit, the microscopic variables can be

well approximated by Bernoulli variables with probability of success P (σi = 1) = w
(r)
N,ir

∗. Performing,
again as in the CIC case, the adiabatic approximation, the stochastic variables σi can be thought as
weakly fluctuating and thus be approximated as

σi ' ρ∗ w(r)
N,i .

The drift terms Ψi[~σ] = 0. Neglecting quadratic terms, we can write the third equation in (11) as

Di[~σ] = σi + λ(1− σi)
∑
j

Ajiσj = σi + λ
∑
j

Ajiσj = 2σi = 2ρ∗ w
(r)
N,i .

We can thus write

D[~σ] =
1

N2

∑
i

Di[~σ] =
2ρ∗

∑
i w

(r)
N,i

N2
=

2

N
ρ∗ 〈w(r)

N 〉 ,

where 〈w(r)
N 〉 is the (network-wide) average value of the components of the eigenvector ~w

(r)
N . We can then

write a Langevin Eq. (11) as

dρ

dt
= ξ
√
ρ

√
2 〈w(r)

N 〉
N

. (38)

Still, this equation is of the same form as those considered in Ref [6], thus allowing us to state that
duration and size of avalanches obey power-law distributions characterized by exponents typical of the
mean-field branching process.

In summary, for SIS dynamics these results point out that, on undirected networks, MF exponents
should be observed for long times, after a preasymptotic regime lasting for a time t∗ = ωN/[ωN −
ωN−1]. For scale-free networks with γ < 5/2 the spectral gap between the largest and the second-
largest eigenvalue of the adjacency matrix diverges as the size grows [27]. As a consequence in the
thermodynamic limit t∗ tends to 1 and only the MF regime can be observed, in agreement with the
tendency observed in Fig. (16).

F. Contact process

According to the rules of the dynamics, the probabilities Pζi and Pηi are

Pζi(0) = dt

and
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Pηi(1) = λ dt
∑
j

Aji
koutj

σj .

The out-degree dependence is suppressed by the factor 1/koutj . As a consequence, CP cannot display
anomalous behavior even in networks with broad out-degree distributions.

G. Invasion process

According to the rules of the dynamics, the probabilities Pζi and Pηi are

Pζi(0) = dt
∑
j

Aji
koutj

(1− σj)

and

Pηi(1) = dt
∑
j

Aji
koutj

σj .

The same considerations as of CP apply here as well.
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