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R E S U M E N

Las comunicaciones deterministas son un requisito esencial en múltiples aplicaciones,
tales como las plantas industriales, las redes de automoción, o los sistemas de aeroespacial.
Los buses de campo han venido empleándose de forma tradicional en estos ámbitos para
suplir sus necesidades de comunicación e intercambio de datos. A modo de ejemplo,
algunos protocolos muy conocidos para estos ámbitos son los buses CAN o FlexRay
en automoción, o Spacewire para los vehículos espaciales. Algunas de estas soluciones
pueden ser propietarias o necesitar del uso de equipamiento especializado. Por lo tanto,
el panorama existente en las tecnologías de buses de campo es bastante diverso, con
una gama de soluciones que puede incluir interfaces que van desde lo puramente
analógico (HART) hasta aquéllas que son completamente digitales. Estas últimas suelen
emplear interfaces de tipo serie y, en particular, tecnologías Ethernet. De hecho, existe una
fuerte tendencia a implementar buses de campo usando bloques funcionales de Ethernet
estándar (como en el caso de Profinet). Estas soluciones compensan la falta de capacidades
de comunicación determinista de las interfaces Ethernet convencionales que, sin embargo,
son altamente eficientes para transmitir datos con un ancho de banda considerable,
aunque únicamente pueden realizar su entrega con un servicio de tipo best-effort (de mejor
esfuerzo). No obstante, el giro hacia las interfaces basadas en Ethernet para implementar
buses de campo ha demostrado que esta filosofía tiene ventajas inherentes, como mayor
rendimiento y una compatibilidad entre dispositivos más amplia. Esto, a su vez, fue el
germen de un cambio global que buscaba definir interfaces Ethernet genéricas basadas en
estándares que fueran deterministas. En consecuencia, las principales repercusiones de
estos cambios se han visto, en primer lugar, con la aparición de la conmutación de audio
y vídeo para Ethernet (audio/video bridging - AVB), a la que posteriormente siguieron las
redes sensibles a la temporización (TSN).

En esta tesis se exploran aspectos avanzados en cuanto a la construcción, implemen-
tación y validación de sistemas TSN. De este modo, en la Parte I, se le proporciona
al lector una descripción general de las tecnologías y especificaciones principales que
gobiernan las redes TSN. Asimismo, ponemos en contexto el uso y la definición de
perfiles para TSN, al tiempo que enfatizamos su papel fundamental como garantes de la
adopción generalizada de TSN en múltiples industrias y aplicaciones, al proporcionar
las “plantillas” que definen de forma maestra el diseño y parámetros que debe cumplir
un sistema TSN para adaptarse a una aplicación determinada. A continuación, presenta-
mos las metodologías experimentales, herramientas, material de laboratorio, y el diseño
de los bancos de pruebas que utilizamos en las etapas de desarrollo y caracterización
experimental. De este modo, conseguimos construir sistemas TSN convergentes al combi-
nar todos estos elementos. La convergencia de flujos de datos en TSN es la propiedad
fundamental que llevará al eventual reemplazo de los buses de campo, dado que los
sistemas TSN pueden manejar tanto datos críticos, como flujos best-effort, y protocolos de
sincronización simultáneamente. En este contexto, también desglosamos un caso de uso
con la sincronización de White Rabbit (WR) en el Array de Telescopios de Cherenkov
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(CTA) como una motivación en la que se ilustra cómo al integrar esta tecnología con TSN
se posibilita el despliegue de los mismos para aplicaciones científicas.

La Parte II de la memoria se dedica al desarrollo e implementación del sistema TSN. De
este modo, presentamos las plataformas hardware empotradas y las placas de desarrollo
de nuestro sistema, que están basadas en los dispositivos Zynq-7000 de Xilinx: la placa
WR-ZEN y la placa Main. Además, también desglosamos su arquitectura software y
hardware durante esta sección. Comenzamos con los diferentes subsistemas FPGA que
se combinan en nuestro diseño para construir el nodo TSN (Ethernet, sincronización,
sistema de conmutación, y los propios módulos de TSN), para seguidamente pasar
a examinar los elementos software que les proporcionan soporte (sistema operativo,
interfaces de programación, drivers de red, ...). Al diseño de los componentes del sistema
TSN se les dedica especial atención, con un capítulo separado en el que se explica de
forma detallada el diseño del clasificador de tráfico (TAS), el módulo de VLAN, la
MAC de Ethernet y el TAS mejorados con la funcionalidad de interrupción de tramas
(frame preemption), así como los módulos para la redundancia. Esto, además, nos llevó a
diseñar una arquitectura genérica que es compatible con las principales funcionalidades
y componentes de TSN que se sustenta sobre un diseño que hace un uso moderado de
los recursos de la FPGA: 802.1AS (gPTP), 802.1Qbv (TAS), 802.1Qbu (TAS con preemption),
802.3br (MAC de Ethernet con preemption), 802.1CB (transmisiones redundantes), 802.1Q
(etiquetado con VLAN e identificación de flujos de tráfico).

Nuestros casos de uso experimentales se detallan en la Parte III, donde aplicamos
TSN en escenarios industriales y de aeroespacial. Comenzamos explorando la aplicación
de TSN a una subestación eléctrica, que representa nuestro caso de uso en industrial.
En este escenario, procedimos a reemplazar las interfaces de señalización analógica
de la subestación por un sistema TSN, el cual también era capaz de agregar todos
los datos y protocolos presentes en la subestación. Esto permitió verificar que era
posible emplear una red TSN para este escenario de forma efectiva, al ser capaz de
entregar los datos críticos de manera más rápida y con mayor fiabilidad que las interfaces
convencionales de la subestación. De modo adicional, también establecimos que el
determinismo del sistema estaba condicionado por la configuración del usuario. También
hemos realizado la implementación de un caso de uso prometedor en aeroespacial
al diseñar e implementar los nodos de aviónica del microlanzador Miura 1. En este
marco, analizamos las principales consideraciones para diseñar dicho sistema de aviónica,
presentamos su arquitectura, y caracterizamos su rendimiento de manera exhaustiva.
Como resultado, demostramos que nuestra implementación de TSN puede reemplazar de
forma eficaz a los buses de campo habituales en los vehículos para espacio, que podrían
quedar desplazados en favor de una solución basada en componentes comerciales (COTS).
Además, aprovechamos el buen funcionamiento del sistema en nuestros resultados para
hacer una primera propuesta de un perfil de TSN para espacio.

La integración experimental de la sincronización WR con el sistema de TSN se detalla
en la Parte IV de la memoria, en donde se dedica un capítulo entero a presentar la
investigación conjunta que se llevó a cabo con los investigadores de la Universidad
Técnica de Dinamarca (DTU) durante la estancia del doctorado. Una parte importante de
la estancia en DTU tuvo como objetivo estudiar la producción automática de parámetros
de configuración para sistemas de TSN con herramientas especializadas. De este modo,
en el capítulo se explica el desarrollo de la arquitectura “híbrida” con WR y la posterior
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caracterización de sus retardos internos de procesamiento, cuyo conocimiento era necesa-
rio para usar estas herramientas. Seguidamente, presentamos resultados preliminares
en los que llegamos a la conclusión de que, a pesar de que se ha conseguido integrar
la sincronización WR de forma exitosa con el sistema TSN, todavía hacen falta mejoras
adicionales en nuestra arquitectura para mejorar su determinismo. Ésta será una de las
principales áreas a cubrir en el trabajo futuro.

La Parte V muestra las conclusiones del trabajo de la tesis. De este modo, se enfatiza
el haber realizado la implementación exitosa de un sistema TSN determinista basado
en una arquitectura para FPGA que es altamente personalizable a la vez que adaptable,
por lo que se puede ajustar y parametrizar a múltiples dispositivos y escenarios. En este
contexto, cabe destacar la realización con éxito de casos de uso para las Smart Grids y
para la aviónica del microlanzador del Miura 1. También se han mostrado resultados
preliminares de una integración experimental con WR para explorar la posible aplicación
de sistemas TSN en infraestructuras científicas, así como otros aspectos avanzados en
relación con la generación automática de parámetros de configuración. Se concluye con
una evaluación del nivel general de cumplimiento de los objetivos iniciales del trabajo y
proponiendo una hoja de ruta para la mejora y actualización del sistema en el trabajo
futuro. Por último, hemos incluido algunas consideraciones en los Apéndices sobre
temas seleccionados relacionados con el desarrollo de drivers de red en entornos Linux
empotrados.
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A B S T R A C T

Deterministic communications are an essential requirement for a variety of different
application domains, such as the industrial plants, the automotive networks, or the
aerospace systems. Traditionally, they have relied on the use of specialized fieldbuses
to fulfill their communication needs. Some well-known examples are the CAN or the
FlexRay buses for the automotive, or Spacewire for space vehicles. Some of these solutions
are either proprietary or may require that they be used in combination with specialized
equipment. Hence, the landscape of fieldbus communications is fairly diverse, presenting
a range of differing solutions that range from the purely analog interfaces (e.g., HART)
all the way to the fully digital ones. These latter cases typically make use of serial digital
interfaces, and particularly there is a growing trend that seeks to build functioning
implementations of different subtypes of fieldbuses out of standard Ethernet components
(e.g., Profinet). These solutions make up for the lack of deterministic communication
capabilities of ordinary Ethernet interfaces, which can do a great job at transmitting
substantial amounts of data with large throughputs, although they can only provide a
best-effort type of service for the delivery of data. Nonetheless, the shift towards Ethernet-
based interfaces for the construction of fieldbuses has made the community realize that
their use has apparent advantages, such as enhanced performance and streamlined
compatibility and integration. This in turn was the germ of a larger shift towards the
definition of generic, standard-based deterministic Ethernet interfaces. Consequently, this
has materialized into the emergence of audio/video bridging (AVB) first, and then it was
followed by the upgrade of time-sensitive networking (TSN).

This thesis explores advanced topics with respect to the construction, implementation,
and validation of TSN systems. Hence, in Part I, we provide the reader with an overview
of the main technologies and specifications that lie at the foundation of TSN networks.
We also introduce the use and definition of profiles for TSN and emphasize their pivotal
role in ensuring that the adoption of TSN will be widespread in multiple industries and
applications, as they provide well-defined “templates” tailored to the requirements of
a specific application domain. After that, we present the experimental methodologies,
tools, laboratory material, and the layout of the test benches that we used during the
development and experimental characterization stages. We built convergent TSN network
systems with the use of these elements. This convergence is the fundamental property that
will allow the eventual replacement of fieldbuses. Hence, TSN networks can handle critical
data, best-effort traffic, and timing synchronization protocols simultaneously. In this
context, we also introduce a motivational case with White Rabbit (WR) synchronization
in the Cherenkov Telescope Array to illustrate how an integration with TSN could pave
the way for the use of TSN networks for scientific infrastructures.

Part II of the manuscript is devoted to the implementation and development of our TSN
system. We introduce our embedded hardware platforms and development boards based
on the Zynq-7000 devices from Xilinx: the WR-ZEN and the Main Board. Furthermore, we
present the main software and hardware components of our architecture in this section.
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We start by looking at the various FPGA subsystems that have be combined to build
a TSN node (Ethernet, timing, switching, and the TSN cores themselves), and then we
examine the corresponding software elements for supporting them (the operating system,
application programming interfaces, network drivers, . . . ). We make special emphasis
in the description of the implementation, design, and construction of the elements of
the TSN system by devoting a specialized section for their documentation. This is where
we provide an in-depth explanation of the design of the time-aware traffic shaper (TAS),
the VLAN module, the preemptable Ethernet MAC, the preemptable TAS, and the
modules for the seamless redundancy feature. Hence, we present the design of a generic
architecture with the capability for supporting the main subcomponents of TSN while
making moderate use of FPGA resources: 802.1AS (gPTP), 802.1Qbv (TAS), 802.1Qbu
(preemptable TAS), 802.3br (preemptable MAC), 802.1CB (seamless redundancy), 802.1Q
(VLAN-tagging and traffic identification).

We present our experimental use cases with TSN in the industrial and aerospace
domains in Part III. We start by exploring the application of TSN to an electrical substa-
tion. This is our industrial case where we replace the analog signaling interfaces of the
substation with a TSN system that can also aggregate all the substation protocols and
data that are present in this scenario. We verified that a TSN system could be put to this
use effectively as it could deliver critical data faster and more reliably than the traditional
substation interfaces. In addition, we found that the attainable determinism of the system
was dependent on the user settings. We also present a promising use case for aerospace
in this part of the manuscript: the design and implementation of the avionics nodes of
the Miura 1 microlauncher. In this framework, we show the main design considerations
of the system, present its architecture, and carry out a thorough characterization of
its performance. All of this demonstrates that our TSN implementation can effectively
replace the usual fieldbuses for aerospace and, thus, implement a functional avionics
system with off-the-shelf components (COTS) instead. Furthermore, we take advantage
of these results to make an early proposal of the elements that should be included in an
aerospace profile for TSN.

We introduce an experimental integration of WR timing and our TSN system in Part
IV of the manuscript, where we devote a chapter to presenting the research that we
conducted jointly with collaborators from the Technical University of Denmark (DTU)
during a research visit. A substantial part of the research at DTU aimed to study the
automatic production of configuration settings for our TSN system with specialized
tools. Hence, the chapter presents the “hybrid” architecture with WR timing alongside
a characterization of internal processing delays required by the tool. We present some
preliminary results where we conclude that, even though we have successfully integrated
our system with WR timing, we still need to supply additional improvements to our
architecture to improve its determinism. This will be explored in the future work.

Part V contains the conclusions of the thesis project. Thus, we show that we have
implemented a deterministic TSN system using a highly customizable FPGA architecture,
that is also adaptable, and that can be fitted and targeted to multiple devices and
scenarios. In this context, we emphasize our successful implementation of the system for
major use cases in the Smart Grid and for the avionics of the Miura 1 microlauncher. Also,
we have shown the preliminary results of our integration with WR timing for exploring
the application of TSN to scientific infrastructure and other advanced topics related to
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the automatic generation of configuration parameters. We conclude by assessing the
overall level of compliance of our initial objectives and with the proposal of an upgrade
path for the system as future work. Lastly, we have included some considerations in the
Appendixes on select topics relating to network driver development for embedded Linux
environments.
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1
I N T R O D U C C I Ó N

Este capítulo contiene la introducción al proyecto de tesis que se presenta en esta memoria.
Se comienza con una motivación para el desarrollo de sistemas red basados en TSN.
A continuación, se hace una exposición de cuáles son los objetivos principales que se
persiguen con la realización del trabajo. Esto se complementa con la presentación del
marco de trabajo de la tesis; incluyendo los proyectos y colaboraciones de transferencia
industrial y científica que se han llevado a cabo como resultado de su realización. Además,
para presentar este trabajo se han reutilizado los resultados de la publicación [1] en el
Capítulo 5 para ilustrar el potencial del uso de la sincronización de White Rabbit con
TSN. También proporcionamos las consideraciones adicionales de [1] en los Apéndices A
y B. Por último, se describe de forma esquemática cuál es la organización del contenido
en la memoria de la tesis.
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1.1 MOTIVAC IÓN TRAS EL DESARROLLO DE COMUNICAC IONES ABIER TAS Y

DETERMIN ISTAS.

El uso de comunicaciones deterministas es un requisito fundamental en multitud de apli-
caciones. Los ejemplos más comunes van desde las plantas industriales, las plataformas
de sensores y mecanismos de control en los vehículos, hasta prácticamente cualquier tipo
de entorno en el que exista la necesidad de establecer un bucle de control crítico o en el
que sea necesario entregar mensajes de alta criticidad en un plazo temporal estricto. Se
vienen empleando buses de campos especializados de forma tradicional con este fin, e
incluso se dan casos en los que se usan interfaces analógicas sencillas. Estos buses de
campo permitían establecer una comunicación determinista adaptada los parámetros de
una aplicación o escenario determinados. Por lo tanto, a estos sistemas de comunicación
normalmente se les ha denominado como “de mundo cerrado”, y se caracterizan por su
alto grado de eficiencia, fiabilidad, y robustez. Además, pueden proporcionar distintos
valores de ancho de banda o de latencia extremo a extremo de forma que se puedan
adaptar a los requisitos y limitaciones concretos de aplicaciones determinadas. Entre los
ejemplos más conocidos se encuentran buses de campo tales como EtherCAT [2], CAN
[3], Profinet [4], . . . Sin embargo, presentan algunos inconvenientes considerables que
hacen que su integración en sistemas a gran escala y heterogéneos presente numerosos
desafíos, dado que una mayoría de las alternativas existentes entre los buses de campo
son o bien soluciones propietarias, o dependen de equipamiento especializado vinculado
con un proveedor específico. A su vez, esto se traduce en mayores costes de despliegue o
de propiedad; lo cual se agrava aún más cuando se considera la falta de interoperabilidad
entre distintos proveedores. De este modo, resulta común encontrar escenarios, como
en el caso de la automoción, en los que los diferentes sensores y componentes de la red
los suministran proveedores distintos; y en los que el equipamiento de cada proveedor
puede incluso encontrarse vinculado a interfaces y protocolos de transmisión de datos
distintos.

En este contexto, puede verse que desplegar un sistema funcional en estas condiciones
puede ser una tarea inmanejable, dado que el sistema que acaba diseñándose tiene que
asegurar que proporciona una representación coherente de los datos a través de toda la
red, y posiblemente incluso entre múltiples interfaces o protocolos de transporte diversos,
desde la fuente de datos y a lo largo de todo el sistema hasta el nodo donde se procesen. A
menudo esto tiene como consecuencia que la arquitectura del sistema está fragmentada de
facto in varios subsistemas gestionados con torres de protocolos o tecnologías de interfaz
distintas. De este modo, es necesario usar elementos de “puente” (bridge) que actúen
como conversor entre protocolos y pasarela de enlace entre los distintos dominios de
bus. El caso de las redes de automoción se suele referir por lo paradigmático que resulta,
dado que normalmente suelen presentar un arnés de cableado que integra múltiples
protocolos e interfaces distintos, tales como FlexRay [5], CAN, e incluso señalización
analógica con LVDS. Integrar todos estos componentes resulta complejo y conlleva costes
sustanciales. Además, la multitud de interfaces que normalmente se encuentran en una
red típica de autmóvil, junto con los elementos asociados de conversión y adaptación
entre buses, hacen del arnés de cableado del vehículo moderno uno de los componentes
más pesados y caros del mismo hoy en día. De este modo, esto sirve como un ejemplo
típico para ilustrar cómo el uso de una capa de comunicaciones abierta y universal, que
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sea capaz de actuar de interfaz entre sistemas de distintos vendedores y de proporcionar
flujos de datos deterministas, supondría una enorme simplificación en el proceso de
diseño de sistemas complejos de “mundo cerrado”. En el caso de las aplicaciones para
automoción, esto tendría además el efecto colateral de aumentar la eficiencia del vehículo
como resultado de la reducción del peso y tamaño del arnés de cableado, que se reduciría
considerablemente si usara una única interfaz unificada.

Por el contrario, a diferencia de los sistemas de los sistemas de “mundo cerrado” que
saldrían beneficiados de usar una interfaz de comunicaciones universal, los estándares
que definen interfaces de este tipo normalmente se reservan para las comunicaciones
de tipo masivo basadas en Internet. En este último ámbito es donde, por ejemplo, se
definen estándares interoperables como TCP/IP o Ethernet. Estos protocolos, a diferencia
de aquellos escenarios en los que son más prevalentes los buses de campo, se basan
estándares abiertos e interoperables, por lo que se pueden usar como la base sobre la
que desplegar redes de área amplia con anchos de banda considerables. Estos protocolos
forman el grueso de las autodenominadas comunicaciones de “mundo abierto” y, en
consecuencia, se han hecho ubicuas al garantizarse su interoperabilidad mediante un
esfuerzo importante de estandarización. Además, el uso masivo de estas redes asegura
el desarrollo continuo de innovaciones y mejoras con relativa frecuencia que pueden
incorporar nuevas características de alto rendimiento.

Éste es el caso de las redes de tipo Ethernet, que representan una de la principales
interfaces de comunicación en Internet. Además, se caracterizan por usar una capa de
enlace fuertemente estandarizada de amplio conocimiento entre ingenieros y desarro-
lladores, dadas la extensa documentación disponible y su especificación abierta. Sin
embargo, históricamente se ha empleado como la base de las comunicaciones conocidas
como de tipo best-effort (entrega de mejor esfuerzo), que son las que normalmente se
dan en entornos tradicionales asociados con Internet. Esto ha supuesto un impedimento
sustancial para su adopción en sistemas críticos, dado que su entrega de mejor esfuerzo
no puede garantizar ni un comportamiento determinista ni una variación del retardo de
entrega reducidos. Son también propensas a experimentar pérdidas por congestión en
aplicaciones con alta demanda de datos, a no ser que la capacidad del sistema se pueda
sobredimensionar, lo cual aumentaría en mayor medida el coste general del sistema sin
ser capaz de proporcionar ningún mecanismo de control explícito sobre el nivel de deter-
minismo del tráfico más crítico. Estos factores contribuyen a explicar la prevalencia de
buses de campo especializados en los sistemas de control, que sí pueden garantizar una
latencia extremo a extremo acotada a la vez que presentan una solución más competitiva
frente a alternativas equivalentes basadas en Ethernet.

La aparición de las redes sensibles a la temporización (TSN) ha supuesto una innova-
ción revolucionaria en este aspecto; ya que cierra la brecha entre la comodidad de las
interfaces abiertas e interoperables de las comunicaciones de Internet, y el determinismo
y tiempo real de los buses de campo. Esto se consigue mediante el desarrollo de varias
mejoras para el conjunto de estándares que gobiernan el funcionamiento de Ethernet, de
modo que puedan pasar a emplearse como la infraestructura principal de comunicación
de sistemas de “mundo cerrado” al ser capaces de hacer cumplir fuertes condicionantes
de tiempo real y criticalidad para aplicaciones industriales, de automoción, o en aeroes-
pacial. Estas mejoras, entre otros aspectos, actualizan el mecanismo de control de acceso
al medio (MAC) de los dispositivos Ethernet con metodologías novedosas de clasificación
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de tráfico, procedimientos de enrutado estático y de reserva de recursos, o transmisiones
redundantes. Además, se apoyan en un servicio de sincronización subyacente (gPTP [6])
que resulta esencial para conseguir asegurar que el sistema actúa de modo determinista
para las transmisiones de datos en cada uno de los elementos de la red, llegando a
establecer una latencia acotada bien definida para cada flujo de tráfico.

1.2 OBJET IVOS PR INC IPALES

El objetivo principal de este trabajo es construir y caracterizar un sistema de red TSN
completamente funcional con características esencialmente novedosas. De este modo, por
una parte, usar una arquitectura eficiente basada en FPGA con un consumo optimizado
de recursos permitiría el uso del sistema en sectores tales como las Smart Grids o en el
ámbito de aeroespacial. Por otra parte, también ha de explorarse el impacto que tiene usar
métodos de sincronización de alta precisión, de modo que se puedan derivar conclusiones
que ayuden al despliegue de sistemas TSN más avanzados, escalables, y deterministas
que usen dispositivos FPGA reconfigurables. De manera gráfica, estas ideas se resumen
en el diagrama de la Fig. 1.1.

Figura 1.1
Resumen gráfico de la estructura de la tesis.

Tal como se aprecia en la imagen, una vez establecidad la motivación para desarrollar
sistemas TSN y los objetivos principales del proyecto de tesis en este capítulo, pasamos a
presentar y explicar en detalle los principales ejes temáticos de la tesis. En consecuencia,
comenzamos proporcionándole al lector un repaso a los sistemas de comunicación
deterministas y buses de campo, e introducimos el uso de Ethernet determinista como
reemplazo de todas estas aproximaciones anteriores (legadas). Estos aspectos se examinan
en el capítulo del Estado del Arte (1). Seguidamente, introducimos la metodología
experimental, herramientas, y recursos que se han usado para construir los nodos TSN
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de nuestros experimentos. Esto se explica en detalle en la sección de material y métodos
(2). A continuación, se explica un caso de uso de motivación para TSN (3) en el Array
de Telescopios de Cherenkov (CTA), donde usamos un sistema de temporización con
White Rabbit (WR) para adquirir sellos temporales de alta precisión al recibir ráfagas
de luz Cherenkov. En este contexto, mostramos cómo nuestros datos científicos y la
sincronización de WR pueden coexistir los mismos enlaces Ethernet, y razonamos cómo
añadir TSN en este caso podría ser beneficioso para las infraestructuras científicas.
Continuamos con la exposición detallada de la implementación de nuestros nodos
TSN (4) a lo largo de dos líneas principales: la arquitectura general de los nodos, y la
implementación del subsistema de TSN. Una vez explicado este último, presentamos
nuestros principales casos de uso experimentales (5) para las Smart Grids y para la
aviónica de un microlanzador en aeroespacial. Tras esto, exploramos los efectos de una
integración de nuestros sistemas de TSN con la temporización de WR junto con sus
efectos derivados sobre el determinismo (6). Por último, repasamos los objetivos del
proyecto, revisamos su grado de cumplimiento, y esbozamos el trabajo futuro en las
conclusiones (7).

Nuestros diseños se basan en los dispositivos Zynq-7000 de Xilinx, que integran un
procesador ARM endurecido para ejecutar un sistema operativo empotrado, como Linux,
así como lógica programable de FPGA para integrar cores (coprocesadores) logicos que
pueden interactuar con el procesador. A estos cores se les suele denominar como cores de
propiedad intelectual (IP) ya que están descritos únicamente en código HDL para que
se sintetice sobre la FPGA. La elección de esta plataforma, que ha sido calificada como
un sistema-en-chip (SoC) programable no es casual, dado que uno de los principales
objetivos de este proyecto de tesis es evaluar la influencia de distintas metodologías
de sincronización sobre el nivel de determinismo alcanzable en el sistema. Como el
dispositivo Z-7015 [7] es una de las variantes de bajo coste de la plataforma Zynq-7000
que, además, ya se ha usado con anterioridad en el desarrollo del nodo “WR-ZEN” de
alta precisión con White Rabbit [8], procedimos a seleccionarlo como el punto de partida
y entorno de desarrollo de este trabajo, que se emprendió con los siguientes objetivos
generales de alto nivel.

1. Explorar el diseño de sistemas basados en WR para infraestructura científica y su
soporte para el envío simultáneo de datos e información de sincronización. En este
contexto, tratar de mostrar un caso de uso que sirva de motivación y que resalte
los beneficios potenciales de integrar las características de las redes TSN junto a la
temporización de WR.

2. Desarrollar un conjunto de cores IP para FPGA configurables que proporcionen las
características básicas de un sistema TSN, que hagan un uso de recursos moderado,
y que permita simplificar su integración con cores IP y componentes de terceros en
casos de uso más complejos.

2.1) El sistema debe implementar un conjunto de metodologías y mecanismos para
diferenciar los diferentes tipos de tráfico entre sí, de modo que puedan recibir
un procesamiento diferenciado a lo largo de la red en función de su clase de
tráfico y prioridad.
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2.2) Además, la red debe permitir un método conveniente para que el usuario final
del sistema pueda proporcionar parámetros de configuración y reservar rutas
y recursos de enrutamiento para el envío de diferentes flujos.

3. Diseñar una arquitectura de FPGA parametrizable para TSN que presente capacidad
de conmutación entre múltiples puertos.

4. Caracterizar el rendimiento del sistema TSN y mostrar su aplicabilidad a nuevos
casos de uso experimentales en áreas fundamentales, como escenarios industriales
en Smart Grid, o en casos de uso novedosos (por ejemplo, aeroespacial).

4.1) El sistema debe ser capaz de agregar diferentes tipos de flujo de tráfico que
van desde aquellos con servicio de mejor esfuerzo (BE), pasando por los de
prioridad media, hasta aquéllos que son flujos críticos de alta prioridad, al
tiempo que se respetan sus prioridades relativas.

4.2) El mecanismo de agregación y reenvío debe ser capaz de evitar la interferencia
entre los diferentes tipos de tráfico y mantener la integridad de los flujos de
mayor prioridad.

4.3) Dicho sistema también debería poder garantizar y hacer cumplir una meto-
dología de transmisiones determinista para el tráfico crítico, asegurando una
latencia extremo a extremo acotada con una variación en el retardo de entrega
de los paquetes reducida (PDV) por cada clase de tráfico.

4.4) El sistema también debe integrar capacidades de transmisión y recepción
redundantes, de modo que le brinden de una mayor robustez al garantizar la
entrega de los datos más críticos mediante el uso de rutas físicas de transmisión
alternativas y de respaldo.

5. Integrar un mecanismo de sincronización de alta precisión, como White Rabbit
(WR), junto con el mecanismo de sincronización por defecto de TSN (gPTP) para
estimar los efectos sobre el determinismo del uso de un sistema de sincronización
más preciso.

5.1) Se debe evaluar la interoperabilidad entre la sincronización de White Rabbit y
la sincronización gPTP por defecto incluida en TSN y, cuando sea necesario,
se deben preparar planes para permitir la interoperabilidad entre ambos.

6. Proponer una ruta de actualización para mejorar el determinismo general de un
sistema TSN aprovechando las nuevas características de nuestra arquitectura, así
como el uso de una sincronización mejorada.

6.1) Se debe permitir la interoperabilidad entre la sincronización de White Rabbit
y la sincronización gPTP por defecto incluida en TSN mediante la definición
de un plan de actualización que lleve a la compatibilidad total entre ambos
sistemas. Estas actualizaciones serán parte de las tareas de mejora futura que
seguirán a los resultados de este proyecto de tesis.

6.2) El diseño debe garantizar la interoperabilidad y la compatibilidad descendente
con otros sistemas Ethernet convencionales o entre otros dispositivos TSN
basados en diversas implementaciones de la capa física; como las que usan
par trenzado de cobre o fibra óptica.
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1.3 EL MARCO DE TRABAJO DE LA TES IS

Este trabajo de investigación se ha desarrollado en el marco de diferentes acciones de
transferencia de tecnología, incluyendo proyectos de investigación nacionales y europeos
que han actuado como los principales motores científicos de nuestro trabajo, y agentes
financieros para apoyar nuestros esfuerzos de desarrollo. Se enumeran los más relevantes
a continuación:

A) Contratos de transferencia tecnológica con nuestro socio industrial Seven Solu-
tions:

– ACTECA. “Aceleradores tecnologías Asociadas para Grandes instalaciones

Científicas ": Proyecto financiado por el CDTI español donde se subcontrató a
la Universidad de Granada (UGR) para el desarrollo de nuevas tecnologías
para el control de aceleradores de partículas y para la difusión de RF a través
de redes Ethernet .

– Redes deterministas basadas en TSN para sistemas RF de aceleradores de
partículas: Gobierno de España, convocatoria Innoglobal con el objetivo de
evaluar las tecnologías TSN como sustitución de la interfaz de bus para la
transmisión de datos y datos de control para aceleradores de partículas.

– Comunicaciones deterministas para la Industria 4.0: TSN para Smart Grid:
Granada Ontech technology cluster, convocatoria para “Agrupaciones Empresa-
riales Innovadoras” del MINECO (España). Su principal objetivo fue la evalua-
ción del uso de tecnologías TSN para aplicaciones en Smart Grid.

B) Proyectos de investigación nacionales: AMIGA6 & AMIGA7. Un proyecto nacio-
nal MICIN liderado por el Instituto Andaluz de Astrofísica (IAA) en el que participó
la Universidad de Granada con el objetivo de evaluar tecnologías de transferencia
de temporización en el marco del array de telescopios Square Telescope Array
(SKA).

C) Proyectos europeos: ASTERICS. Clúster de Infraestructura de Investigación y As-
tronomía ESFRI, ID de proyecto: 653477, financiado en el marco de la convocatoria
H2020-INFRADEV-1-2014-1. Nuestro objetivo en este proyecto era aplicar mejoras
basadas en las tecnologías White Rabbit a infraestructuras para astrofísica, como es
el caso de los telescopios KM3Net, CTA o SKA.

Como consecuencia de nuestra participación en todos los proyectos y contratos antes
mencionados, tuvimos la oportunidad de colaborar y trabajar conjuntamente en la espe-
cificación del proyecto, implementación del código fuente y definición de los casos de
uso con muchos de los actores con los que trabajamos. Por tanto, los resultados y parte
del desarrollo del sistema que presentamos en esta memoria son consecuencia de un
importante esfuerzo de colaboración. Esta colaboración fue esencial, ya que una parte im-
portante de nuestros resultados y los conocimientos que derivamos de ellos no se habrían
podido realizar si no hubiera sido por las contribuciones de nuestros colaboradores en los
proyectos de este marco de trabajo. En particular, los módulos de temporización de White
Rabbit de alta precisión para algunos de nuestros experimentos los proporcionó el grupo
de investigación en sincronización de la Universidad de Granada, así como la amplia
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comunidad del repositorio del Open Hardware (OHWR). El diseño del clasificador de
tráfico sensible a la temporización (TAS) [9] se realizó junto a colaboradores del Instituto
Andaluz de Astrofísica (IAA), quienes también proporcionaron consejos y orientación
claves sobre aspectos del diseño de plataformas para aplicaciones aeroespaciales. Por
último, nuestro colaborador industrial Seven Solutions sumunistró algunos de los cores
IP para FPGA que usamos para la configuración general de las placas PCB de nuestros
nodos, el firmware integrado para soportar la ejecución de gPTP, y los componentes para
implementar las mejoras de interrupción de tramas para TSN (frame preemption). También
se encargaron del desarrollo del sistema operativo RTEMS de nuestras plataformas em-
potradas. La combinación de todos estos elementos ha hecho que sea asequible asumir
la enorme cantidad de trabajo prevista en este proyecto de doctorado, liberándonos así
del desarrollo de algunos de sus aspectos más puramente técnicos, y haciendo que sea
factible explorar los principales desafíos científicos de nuestra investigación y producir
los resultados de la misma dentro de un marco temporal razonable para la finalización
del trabajo de la tesis.

1.4 V IS IÓN GENERAL DE LA ESTRUCTURA DE LA TES IS

Una vez presentados la motivación y los requisitos de este trabajo, el desarrollo y la
caracterización de los sistemas TSN en los que se ha trabajado durante la tesis se irá
describiendo en las secciones correspondientes de esta memoria, de acuerdo con la
estructura que se reseña a continuación.

• Comenzamos proporcionando al lector un análisis en profundidad de los anteceden-
tes y las capacidades de las tecnologías que conforman el grueso de las mejoras que
llevaron a la aparición de las redes sensibles a la temporización. Esto se examina en
el Estado del Arte en el Capítulo 3.

• A continuación, usamos el Capítulo 4 para presentar los materiales y métodos
utilizados a lo largo del estudio.

• Seguidamente, a modo de motivación, explicamos el caso del Array de Telescopios
Cherenkov en el Capítulo 5, como ejemplo de un caso en el que el uso de una
sincronización muy precisa puede verse complementada con un sistema de TSN.
De este modo, se sientan las bases de muchos de los elementos de la arquitectura
del sistema que se implementarán a partir de este punto.

• El diseño de los nodos TSN en sí se divide a su vez en varios capítulos separados,
cada uno especializado en diversos aspectos del sistema.

– El Capítulo 6 se usa para presentar la arquitectura global del sistema.

– El Capítulo 7 da una descripción detallada de cada subcomponente y core IP
del subsistema de TSN de los nodos de red que hemos diseñado.

• Posteriormente, procederemos a caracterizar el rendimiento del sistema TSN con el
despliegue e implementación de redes TSN en dos casos de uso representativos.
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– En una aplicación que integra el tráfico de todos los datos de una subestación
eléctrica en el contexto del despliegue de las Smart Grids, que se presenta en
el Capítulo 8.

– En el desarrollo del sistema de aviónica para un microlanzador para un caso
en aeroespacial, que se presenta en el Capítulo 9.

• La integración con la sincronización de White Rabbit y la evaluación de la influencia
del uso de diferentes mecanismos de sincronización para TSN se analiza en el
Capítulo 10.

• Las conclusiones y mejoras futuras se presentan en el Capítulo 11 (Capítulo 12 con
la versión en castellano).

• Por último, los Apéndices A y B contienen, respectivamente, varias consideraciones
sobre el entorno de software de nuestras placas, así como una descripción de las
tareas de optimización generales que hemos llevado a cabo al desarrollar drivers
de red de Linux para interfaces Ethernet.





2
I N T R O D U C T I O N

This chapter contains the introduction to the thesis project that we have presented in
this manuscript. We start off with a motivation for encouraging the development of
TSN-based networking systems. Next, we review the main objectives that we aim to
achieve with the studies that we have included in this thesis. This is complemented with
an introduction into the framework of our research during the thesis project, where we
acknowledge all the industrial and scientific transfer activities that we have performed
during its elaboration. Furthermore, we have reused the contents of the publication
in [1] in Chapter 5 in order to illustrate the potential of the use of the White Rabbit
synchronization in combination with the features of TSN systems. We also include the
additional considerations of [1] in the Appendixes A and B. Lastly, we conclude by
providing a simplified description of the structure of the contents of the manuscript.
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2.1 MOTIVAT ION. THE DRIVE TO DEVELOP OPEN, DETERMIN IST IC COMMU-
NICAT IONS.

Deterministic communications are a major requirement found in multiple applications.
The usual examples include industrial plants, automotive control and sensing platforms,
electrical substation facilities, or any other environment where there is a necessity to
establish a time-critical control loop or deliver highly critical messages with a strict recep-
tion time bound. To this end, we have traditionally relied upon specialized fieldbuses or
even simple analog interfaces tailored to fulfill the role of a deterministic communication
system in their respective domains or applications. These are the so-called “closed world”
communication systems, which are characterized by their high degree of efficiency, relia-
bility, and robustness. Moreover, they can manage to attain different ranges of bandwidth
or end-to-end latency figures to conform to the particular set of constraints of a given
application. Some well-known examples could be found in fieldbuses such as EtherCAT
[2], CAN [3], Profinet [4], . . . Nonetheless, they have some considerable shortcomings
that make their integration for larger scale systems challenging as many fieldbus al-
ternatives are either proprietary solutions or dependent on specialized, vendor-locked
equipment. This in turn results in higher deployment and ownership costs, which are
compounded by a usual lack of interoperability amongst different vendors. Hence, it is
often common to find some scenarios, like the case of automotive applications, where
the multiple components and sensors of the network are sourced from several suppliers,
with each one supporting different interfacing and data transmission protocols.

In this framework, it can be seen that deploying functional systems under these
conditions can easily become an unwieldy endeavor: the system design has to ensure a
consistent representation of data throughout the network, and possibly across multiple
interfaces or transport protocols, from their source all the way to their processing node.
Oftentimes, this results in an architecture that is effectively split into multiple subsystems
handled by a different protocol stack or interface technology, with several bridging nodes
that operate as gateways or protocol converters amid the multiple domains. The case of
automotive networks is paradigmatic, as these usually consist of a wiring harness that
integrates multiple protocols and interfaces; such as FlexRay [5], CAN, or even analog
signaling like LVDS. The integration of all of these components is complex and carries
a substantial cost. Furthermore, the myriad interfaces found in a typical automotive
network, and all their corresponding bridging and adaptor elements, make the wiring
harness one of the heaviest, most expensive components of modern automobiles. Hence,
this is a typical example of how the use of an open, universal communications layer,
capable of interfacing with systems from different vendors and of handling deterministic
traffic, would enormously simplify the design process of complex, “closed world” systems
and, in the case of automotive applications, even help increase fuel economy as a result
of the reduced size and weight of a “decluttered” wiring harness.

Nonetheless, contrary to the “closed world” control systems that stand to benefit from
such a universal communication layer, it is often the more massive, Internet-like systems
that are the realm of the open, interoperable interfaces and protocols such as TCP/IP
or Ethernet. These protocols, in contrast to the domains where fieldbuses are more
prevalent, are based on open, interoperable standards, and hence can be used as the
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foundation for deploying wide area networks with relatively large bandwidths. These
protocols make up the so-called “open world” communications and, as a result, have
become pervasive and heavily standardized to guarantee interoperability. Moreover,
the massive utilization of these networks provides continuous innovations that bring
high-performance features very frequently.

This is the case of Ethernet networks, which represent one of the main communication
interfaces for the Internet. Furthermore, they are a heavily standardized link layer
protocol that is well-known in the engineering community. However, it has historically
been targeted at supporting the best-effort type of service commonly found in Internet-
related applications. This has been a substantial hurdle for its deployment to support
time-critical applications, as the best-effort data delivery of Ethernet networks cannot
guarantee a deterministic behavior or a reduced packet delay variation. They are also
prone to experiencing congestion losses under data-intensive applications unless the
system capacity can be overprovisioned, which further increases its overall cost but still
does not provide any explicit control on the level of determinism of the time-critical traffic.
These facts account for the dominance of specialized fieldbuses for control systems, which
can guarantee end-to-end bounded latency and also remain more competitive than their
equivalent Ethernet-based solutions.

The emergence of time-sensitive networking (TSN) has thus been a disruptive innova-
tion that has aimed to close this gap between the convenience of the open, interoperable
interfaces of Internet-like communications and the real-time determinism of fieldbuses.
This has been achieved with the development of several enhancements for the Ethernet
set of standards that have eventually allowed their deployment as the core communica-
tion infrastructure of “closed world” industrial, automotive, or aerospace systems with
tight determinism and criticality constraints. These enhancements, amongst other things,
improve the legacy medium access control (MAC) layer of Ethernet devices with novel
traffic shaping schemes, packet inspection methodologies, static route and resource reser-
vation procedures, or redundant transmissions. Furthermore, they rely on an underlying
synchronization service (gPTP [6]) that helps enforce the deterministic transmission and
behavior of the network elements (i.e. well-defined bounded latency).

2.2 THE MAIN OBJECT IVES

The main objective of this study is to build and explore a fully functional TSN networking
system with some novel and key features. On the one hand, an efficient architecture
with optimized utilization of TSN systems based on reconfigurable FPGA devices would
allow their utilization in markets such as the Smart Grid or Space. On the other hand,
the impact of timing accuracy will also be explored to derive new insights about the
future deployments of more advanced, scalable, and deterministic TSN systems using
reconfigurable FPGA devices. All of these ideas can be graphically represented and
summarized in the diagram from Fig. 2.1.

As seen in the figure, once we have established the motivation for developing TSN
systems and the main objectives of our project in this chapter, we move on to presenting
and thoroughly explaining the main subjects of the thesis. As a result, we start off by
providing the reader with a review of deterministic communication systems, fieldbuses,
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Figure 2.1
Graphical overview of the structure of the manuscript.

and the application of deterministic Ethernet in the form of a TSN system to replace
all of these legacy approaches. These aspects are examined in the State of the Art (1).
Afterwards, we introduce the experimental methodology, tools, and resources that we
have used for building the TSN network nodes for our experiments. This is explained
in detail in our section for materials and methods (2). Next, we present a motivational
case (3) in the Cherenkov Telescope Array (CTA), where we used a WR timing system
to acquire high-accuracy time stamps upon receiving Cherenkov flashes. We show how
our scientific data and the WR synchronization can coexist over the same Ethernet links;
and discuss how TSN could be beneficial for scientific infrastructures. Next up, we
break down the implementation of our TSN nodes (4) along two main lines: the general
architecture design of the nodes, and the implementation of their TSN subsystem. Once
we have explained the TSN system, we present our main experimental use cases (5)
in the Smart Grid and for the avionics of an aerospace microlauncher. After that, we
explore the effects of an integration of our TSN systems with WR timing and its effects
on determinism (6). Lastly, we recount the objectives, review the degree of compliance,
and set out the future work in the conclusions (7).

Our designs are based on the Zynq-7000 devices from Xilinx, which bundle together a
hardened ARM processor that allows the execution of an embedded operating system,
such as Linux, and programmable FPGA logic for building intellectual property (IP) cores
that can interface with the processor. The choice of this platform, which has been dubbed
a programmable system-on-chip (SoC), is not coincidental, as one of the main goals of this
thesis project is to carry out an evaluation of the influence of different methods of network
synchronization on the attainable determinism of the system. Since the Z-7015 [7] is a
low-cost Zynq-7000 platform that had previously been used for developing the highly
accurate “WR-ZEN” White Rabbit timing node [8], we selected it as the starting point
and development environment for this study, which presented the following high-level
objectives:
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1. Explore the design of WR-based systems for scientific infrastructure and their
support for joint data and timing information transmission. In this context, show
a motivational use case that could benefit from including the features of TSN
networks alongside WR timing.

2. Develop a set of customizable IP cores that provide the basic features of a TSN
system with a moderately sized footprint that simplifies their integration with
third-party IPs and components in more complex use cases.

2.1) The system should implement a set of methodologies and mechanisms to
tell different types of traffic apart from one another so that they can receive
differentiated processing over the network on the basis of their traffic class
and priority.

2.2) Moreover, the network should allow for a convenient method for the end user
to supply configuration parameters and reserve routing paths and resources
for the forwarding of different flows.

3. Design a parameterizable FPGA architecture for TSN with multi-port switching
capabilities.

4. Characterize the performance of the TSN system and show its applicability to new
experimental use cases in both well-known areas, such as industrial scenarios in
the Smart Grid, or novel use cases (e.g., aerospace).

4.1) The system should be able to aggregate different types of traffic flows ranging
from best-effort (BE), medium priority, through to critical high-priority flows
whilst respecting their relative priorities.

4.2) The aggregation and forwarding mechanism should be able to avoid interfer-
ence amid the different types of traffic and maintain the integrity of the higher
priority flows.

4.3) Such a system should also be able to guarantee and enforce a deterministic
forwarding behavior for critical traffic by ensuring bounded end-to-end latency
and reduced packet delay variation (PDV) on a per-traffic-class basis.

4.4) The system should also integrate built-in redundant transmission and recep-
tion capabilities that provide enhanced robustness by ensuring the delivery of
the most critical data by providing an alternative, failsafe physical transmission
path.

5. Integrate a highly accurate synchronization mechanism, such as White Rabbit
(WR), alongside the default synchronization mechanism of TSN (gPTP) in order to
estimate the effects on determinism of the use of a more accurate timing stack.

5.1) The interoperability between White Rabbit timing and the default gPTP syn-
chronization of TSN should be assessed and, when needed, plans should be
made to allow the interoperability between the two.

6. Propose an upgrade path for enhancing the overall determinism of a TSN system
by leveraging new architectural features and enhanced timing.
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6.1) The interoperability between White Rabbit timing and the default gPTP syn-
chronization of TSN should be allowed with the definition of an upgrade path
for allowing the full compatibility between the two timing systems. These
enhancements will be part of the tasks for future improvement following up
the results of this thesis project.

6.2) The design should guarantee interoperability and backwards compatibility
with other legacy Ethernet systems or TSN-capable devices over multiple
physical layer implementations; e.g., copper twisted pair, optical fiber.

2.3 THE FRAMEWORK OF THE THES IS

This research has been developed in the framework of different technology transfer
actions, including national and European research projects that have acted as the main
scientific drivers of our work, and financial agents to support our development efforts.
We list the most relevant of them in the following lines:

A) Technology transfer contracts with the industrial partner Seven Solutions:

– ACTECA. “Aceleradores tecnologías Asociadas para Grandes instalaciones

Científicas": Project funded by the Spanish CDTI where the University of
Granada (UGR) was subcontracted for the development of novel technologies
for the control of particle accelerators and for RF dissemination over Ethernet
networks.

– Redes deterministas basadas en TSN para sistemas RF de aceleradores de
partículas: Spanish government, Innoglobal call with the goal of evaluating
TSN technologies as to replace the bus interface for transmitting data and
control data for particle accelerators.

– Comunicaciones deterministas para la Industria 4.0: TSN para Smart Grid:
Granada Ontech technology cluster, call for “Agrupaciones Empresariales In-
novadoras” from Spanish MINECO. Its main objective was to evaluate TSN
technologies for Smart Grid applications.

B) National research projects: AMIGA6 & AMIGA7. A national MICIN project led
by Andalusian Institute of Astrophysics (IAA) that the University of Granada par-
ticipated in with the goal of evaluating time transfer technologies in the framework
of Square Telescope Array (SKA).

C) EU projects: ASTERICS. Astronomy ESFRI and Research Infrastructure Cluster,
Project ID: 653477, funded in the framework of H2020-INFRADEV-1-2014-1 call.
Our goal in this project was to apply enhancements based on the White Rabbit
technologies to astrophysics infrastructures, such as KM3Net, CTA or SKA.

As a consequence of our participation in all of the aforementioned projects and con-
tracts, we had the opportunity to collaborate and work jointly on the project specification,
source code implementation and use case definition with many of these different ac-
tors. Hence, the results and part of the system development that we present in the
manuscript are the consequence of a significant collaboration effort. This collaboration
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was paramount, as a significant portion of our results and the insights that we derive
from them would not have been attainable had it not been for the contributions of our
collaborators in the projects of our framework. In particular, the high-accuracy White
Rabbit timing modules for some of our experiments were provided by the timing research
group at the University of Granada and the greater open hardware repository (OHWR)
community. The design of the time-aware traffic shaper [9] was conducted jointly with
collaborators from the Andalusian Institute of Astrophysics (IAA), who also provided
key advice for designing platforms for aerospace applications. Finally, some of the
FPGA cores that we use for the overall configuration of the PCB boards of our nodes,
the embedded firmware to support gPTP, the frame preemption components for TSN,
or the development of the RTEMS OS for our embedded platforms were supplied by
our industrial collaborator Seven Solutions. The combination of all these elements has
allowed us to take on the huge amount of work envisioned in this project, thus relieving
us from the development of some of its most purely technical aspects, so that it would
be feasible to explore the key scientific challenges and results of our research within a
reasonable timeframe for the completion of the thesis project.

2.4 OVER VIEW OF THE STRUCTURE OF THE MANUSCRIPT

Once the motivation and requirements of this study have been presented, the development
and characterization of the TSN-capable systems developed throughout this thesis project
will be described over the different sections of this manuscript, with the structure that
we outline below.

• We start off by providing the reader with a more in-depth analysis of the back-
ground and capabilities of the technologies that make up the time-sensitive net-
working enhancements. This is examined in the State of Art contained in Chapter 3.

• Next, we use Chapter 4 to present the materials and methods used throughout the
study.

• After that, we move on to examining a motivational case in Chapter 5 for the
Cherenkov Telescope Array that shows how scientific infrastructure could comple-
ment very precise timing with a TSN system. This lays the foundation for many of
the architectural elements that we implemented for our system thereafter.

• The design of the TSN nodes themselves and their functionalities are in turn split
over several dedicated chapters.

– Chapter 6 is used for presenting the global system architecture.

– Chapter 7 gives a detailed description of each subcomponent and IP core in
the TSN subsystem of our nodes.

• Afterwards, we characterize the performance of the TSN system with the deploy-
ment and implementation of TSN networks for two representative use cases.

– An application for integrating the data traffic in an electrical substation for the
rollout of the Smart Grid in Chapter 8.
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– The development of the avionics system for an aerospace microlauncher in
Chapter 9.

• The integration with White Rabbit timing, and the assessment of the influence of
the use of different synchronization mechanisms for TSN is discussed in Chapter
10.

• The conclusions and future improvements are presented in Chapter 11.

• Lastly, Appendixes A and B contain several considerations on the software environ-
ment of our boards and a description of our optimization efforts for developing
Linux network drivers for Ethernet interfaces, respectively.
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Figure 3.1
Overview of the contents of Chapter 3 with the State of the Art.

A review of the state of the art of TSN systems and their applications. This chapter
introduces the background that led to the emergence and development of TSN networking
systems. We start off by reviewing the prevalent fieldbus landscape that preceded this
technology. Hence, we examine some of the main fieldbuses that were commonly used
in the industry and their most usual areas of application, such as industrial automation,
automotive networks, and aerospace. We also mention the main standardizations and
specifications that encompass them. During the analysis, we emphasize how the design
paradigm with fieldbuses started shifting towards Ethernet-based interfaces, which
drove the industry to start the development of a series of enhancements to implement
a fully deterministic Ethernet link layer. This translated into the initial specification of
Audio/Video Bridging (AVB) first, which was later on replaced with the more advanced
TSN systems that we present in this manuscript. We also provide an introduction to the
main components and standards of TSN, a review of its main application profiles, and
comments on the products and solutions from leading TSN equipment suppliers.
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3.1 REAL-T IME COMMUNICAT ION WITH FIELDBUSES

Real-time communication in industrial, automotive, or aerospace environments has usu-
ally been achieved through the use of dedicated fieldbuses. These generally implement
deterministic communication services for transmitting the critical messages from multiple
sensors or towards different actuators in an industrial plant. Hence, their use allows
us to enforce the timeliness required for implementing processes such as control loops,
which usually demand that data be received within a certain deadline for their control
algorithm to be applied successfully.

Traditional and legacy systems relied on a number of methodologies for achieving
this. For instance, in traditional industrial environments this could even be achieved
with analog cabling, i.e., the implementers would deploy control systems that used
dedicated wiring for controlling each one of the processes in the factory floor: from the
sensing of the physical variables of the controlled processes to the activation of a certain
actuator. Hence, these architectures were not scalable and required a considerable wiring
harness that was also difficult to maintain and repair. Fieldbuses represented a significant
improvement over this scenario.

Since the initial publication of one of the main specifications for fieldbuses (IEC
61158) [10] in the early 2000’s, the standard has grown to accommodate a large number
of the fieldbuses that are commonly found in the industry. Their goal, as stated in
the presentation from [11], is to provide “an industrial network system for real-time
distributed control.” Thus, this would allow the seamless exchange of process control
and manufacturing data in real time through technologies such as PROFIBUS, SwiftNet,
HART, EtherCAT, SERCOS, MODBUS, . . . Many of these protocols have already been
included in the IEC 61158 specification. They provide an efficient mechanism for carrying
out remote supervision tasks or implementing distributed control loops. They may even
assist with advanced functionalities such as the remote calibration of the instrumentation
in the plant.

As mentioned previously, there are multiple implementations of different fieldbuses.
We can usually trace each “flavor” to a different manufacturer of industrial automation
equipment. This is the case of EtherCAT [2], which was initially developed by Beckhoff
Automation [12]. The subsequent IEC standardization encompassed most of these
buses by supplying a broad definition of different profiles (IEC 61784) [13], whereby
each fieldbus would fall within the category of one of the working fieldbus profiles
contemplated in the specification. Thus, the different fieldbus profiles define several
families (CPFs), with each family having an assigned collection of fieldbuses. Hence, CPF1
includes the original FOUNDATION fieldbus, CPF3 features the well-known PROFINET,
. . . The fieldbuses contemplated in the IEC 61784 specification represent a comprehensive
list of available fieldbus solutions. Nonetheless, there are other alternatives, such as
FlexRay [5], CAN [3], or AFDX [14], which are not included in the specification, but that
have nonetheless been successfully applied to the real-time communications of different
systems; such as the automotive or aerospace systems. Moreover, we can classify the
wide family of fieldbuses according to additional criteria, such as their performance or
their intended applications. We introduce some of their most significant classifications in
the following points and give examples of applicable fieldbuses in each case.
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3.1.1 Level of performance

From the standpoint of performance, many of these communication interfaces implement
different methodologies for fulfilling the requirements of a real-time, deterministic
exchange of data. Hence, on one end of the range, Profinet can achieve relatively high
transmission speeds as it is built on top of the Ethernet link layer with fast forwarding
mechanisms and custom protocols. Other fieldbuses, given their initial applications for
sensing and control, may only be able to handle a few hundreds of kb/s and support
update cycles (i.e., transmission windows) on the order of the millisecond. That was the
case of the FOUNDATION fieldbus [15] or Profibus [16].

3.1.2 Representative applications and use cases

From the point of view of their intended applications, fieldbuses find their main uses in
the areas of industrial automation, automotive communications, and aerospace systems.
Moreover, they may also be applied as the foundation for building low-latency, reliable
communications for the Internet of Things (IoT) and in other niche applications, such as
home automation (e.g., KNX [17]).

a) Industrial Automation: Since the scenarios of industrial automation represented
the original application domain of fieldbuses, we can expect to find a large number
of protocols that could be applied to this end. Some typical examples can be found
in the main CPFs contemplated in the IEC 61784 specification, such as Profibus
or MODBUS. The former can achieve deterministic communication for data rates
of up to 31.25 kb/s, whereas the latter dates back to an older specification that
lacks determinism but that could nonetheless handle faster rates of up to 12 Mb/s.
Many of the fieldbuses that find industrial applications may have either built-in or
optional redundancy and feature the capacity to interconnect hundreds of devices.
This helps ensure data integrity for the more critical messages while simplifying the
process of deploying distributed sensing and control applications. In addition, they
are supported with multiple types of physical layer interfaces. As an example, in
the case of MODBUS, it is twisted pair wiring that gets used, whereas Profibus may
be supported with a range of options from twisted-pair copper wiring to optical
fiber. This allows the deployment of Profibus within environments or processes that
might otherwise be prone to combustion or explosion (e.g., oil refineries, chemical
processes, . . . ).

b) Automotive systems: In-vehicle networks are another representative case of ap-
plication for fieldbuses. Hence, the increasing number of sensor and actuator
elements in modern vehicles (the steering system, the tire pressure sensors, the
engine controller, ...) has made it necessary to find an appropriate communication
system that could be deployed inside the car to interconnect all of its essential
elements. Traditionally, this was achieved by combining different fieldbuses, so
that each bus domain would be specialized in the handling of a different type of
process such as the engine control or the braking system. The diversity of elements
of different nature in vehicles often made the wiring harness of cars a bulky and
complex topology with different kinds of buses. Nonetheless, we could claim that
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they all had in common that their interfaces needed to be able to withstand large
temperature swings or high levels of electromagnetic interference. Some typical
examples of the buses used in this domain are the CAN [3] or FlexRay [5]. Both are
supported with twisted-pair physical interfaces with differential signaling, with
FlexRay portrayed as an enhancement over the CAN bus with faster transmission
rates: ⇠ 1 Mb/s for CAN in contrast to the 10-Mb/s performance of FlexRay. They
have traditionally been extensively deployed for in-vehicle communications in cars
and other transportation systems ranging from trains, aircraft, and even through to
elevators.

c) Aerospace systems: Aerospace is a completely different domain with its specific
set of requirements. These systems usually require high resiliency to thermal
variations, radiation-induced effects such as single-upset events, and robustness
in data delivery. We have conducted a thorough review of these systems in the
context of the study that we present in Chapter 9 on the development of the avionics
communication system for an aerospace microlauncher. Some typical examples of
these buses include the well-known MIL-STD-1553B [18], AFDX [14], Spacewire [19],
or the time-triggered Ethernet protocol (“TTEthernet”) [20]. The MIL-STD-1553B
is nearly a legacy technology at this point. It uses TDMA for access control and
could achieve a bandwidth of up to ⇠ 1 Mb/s. It is on its way to being superseded
by faster, more deterministic alternatives such as AFDX or Spacewire. Both can
achieve hundreds of Mb/s in terms of throughput and make use of different traffic
shapers to ensure determinism. Lastly, TTEthernet implements an Ethernet-based
interface that uses traffic shapers for forwarding critical data deterministically.

3.1.3 The shift towards deterministic Ethernet

Throughout the evolution of the different standardization efforts for the multiple fieldbus
technologies, it can be seen that there is a clear trend towards shifting the design paradigm
of the physical and link layers of these interfaces. Hence, traditionally, a majority of field
buses relied on some sort of serial communication interface that was usually based on
differential signaling over twisted-pair wiring. That was the case of CAN, FlexRay, or
MODBUS. A similar trend was observed in aerospace with the legacy MIL-STD-1553B.
In contrast to these, a substantial number of the new fieldbuses gathered in the IEC
61784 specification underwent a change in their design paradigm and started evolving
towards Ethernet-based interfaces. That was the case of EtherCAT, Profinet, or SERCOS.
In particular, this trend was standardized in a specific real-time profile over Ethernet of
the IEC specification (IEC 61784-2) [21]. As a result, the shift towards Ethernet had some
obvious advantages such as the faster communication throughput. Moreover, the new
fieldbus protocols would now be able to take advantage of the diverse variety of Ethernet
interfaces and their link layer implementations (e.g., optical fiber, RJ45 connectors, . . . ).
Thus, as was the case of EtherCAT, this usually meant that the fieldbus was built on top
of standard Ethernet components and was complemented with specific message formats
(“telegrams”) or custom elements for switching and forwarding messages promptly
with low latency. Furthermore, these messages are usually transmitted using standard
Ethernet headers. This shift towards the link layer of Ethernet can be understood as
part of a larger trend that seeks to make Ethernet networks into reliable interfaces for
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critical data forwarding. Consequently, it is this shift towards deterministic Ethernet
that eventually led to the emergence of the deterministic technologies of time-sensitive
networking (TSN) that are bound to supersede a large swath of the existing fieldbuses.
This is a natural evolution as a result of this process. In fact, TSN can be thought of
as a “one-size-fits-all” type of solution: since TSN can encapsulate different types of
messages on top of standard VLAN-tagged Ethernet frames and provide a differentiated
service for each one of them, it could also integrate the transmission of fieldbus messages
alongside the rest of the flows in the network. This is further evidenced by the fact
that many Ethernet-based fieldbus protocols have already defined different operational
profiles to ensure their integration in a TSN system. That has been the case of EtherCAT
or even Profinet, which have released the corresponding documentation [22, 23] with the
methodology for their integration with TSN.

3.2 THE DRIVE FOR FULL Y DETERMIN IST IC ETHERNET

As mentioned in the introduction, TSN was developed with the intent of replacing
the legacy fieldbuses that are commonly found in multiple applications, such as the
industrial or the automotive engineering domains, with one single open, standardized,
interoperable communication interface. Fieldbuses, such as Profinet [4] or CAN [3],
can already do a great job for handling the data traffic needed for supporting critical
processes in diverse use cases such as factory automation. Nonetheless, the myriad
interfaces and protocols between devices, the varying requirements associated with the
different types of equipment, and the usual lack of interoperability between proprietary
interfaces may often result in a complex system landscape: a combination of fieldbuses
may sometimes have to be deployed simultaneously within the same infrastructure to
serve different devices or to operate different industrial controllers. In some cases, we
may even find situations of analog cabling for operating legacy equipment in coexistence
with fieldbuses for implementing other real-time control loops. In practice, all of these
considerations often translate into a substantially large wiring harness, which could be
difficult to maintain or service, and a control plane that may be hard to manage. This
scenario was commonplace in industrial plants or automotive platforms, which normally
required a complex integration of different interfaces, protocols, and subsystems to build
an operational design.

From the standpoint of system designers and integrators, it has always made sense to
seek an alternative interface that could take on the role of the “one, single, and true” gold
standard of interoperable interfaces. Nonetheless, the main hurdle for designating one
specific protocol or interface for this task was the subject of interoperability. As a matter of
fact, the designs and implementations of many fieldbuses are proprietary specifications
and, while there may be other interfaces with an open specification (EtherCAT [2]),
these latter solutions are usually only present in the devices, controllers, and product
lineups from particular manufacturers rather than being a largely accepted, industrywide
interface for control and automation. There may even be the case when different
manufacturers feature competing fieldbus specifications in their devices, and hence
the use of a bridging device may be in order to exchange data between the different bus
domains of the network.
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Ethernet networks could have been an answer to this conundrum, had it not been
for their longstanding best-effort nature. In this context, there are numerous reasons to
argue in favor of Ethernet to fulfill this role. Firstly, it is a well-known communication
standard with nearly pervasive support across the major communication equipment. Its
building blocks and specifications are openly available to the community, and hence
most suppliers and manufacturers have the ability of building it into their product
portfolio. Secondly, and most importantly, as it is one of the building blocks for the
so-called “open world” communication technologies, like the Internet, it is also highly
interoperable. Thus, even though there are several variants of Ethernet with different
link speeds (1 Gb/s, 100 Mb/s, . . . ), communication modes (e.g., full-duplex, half-duplex),
or physical interfaces (twisted-pair copper cable, optical fiber), its specification is so
comprehensive that it contemplates the use of “autonegotiation” schemes to ensure that
Ethernet implementations on any given pair of nodes with different sets of features can
agree on a common mode of operation for exchanging data with the highest possible
attainable performance; i.e., any given pair of Ethernet interfaces respectively supporting
10 Mb/s and 10/100 Mb/s with full-duplex may agree to exchange data frames at the
minimally common supported speed of 10 Mb/s. These are some of the features that have
made Ethernet so successful for solving the broader problem of communications amongst
computer systems: it is backward compatible with legacy versions of the standard, and
it can accommodate the use of different communication modes or physical interfaces
between devices. Furthermore, it does so in a manner that is consistent across different
manufacturers and seamless for the end user.

3.2.1 A presentation of motivational use cases

Consequently, it can easily be seen how these features allowed the emergence of Ethernet
networks as one of the prevailing technologies in the networking landscape. Nonetheless,
their use for solving the needs of industrial control scenarios was hampered by the fact
that Ethernet networks rely on a best-effort paradigm. This implies that data should
be forwarded to the destination as “quickly and efficiently” as the communication link
would allow at a given time. Yet, there are no “implicit guarantees” for data delivery
or that the user should come to expect a certain quality of service or a significantly
prioritized treatment of the data flows [24]. This characteristic is inherent to the behavior
and operation of Ethernet networks: Ethernet is a packet-switching system that routes
data frames on a hop-by-hop basis using a variety of routing tools and protocols (e.g.,
ARP) to decide which ports of a given Ethernet bridge an Ethernet packet should be
forwarded to. Hence, the bridging devices for Ethernet networks, which are also known
generally as “switches”, are internally built with interconnect devices using different
methodologies, as can be seen in [25] or as outlined in Section 7.5 of this thesis project.
These packet switching interconnects are thus meant to process data transactions on
their input ports, arbitrate between them, and deliver them to the appropriate output
port. Packet arbitration is a major source of packet delivery variation, and in some
switching architectures it can lead to diverse effects, such as packet contention, head-
of-line blocking, and, in the most severe of cases, a combination of the aforementioned
effects may lead to congestion losses on the buffering elements of the input ports of the
switch. These effects are all well-known, and the main strategy for circumventing them
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is to overprovision the capacity of the Ethernet system. This implies using higher speed
links and larger packet-switching interconnects (e.g., larger buffering elements, more
egress ports, . . . ). However, even an overprovisioned system could still be ineffective for
handling critical services, as we shall see next.

In the literature [24], this point is often backed by examining the use cases that drove
the initial developments of TSN. Hence, the case of multimedia networks for professional
audio/video (AV) production is described as paradigmatic. This situation is most
commonly found in television studios or during the production of live content, such as
the broadcast of a sport event or a concert, where the AV production team usually has to
combine different audio and video sources (feeds) to produce a finished a program. This
scenario involves multiple video sources, namely from different cameras for the audience,
the event itself, the studio commentators, . . . Likewise, the corresponding audio feeds
also have to be routed to a mixer and embedded alongside the video of the event to
produce the finished content that will be broadcast to the viewers’ homes. As seen in Fig.
3.2a from [26], the legacy AV production studio for television content usually consisted
of different interfaces for each type of signal, including audio, video, or synchronization.
Replacing this infrastructure with Ethernet posed several challenges (Fig. 3.2b). The first
one was that the respective audio and video feeds in the studio are often generated in a
raw, uncompressed format. As indicated in [26], the average studio generally uses up to
30 different cameras for sending high-definition (HD) content to the video switcher for
video production. Uncompressed video can use up close to 2.97 Gb/s of the Ethernet
link capacity [27], and hence the use of multiple video sources may imply the use of
faster Ethernet specifications (e.g., 40 Gb/s, 100 Gb/s, . . . ) to support this traffic; i.e., 1
Gb/s-Ethernet, which is one of the most popular implementations of the standard would
likely be insufficient on its own. Moreover, synchronizing the reception of video flows
can be difficult in a packet-switching network. Secondly, Ethernet systems, just like any
other packet-switching technologies, are highly statistical in nature: there is a congestion
loss probability as a function of the size of the ingress buffering elements and the traffic
rate; and a latency variation with a large distribution. These effects can be observed in
the qualitative illustration from [28] in Fig. 3.3.

a b

Figure 3.2
One the first use cases of TSN/AVB for the transformation of the legacy AV production environments into

a full-fledged IP-based system supported through Ethernet networking and bridging with determinism and
robustness guarantees. Images reproduced and adapted from [27] and [26]: Fig. 3.2a is the legacy TV studio
architecture, Fig. 3.2b is the upgraded environment with TSN/AVB bridging.
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Figure 3.3
A quantitative illustration from the presentation in [28] to showcase the statistical, and hence best-effort
nature, of ordinary Ethernet bridging.

In this context, even a relatively low packet loss probability can have a tremendous
repercussion in the production of AV content: By means of a quick estimate, we can
see how 30 video feeds at 2.97 Gb/s with a loss probability of 0.05% could produce
a whopping ⇠13.37 million lost frames (1500 B) within the expanse of one hour. This
translates into 18.67 GB of lost data. These are missing or corrupt values for the pixels of
the finished video that will be sent to the viewers. Hence, using standard Ethernet could
produce an end product with degraded quality when it is compressed and prepared for
broadcast.

A similar analogy could be drawn for an industrial automation scenario with potentially
hundreds of nodes forwarding multiple classes of control, monitoring, and ordinary data
flows. Admittedly, the demands for bandwidth consumption may not be as high for
an industrial plant, which usually demands greater determinism and a lower PDV for
its critical flows. Nonetheless, we could easily envision a situation with an analogously
low probability for discarding packets, albeit with flows with lower speed, that could
result in the eventual loss of a single frame on average during a working shift of the
plant. If the lost packet was intended for a critical process, the industrial controllers of
the plant may shut down automatically out of precaution and halt the assembly line.
This downtime is unexpected, could take several hours to revert to normal operation,
and leads to an impact in decreased productivity and larger production costs. These
are some of the reasons why fieldbuses have traditionally been chosen as the preferred
solution for industrial networks.

3.2.2 A brief description of Audio/Video Bridging

To solve these issues and, thus, provide a robust communication system, the IEEE res-
idential Ethernet study group [29] advanced the specification of several addenda to
improve Ethernet in this direction. Some key elements of this improvement were the real-
ization that distributed synchronization and traffic shaping were essential requirements
to establish a network that could handle multiple flows, guarantee latency variation
within ⇠1 µs, and avoid congestion losses altogether. This led to the initial description
of Audio/Video Bridging (AVB), whose designation harks back to its initially intended
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application to professional multimedia environments. This was officially considered
the predecessor to TSN before the residential Ethernet study group shifted its focus to
industrial applications with the inception of the TSN working group (TSN WG) [30].
Thus, the main components of AVB are highlighted next.

• The network synchronization component, which is described in the 802.1AS spec-

ification [6]. As we will explain in the corresponding implementation sections
(6.3.6) and in the TSN overview of our publications in Chapter 8 and 9, this compo-
nent is tasked with instantiating a distributed time synchronization service using a
particularized profile of the PTP synchronization protocol [31]: This profile desig-
nates nodes as either end systems or bridges with gPTP timing capability, bars the
forwarding of synchronization messages over non-gPTP systems, and restricts the
packet format to raw Ethernet frames (“L2”). Since one of the goals of distributed
systems is to deploy applications (e.g., control loops) that can operate synchronously
and in coordination with respect to a common time base, the use of gPTP serves
this purpose by distributing a system-wide time reference which should be better
than ⇠1 µs at least. This would fulfill the synchronization requirements of most
industrial [32] and multimedia systems [27], although the implementation that we
have introduced in this thesis project, which we characterize in Section 8.6.3.1, can
narrow this margin down to the tens of nanoseconds. Furthermore, to increase the
robustness of the timing distribution system, the standard also contemplates the use
of the best master clock algorithm (BMCA) to automatically select the ports of the
system nodes that will act as synchronization sources (master) or synchronization
recipients (slave).

• The traffic shaping mechanism that was initially designated for AVB was the

credit-based shaper (CBS), and its description can be found in the 802.1Qav specifi-
cation [33]. The main goal of this shaping algorithm is to prevent the occurrence of
congestion losses by evenly spacing out the packet bursts from the different traffic
flows in the network. This is accomplished by assigning a certain amount of credit
units to the different queues of the shaper, so that each queue is associated with a
certain priority level and the amount of credit should be proportional to the flow
bandwidth. As a result, when packets are injected into the shaper, the correspond-
ing credit for each queue is debited (i.e., consumed) at a rate of “activeSlope” credits
per amount of time. When the available credit is exhausted, transmission from its
corresponding queue is halted until the credit has had a chance to regenerate at a
rate of “idleSlope” credits per amount of time. As observed in the Fig. 3.4, which we
have reproduced from [34], the effect of this mechanism is to space out data from
different flows and thus prevent the buffering elements of concatenated bridges
from becoming saturated. This method is a fundamental achievement for allowing
the seamless coexistence of flows with different levels of criticality over the same
physical Ethernet link.

• Resource management is another important part of AVB. This functionality is
defined in the 802.1Qat [35] specification, which details the operation of the stream
reservation protocol (SRP). This protocol has the AVB emitter (talker) and receiver
(listener) nodes work with a publisher/subscriber model. Hence, the talker devices
announce their respective streams by issuing beacon frames that are propagated
throughout the network to the listener devices. The AVB listeners would then
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proceed to select the streams they would like to subscribe to; and then propagate
this connection request backwards over the different hops of the network all the
way to the talker device. This process is supported with the stream reservation
protocol (SRP), which reserves all the necessary resources along the intermediate
data forwarding bridges of the network. Hence, SRP has the AVB bridges advertise
their internal message forwarding latency and their available resources, such as
the available VLAN identifiers or the types of message priorities that the bridge
is capable of handling. If a reservation of the node resources can be performed,
the protocol will then move to next hop on the path to the talker to perform its
corresponding resource reservation. Once the entire path has been covered, then
the talker may begin exchanging its AVB flow with the listener. Moreover, the
protocol description indicates that the path reservation for AVB flows can have
two different levels of overall end-to-end latency: class “A” can guarantee 2 ms,
whereas class “B” is more lenient and guarantees a latency of 10 ms.

• Lastly, the foregoing mechanisms are complemented with the specification of
“systems, configuration profiles, defaults, protocols, and procedures for bridges
and end stations” that are contemplated in the specification of 802.1BA [36]. Thus,
the goal of this specification of the most usual configuration options and processes
for an AVB system is to allow for the faster and more agile deployment of this
type of networking systems. Hence, the approach taken here is to allow a non-
networking expert to quickly build an AVB system using a set of commonly used
blocks and configuration options with a “plug-and-play” type of approach.

Figure 3.4
An example of the operation of the credit-based shaper to space out traffic bursts and enforce a certain level
of guaranteed bandwidth. Image reproduced from the presentation in [34] from the TSNA 2017 Conference.

3.3 OVER VIEW OF TSN AND ITS FUNCT IONAL IT IES

The model of AVB was effective for handling multiple flows in an Ethernet network
and provide an entry-level type of determinism, namely with 1 ms and 10 ms PDV,
and safeguards for guaranteeing their bandwidth with the CBS shaper. This approach
was sufficient for the initial domain of AVB networks in professional AV production
environments. Nonetheless, the concepts at its foundation of bounded latency and
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determinism could also be applied to upgrading the systems deployed for factory
automation; although these use cases called for several changes in the original paradigm
for handling traffic in AVB networks. This led to the emergence of time-sensitive
networking (TSN), which we introduce in the following lines.

Figure 3.5
TSN is built around four main operational pillars with interchangeable subcomponents. Different profiles may
include a subset of this specification. Adapted from [37].

The development and definition of TSN subsequently moved to the IEEE TSN working
group, which had a focus on aggregating multiple flows over the same Ethernet links
with a greater degree of determinism than can be afforded with an AVB system. This
represents a shift in the paradigm of AVB, since the ultimate goal is to aggregate as many
flows as possible over the system with bounded latency and negligible congestion loss.
This is the ideal scenario for factory and assembly line automation, which were the use
cases that drove a substantial part of the development of TSN. Furthermore, TSN aims to
be a far more comprehensive solution than AVB, with greater versatility, configuration,
and implementation options. Hence, it is built around four main foundations, as seen in
Fig. 3.5, that offer different components that implementers may select for building TSN
applications tailored to different scenarios.

– The timing system is still based on the gPTP protocol, albeit the advent of TSN also
saw the definition of an updated version thereof: 802.1AS-REV [38]. This version of
gPTP aims to offer greater synchronization accuracy down to the nanosecond level
with a high-accuracy mode. This is achieved by mandating that all gPTP instances
in the network be syntonized, i.e., use a common frequency, for measuring time
intervals and estimating offset values. As before, this protocol uses raw Ethernet
encapsulation for transmitting its messages and restricts their forwarding to strictly
within network subsystems made up of gPTP-enabled bridges. Furthermore, the
use of the BMCA increases its robustness by adding support for redundant ring
topologies that could theoretically be able to synchronize tasks across different
nodes with the type of accuracy expected in the most demanding industrial appli-
cations. Lastly, the protocol also includes support for multiple timing domains and
defines generic interfaces for building time-aware applications.

– Forwarding determinism. Another fundamental avenue of TSN, as seen in the
picture, is to provide mechanisms that guarantee a certain level of bounded end-
to-end latency. This is essential for many real-time processes, which rely on the
timely reception of data within a well-defined deadline. The network environment
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of most industrial plants requires that multiple moderate-bandwidth flows should
be aggregated over shared infrastructure with different types of topologies (e.g.,
linear bus chain, ring or tree layouts, . . . ). As indicated in [39], it is common for
industrial networks to process flows on the order of several megabits per second
(⇠1 Mb/s for legacy fieldbuses) and they usually enforce processing cycles on
the order of ⇠1 ms or less. Moreover, these systems usually involved a large
quantity of nodes. This was an important limitation for AVB systems, which had
been conceived for assembling networks with a smaller scope of up to seven hops.
Hence, TSN set out to improve this by defining new traffic-shaping methodologies
and novel strategies for reducing the packet-processing latency on a TSN bridge.
The former implied the definition of a new traffic shaper based on a time-division
multiplexing methodology that is driven by the synchronized gPTP time: the
time-aware traffic shaper (TAS - 802.1Qbv) [9], which we explain in great detail in
Chapter 7. This approach is more effective than the CBS for enforcing a strict cycle
time and reduce the delivery jitter. The latter aspect of the new TSN systems, i.e.,
reducing the internal processing time, could be achieved with the enhancements for
frame preemption for the Ethernet MAC service and for the TAS shaper (802.3br [40]
and 802.1Qbu [41]), whose implementation we have also undertaken (Chapter 7).
Frame preemption can effectively provide a low-latency service for the transmission
of highly critical traffic, which can be beneficial in large networks. In addition,
the specification of TSN also defines alternative traffic shapers [34], such as the
asynchronous traffic shaper (802.1Qcr) [42], which can be used when determinism
constraints are more relaxed – it does not require a working gPTP service – and
operates following a scheme that resembles that of the CBS shaper.

– System Robustness. Given the use of TSN systems for transmitting and processing
highly critical data, the role of the shapers for guaranteeing a timely delivery is
complemented with several mechanisms for ensuring that critical traffic will be
delivered at its expected recipients. Consequently, the joint action of the shapers
and the mechanisms for system robustness ensure that the possibility of congestion
losses can be minimized: not only can we guarantee that data delivery is bounded
with this two-tier approach, but we can also ensure that if frames are dropped
at the intermediate nodes for buffering congestion or link failure, then a copy
of the message could still be received at the destination. We can achieve this
with the redundancy methodologies defined for TSN systems. Thus, since TSN is
based on an Ethernet foundation, some well-known methodologies for redundancy
such as HSR or PRP [43] could be built alongside the implementation for TSN.
Nonetheless, the TSN specification has come up with its own native seamless
redundancy service for critical data: the 802.1CB [44] specification. This component
allows the definition of multiple redundant streams that can be forwarded over the
network by establishing a redundant, ring-style topology. It defines several methods
for identifying the traffic classes that will be transmitted over redundant paths, and
it implements a filtering function for discarding duplicates based on the use of a
sliding window. We show a detailed implementation of this protocol for this thesis
project in Chapter 7. In addition, the standards for TSN define complementary
mechanisms for enhancing data transmission reliability, such as the use of ingress
filtering (802.1Qci [45]). This allows the constant monitoring on the ingress paths
of the TSN nodes to ensure that the TSN messages are received within their time



3.3 overview of tsn and its functionalities 33

slots. Otherwise, they can be discarded to prevent them from “clogging” system
resources that might be reserved for a different traffic class during the rest of the
cycle time.

– Resource management. The multiple components that make up a TSN system
require the application of a specific, user-driven configuration dependent on the
network scenario to achieve different effects, such as the establishment of a well-
defined deadline for a high-priority flow. In practice, given the modular nature of
TSN, this requires the combination of the settings applied to the traffic shapers, the
traffic identification modules (802.1Q [46]), the timing system, . . . TSN systems
address this problem with the configuration model specified in the 802.1Qcc stan-
dard [47]. In our experience, the initial approach for configuration in TSN was
to upload settings on a node-by-node basis using some type of interface (e.g., a
web server) for supplying parameters. Some early commercial implementations
from Innovasic [48] and others featured this approach. The specification has since
evolved towards a centralized configuration system with a user-friendly interface
(e.g., a GUI, a web page, . . . ) that network implementers can use for defining
high-level system parameters, as seen in Fig. 3.6. This configuration specified in
the centralized user configuration (CUC) component is then sent to an analytics
engine – the central network configurator (CNC) – which derives the settings that
should be applied to each individual node of the system. To do this, the CNC
maintains a system model for each node in accordance with the YANG models for
TSN (802.1Qcw, 802.1CBcv, . . . ) and connects to each node in the system to upload
their corresponding parameters. This trend of centralized, automated configuration
will allow the fast deployment of TSN networks with an almost “plug-and-play”
feel. Parts of the specification of the YANG models for TSN are still a work in
progress, but there are some successful commercial implementations to date, such
as the Slate configuration utility from TTTech [49].

Figure 3.6
The TSN centralized configuration model and network architecture hierarchy outlined in the IEEE 802.1Qcc
specification. Image reproduced from [47].

It can be seen that TSN is highly modular as it can combine different elements from
each one of its foundational pillars to produce distinct flavors of TSN systems. As a matter
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of fact, many of these elements have already been included in the newer IEEE specification
for bridged networks: 802.1Q-2018 [46]. This diversity of options is beneficial to cover a
wide range of applications but may make some questions about interoperability arise.
Hence, special emphasis is usually placed on the issue of the interoperability between the
implementations of TSN from different manufacturers. This encompasses a broad range
of considerations: from the underlying Ethernet communications interfaces and physical
layer transceivers, to the interoperability between the modules and design solutions
supplied from different implementers. An example of this would be to ensure that the
frame preemption modules from different manufacturers can exchange data (including
fragmented Ethernet frames) seamlessly. Another area of concern would be to ensure
compatibility between the main timing stacks applicable to TSN, such as the “ptp4l” [50],
which has been adapted to feature a gPTP profile in some commercial products (e.g., the
KONTRON TSN kit [51]), or the AVNU gPTP implementation [52]. To this end, one of
the leading industry associations driving the development of TSN – the AVNU Alliance
[53] – has contributed to setting up interoperability laboratories and industry-wide test
benches, such as that at the University of New Hampshire [24], where manufacturers
and implementers can test and verify the interoperability of their solutions against those
from other makers with a comprehensive testing scheme.

3.4 AN INTRODUCT ION TO TSN PROFILES

As we mentioned in the foregoing points, TSN is a highly modular technology. Yet, as
of today, there has not been a commercial implementation so far to feature all of its
components integrated in one single design. This is true both for ASIC-based designs,
which cannot be altered after their implementation, and for FPGA designs, which are
normally built to fulfill one specific case.

This is a major point of focus for the industry, as evidenced by the discussions in this
regard in some of the main industrial forums driving the development of TSN [54]. Thus,
TSN can support use cases in a diverse range of applications: from the next-generation
automotive networks through to the well-known use cases of industrial automation. Each
case has different peculiarities, constraints, and requirements that can be satisfied through
specific combinations of subsets of the components of TSN. In practice, given the original
applications of TSN, the definition of several profiles for handling the typical use cases of
the automotive, factory automation, or multimedia is currently underway. Many of these
profiles are already partially defined as part of a number of standardization projects from
the IEEE, whereas there is ongoing work for other new cutting-edge applications such as
those supporting aerospace systems or 5G networks. We summarize some of the main
profiles TSN, and those still under definition, in the points below.

• Professional AV and multimedia. The profiles for Audio/Video bridging, which
originate from the initial specification of AVB. These are documented in the 802.1BA
specification [36], which we mentioned previously.

• Industrial automation. The use of TSN for supporting industrial automation
and the transition to the so-called “Industry 4.0” is considered in the IEC/IEEE
60802 standard [55]. It is currently an ongoing development that contemplates
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the use of the main features of TSN in some of its early proposals [56]: gPTP
timing with the 802.1AS specification, traffic shaping with preemption (802.1Qbv,
802.1Qbu, 802.3br), ultra-low latency cut-through modes for select traffic flows, and
a centralized network configuration system as outlined in 802.1Qcc. Furthermore, to
increase the robustness of these systems, the use of the mechanisms for redundant
clock synchronization and the BMCA are also considered [57].

• Automotive networks. There is also an ongoing project for standardizing an
automotive profile for TSN networks. As explained in [58], automotive networks
have several key different requirements from those of industrial networks. One
of them is related to their physical layer interface (PHY), which has to be able to
withstand larger amounts of electromagnetic interference and is usually built to
operate at 100 Mb/s or less over single twisted pair [59]. From the standpoint
of the functionalities of TSN systems, automotive networks require that data be
sent deterministically and reliably. The former can be achieved with the use of
gPTP timing with the BMCA and redundant clock synchronization to drive the
TAS shaper (802.1Qbv) with frame preemption (802.1Qbu & 802.3br). In addition,
the profile would also allow for the use of the asynchronous traffic shaper (ATS -
802.1Qcr) for sending high-priority flows without having to rely on the execution
of a complementary timing service. The latter point of reliability can be achieved
with the use of the TSN enhancements for seamless redundancy (802.1CB) and the
ingress policing mechanism (802.1Qci), which guards against TSN flows exceeding
their allocated transmission windows and, thus, prevents them from clashing with
higher priority traffic and cannibalizing the resources assigned to other flows.
Lastly, given the relatively reduced size of the automotive networks, the use of
a centralized configuration scheme as outlined in 802.1Qcc could be considered
optional, as it is expected that the topology of these networks will be fixed by
design and that no additional nodes will be added dynamically into the system.
Hence, a static system-wide configuration whereby each node is preprogrammed
with its own settings could be preferrable in these cases.

• Mobile fronthaul. TSN could also be used for supporting the deployment of
the next generation 5G networks by implementing the data transport interface
of its radio access network (RAN). As a result, there is already a standardized
specification of a TSN profile for the fronthaul of the RAN for 5G: the IEEE
Std 802.1CM profile [60]. Specifically, the standard is concerned with specifying
interfaces for providing connectivity between the functional blocks of the base
station (BS) in a cellular network, such as the radio equipment (RE), the radio control
equipment (REC), or their corresponding eCPRI [61] versions: eRE and eREC,
respectively. These interfaces allow the BS to be physically partitioned to provide
flexible implementations of its architecture and even split its functionalities over
different blocks. This degree of flexibility is often demanded for the deployment of
mobile networks and TSN can be put to use to this extent with its new fronthaul
profile. Hence, the specification indicates that the 5G fronthaul could be supported
with the use of 802.1AS for timing synchronization, traffic shaping (802.1Qbv) with
preemption (802.1Qbu) for ultra-low latency over Ethernet links of up to 10 Gb/s,
and traffic identification blocks (802.1Q) for handling a minimum of up to three
traffic classes.
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• Aerospace systems. The networks for supporting the communications of the crit-
ical systems found in avionics and aerospace applications could also be built by
applying a corresponding TSN profile. This would imply the use of a deterministic
Ethernet-based network to replace the typical fieldbuses that are normally used
for this role in aerospace systems, such as Spacewire [62] or the MIL-STD-1553B
[18]. There is a growing interest in the development of this profile, as indicated in
leading industry forums [63]. In fact, there is a joint standardization effort currently
underway between the IEEE and SAE [64] to define a working profile for aerospace,
as mentioned in [65]. In this context, we have made our own proposal during one of
the studies that we have presented in this thesis project (Chapter 9). Hence, in this
study we developed the avionics system of a sounding rocket with an architecture
based on the 802.1AS timing with the BMCA, TAS traffic shaping (802.1Qbv) with
preemption (802.1Qbu & 802.3br), and seamless redundancy (802.1CB).

These profiles correspond to the main areas of application and potential deployment of
TSN systems, and hence the drive from the IEEE TSN WG [65] and other standardization
committees to provide accurate descriptions of their use cases and their accompanying
TSN features. By way of a summary, we also provide a comparison of the features
expected to support each profile in Table 3.1.

Table 3.1
A short comparison of the TSN features expected for supporting its main profiles.

Comparison of TSN profile features

802.1AS
Traffic
Shaper

Preemption Cut-through Redundancy
Traffic

Identification
Central

configuration
802.1BA Yes CBS - - - Yes -

Industrial Automation
Yes (BMCA /
Redundant)

TAS (if < 1
Gb/s)

Yes Yes Yes (802.1CB) Yes Yes (802.1Qcc)

Automotive networks
Yes (BMCA /
Redundant)

TAS, ATS Yes - Yes (802.1CB) Yes
Optional

(802.1Qcc)

Mobile fronthaul Yes TAS Yes - - Yes -

Aerospace networks* Yes (BMCA) TAS Yes - Yes (802.1CB) Yes -

*Our aerospace proposal from Chapter 9.

3.5 COMMENTS ON CURRENT COMMERCIAL SOLUT IONS

With the specification of TSN systems well advanced into a stable standard, we have
seen multiple manufacturers implement and deploy their TSN-enabled products for their
application in different domains. Many of these implementers come from a variety of
sectors, although they usually have a background in the development of solutions for
industrial automation or automotive networks, such as the legacy fieldbuses.

With the advent of TSN, many of these suppliers have switched to the production
of TSN-based control solutions for multiple application domains. At a glance, some of
the leading providers in this area are companies such as TTTech, NXP, Bosch, Ericsson
[66], Analog Devices, KONTRON, . . . It can be seen that they are all relative influential
institutions, with a solid background in the areas of communications, industrial control,
and automation that also lead in the development of innovative solutions. Indeed,



3.5 comments on current commercial solutions 37

many of them are driving the process of the widespread adoption, standardization, and
definition of the main features that TSN should include in order to replace the legacy
fieldbuses. This has been evidenced by their growing participation and involvement
in major industrial forums and consortia, such as the Industrial Internet Consortium
[67] or the AVNU Alliance [53]. Hence, besides the IEEE TSN WG itself, these are the
main venues that the most active participants in the development of the standard have
for defining joint test beds, assess interoperability, or evaluate the overall evolution and
cutting-edge developments in the field. In this regard, the yearly TSN/A [54] conference
series can be used as a main reference of the recent developments and pressing topics in
the evolution of the TSN standards.

Furthermore, in order to get a glimpse of the current state of affairs on the industrial
front, we have prepared a short review of some of the most important products and
solutions from leading TSN suppliers. This review of their general TSN offering can be
helpful to better understand the level of maturity of the technology and some of its main
areas of application.

– TTTech [68] is an Austrian supplier of communication and control equipment.
They started out with an implementation of SAE AS6802 specification of the time-
triggered Ethernet protocol, which could be considered an Ethernet-based fieldbus.
Later on, they transitioned to TSN products, which they provide in the form of
custom IP cores for FPGA or as standalone boards or nodes. Examples of the
latter could be their TSN starting kit [69] or their network edge processing node
for building OPC-UA systems [70]. Moreover, they have successfully applied the
technology to multiple cases in the automotive, industrial, or the aerospace domains.
In the case of aerospace, they have well-documented applications of Ethernet-based
interfaces to support the communications of space vehicles (Ariane [71]) with
TTEthernet or AFDX. Thus, given their track record in the development of Ethernet-
based fieldbuses, they have already transitioned to TSN and with products such
as TSN switches, TSN-capable edge nodes, or automated configuration tools for
uploading operation parameters to all the elements in a TSN network automatically.
That was the case of their Slate configuration utility [49].

– NXP semiconductors [72] is another main manufacturer of industrial control and
networking equipment. Among their product offerings, they provide a TSN ref-
erence board (the Layerscape reference board). The board is intended to be used as
a development platform for the IoT and comes with a five-port TSN switch with
support for some of the main elements of the standard: 802.1AS timing, time-aware
traffic-shaping (802.1Qbv), credit-based shaping (802.1Qav), and ingress filtering
(802.1Qci). They also support an early integration with the YANG device models to
assist in the automated configuration of the system.

– Other providers with TSN products are National Instruments or Analog Devices.
The former offers TSN-enabled PLCs with its “CompactRIO” [73] solution. These are
programmable controllers that can be configured through the LabView environment
for industrial plant automation; and they feature TSN communication. Analog
Devices also offers its own set of TSN products, such as an interesting option of a
TSN starting kit [48].
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– Kontron is another interesting option for procuring TSN equipment. One of the
main lines of business of the company lies in the production and supply of industrial
computers; namely the type of industrial PCs that often feature an expansion rack
for adding expansion control modules. Hence, Kontron offers an industry-leading
TSN starting kit consisting of one such industrial PC that is fitted with a PCI
expansion card [51]. The expansion card comes with a four-port TSN switch
featuring 802.1AS timing, traffic-shaping with preemption (802.1Qbv, 802.1Qbu,
802.3br), 802.1Qcc resource reservation, and 802.1CB seamless redundancy (pending
a future upgrade).

All of this is to indicate that TSN is a mature solution, currently on its way to becoming
widespread in the industry. This is evidenced by its support from a majority of influential
manufacturers, industry-wide associations, and standardization bodies such as the IEEE,
which are the main drivers behind its adoption.
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Figure 4.1
Overview of the contents of Chapter 4 for the materials and methods.

This chapter introduces the materials and experimental methodologies that we used
throughout the thesis project to derive and support our results. Since our goal was to
build functioning TSN systems that could also be combined with the highly precise White
Rabbit synchronization, we start off introducing the WR-capable boards that we used for
a substantial part of our prototyping: the WR-ZEN boards. Next, we present the tools
that we used for developing, validating, and debugging these systems: embedded OSes
and the Vivado development environment for building our FPGA modules. We also used
multiple types of benchmarking utilities, simulation tools, and network traffic inspectors
such as Wireshark. Afterwards, we introduce the laboratory environment that we have
used for building the different test benches required for carrying out our experiments and
extracting their performance data. Lastly, we discuss the key experimental parameters
and performance indicators that we use for characterizing our designs. In this context, we
also provide the reader with additional background on the significance of the indicators
and the corresponding experimental process for their derivation.
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We describe the main materials and methodologies used for this project in the fol-
lowing sections. We include clarifications and references to the key and underlying
methodologies that we have used for substantiating the results of our studies.

4.1 THE WR-ZEN AND OTHER WR-CAPABLE BOARDS

The WR “Zynq-embedded node” (WR-ZEN) has been one of the main components used
throughout this study. Hence, the WR-ZEN [8] has been used as a development, testing,
and integration platform during the prototyping and design stages of the different
elements that make up the TSN systems presented in this dissertation.

As implied by its designation, the WR-ZEN board is a time-keeping device intended
to distribute highly accurate synchronization using the White Rabbit protocol [74, 75],
which combines syncE frequency distribution [76], several enhancements for PTP [77],
and precise phase measurement techniques with digital dual mixer time-difference
(DDMTD) detectors [78] to synchronize network nodes with sub-nanosecond accuracy
and disseminate the reference clock of the WR master device across the network. This
protocol was initially devised for the time and frequency transfer systems in use for
some of the experiments at CERN and has since been implemented in a variety of
nodes for different projects and scientific facilities, such as the SPEC board [79] or the
detectors of the KM3NET [80] neutrino telescope. The WR-ZEN is another variant that
has been designed by Seven Solutions S.L. that features an architecture with enhanced
clocking circuitry and the hallmark use of one of the low-cost versions of the Zynq-7000
programmable SoC: the Z-7015 device [7]. This device bundles together a double-core
ARM processor and programmable FPGA logic. In the Xilinx-coined terminology, the
former is referred to as the “processing system” (PS), whereas the latter is called the
“programmable logic” (PL). This type of architecture allows for the implementation of
complex designs that make use of the PS for running an embedded operating system
(OS) with utilities that can be accelerated with specific IP cores on the PL, as can be
observed in the diagram from Fig. 4.2 provided by Xilinx.

Figure 4.2
The block diagram of the Zynq-7000 programmable SoC devices from Xilinx. Image reproduced from [81].
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For the case of the White Rabbit timing, this technology was used for building a versa-
tile stand-alone device: The entire WR timing system alongside the Ethernet networking
interfaces and their components (e.g., PHYs, time-stamping units, . . . ) were instantiated
on the PL FPGA, whereas the processor was used for running an embedded Linux OS
that managed the WR implementation with the use of custom Linux drivers, system
services, and other configuration utilities.

Hence, unlike the case of other WR-compatible boards like the SPEC node, which does
not include a built-in embedded processor, the use of a Zynq-7000 device allows for
faster prototyping, tighter integration with the FPGA firmware, the more agile inclusion
of new software features, and greater software execution performance. Furthermore, its
design managed to fit an entire, dual-port implementation of a WR timing system into
the low-cost, reduced-size Z-7015 SoC, even leaving some remaining room for integrating
other third-party IP cores should new features be needed. As a result, given the flexibility
afforded by this platform, we selected the WR-ZEN (Fig. 4.3) as the development
environment where many of the new IP cores and features of the TSN systems presented
in this study will be verified and tested.

Figure 4.3
A picture of the WR-ZEN board used as the main prototyping and development environment for this thesis
project.

4.2 THE DEVELOPMENT ENVIRONMENT: X IL INX ZYNQ-7000 SOCS AND FP-
GAS

As indicated previously, the development platform of this thesis has made a consistent
use of the Zynq-7000-based WR-ZEN board, which features a programmable SoC with
a hardened ARM microprocessor coupled with FPGA logic. Correspondingly, the
development environment that had to be used for this platform was a combination of
the Vivado Design suite [82] for IP core and general FPGA development, embedded
Linux build tools (e.g., cross compilers, general C programming, buildroot, . . . ), and the
development of Linux drivers and hardware-monitoring utilities.

a) The Vivado Design suite is the comprehensive design environment for the different
FPGA and SoC devices from Xilinx, with some editions allowing for high-level
synthesis. It implements a top-down design methodology whereby the user starts
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off specifying a high-level block diagram of the system architecture and then
gradually works its way down to the definition of specific IP cores, which are
implemented using hardware description languages (HDL) such as VHDL or
Verilog. Furthermore, the Vivado Design suite, which can be seen as a collection
of tools for FPGA development, comes with additional utilities that are useful
for designing and debugging IP cores and FPGA designs in general. These tools
include a built-in simulator for implementing FPGA test benches or interfaces
with debug cores (ILA, VIO) for real-time on-board debugging. Although this
development suite is built on top of a powerful scripting language (tcl) for finer
control of the design process which also allows the orchestration over the command
line of more complex design tasks.

b) The Buildroot [83] utility is a very well-known tool for building embedded systems,
as it conveniently generates and packages all the necessary elements for deploying
a working embedded system with the use of a cross-compilation toolchain. Hence,
this tool is run on a host, desktop computing system – a PC – to generate an embed-
ded Linux image with its appropriate device tree driver binaries, a root file system
image, and the corresponding bootloader for the targeted embedded platform.
Buildroot can thus assist in the generation of highly customized embedded designs:
the kernel settings, including its built-in modules, the type of processor support,
and other parameterizations can all be adjusted to conform to the type of hardware
and software environment envisioned by the designer. It also includes predefined
configuration templates for well-known platforms such as the Zynq-7000 devices,
which help produce working designs faster. Furthermore, it comes with a build
system that allows the user to easily customize the contents and utilities that are
built into the file system image. These utilities can be user-selectable packages
from a content repository, such as Busybox [84] for the usual command-line tools
of Unix-like systems, miscellaneous applications like an open secure shell (SSH)
server, or even third-party or custom libraries and utilities that the user can easily
integrate into the build system.

c) Lastly, on several occasions, the implementation of some of the TSN designs pre-
sented in this study will require the development of specific kernel-level drivers or
the rollout of certain kernel patches for enabling the operation of new functionali-
ties. Even though this is not admittedly the main focus of our research, knowledge
and management of kernel-level functions is a necessity for building custom em-
bedded environments. Hence, we have found and followed a useful reference on
the operation of the main kernel programming interfaces for the different types of
devices in [85].

4.3 THE LABORATOR Y INSTRUMENTAT ION

The IP cores and functionalities implemented for this thesis project have been tested and
verified at the Time and Frequency Transfer Laboratory of the University of Granada
(EQC2018-005214-P). This laboratory is fitted with all the necessary equipment for testing
the validity of the TSN systems supplied in this project, as well as for assessing their
overall performance and attainable determinism. Thus, the equipment available for
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testing and debugging our system ranges from standard networking equipment, multiple
measurement instruments such as oscilloscopes and frequency counters, through to
protocol analysis tools. The foregoing elements are introduced in the points below.

4.3.1 The networking equipment

The networking equipment encompasses all the elements required for assembling a fully
functional Ethernet network. As will be introduced in Chapter 6, the enhancements
brought forward by TSN networking are largely independent of the underlying physical
layer of the Ethernet network system where they are used. Moreover, some of the
solutions and use cases that are presented in Chapters 5, 8, 9, or 10 make indistinctive
use of both twisted-pair copper RJ-45 wiring or optical fiber connections. Hence, our
networking laboratory is equipped with all the material needed for establishing 1-Gb/s
Ethernet networks using the 1000Base-T and 1000Base-X specifications. To this end, we
have used the following elements.

• Network wiring will be either the standard twisted-pair copper wiring with RJ-45-
type connectors or single-mode fibers (SMF) for making 1-Gb/s Ethernet network
deployments. However, the experiments of Chapter 9 make use of a specific
ruggedized connector for avionics applications that is based on the twisted-pair
copper interface of 1000Base-T Ethernet.

• The Ethernet interfaces of the WR-ZEN board feature two so-called “cages” for
small form-factor pluggable (SFP) connectors. These SFPs operate as adaptors
between the Ethernet transceivers (PHY) of the WR-ZEN board and the appropriate
physical interface of the network. Since our implementation of White Rabbit
is supported with SMF fiber networks, the laboratory will be fitted with both
optical fiber [86] and twisted-pair copper-based SFPs [87]. The former will allow
us to interface between the PHY of the WR-ZEN and the optical fiber network
required for supporting WR timing, whereas the latter will be used for connecting
to 1000Base-T equipment without WR support for other testing and debugging
purposes.

4.3.2 The measurement equipment

The measurement equipment available in the laboratory features general-purpose oscillo-
scopes, frequency counters, and FPGA debugging equipment. Hence, the oscilloscopes
and the frequency counters [88] will be used for assessing the overall timing and deter-
minism performance of the system by examining the behavior of some key analog signals,
such as its clock sources or the pulse-per-second (PPS) monitoring output of the WR-ZEN
board or that of the prototype TSN nodes. The PPS output produces a short analog
trigger once per second and is a convenient way of estimating timing stability when
combined with frequency counters, which are often dubbed “time-to-digital converters”
and are capable of gathering large data sets for further study, as will be explained later
on in Section 4.4.
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4.3.3 The FPGA debugging equipment

The FPGA debugging equipment has consisted of the Xilinx programming and debugging
cables capable of interfacing with the FPGA design over the JTAG port [89] for carrying
out real-time on-board testing and debugging. This is done in combination with a
Vivado instance running on a host PC or a Vivado debug server that directs the JTAG
programmer to interface with the appropriate debug IP cores (i.e., ILA, VIO) instantiated
on the FPGA for carrying out user-specified tests.

4.3.4 Other laboratory equipment

Other equipment available in the laboratory has also included highly precise oscillators,
such the oven-controlled Morion oscillator for providing a stable clock source [90],
multiple power supplies, or signal generators [91] for producing multiple waveforms
or for injecting analog triggers into prototype TSN nodes for driving the generation of
critical messages.

4.3.5 Network inspection tools

The structure of the TSN data units and the TSN messages themselves have also been
examined using generic network sniffing/inspection tools, such as Wireshark [92] or
tcpdump [93]. These utilities allow straightforward examination of the contents of the TSN
streams forwarded with the prototypes devised in this study, as well the estimation of
the available bandwidth, or the calculation packet loss ratio. The traffic pattern expected
from the application of a certain scheduling policy at the TSN traffic shapers can also be
examined in detail using the enhanced analysis features of Wireshark.

4.3.6 Ethernet benchmarking utilities

The highest attainable forwarding performance of the TSN-capable Ethernet interfaces
was also verified with generic networking benchmark tests, such as those provided by
the iperf [94] tool.

4.4 THE EXPERIMENTAL AND DES IGN METHODOLOGY

In this study, we start with a proper theoretical analysis and literature review where
the different needs for deterministic networks are evaluated. Then, a technical imple-
mentation is addressed based on reconfigurable hardware devices using HDL languages,
embedded firmware OSes, and generic programming languages (e.g., C, shell scripting).
Proper experimental setups using advanced instrumentation and networking tools are
used to validate the performance of the developed solutions. The following sections will
present the required explanation and all the clarifications for understanding the specific
methodologies that we used to support our general approach.
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4.4.1 The general approach for TSN devices

The TSN nodes prototyped in this study will be verified and tested against four main
performance parameters: the timing transfer stability and its accuracy, the end-to-end
latency and the associated packet delay variation (PDV), the attainable throughput for
forwarding TSN streams, and the protocol and message delivery integrity. These parame-
ters will thus be used for carrying out the experimental characterization of the system by
means of the different indicators and measurement methodologies outlined next. Inter-
operability can be verified by connecting to other TSN devices from other manufacturers;
such as National Instruments or Innovasic (now Analog Devices). A timing-evaluation
platform such as Paragon-X [95] could be used to verify the interoperability of our gPTP
implementation, although this latter aspect is still ongoing work and will probably be
presented as a future result after this thesis project.

4.4.2 Timing transfer accuracy

The timing transfer accuracy is studied by monitoring the respective behavior of the
clocks of the timing master and slave devices in the network. The goal here is to assess
the overall quality of the synchronization and measure the influence of effects such
as phase noise, which is one of the main concerns when developing a timing transfer
mechanism. This is achieved by deploying a measurement setup like that shown in Fig.
4.4.

Figure 4.4
Schematic diagram of the procedure for assessing timing transfer stability and performance.

As shown in the figure, the process for assessing the timing transfer accuracy will
consist of the monitoring of the corresponding PPS outputs of the timing master and
slave devices in the networks. The PPS output is a convenient interface for keeping track
of the operation of the timing transfer system of a TSN node as it produces an analog
signal at the start of every second which is disciplined to the internal oscillators and
clocking mechanisms of the node. Hence, an indicator of accurate synchronization is a
sufficiently low deviation between the PPS pulses of the master and slave devices with
ideally negligible jitter. An oscilloscope can be used to graphically inspect the deviation
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between the PPS signals, whereas the TDC frequency counter is used for gathering large
data sets for further statistical analysis.

Thus, the TDC can record large amounts of back-to-back measurements of time
differences between the instants that the PPS pulses are triggered at the master and slave
devices. These data sets are then used for deriving parameters such as the average master-
to-slave offset, its standard deviation, or the peak-to-peak range of the PPS difference.
This latter parameter gives an idea of the amount of jitter associated with a certain
synchronization scheme. The data sets recorded through the use of the TDC can be
further analyzed to study the performance of the timing and frequency distribution of a
given synchronization scheme by deriving indicators such as the Allan Deviation (ADEV)
or the Time Deviation (TDEV). Their derivation is explained in detail in [96] and we have
used them for assessing the overall performance of some of our TSN implementations.
The former assesses the overall frequency transfer accuracy and can even account for
the presence of different types of phase noise and quantify their respective influence
on the attainable synchronization. The latter measures the average time error between
the master and slave devices in the timing system. In practice, we have used some
openly available toolsets, such as the “AllanTools” python library [97], to calculate ADEV
indicators and to plot them graphically to show our results.

4.4.3 The end-to-end latency and determinism at data forwarding

One of the main features of a TSN system is its capacity to forward different types of
messages and provide a service characterized by a certain amount of reserved bandwidth,
bounded end-to-end latency, and reduced packet delay variation on the delivery of the
higher priority messages. Specifically, provided that the allocated bandwidth is sufficient
for transmitting a specific TSN flow, the determinism of the system is characterized by
its ability to deliver messages within a known deadline with low delivery jitter. Thus,
we have selected the end-to-end latency as the main variable for assessing the delivery
determinism of our TSN system, which is measured using a setup like that of Fig. 4.5.

Figure 4.5
Diagram of the procedure for estimating the attainable determinism of a TSN network system.
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As shown in the figure, the setup uses an analogous layout to that used for the
assessment of timing performance (Fig. 4.4) with one key difference: instead of measuring
the PPS difference, these experiments are meant to record the flight time (propagation
time) of a given message over the network. This provides an indication of the end-to-end
latency associated with a specific type of message. To increase the accuracy of our
estimations, all the latency measurements were conducted directly by inspecting the
internal signals of the TSN nodes. As indicated in Fig. 4.5, this was done by using a
TDC counter that records the time differences between the monitoring pulses produced
at the TSN nodes originating (talker) and receiving (listener) the messages. These nodes
are in turn fitted with specific debug IP cores that produce short analog triggers upon
generation and reception of a specific type of message.

As before, the data sets so captured with the TDC counter can be further analyzed
for deriving additional statistics such as the average end-to-end latency, its standard
deviation, or the peak-to-peak range, which gives an idea of the packet delay variation
associated with the experiment.

4.4.4 Network congestion and message transmission integrity

The type of service expected of a TSN networking device is meant to provide a determin-
istic delivery of the critical data while avoiding the discarding of messages on account
of the network congestion effects. Network congestion can cause the internal buffering
elements of the different bridging nodes of an Ethernet network to become saturated
and, thus, to start dropping frames. The enhancements of TSN attempt to remedy this
undesirable effect by applying traffic shaping policies that can potentially spread out
traffic bursts over time by defining a set of time slots reserved for the transmission
of a specific traffic flow. Hence, the effect of this mechanism is largely dependent of
the configuration parameters supplied by the user: if the highly demanding traffic is
not allocated appropriately sized transmission slots or is not served frequently enough,
congestion losses are still bound to occur anyways. Hence, the efficiency and robustness
associated with a specific user configuration is evaluated by totalizing the number of
packets injected into the network at the TSN talker device and those received at the
listener, as shown in Fig. 4.6.

Hence, as shown in the diagram, the attainable robustness of the TSN system will be
measured by calculating the packet loss ratio associated with the forwarding of a set of
messages. This is estimated by inspecting the network traffic injected at the TSN talker
with a network inspection tool such as Wireshark or tcpdump to quantify the number of
injected messages. The same process is then repeated at the TSN receiver to determine the
number of received messages. The packet loss ratio (PLR) can then be estimated directly
as the complement of the ratio between the number of received (Nout) and injected (Nin)
data frames, as indicated in (4.1).

PLR% = (1 � Nout

Nin
) · 100% (4.1)



48 the materials and methods

Figure 4.6
Diagram of the methodology for estimating the packet loss ratio associated with specific TSN system settings.

4.4.5 The bandwidth characterization and performance estimations

The attainable bandwidth for the TSN communication links was also measured using
a setup similar to that of Fig. 4.6. Thus, as the different traffic shaping policies of the
TSN system may have a direct influence on the reserved bandwidth for data forwarding
of specific flows, their effects on the available bandwidth are empirically quantified by
running a series of link speed benchmarking tests. These tests consist of the injection of
different TCP or UDP flows from the TSN data source that get forwarded to the TSN
listener using the iperf tool. The data sink PC connected to the TSN listener runs an iperf
server instance for reporting the results of test, which estimate the attainable bandwidth
associated with either the full link or the transmission of specific TSN stream.

On other occasions, the bandwidth measurement will consist of the injection of a
fixed-rate flow produced at the TSN talker and the corresponding bandwidth estimation
will then be carried out at the TSN receiver by capturing the traffic with Wireshark
and inspecting the packet dump capture statistics. This method is also convenient for
verifying that the expected traffic pattern for the TSN traffic is present on the link as a
result of the configuration of the traffic shapers.

4.4.6 The FPGA design and synthesis workflow

As for the design workflow of the different IP cores that are present in our TSN nodes, the
approach that we have taken is to follow a design-driven cycle with a twofold verification
stage using VHDL simulation test benches and on-board debugging.

The IP core implementation workflow for the FPGA-based devices of the different
product families from Xilinx usually requires the use of Vivado for assembling a high-
level description of the system by interconnecting functional elements in a block diagram,
and then defining or instantiating custom IP cores as needed. The design of these cores
involves the definition of the corresponding logic or state machines through a VHDL
description. This description is then verified for behavioral correctness using the built-in
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simulator included with the Vivado Design Suite. Hence, the simulation process involves
the definition of a test bench containing a set of predefined stimuli that are fed to the
user IP core logic. The logic will return an expected output pattern provided that it can
handle the input stimuli correctly, otherwise the designer will be able to iteratively debug
the core logic until the expected output can be attained. This design and verification
process, which can save enormous design and validation time by helping designers spot
the most substantial errors in their IP core logic before undergoing the time-consuming
process of generating a bitstream, can be examined in Fig. 4.7.

Figure 4.7
Generic diagram of the iterative simulation process for the IP core verification with user-defined test benches.

Once the behavioral simulation model is complete, the designer can proceed to generate
the bitstream for programming the FPGA device. It the event that the newly synthesized
IP core exhibits unexpected behavior, the user can still perform real-time on-board
verification by integrating ILA or VIO debug cores [89]. ILA cores allow the user to
define capture conditions on the set of signals being examined, whereas VIO cores allow
the user to inject a series of predefined patterns for studying the response of a logical
circuit to a certain set of trigger signals. We have performed this process with an instance
of the Vivado logic analyzer, whose user interface can be examined in Fig. 4.8.

Figure 4.8
The graphical user interface (GUI) for interacting with the ILA and VIO debug cores from the Vivado hardware
server.

This process has allowed us to gather stimuli directly from a running FPGA implemen-
tation that might have been overlooked and hence left out of the simulation behavioral
model. Thus, the new stimuli can be included in the simulation and debugged iteratively
in a two-stage process: an initial simulation with a primary stimulus model of the device
which is further complemented with the data gathered from the subsequent on-board
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verifications with the debug cores. This workflow is depicted in the diagram from Fig.
4.9.

Figure 4.9
The iterative FPGA characterization and debug process based on formal behavioral verification with VHDL test
benches and live on-board testing with the Xilinx ILA and VIO debug cores.

4.4.7 Overview of the experimental procedure

Figure 4.10
The overview of the methodology for building and validating our TSN nodes. We start with an initial design
stage, and then we move on to the laboratory characterization, and complete the process with the correspond-
ing analyses.

An overview of the experimental methodology that we have used throughout the thesis
can be examined in Fig. 4.10. Hence, our workflow generally consists of a combination
of design, validation, and analysis tasks. We normally start with the design stage, where
we usually supply the implementation of a specific FPGA firmware module or software
component. We can accomplish the design of FPGA cores with the use of tools such
as Vivado, with its built-in simulator and hardware monitoring server. The design of
software elements usually involves following the usual procedures for building system
images and software applications for an embedded OS. In the case of Linux environments,
we usually rely on cross-compilation and the Buildroot [83] tool suite for building any
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new functionalities that may be needed. After the design stage, we validate our designs
in the appropriate laboratory test benches. As shown in the figure, these will usually
be made up of our TSN prototype nodes (e.g., WR-ZEN boards) with the appropriate
connectors and interfaces (e.g., optical fiber, SFP connectors, . . . ). Our measurements will
usually attempt to characterize the end-to-end latency or the synchronization accuracy
of the timing component of the TSN nodes. We will use TDC counters or oscilloscopes

to this end. Lastly, once the experiments are complete, we finish with an analysis stage.
This is where we calculate the appropriate indicators resulting from our measurements,
such end-to-end latency histograms to assess the overall system determinism or the
value of the PDV. Likewise, we may also derive statistical indicators such as the ADEV

deviation to study the accuracy of the timing system. Furthermore, we also verify
the effectiveness of our traffic-shaping policies with TSN and the integrity of protocol
messages with network sniffing tools, such as Wireshark, tcpdump, or iperf3.
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A W H I T E R A B B I T- S Y N C H R O N I Z E D A C C U R AT E T I M E - S TA M P I N G
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C H E R E N K O V T E L E S C O P E A R R AY

Figure 5.1
Overview of the contents of Chapter 5 with the motivational use case for the Cherenkov Telescope Array.

This chapter presents a motivational use case to illustrate the potential of combining
TSN networking systems with the highly accurate WR timing system. We use a reprint
of our journal contribution in [1] to show this. Hence, in the publication, we present the
development of one of the components of the data acquisition system of the small-sized
telescopes (SSTs) at the Cherenkov Telescope Array (CTA). Thus, CTA is a scientific
facility for high-energy physics devoted to the study of Cherenkov light flashes. An array
of telescopes is used for accurately detecting the source of the Cherenkov light cone in
the sky, and their acquisition system would subsequently time stamp each Cherenkov
event for further processing or for discarding false positives. In the publication, we
present the time-stamping module that we developed to this end: the ZEN-CTA node.
The node relies on WR synchronization and an advanced TDC for producing the time
stamps of each observation. The time stamps are in turn forwarded over the Ethernet
interfaces of the nodes alongside the WR protocol data. In this context, we show how
our system can produce highly accurate time stamps and support their transmission at
substantially large rates over Ethernet without any significant effect on the operation
of WR timing. We claim that this is a motivational use case for the integration of TSN
features and WR timing, which is the subject of the discussion that we present in Section
5.8 as a follow-up to the contents of the article. Furthermore, some of the lessons that we
learnt with regards to kernel driver optimization and development have been put to use
throughout the research that we present in this manuscript. We acknowledge this fact in
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the Appendixes A and B, which reuse the supplementary materials of the publication in
[1].
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5.1 ABSTRACT

This paper presents the ZEN-CTA node: a programmable system-on-chip (SoC) with
White Rabbit-synchronization capability. It targets a solution for the uniform clock and
trigger time-stamping module of the small-sized telescopes in the Cherenkov Telescope
Array. This module is tasked as a distributed acquisition device with a focus on obtaining
time stamps for candidate Cherenkov events, which could be generated at potentially
high rates from very high-energy gamma rays, and their subsequent distribution over
Ethernet. In this context, the customized design of the ZEN-CTA node is examined
thoroughly, including its generic implementation aspects and its main functional blocks.
The design of the White Rabbit-assisted time-to-digital converters (TDCs) for time-
stamping analog triggers is presented in detail alongside the implementation of an
upgraded high-speed data path (1 Gbps) for the White Rabbit-compatible Ethernet
interfaces of the node. The new data path will feature a direct memory access engine for
direct software transmissions and a hardware description language (HDL) coprocessor for
high-speed forwarding. Next, the time-stamping accuracy of the White Rabbit-enhanced
TDCs will be characterized alongside the forwarding efficiency of the new data path.
Lastly, conclusions are drawn and the main contributions of this research are enumerated,
a potential deployment within the Cherenkov Telescope Array infrastructure to support
the acquisition of Cherenkov light is considered, and additional use cases are mentioned.
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5.2 INTRODUCT ION

Data acquisition systems are at the heart of most scientific infrastructure facilities; such
as particle accelerators, telescope arrays, or even seismic data acquisition systems. These
have in common that they are usually implemented in the form of distributed systems,
with a series of networked nodes scattered about the application domain which are de-
voted to the acquisition of data, and usually a centralized backend for further processing
and storage of all the collected data.

The use of a timing transfer mechanism is normally required in order to synchronize
all the nodes and ensure that they can gather data synchronously. This can be achieved
with two main approaches: either through a dedicated timing transfer system, which
is usually segregated from the main data network, or through a convergent system
combining timing transfer protocols and user data. Examples of the former paradigm
are the GPS-based solutions for synchronizing distributed nodes, used in the Atacama
Large Millimeter Arrays [98], whereas examples of the latter are convergent data and
timing networks utilizing White Rabbit (WR), which was used in KM3NET [80]. The first
approach is costly but typically used because of its simplicity or its ability to provide a
reasonable performance. The second is more cost-sensitive but more complex to design,
manage and maintain if more demanding specifications are required.

This study examines the development of an event-sampling node for the distributed
acquisition system of the Cherenkov Telescope Array (CTA) [99] that will be integrated on
the control board of its small-sized telescopes (SSTs) as its White Rabbit synchronization
source and time-stamping component. Thus, this node – the ZEN-CTA – will be able to
capture candidate Cherenkov events, generate their associated time stamps with high-
accuracy time-to-digital converters (TDCs), and forward them to a software-level decision
trigger using a high-speed data path capable of keeping up, or even exceeding, with
the event generation rates expected in the requirements of the SSTs in CTA. The rest of
this section is then dedicated to providing an overview of different distributed sampling
systems and time-stamping techniques that are applicable for scientific infrastructure
before examining the node in greater detail. After this general overview, the specific
case of the SSTs in CTA and their requirements are presented in Section 5.3. The
implementation of the ZEN-CTA node and its time-stamping solution is presented in
detail in Section 5.4, and its renovated data path is introduced in Section 5.5. Section
5.6 then proceeds to experimentally validate these improvements in a laboratory setup.
Lastly, Section 5.7 contains the conclusions and introduces possible future research.
Additionally, select implementation topics are presented in Appendixes A and B.

5.2.1 Overview of Distributed Event Acquisition Systems

It is admittedly difficult to establish the generalized, canonical architecture of the dis-
tributed acquisition systems of scientific infrastructure given the wide variety of require-
ments, use cases, and constraints required in different projects and facilities. Yet, there
are some interesting publications [100] that aim to give a broad understanding of the
different types of distributed acquisition systems and their individual components that,
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when considered as a whole, make up a specific framework – a toolkit – for distributed
data acquisition. Thus, as noted in [100], these frameworks can be classified according to
their size, their functionalities and their underlying technologies. They usually feature a
transport system, system steering and job controls, data processing interfaces coupled
with storage solutions, and event-building systems. These latter processes analyze raw
streams of data to extract the set of parameters that will represent the outcome of a spe-
cific observation. System-wide synchronization of the entire system with GPS receivers,
White Rabbit [101], or the precision time protocol (PTP) [77] timing may assist in the
event-building and parameter extraction process.

There are also, data acquisition suites that provide an implementation of all or some
of the preceding components as an out-of-the-box solution. Prominent examples of
these types of data acquisition systems include specialized middleware solutions such as
CORBA [102], featured in the ATLAS experiment, although, as of 2016, it transitioned
to a simpler message-passing protocol based on the ZeroMQ library [103] [104]. Other
well-known solutions are MIDAS [105], DAQ-Middleware [106], or the LabView Suite
from National Instruments [107]. The Cherenkov Telescope Array has opted for a middle
ground: Its small-sized telescopes use the ZeroMQ Library for data acquisition and
message-passing, Google Protocol Buffers for Serialization [108], and the entire system is
steered using a CORBA framework (ALMA) [109].

5.2.2 Time-Stamping Devices for Scientific Applications

The event-building process assembles complex events from the parameters associated
with the reception of raw data streams from the data-gathering nodes in the system.
Time-to-digital converters are an essential part of this task, as they generate the high-
accuracy time stamps upon reception of events that are needed for the event-building time
correlation processes, which involves the use of precise time synchronization to produce
accurate time stamps. Moreover, scientific applications and instrumentation require
highly accurate TDC implementations. This can be achieved by either incorporating a
specialized application-specific integrated circuit (ASIC) onto the printed circuit board
(PCB) of the node or as an expansion card. Some of these applications include commercial-
grade solutions, such as the TDC7000 ASIC from Texas Instruments (55 ps accuracy) [110],
or highly accurate components such as the ACAM TDCs (15 ps accuracy) [111]. The use
of ASICs or physical expansion cards has many advantages, including the fact that they
are built with internal temperature-variation compensation processes and relatively high
precision. However, as pointed out in [112], their use is only feasible with mass-produced
applications. In contrast, field-programmable gate array (FPGA) designs, which are used
for many measuring nodes, are more flexible and represent the ideal candidates for
implementing TDCs.

These FPGA implementations are generally composed of two different time estimation
stages that are combined for producing an enhanced time stamp with sub-nanosecond
precision. The general idea is based on providing a digital implementation of a Vernier
scale measuring circuit, as explained in [113]. Thus, the initial step of this Vernier-
style measurement provides a rough time estimation with the system clock of the
TDC implementation. A sub-clock cycle estimation can then be produced by means
of a delay line that provides an associated sub-clock cycle delay code. This latter step
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usually requires complex design and calibration to make up for temperature and routing
variations in the FPGA fabric. Some approaches implement this delay line using carry
chain primitives [114], whereas others make use of the internal I/O (input/output)
elements of the FPGA, which avoid most calibration-related issues, such as the study in
[112] or the TDC functionality presented in this publication.

TDCs are one of the main building blocks of the event acquisition systems deployed
in different projects and facilities. In these environments, different implementations of
distributed nodes integrating time-stamping capabilities are usually present with TDCs
tailored to meet the accuracy and event acquisition rates expected in their corresponding
scenarios. In the framework of CTA, the time and clock stamping (TiCkS) node [115] is
another alternative to the node presented in this study. Other notable projects for scientific
facilities with distributed time-stamping nodes are KM3NET (arrays of sensors for a
neutrino telescope) [80] and DIAPHANE (Muon Tomography for geological structures)
[116].

5.3 OVER VIEW OF THE CHERENKOV TELESCOPE ARRAY

CTA is one of the major future facilities in the field of astroparticle physics and high-
energy astronomy, dedicated to exploring the high-energy universe with gamma rays
above 20 GeV [117], [118]. When such a high-energy gamma ray hits the top of the atmo-
sphere, it initiates a shower of particles which emit Cherenkov light. These Cherenkov
light flashes last only a few nanoseconds and typically illuminate an area of a few
hundred meters in radius on the ground. By placing multiple telescopes within the
Cherenkov light cone, it is possible to measure simultaneously the weak and short light
flash of an air shower from different positions and thus reconstruct accurately the primary
gamma-ray energy and direction.

To increase the stereoscopic detection of gamma-ray-initiated air showers, the CTA
will consist of more than 100 telescopes spread between two sites, one on La Palma
(Spain) and one near Paranal (Chile). It is expected that the arrays will be built with
an approximately circular layout, although a final distribution is still being analyzed as
shown in [119]. The northern hemisphere array will be more limited in size (⇠500 m in
diameter) and will focus on the CTA’s low- and mid-energy ranges (20 GeV to 20 TeV),
whereas the southern array with a diameter of about 2.5 km will span the entire energy
range of the CTA, covering gamma-ray energies from 20 GeV to 300 TeV with three
types of telescopes: large (LSTs), medium (MSTs), and small-sized telescopes. Whilst the
telescope types differ in sensitivity, energy range covered and field of view, they will
all consist of tessellated mirrors which focus the Cherenkov light onto fast-recording
cameras with a few thousand photo-sensors. Whenever a camera identifies an image
of an air shower candidate, usually defined as a configurable cluster of photo-sensors
hit by a coincident light signal, a trigger is formed, and a time stamp is assigned to the
camera event. For LSTs, the expected telescope trigger rates are on average of the order
of 15 kHz, for MSTs at around 7.5 kHz and for SSTs about 600 Hz with individual burst
rates expected to be twice as high for each of them.

To identify all telescopes which have recorded the same air shower event and fur-
thermore suppress local background events, we will use an array-level trigger in the
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CTA. The trigger logic searches for coincidences in time (typically within 10 to 100 ns)
between neighboring telescopes. For this mechanism to operate properly, a network
transmission latency of up to 100 ms between the telescopes and the CTA data center
has to be enforced. To allow for scalability and flexibility, the array-level trigger will be
implemented in software and be based on the camera trigger time stamps. Precise timing
is therefore mandatory for the CTA and the relative timing precision between different
telescope cameras is specified to be better than 2 ns on average with less than 1 ns jitter
(RMS). The requirement for the absolute time precision with 1 µs is less stringent.

To achieve such a high time precision, the CTA will use a unified timing system which
is based on a hierarchical White Rabbit network, as shown in Fig. 5.2. The network itself
consists of a single master switch which is connected to an external GPS clock to provide
absolute timing information. The master switch then distributes the time and frequency
reference over a network of intermediate White Rabbit switches, located at the on-site
CTA data center, via optical fibers until reaching the CTA telescopes. In each of the CTA
telescope cameras, a uniform clock and trigger time-stamping (UCTS) board will act as
the White Rabbit timing node and will thus provide the interface between the telescope
cameras and the White Rabbit timing system. The cameras will also feature the XDACQ
acquisition card [120] to forward raw observation data from the telescopes. At the UCTS
board, a precision time stamp will be associated with the camera trigger pulse and a
trigger message is formed. This message is then sent to the software array trigger in the
central data center. In the case of a positive array-level trigger decision, the bulk camera
data are transferred to the storage system for scientific analysis. Bulk data from camera
triggers which fail the timing coincidence criterion are usually discarded as they are
probably not from genuine gamma-ray air showers.
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Figure 5.2
Schematic overview of the CTA timing system described in the text. © 2020 IEEE.
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The UCTS nodes are thus key to the CTA operation: they have to ensure stable time and
clock synchronization amongst all telescopes on-site at the nanosecond level and in return
provide high-precision time stamps at rates of up to several tens of kHz. We will develop
different prototypes which will be partly based on existing WR nodes. One prototype
is the TiCkS board [115], which is based on the WR SPEC node [79]. The other, the
ZEN-CTA node, is the solution presented in this paper for implementing the functionality
of the UCTS node featuring enhanced time-stamping interfaces and improved event
transfer capabilities. It is based on the WR-ZEN (White Rabbit – Zynq-Embedded Node)
and its design will be described in detail in the following sections.

5.4 UCTS DES IGN WITH THE WR-COMPAT IBLE ZEN-CTA NODE FOR THE SMALL-
S IZED TELESCOPES

The ZEN-CTA board, shown in Fig. 5.3, is a customized version of the WR-ZEN node
[121], providing the highly accurate WR timing distribution system in a reduced form
factor (60 mm ⇥ 164 mm) that makes it suitable for its use as the UCTS board of the
CTA SST Camera [120, 122]. The implementation of the ZEN-CTA node is described in
detail in this paper. This node is presented as a plausible alternative for supplying an
implementation of the UCTS component in the data acquisition system of CTA, which
will be tasked with acquiring sequences of events, which indicate a possible Cherenkov
detection, and generate their associated time stamps. These time stamps will then be
forwarded to a remote data center for processing. Hence, in order to conform to these
requirements, the proposed board is fitted with a full, dual-port implementation of the
WR PTP core (WRPC) [123] that will provide the timing distribution functionality, and
an advanced TDC for generating enhanced precision WR time stamps for the trigger
signals produced at the CTA camera upon detection of possible Cherenkov light flashes.
The time-stamping module is described in this section, whereas the Linux environment
of the board, including services and applications, and its direct memory access (DMA)
networking support are explained in-depth in Appendixes A and B, respectively. The
Ethernet data path of the board, which had to be renovated to ensure that it could keep
up with events received at substantial rates, is presented in a separate section devoted to
its implementation (Section 5.5).

The TDC is tasked with receiving triggers initiated by generic camera events, which
could either be Cherenkov event candidates or calibration patterns, and generate an
associated WR time stamp with enhanced accuracy. A number of alternatives have been
proposed for detecting and recording trigger data for CTA, as is the case of the Compact
High Energy Camera (CHEC) [124] or the use of digital camera triggers processed on
an FPGA [125]. In contrast to these, this study introduces an approach that detects
and records array-level triggers by executing a software algorithm in a backend server
that correlates time-stamp data originating from several telescopes. The TDC, which
is tasked with producing these time stamps, is fully implemented in FPGA logic, and
only requires a simple signal adaptation stage on the ZEN-CTA circuit board that is
implemented with a low-skew, 1-to-4 differential to low-voltage differential signaling
(LVDS) fan-out buffer that replicates the differential input signal into four separate
copies. Thus, the TDC will feature two differential input ports for acquiring analog signal
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Figure 5.3
Picture of the ZEN-CTA board, which features WR timing on two 1G Ethernet SFP ports, advanced TDC-

assisted time-stamping, and a reduced form factor. © 2020 IEEE.

triggers: The Readout trigger input, and the Busy trigger input. These analog control
signals are generated by the trigger system to indicate the detection of Cherenkov light
patterns. Furthermore, their input ports into the TDC are physically implemented on
the ZEN-CTA Board as RJ45-type connectors utilizing differential signaling, with each
port meant to produce its own time stamp associated with the reception of events from
either the Busy or Readout signals. Consequently, as these input signals are fanned out as
separate copies, the FPGA implementation of the TDC in the ZEN-CTA actually consists
of two separate time-stamping instances for each trigger input port. The architecture of
each TDC instance is thus shown in Fig. 5.4. This TDC can be considered an efficient
implementation of an arbitrary trigger acquisition device [126] that, given the use of
White Rabbit synchronization, is suitable for its application to distributed systems.

Figure 5.4
Block diagram showing the implementation of the TDC module used for each trigger input port (Readout or

Busy) of the ZEN-CTA Board. © 2020 IEEE.

As shown in the block diagram, each TDC instance will take a differential signal
supplied through one of the trigger inputs of the ZEN-CTA Board to produce an enhanced
WR time stamp with sub-clock cycle precision. This signal will then be split, converted
into LVDS and fed into the FPGA TDC module. Specifically, for each time-stamping
instance, the split, fanned-out copies of the signal will be fed into 8 different idelay
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[127] primitives configured to produce incremental delay values. These primitives
have designated tap steps of 78 ps, which will be combined as needed to produce the
approximate effect of gradual 125 ps delays (Table 5.1). These gradually delayed versions
of the input signal will subsequently be sampled with double data rate (DDR) input
deserializer (iserdes) components [127]. Thus, each of the eight deserializers in the setup
uses a WR-synchronized, 125 MHz (8 ns cycle) clock domain for producing an 8-bit
output, and a helper clock of 500 MHz (2 ns cycle) for sampling the delayed signals
supplied from the idelay primitives in DDR mode. Hence, this ensures that each delayed
version of the differential input signal is sampled at least eight times during each 8 ns
clock cycle. As a result, each bit in the 8-bit output words of the deserializers will have
an associated resolution of 1 ns. Furthermore, as the outputs of the deserializers have an
approximate relative phase shift of 125 ps, their 8-bit outputs can be combined to form a
64-bit pattern indicating transitions within an 8 ns clock cycle in approximate steps of
125 ps. Hence, this design would theoretically be able to handle pulses longer than 8 ns
with dead times of up to 16 ns.

Once the enhanced time stamp has been composed, it is transferred to a specially
reserved bare system memory location using the general-purpose AMBA AXI (Advanced
Microcontroller Bus Architecture with Advanced eXtensible Interface) infrastructure (e.g., Xilinx
AXI Data Movers and customized Interconnect components). Then, upon transfer to
system memory, a specially designed user-level application can be used for forwarding
these time stamps over the network to the CTA camera server for further analysis. We
have proposed an alternative approach for achieving a high-throughput transfer of the
enhanced WR time stamps and it involves an FPGA-based, low-latency solution that
allows the direct injection of user datagram protocol (UDP) packets carrying the enhanced
WR time stamps in their payload.

The study of the time-stamping accuracy of the TDC modules becomes mandatory
since the idelay components cannot be configured to produce an exact delay value of 125
ps as the actual tap value of each idelay is 78 ps instead, as shown in Table 5.1.

Component Expected Delay (ps) Actual Delay (ps) Deviation (ps)

idelay0 0 0 0

idelay1 125 156 -31

idelay2 250 234 16

idelay3 375 390 -15

idelay4 500 468 32

idelay5 625 624 1

idelay6 750 780 -30

idelay7 875 858 17

Table 5.1
Comparison between the expected delay values produced at each idelay input element, and the synthesizable
delay values that can be produced by the implementation tools and the FPGA device using an 8 ns reference
clock cycle. © 2020 IEEE.

It should be noted that the proposed TDC component is an FPGA-based solution
that only requires a simple signal conversion stage on the PCB. Dedicated, hardened
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implementations based on specialized PCBs or front-mezzanine cards (FMC) do exist
and can provide varying degrees of accuracy; such as the ACAM integrated TDCs
which can be used to measure time intervals from the range of 1 ns down to several
picoseconds [111]. This FPGA-based solution for the TDC component is preferred
because, contrary to using dedicated hardware, it comes with the advantage of using
built-in I/O FPGA primitives from Xilinx in a design that uses the IDELAYCTRL [127]
primitive to continuously calibrate the idelay components to ensure that they can provide
consistent delay values, thereby offsetting the effects of varying temperatures, voltage,
or fabrication process. Furthermore, as the synthesizable delay value produced by each
idelay tap is tied to the specific speed-grade of a particular device, the degree of accuracy
of the TDC implementation could be improved by selecting higher speed-grade devices,
which would allow for synthesizable tap delays of up to 39 ps when using higher speed
components (grade -3) [128].

5.5 IMPLEMENTAT ION OF WR-CAPABLE NETWORKING. DMA-BASED UPGRADE

AND TDC T IME STAMP TRANSMISS ION

White Rabbit-compatible nodes; such as the WR-ZEN Board [129] or the ZEN-CTA node
implementation presented in this paper, were designed with timing transfer performance
in mind and therefore feature a real-time White Rabbit stack implementation paired with
highly precise clocking circuitry [130] for delivering near-deterministic timing distribution.
As an added convenience, these nodes also feature an ancillary data transfer functionality
supported by the WR network interface core (NIC) Module [131]. This allowed the
coexistence of regular Ethernet data traffic and timing synchronization information over
the same physical network links, which results in simplified infrastructure management
and decreased deployment costs. Nonetheless, the WR NIC has major bandwidth
limitations and a high-bandwidth DMA-based upgrade for the WR-capable network
interfaces of the WR-ZEN Board has had to be introduced [132]. This upgrade makes
the use of these boards feasible for applications such as distributed Analog to Digital
Converters or distributed oscilloscopes.

The research described in this paper shows the process whereby the original design
of the ZEN-CTA Board was adapted to support a dual-port, WR-compatible, Gigabit
Ethernet network implementation that also provides a fast, direct-to-network data path
for transmitting WR time stamps generated at the TDC module using the design of the
WR-ZEN Board [132] as a starting point. Consequently, this migration process will be
twofold. The initial stage will revolve around the adaptation of the ZEN-CTA network
data path to include the new DMA-based upgrade and the direct-to-network path for
the TDC modules. The subsequent stages will focus on integrating this new data path
with the embedded Linux environment running on the processing system with the goal
of exposing this upgrade as regular Ethernet interfaces that also feature White Rabbit
support.

5.5.1 DMA-based Networking. Implementation of a dual-port, high-speed data
path for the WR-compatible Ethernet interfaces of the ZEN-CTA Board.
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A simplified block diagram of the new data path architecture of the ZEN-CTA Board
is shown in Fig. 5.5. When the legacy data path was enabled, which is still visible in
the diagram as the connections between the processor and the WR End-Points (EP0
and EP1) via the “AXI-Lite to Wishbone Bridge”, the WRPC was used for the purposes of
distributing timing and synchronization information throughout the network, as well
as for sending ordinary Ethernet traffic over the WR synchronization network using the
WR NIC modules, which are connected to their corresponding WR End-Point (EP0 or
EP1). The entire data path between the WR NIC modules and the ARM-based processing
system [133] used memory-mapped interfaces without support for data burst transfers,
which explains their relatively poor performance. These interfaces were the Wishbone
system bus and the no burst-compatible, AXI-Lite specification of the AMBA AXI bus,
which are bridged using the “AXI-Lite to Wishbone” adaptor shown in the figure. The use
of the TDC modules for acquiring enhanced precision time stamps for external analog
triggers is also displayed. These modules use the time reference signal generated by
the WRPC to produce their time stamps and forward them to a reserved, bare-memory
location of the main system memory of the processing system using the Xilinx Data
Mover Modules [134]. Given the promising results obtained in a previous study for
enhancing the throughput of the WR-compatible network interfaces of the WR-ZEN
Board [132], we considered a similar approach for its application on the WR-compatible
interfaces of the ZEN-CTA board. This led to the implementation of the new architecture
presented in Fig. 5.5, featuring a dual-port design that provides a high-bandwidth
data path for network data transfers between the two WR-compatible interfaces of the
ZEN-CTA board and the ARM-based processing system.

Figure 5.5
Simplified block diagram architecture of the ZEN-CTA board displaying the implementation of the dual-port,

DMA-based upgrade on its Programmable Logic (PL) to enable high-throughput data transfers between the
WR-compatible interfaces of the WRPC (EP0 and EP1) and the ARM-based processing system (PS). © 2020

IEEE.

In order to apply the throughput optimization to the WR-compatible interfaces of
the ZEN-CTA board, the following elements, which were introduced in [132], had to
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be combined. These consist mainly of a number of custom IP cores, AMBA AXI and
Wishbone bus infrastructure, and auxiliary buffering components which are described
below.

• XILINX AXI DMA. Xilinx-owned core [135] tasked with handling high-throughput
data transfers between the WR-compatible interfaces of the board and the processing
system using a central processing unit (CPU)-efficient scatter/gather mode.

• AXI-STREAMING TO WISHBONE FABRIC CONVERTER (AXIS to WB-PL

Bridge). Module tasked with implementing the transformation between the Wish-
bone Pipelined bus domain of the WR PTP core, and the AXI-Streaming System Bus
used by the DMA engine interfacing with the processing system. Additionally, this
module is used for producing Ethernet padding when required and for enabling the
generation of time stamps for each transmitted Ethernet frame at the time-stamping
units (TSUs).

• WHITE RABBIT PTP CORE (WRPC) [136]. Highly modular component and
one of the central elements of the ZEN-CTA board, featuring a soft-core LM32
processor implementing the WR protocol stack, and custom implementations for
an Ethernet medium access control (MAC) and physical coding sublayer (PCS)
modules. It provides the deterministic timing distribution service, holds the internal
time representation (PPSgen), and forwards ordinary data traffic to an external
component (e.g., DMA, WR NIC) for its processing.

• ADDITIONAL AMBA AXI BUS INFRASTRUCTURE (AXI buses and crossbar

interconnects). The necessary components for implementing the additional bus
connections required for interconnecting the elements of the high-speed data path
between the Xilinx DMA modules and the processing system, such as the AXI-Full
crossbar (“XBAR”) interconnect shown in Fig. 5.5.

• AXI-STREAMING BUFFERING (tx_buffi, rx_buffi). The buffering elements for
Ethernet frames while the system is busy with previous transactions or other tasks
can hold up to 20 frames of MTU (Maximum Transmission Unit) size (1500 B), or
even potentially accommodate jumbo frames, using 16k-word AXI-Streaming “first
in, first out” (FIFO) buffers. These were implemented for both the transmission
(MM2S) and reception (S2MM) interfaces of the Xilinx AXI DMA.

These elements are eventually combined to implement the DMA-based, high-speed data
path upgrade for the WR-compatible interfaces of the ZEN-CTA board shown in Fig.
5.5. This design effectively bypasses the legacy data path of the WR NIC and instead
forwards the Ethernet data frame transactions from the WR-compatible interfaces of the
ZEN-CTA board directly to the main system memory of the Zynq-7000 system-on-chip
(SoC) using the Xilinx DMA engine configured to operate with an efficient scatter/gather
mechanism using a custom Linux kernel-level driver. This approach achieved an effective
throughput of 426 Mbps (TX) and 564 Mbps (RX), and its development is explained in
Appendix B.

5.5.2 Ethernet FPGA Coprocessor for TDC Packet Transmission.
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The DMA-based network interface upgrade described in the previous sections provides a
dedicated, high-speed data path that can be used for supporting intensive transmission
of data from the ARM processing system. Since it is a requirement for CTA to sample
and transmit time-stamped data originating from the reception of Cherenkov events
over a high-speed network, this newly developed data path could be used to supply
a feasible implementation of such a high-throughput sampling system over the WR
synchronization network.

However, as indicated previously, this approach cannot fully utilize the entire capacity
of the Gigabit Ethernet interface of the board. Moreover, user-level applications that
transmit a large bulk of time stamps by intensively writing data into Linux network
sockets are expected to consume a substantial amount of CPU time and incur considerable
overheads as well, which would further decrease the effective throughput that a purely
software-based solution could use for transmitting time-stamp data from the TDCs. As
a result, we have proposed a fully gateware-based solution with a dedicated FPGA
coprocessor leveraging the new high-speed data path for the WR-network interfaces that
could overcome the aforementioned limitations, as shown in Fig. 5.6.

Figure 5.6
Simplified block diagram showcasing the integration of the FPGA coprocessor for forwarding time stamps into
the high-speed TX path of the DMA-based upgrade for the WR-compatible Ethernet interfaces of the ZEN-CTA
board. © 2020 IEEE.

The new gateware-based solution is based on the implementation of a custom Packet
Generator (PacketGen) module, which will compose specially formatted UDP packets for
transmitting the time stamps generated at the TDC modules. These UDP packets will
in turn be merged onto the main TX data path of the DMA-based upgrade by means
of a simple AXI-Streaming Interconnect component, which will multiplex (mux) these
UDP frames with the transmission transactions originating from the DMA onto the TX
path leading to the AXIS-to-Wishbone Converter box, and then onto the WR End-Point.
The Packet Generator module can be parameterized to encapsulate different numbers of
TDC-generated time stamps in the payload of the UDP packets. This parameter can be
adjusted to optimize the transmission of TDC-time stamps acquired at growing event-
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generation rates over the WR-compatible network to accommodate specific bandwidths
or latency requirements, as discussed in Section 5.6.2.2.

5.5.3 FPGA Resource Footprint

This section summarizes the FPGA footprint that can be attributed to the implementation
of the TDC modules, the DMA-enhanced data path for the WR-compatible network
interfaces, and the UDP Packet Generator for transmitting TDC-generated time stamps
over the network. The UDP Packet Generator can be parameterized to implement a
number of different configurations, including lightweight ones that do not excessively
tax on FPGA resources and that still achieve the level of performance required for
CTA, as discussed in Section 5.6.2.2. Nonetheless, it should be noted that even the
most demanding configurations for the architecture developed in this study can still be
fitted into the Z-7015 device used by the ZEN-CTA board, as shown in Table 5.2, which
considers that the most demanding configuration of the UDP packet generator (90 time
stamps per UDP frame) is used.

Module Slice LUTs Slice Registers Slice BRAM DSPs2 idelay iserdes

Xilinx DMA 2231 4.83% 3259 3.53% 907 7.85% 3 3.16% 0 0% 0 0% 0 0%

AXIS-to-WB Converter 231 0.50% 131 0.14% 100 0.87% 0 0% 0 0% 0 0% 0 0%

AXI Bus Infrastructure1 2419 5.24% 2649 2.87% 970 8.40% 11.5 12.11% 0 0% 0 0% 0 0%

WR End-Point 1518 3.29% 1442 1.56% 581 5.03% 2 2.11% 0 0% 0 0% 0 0%

WR NIC (legacy) 700 1.52% 975 1.06% 341 2.95% 3 3.16% 0 0% 0 0% 0 0%

WB MUX 99 0.21% 29 0.03% 42 0.36% 0 0% 0 0% 0 0% 0 0%

TDC Module 263 0.57% 256 0.28% 128 1.11% 2 2.11% 0 0% 8 5.33% 8 5.33%

PacketGen 90 TS 4429 9.59% 11724 12.69% 3132 27.12% 2 2.11% 0 0% 0 0% 0 0%

Total 11890 25.74% 20465 22.15% 6201 53.69% 23.5 24.74% 0 0% 8 5.33% 8 5.33%

1 Includes necessary bus interfaces, interconnects and buffering elements for
supporting the configuration of the data path as well as data transfers.

2 Digital Signal Processor primitives.

Table 5.2
FPGA Resources (Z-7015 device) for the components implementing the WR-compatible interfaces for each port.
© 2020 IEEE.

5.6 EXPERIMENTAL SETUP

In this section, we describe a series of experiments that were carried out for evaluating
the proposed data acquisition capabilities for the enhanced ZEN-CTA board. The
experimental setup is aimed at showing how the system processes and accurately time-
stamps a number of analog signal triggers received at a substantially large rate using
the TDC modules. The time stamps generated for these analog triggers are in turn
transmitted over the network using the DMA-based data path upgrade and forwarded to
a remote processing center over the WR-capable network.

As a result, two sets of experiments are conducted. Firstly, the time-stamping accuracy
of the TDC module was characterized in order to verify that CTA requirements are met.
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Next, the second batch of tests followed, to measure the highest-attainable bandwidth over
the WR-capable network interfaces under different configurations when growing rates of
analog signal triggers are fed into the TDC modules. Our results will be discussed and
we will emphasize how this system can be applied realistically as the UCTS component
of the CTA Camera.

5.6.1 Basic Elements of the Experimental Setup

The experimental setup used for carrying out the tests described in this section consists
of three main elements (Fig. 5.7): a WR-Switch configured as a grandmaster clock,
a WR-ZEN used as a precise pulse generator, and a ZEN-CTA board for accurately
time-stamping the arrival time of the analog pulses fed into its TDC module. Their main
features are outlined below.

• WR-Switch (WR Timing Grand Master). 18-Port WR Switch used as time refer-
ence for the experiment, featuring a Virtex-6 FPGA and an ARM CPU running
GNU/Linux. WR Master or Slave roles for its ports can be configured on a per-
port basis. Its external clock source, consisting of pulse-per-second (PPS) and 10
MHz inputs, was connected to the Morion MV89 Double Oven-Controlled Crystal
Oscillator (OCXO) for greater time stability [90] [137].

• WR-ZEN (Time Provider). WR-capable node intended to act as time reference,
featuring a Zynq-7000 programmable SoC: it runs GNU/Linux on its hardened
ARM processor, and implements WR on its FPGA fabric. The node is bundled
with the digital input/output FMC expansion module to generate clock pulses
disciplined to the White Rabbit clock received from the network [138].

• ZEN-CTA Board (TDCs+DMA) (slave). Custom version of the WR-ZEN Board
[121] implementing the UCTS component of the CTA Camera. It incorporates a
TDC module to allow pulse time-stamping with precision in the picosecond range.

Figure 5.7
Diagram of the experimental setup used for conducting the experiments studying the accuracy of the TDCs
(Section 5.6.2.1), as well as those comparing the attainable bandwidth for each different time stamp generation
rate (Section 5.6.2.2). © 2020 IEEE.
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5.6.2 Design of the Experimental Setup

5.6.2.1 Characterization of the TDC

In this experiment we studied the time-stamping accuracy of the TDC module. This was
accomplished by using the TDC module of the ZEN-CTA board to measure a periodic
pattern of pulses generated with the Time Provider (TP) node. These elements are
arranged in an experimental test-bed (Fig. 5.7) where elements have been synchronized
using White Rabbit timing. The period of the pulses generated at the TP node is a
user-configurable parameter that is adjusted throughout a number of iterations. The TDC
module is used for measuring the actual time of arrival of the pulses in each case, and
then determining the difference with their theoretically expected time of arrival. This will
measure the time-stamping uncertainty of the system, whose impact will be determined
by the combination of the effects of inaccuracies in the TDC module implementation
and a systematic error attributed to uncalibrated WR devices, as will be explained later
in the section. The PC server station has not been used for this experiment. As a
result, we found that the average time of arrival uncertainty, considered as the Standard
Deviation between the expected time of arrival for the analog pulses and that actually
measured by the TDC, was in the order of tens of picosenconds (⇠90 ps) and can be
considered negligible. The following devices were used for conducting the experiment:
the WR-Switch configured as grandmaster, and two boards, WR-ZEN and ZEN-CTA,
linked in a daisy-chain layout. These elements are connected by means of small form-
factor pluggable (SFP) transceivers and optical fiber cable. Synchronization across all the
WR-compatible devices in the test-bed is ensured by monitoring their status information
as well as their corresponding PPS outputs. Once the system is stable and a common
time base has been distributed to all nodes using WR, then the TP is configured to send
pulses to the ZEN-CTA with a user-specified period throughout a number of iterations.
The TDC-measured time stamps are stored in a log file which will be used for analyzing
the time-stamping accuracy of the system for each iteration. A number of iterations,
each with a specific generation rate, were used in this study in order to measure the
average time of arrival uncertainty that could be associated with the accuracy of the TDC
module. Each iteration will use a specific generation rate and will inject 1000 analog
triggers produced at the Time Provider node into the TDC input. As shown in Table 5.3,
we found that the average time-stamping error remained stable throughout iterations in
the expected range of tens of picoseconds.

These results are in accordance with the expected sub-nanosecond accuracy of the
White Rabbit timing distribution system. It should be noted that the theoretical resolution
of the TDC-generated time stamps is 125 ps; however, given the actual values used
for configuring the delay taps (idelays) of the TDCs during implementation, and the
synchronization error introduced by an uncalibrated WR system, a systematic time-
stamping uncertainty has been introduced. This time-stamping uncertainty should be
compensated for by using the appropriate calibration procedures for daisy-chain-type
layouts [139]. As a result, the calculated jitter of ⇠90 ps can be attributed to the expected
WR synchronization jitter ⇠[10-20] ps, and to the additional contributions introduced
by the actual implementation of the TDC module (⇠78 ps synthesizable step for idelay
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Event No. Event Rate (Hz)
Time Stamp Uncertainty [Std.Dev.]

(ps)

5 95.319
10 82.703
20 87.775
100 94.744

1000 88.392
2000 90.531
5000 95.660
10000 81.398
20000 83.244

1000

100000 85.984

Table 5.3
Time-stamping uncertainty variation for 1000 TDC-measured events. © 2020 IEEE.

elements). This level of accuracy is in line with the expected performance required for
CTA.

The foregoing results have been achieved with an FPGA TDC design that leverages
the self-calibrated I/O elements of a Zynq-7000 device. In the literature, there are other
studies that show other FPGA-based TDC implementations that also use this same
structure to achieve high accuracy with minimized FPGA logic usage. Some notable
examples are the studies in [112] (312.5 ps), the 31-channel KM3NET TDC implementation
with oversampling and deserializers [140] (1 ns), or the TiCkS board [115] (2 ns). Contrary
to these, other approaches have proposed designs that are built entirely over the FPGA
fabric. They can still achieve reasonable levels of performance, such as the design with
carry chains in [114] (17 ps) or the TDC detector for DIAPHANE based on ring oscillators
(⇠200 ps) [141]; however, they require greater FPGA resources, careful synthesis, routing
constraining, and complex calibration.

5.6.2.2 Event Rate vs Bandwidth

The following experiment is aimed at measuring the impact on the WR network of
the transmission of TDC-measured time stamps generated at growing event rates by
introducing pulse trains with different period values from the TP node, as shown in the
setup described in Section 5.6.2.1. A software-based approach for this experiment, i.e.,
using the ARM CPU and the Xilinx DMA exclusively for transmitting the TDC time
stamps, was ruled out as the intensive transmission of time stamp data generated at large
rates would exert an enormous impact on CPU processing resources and network latency.
Moreover, this approach would provide a maximum attainable bandwidth of 426 Mbps
on the TX path, as indicated in Section 5.5.1, whereas the dedicated FPGA coprocessor
for transmitting time stamps (Section 5.5.2) can easily overcome these limitations by
utilizing close to 90% capacity of the Gigabit Ethernet link under select configurations,
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as opposed to the theoretical 50% utilization of the software-based solution. Thus, the
PacketGen module was selected for this experiment.

Consequently, the UDP PacketGen module will be used for encapsulating time stamps
into UDP packets in a raw representation format, which will then be sent to a remote
server for processing (Fig. 5.7). As a result, it is expected that bandwidth demand
and network utilization will be correspondingly impacted by the event generation rate
configured at the TP node. On the server side, the transmitted time stamps can be
processed using a custom application, and their bulk transfer statistics, such as bandwidth
usage and absence of packet losses, are calculated using a generic network sniffing tool
(Wireshark).

The experiment performs a series of iterations by sweeping the encapsulation settings
of the UDP Packet Generator, which can bundle together up to 90 time stamps over
an MTU-sized (1500 B) frame. The impact on the associated bandwidth usage for
each configuration when different trigger generation rates are applied at the TP node
is consequently studied (Fig. 5.8). The bandwidth usage figures presented for each
generation rate were evaluated during 10 s windows, and hence the number of time
stamps injected into the TDC in each case was 10 times the selected generation rate.

Figure 5.8
Plot of highest attainable bandwidth of the UDP messages before internal buffering congestion occurs when
the TDC uses specific time-stamping encapsulation options for different event-generation rates. A comparison
with the SW-based solution is also shown. © 2020 IEEE.

Analysis of the data shows that doubling the size of the UDP time-stamp payload
does result in a corresponding bandwidth demand drop. On the other hand, increasing
the number of time stamps sent over the UDP payload has proved to be an effective
strategy for capturing and successfully transmitting different events produced at growing
generation rates, albeit at the expense of incurring greater transmission latency (Table
5.4) through the network. This additional latency should not affect the operation of the



5.6 experimental setup 71

software-based, array-level trigger for CTA, which can handle end-to-end latencies lower
than 100 ms, but should nevertheless be considered if new processing features were to be
built into the system as part of a future development effort. The transmission latency of
the UDP Packet Generator can be estimated using the following expression, which was
derived from the implementation supplied for the module:

L(N, Tsamp) = (N � 1) · Tsamp + (4N + nc) · tclk (5.1)

In the preceding expression, N indicates the number of time stamps encapsulated in
each frame, Tsamp is the event generation rate period, nc is a constant FSM (Finite State
Machine) processing period of 26 clock cycles, and tclk is the system clock cycle period of
16 ns. These results can also be seen in Fig. 5.8, which shows that the highest attainable
event rate that can be transmitted over the network before buffering congestion occurs
can be substantially increased by doubling the number of time stamps sent over the UDP
payload. Hence, this upgraded data path provides a notable improvement (up to 905.6
Mbps) over the original capacity of the WR NIC-powered Network Interface Card design
outlined in [131] (11 Mbps) by applying the upgrade presented in [132], which achieved
⇠500 Mbps with a DMA-based solution.

Lastly, it should also be noted that UDP payloads of up to 90 time stamps could
potentially use close to the maximum allowed link bandwidth of 1 Gbps when sampling
events at the highest attainable rate of 7.14 MHz under this configuration, which vastly
exceeds the expected trigger rate of the most demanding of the CTA telescopes (LSTs at 15
kHz, as indicated in Section 5.3). These results indicate that the system is highly versatile,
given that it can be customized to conform to different applications that could potentially
extend beyond CTA, where different bandwidth or end-to-end latency constraints may be
required. Furthermore, the fact that this is a purely FPGA-based architecture that can be
supported with the relatively modest Z-7015 device makes this an interesting reference
design for high-performance, distributed event-acquisition systems.

5.6.3 Outcome of the Experiments

The preceding results indicate that the proposed solution is highly versatile and, given
its large capacity for acquiring and forwarding event time stamps, it can safely handle
Cherenkov light flashes generated at substantial rates. From the broader perspective
of data acquisition systems, the design of the ZEN-CTA node is a robust and high-
performance alternative to many data acquisition nodes from different projects as it
incorporates high-accuracy TDCs (⇠90 ps resolution) assisted with a precise WR timing
implementation. Furthermore, as it is built using a Zynq-7000 device from Xilinx, its
FPGA-based design is coupled with a dual-core ARM processor with a Linux operating
system, which simplifies the task of implementing additional software utilities or elements
from acquisition control frameworks. Moreover, its enhanced Ethernet data path allows
forwarding of events acquired at rates of up to 7.14 MHz. These features make our
proposed design stand out against those found in other projects. In the context of CTA,
the TiCkS board [115] is another alternative that uses WR synchronization with TDCs for
time-stamping. However, its TDCs have lower resolution (⇠2 ns) and can acquire events
generated at rates of up to 320 kHz. Furthermore, its design is based on the SPEC node
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Event
No.

Event Rate
(Hz)

BW (Mbps)
1 TS

BW (Mbps)
2 TS

BW (Mbps)
3 TS

BW (Mbps)
4 TS

BW (Mbps)
32 TS

BW (Mbps)
64 TS

BW (Mbps)
90 TS

5.00 · 106 5.00 · 105 320 (0.48
µs)

168 (20.54
µs)

132 (40.61
µs)

134.4
(60.67 µs)

68 (622.46
µs)

64 (1264.51
µs)

63.2
(1786.18

µs)

1.60 · 107 1.60 · 106 -
504 (1.17

µs)
424 (1.86

µs)
367.2 (2.55

µs)
216.8

(21.84 µs)
206.4

(43.89 µs)
203.2

(61.80 µs)

2.18 · 107 2.18 · 106 - -
576 (1.52

µs)
535.2 (2.05

µs)
315.2

(16.68 µs)
299.2

(33.41 µs)
295.2

(47.00 µs)

2.66 · 107 2.66 · 106 - - -
608.8 (1.80

µs)
360 (14.12

µs)
342.4

(28.20 µs)
337.6

(39.63 µs)

6.29 · 107 6.29 · 106 - - - -
846.4 (7.39

µs)
809.6

(14.52 µs)
797.6

(20.33 µs)

6.94 · 107 6.94 · 106 - - - - -
894.4

(13.60 µs)
880.8

(19.00 µs)

7.14 · 107 7.14 · 106 - - - - - -
905.6

(18.64 µs)

Table 5.4
Comparison between the event generation rate and the required bandwidth for transmitting time stamps when
the PacketGen FPGA coprocessor is customized to encapsulate different amounts of TDC time stamps (n TS)
over a UDP packet. In parentheses the transmission latency for each Event Generation rate under a given
configuration of PacketGen. © 2020 IEEE.

[79], which lacks an integrated ARM processor and makes its integration with a control
framework more complex.

Other projects, such as KM3NET [80] or DIAPHANE [116], also feature event-acquisition
nodes with TDC time-stamping; however, in contrast to the ZEN-CTA node, their solu-
tions are based on stand-alone FPGA devices, further complicating integration in control
systems or their PCB design, and they have comparatively lower resolution: ⇠1 ns and
⇠250 ps, respectively. Moreover, each node from DIAPHANE needs to have its TDCs
manually calibrated. Furthermore, KM3NET nodes can easily be integrated in acquisition
systems with their support of WR timing, whereas the nodes from DIAPHANE rely on
GPS synchronization (OPERA) for their deployment in larger geographical areas.

It is also worth noting that the prototype costs of DIAPHANE (Cyclone V), KM3NET
(Kintex), TiCkS (Spartan 6), and the ZEN-CTA (Z-7015 with embedded ARM) should be
comparable, given their use of analogous midrange and low-cost FPGA devices, whereas
the TDCs in [112] and [114] are not intended for mass production and feature high-end
Virtex FPGAs.

5.7 CONCLUS IONS AND FUTURE WORK

We have presented a novel implementation of a White Rabbit synchronization node
with an enhanced time-stamping device – a Time-to-Digital Converter – targeted to the
UCTS camera component for the CTA, but generic enough as to allow its use with other
camera prototypes. Together with the compact dimensions of the board (60 mm ⇥ 164
mm), the system implements a network of distributed astronomical event samplers using
a paradigm that resembles that presented in [142] for distributed digitizers. The TDC
module, given its FPGA-based design, is a low-cost solution that is able to achieve similar
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performance to that of dedicated hardware implementations in terms of accuracy, and it is
also immune to the effects of varying temperatures or fabrication processes. Its accuracy
has been characterized and pegged to the 90 ps range for “-1” speed-grade devices of the
Xilinx 7-Series-based FPGAs, but this figure is subject to further improvement, potentially
up to a threefold increase in accuracy, if faster grade devices are used.

The TDC module is then bundled with two different solutions to allow the forwarding
of its time stamps to a remote server for processing: a software-based solution that
relies on the new DMA-based data path for transmitting high-throughput data over the
network, and an exclusively dedicated FPGA coprocessor for transmitting TDC time
stamps. These two alternative solutions coexist in the architecture presented in the design
and have been studied in a realistic laboratory test bench. It was found that the dedicated
FPGA PacketGen coprocessor could support the continuous transmission of time stamps
generated at rates of up to 7.14 MHz (905.6 Mbps throughput) with no impact on system
performance, whereas exclusively using the DMA, software-based approach would only
allow for a maximum continuous rate of time stamps of 3.195 MHz theoretically (426
Mbps throughput) and the system CPU resources would be under enormous strain. Thus,
the PacketGen module is designated as the preferred method for forwarding time stamps
from the node, even though pure software-based approaches could still be used when
further flexibility is required (e.g., filter time stamps according to user-defined criteria)
and the time stamp generation rate is lower.

The PacketGen is highly customizable and can be parameterized to accommodate
different bandwidths and latency requirements. This leads to an FPGA footprint of the
entire architecture that can be fitted into the relatively small Xilinx Z-7015 device in all
possible configurations of the core. This device features a dual-core ARM processor with
support for Linux and user-designed applications to allow the development of advanced
functionalities on the ZEN-CTA node. Ultimately, this gives the proposed solution,
which already boasts higher levels of performance than other similar alternatives [80,
115, 116], greater flexibility for integration. Furthermore, as the time stamp processing
solutions presented in the design can handle transmission rates greater than those
needed for CTA, this architecture could be targeted to a number of additional industrial
or scientific applications that demand more stringent bandwidths and end-to-end latency
transmission requirements. Some potential applications could be found in the distributed
event-acquisition systems of large telescope arrays, particle accelerators, and other similar
infrastructures such as KM3NET, EISCAT [143], or ICECUBE [144].

5.8 FOLLOW-UP TO THE AR T ICLE. MOT IVAT ION FOR A MIGRAT ION TO TSN

FUNCT IONAL IT IES

WR timing uses a standard Ethernet link for transmitting its synchronization protocol
messages. Specifically, it relies on a 1000Base-X optical fiber link that adheres to the
standard specification of a physical layer for Ethernet and is even interoperable with
other non-WR-capable equipment. As a result, our WR-compatible nodes allow both time
synchronization messages and ordinary Ethernet data to coexist over the same physical
link without exerting any apparent impact on the performance of the synchronization
system; i.e., the transmission of the PTP-based messages for WR timing would not be
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hindered by simultaneous data transmissions so long as there is enough capacity in the
link to support all the flows that are being transmitted. Hence, provided that the WR
protocol messages can be exchanged between both the WR master and slave devices
without losing any critical signaling message for WR, then the synchronization protocol
would proceed unimpeded. We have verified this in our experiments with the ZEN-CTA
and also in the preliminary study from [132], where we injected ordinary Ethernet data
at varying rates over the WR Ethernet links to find that not only could we transmit data
using Gigabit speeds, but that we could also maintain sub-nanosecond synchronization at
the same time. Likewise, our tests with the ZEN-CTA have pointed in the same direction:
we can use the WR synchronization network of the CTA infrastructure for transmitting
both synchronization data and the scientific time-stamp payload generated at the UCTS
cards of the small-sized telescopes. This would enormously simplify the deployment and
integration of the networking system for CTA.

In this context, since the SSTs require that we deliver time-stamp data within a specific
deadline of 100 ms for the software array-level trigger of CTA to operate correctly, the only
way that we could verify that this claim could be upheld was by gradually introducing
growing rates of time-stamp data until we determined that the highest rate that our
design of the ZEN-CTA could withstand. Our results showed that the highest time-stamp
rate was reached when we transmitted packets with bundles of 90 time stamps. This
allowed us to capture events generated at rates of up to 7.14 MHz (see Fig. 5.8) with
an associated bandwidth 905.6 Mb/s, and a transmission latency of 18.64 µs. These
specifications correspond to the worst-case of our system can still fulfill the requirements
for the small-sized telescopes, which are much more relaxed as they are expected to
receive events at rates of up to 600 Hz. This validation approach shows that the only way
that we can guarantee a certain level of performance with a best-effort Ethernet network
is by overprovisioning its resources and by estimating the worst-case performance as
an implicit assurance of how the system would be expected to behave under normal
operating conditions. As a result, it can be seen how an integration with TSN and
WR could be beneficial for scientific infrastructure as well. TSN, whose design and
implementation we study throughout this thesis, has all the necessary building blocks
for providing a deterministic delivery service of critical data with bounded end-to-end
latency and reliable delivery (e.g., seamless redundancy). This could complement the
robust timing transfer of WR and ensure that the scientific payload produced at the
ZEN-CTA could be delivered on time and with bandwidth assurances to the software
array-level trigger at the central processing node of CTA. Consequently, an integration
of TSN with WR timing is a subject that we explore in Chapter 10 after presenting TSN
architecture and our experimental results for industrial and aerospace use cases.
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T H E C O N S T R U C T I O N O F A T S N N O D E

Figure 6.1
Overview of the contents of Chapter 6 for the structure of our TSN nodes.

This chapter presents a system-level view of all the elements that come into play for
the implementation of a TSN node. Thus, we present the general system architecture
that we have extensively used for our nodes. In this context, we introduce the main
elements of the software environment, including the use of an embedded OS and a
synchronization service, such as gPTP or ppsi (for WR timing). Next, we introduce the
embedded platforms that we have used for developing and prototyping during the thesis
project: the Zynq-7000 family of programmable SoCs from Xilinx. These devices feature
embedded ARM processors for the running of our software environment, and the FPGA
logic that we used for building our TSN solution. Hence, after introducing the embedded
platform, we move on to presenting the main components of our FPGA implementation
for TSN. These include the cores for the networking subsystem, the timing subsystem,
the switching elements, and the TSN subsystem itselft. We provide an overview of their
operation and conclude by emphasizing the important relationship between the timing
system and the TSN cores for achieving a deterministic forwarding of the critical data.
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6.1 GENERAL STRUCTURE OF A TSN NODE

The process of designing a TSN node consists of the integration of several enhancements
for bringing about the capacity to forward traffic deterministically on top of ordinary
Ethernet network links. Hence, TSN nodes are built on the foundation of a simple
Ethernet service providing the basic support and functionalities for data forwarding,
which is enhanced with the integration of two key additional components: a timing
service and a TSN subsystem. This latter element is a collection of traffic shapers and
packet filters that are ultimately responsible for providing some of the main features of
the TSN system. The generic hardware structure of these devices can be examined in
the diagram of Fig. 6.2, which also shows some of the required software elements for
handling and configuring the operation of this type of systems.

Figure 6.2
The basic hardware and software architecture integrating all the necessary components for building a func-
tioning TSN system.

As stated in Chapter 4, the designs we have worked on are based on the Zynq-7000
programmable SoCs from Xilinx, given the convenience and flexibility afforded by the
use of an FPGA-based platform for developing and verifying the inclusion of new
functionalities. Hence, the primary elements supporting the operation of the TSN system
have been implemented directly on FPGA logic and are enumerated in the following
points.

• The Networking subsystem is the underlying Ethernet communication service
that allows the transmission of data in a TSN system. Hence, it is composed strictly
of the off-the-shelf, standardized components that are required for instantiating a
1-Gb/s Ethernet link layer service. In our research, given our choice of a Xilinx-
based development environment, we have implemented this feature with the main
IPs and design blocks for Ethernet communications of the Vivado environment.
Hence, this subsystem has mainly made use of DMA blocks for data transfers
[145], PCS/PMA cores [146] for interfacing with the physical layer, the medium
access controllers (MAC) from Xilinx for 1-Gb/s Ethernet [147] or custom open
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MAC designs [148], and the appropriate Ethernet transceivers (PHY). These latter
elements could be the built-in GTPs [149] from the Zynq-7000 devices we have
worked with, or even external PHY chips (Chapters 8, and 9).

• The timing subsystem is one of the essential components for any working TSN
implementation. It is responsible for ensuring the distribution of a common time
reference across the network to allow the synchronous operation of the different
TSN nodes and their respective traffic shapers. Its operation has been standardized
in the IEEE 802.1AS specification [6], which defines a specific PTP [77] profile for
TSN networks: the generic PTP (gPTP). This synchronization method makes use of
three main hardware components that can be instantiated either as FPGA logic or
as separate elements, such as application-specific integrated circuits (ASICs) on the
printed circuit board (PCB) of the node. These components are the time-stamping
unit (TSU), the PTP hardware clock (PHC), and a digital phase-locked loop (DPLL).
The TSU, as implied by its designation, is tasked with producing time stamps on
the reception and transmission of the PTP protocol messages. These time stamps
are in turn used by the synchronization algorithm to calculate the link delay and
compensate the master-to-slave offset. This offset compensation is applied to the
PHC, which maintains the internal time representation of the local node. In our
designs, both the TSUs and the PHC were implemented as FPGA IP cores. In
contrast, the DPLL is usually implemented on the PCB as a voltage-controlled
oscillator (VCO) for a fine-grain phase compensation of the PHC. It is steered by
the gPTP algorithm after the initial coarse phase adjustment stage of the protocol.

• The TSN subsystem is tasked with the implementation of the traffic-processing
enhancements that allow the deterministic forwarding of the higher priority mes-
sages of the system. As outlined in Chapter 3, TSN devices can make use of the
features defined in the multiple specifications of the IEEE 802.1 family of standards
to achieve this goal. Our design features a reduced subset which we have selected
from the aforementioned standards that has allowed us to implement a working
system with the minimally required functionality of TSN. Specifically, our designs
feature support for traffic identification and reservation modules (802.1Q [46]),
time-aware traffic shapers (TAS - 802.1Qbv [9]) with preemption (802.1Qbu [41]),
preemptable Ethernet MACs (802.3br [40]), and seamless redundancy (802.1CB
[44]). The traffic identification and the redundant transmissions are supported
with a VLAN core, the deterministic forwarding is achieved with time-aware traffic
shapers operating synchronously to the PHC, and the enhanced robustness of the
system is provided by the extensions for redundancy (VLAN and Dropper modules)
and preemption (TAS and the Ethernet MAC). Furthermore, we have implemented
these modules as FPGA cores with several customization options for streamlining
their integration with other components or in smaller FPGA devices.

• The switching elements are tasked with forwarding data frames between the
different ports of our platform, or between its Ethernet ports and the ARM CPU.
Thus, these components enable the use of the bridging and packet-switching
functionality that we have built into our nodes. This functionality is essential for
the role of our nodes as bridging elements, as they allow any incoming flows into
our platforms to be forwarded to either a consumer IP core built into the FPGA
logic, or towards the egress path of the node so that it can be forwarded to a
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neighboring node. In the architecture depicted in Fig. 6.2, the switching elements
are implemented using the proprietary Xilinx crossbar switches [150] for the AMBA
AXI-Streaming system bus, which allowed us to quickly and conveniently build the
packet-switching feature for our nodes. Their operation, and hence the bridging
behavior of the nodes, is in turn controlled through the configuration parameters
that the system users supply to the VLAN module. Furthermore, to avoid the
runaway resource-consumption issues associated with the use of large crossbar
switches, we split their implementation into two main functional block: a primary
switching block for the ingress data path and for interfacing with the TAS shapers,
and a forwarding switch – “the Redirector” – for forwarding data between ports or
towards third-party IP cores in the FPGA logic.

The foregoing elements represent the basic, generic template for building a TSN system.
We have combined and arranged them with different layouts and varied interconnec-
tivity options to assemble several types of FPGA architectures. These variations were
developed to conform to some of the requirements that we encountered throughout the
implementation of this thesis project that demanded that a moderate-resource FPGA
footprint be provided that would also allow for integration with other third-party IP
components. These cases, alongside their corresponding architecture, are presented in
detail in Chapters 8, 9, and 10.

6.2 THE USUAL ROLES OF OPERAT ION OF TSN NODES

TSN nodes can take on several roles on the network depending on their relationship to
the data source, or their role in the flow routing and its processing. Thus, TSN nodes are
usually designated either as talker or listener devices. The former refers to the producers
of the data streams that are forwarded over the network, whereas the latter indicates
the end system that consumes the data. The data transmission model of TSN implies
that all data flows have a specific origin at a producer “talker” node and are then routed
on a point-to-point basis towards their “listener” destination. The nodes in the network
may possess both roles interchangeably, as they may be both producers and recipients of
different types of TSN data streams.

Another possible classification which has profound effects on the overall architectural
design of the node is its relationship to the forwarding of data and their processing. Thus,
the devices that are located at the edge of the network are usually either gateways from
an ordinary Ethernet system or the end systems operating as talkers or listeners. These
nodes may also implement the interfaces with the sensors and actuators of a specific
control loop, or they may aggregate and process data from different sources (e.g., sensors)
to produce the corresponding control messages. Hence, these types of nodes are often
referred to as an “end-point” for receiving, originating, or processing the different data
flows.

These TSN flows, when forwarded over the network, have to travel through several
intermediate nodes. These nodes have the task of identifying the different types of TSN
streams and deciding the physical port they should be sent to so that they can reach
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their destination. As these devices need to include switching and multi-port packet
forwarding capabilities, they are often referred to as bridges.

Consequently, these functionalities place different demands on the expected features
of each type of node. These differences lie along the following lines.

• The number of ports is one of the most obvious factors influenced by this distinc-
tion. The end-points have a tendency to be relatively simpler devices and hence they
are usually either single- or dual-port systems. However, they may feature other
analog or digital interfaces for interacting with other control or sensing equipment.
In contrast, since the TSN bridges are meant to forward data at the intermediate
points of the network, they are usually multi-port devices.

• With respect to timing synchronization and frequency distribution, all the TSN
nodes should be able to support a synchronization service. However, the end-points
will usually operate as either synchronization master or slave devices, whereas the
bridges will have their ports take on both roles as required by the best master clock
algorithm (BMCA). Thus, TSN bridges will usually have one of their ports operate
as a timing slave – the port connected to the timing source of the network – whereas
the rest of their ports will behave as timing masters for propagating the time
reference to devices in subsequently lower layers of the network. In addition, when
the ports of a bridge node are connected to multiple time sources, the BMCA will
set configure one single port as a timing slave whereas the rest will be designated
as fall-back passive ports.

• The switching capabilities of each type of node will also differ in accordance
with their roles. The end-points may often lack any switching capabilities given
their use as data sources or sinks, thereby requiring a simpler FPGA architecture.
On the contrary, the TSN bridges will require internal switching elements (e.g.,
crossbars) for forwarding data and their architecture and resource usage will be
correspondingly more complex.

• There are also differences with respect to the software environment. Thus, both
the TSN bridges and end-points will require basic software support consisting of
an embedded OS, configuration APIs for the TSN and timing systems, and a
timing service (e.g., the gPTP “daemon”). However, the end-points may add more
complexity with different user-level utilities or even real-time tasks for processing
the TSN data flows (e.g., the implementation of the software logic for a control
loop).

In our designs, even though we have worked with both multi-port and dual-port
devices, all of our nodes can potentially behave as TSN bridges with the processing
capacity of an end-point. In this context, the WR-ZEN board, which is a dual-port device,
will often take on the role of an end-point in our experiments, although, as it was chosen as
the main development platform, it can also redirect data between its ports and behave as
a bridge with built-in switching elements. This can be seen in the experiments presented
in Chapters 8, 9, and 10. We have also developed a four-port TSN switch – the Main Board
– that behaves as a bridge with real-time processing capabilities which is introduced in
Chapters 8 and 9.
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6.3 THE SOFTWARE ENVIRONMENT OF A TSN NODE

As shown in Fig. 6.2, the software environment of a TSN node consists of an ecosystem
composed of an embedded OS for basic system management tasks, the appropriate
Ethernet drivers for data communication, a synchronization utility deployed as a system
service, configuration APIs for regulating the operation of the timing and TSN modules,
and the appropriate user-level tasks for data processing.

6.3.1 The operating system

Our nodes make use of embedded operating systems given the convenience and simplicity
afforded by their use for managing complex operations; such as user-task scheduling
with potentially real-time constraints, or the instantiation of communication interfaces
with multiple communication protocols. We have used two different types of OSes during
our experiments: a general-purpose embedded Linux OS [151] and a real-time RTEMS
[152] implementation. Both OS images were supplied by our industrial partner Seven
Solutions so that we could customize them for our experiments. The former has been
used for the development and the testing of novel features, as presented in the White
Rabbit and TSN integration experiments of Chapter 5 and 10. The latter is a real-time OS
commonly used throughout multiple embedded scenarios and for avionics systems in
particular. Its use has been showcased in the experiments of Chapters 8 and 9. Moreover,
regardless of the scenario under consideration, the OS is the background on top of which
the different services and utilities of our nodes have been integrated. These features are
presented in the following points.

6.3.2 The device drivers

The device drivers are the kernel modules that allow the OS to interface and control the
underlying hardware and peripherals that are present on a specific platform. The use of
kernel modules is fairly common in general-purpose operating systems such as Linux.
Indeed, Linux implements a modular kernel approach whereby the user can choose to
customize the kernel image with different modules depending on the capabilities and
desired behavior of the targeted platform.

The large diversity of drivers and kernel modules for Linux and Unix-like kernels is
explained as a consequence of the multiple embedded platforms available for designers
to choose from, with each one having different sets of processing elements or peripherals.
Hence, the existence of multiple kernel modules helps detach the main system kernel
from handling the complexity of integrating the numerous hardware variants of the
different computing platforms supported on a specific OS. Rather, this approach allows
the use of a simplified kernel featuring generic system interfaces (e.g., system calls, driver
hooks, . . . ) that communicate with the appropriate device drivers and modules handling
the low-level tasks of the underlying hardware of a given computing platform.

The Zynq-7000 devices we have used throughout this project are no different in this
respect. They are embedded platforms based on ARM processors and are thus supported
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on multiple operating systems, such as Linux or RTEMS. We have used the Buildroot [83]
tool, which is a well-known tool suite for generating custom OS images for embedded
devices, for producing the kernel images we have used in our tests. Hence, Buildroot
provides a streamlined interface for customizing the kernel with a choice of system
modules and other configuration parameters that the designer can choose to activate
using an ncurses [153], graphical, or plain-text configuration interface to modulate the
behavior of the system. The user can then choose the desired modules and drivers for
a specific functionality and have them linked into the compiled kernel or generated
separately as loadable kernel modules. Loadable modules can be dynamically loaded by
the user with commands such as insmod or modprobe. This is a very powerful mechanism
for producing system images tailored to the hardware of custom embedded platforms,
like that present in FPGA-based devices. Typical examples of this level of customization
include the choice of the specific TCP/IP communication stack (e.g., TCP Tahoe, FAST
TCP, TCP Cubic, . . . ), the drivers for interfacing with the CPU hardware clock, or the
network drivers for managing the Ethernet interfaces.

Furthermore, the Buildroot build system also generates a crucial element for handling
device drivers: a device tree. Device trees are useful for indicating which drivers should
be loaded or the specific parameters that a given module should use during initialization,
such as the base address of the hardware being controlled in the memory space of the
system or the driver version that a given device is compatible with.

Our custom embedded images have made use of both statically and dynamically
loaded modules for their operation. The static modules include the basic framework for
supporting the execution of Linux on the ARM processors of the Zynq-7000 devices. Most
of them are already selected in the Buildroot configuration template for the Zynq-7000
platform. User-designed drivers can also be added to the workflow of the Buildroot build
system to support the custom IP cores in our FPGA designs with new device drivers. That
has been the case with the network drivers in many of our TSN prototypes. Moreover,
we had them compiled as separate kernel modules that could be loaded dynamically
when needed; i.e., when flashing the FPGA with the appropriate bitstream.

Specifically, in order to support some of the additional functionalities required by
our high-speed, TSN-capable interfaces, we had to develop new network drivers, or
modify (i.e., patch) existing ones, to establish the underlying Ethernet service required
for exchanging data. The design of a fully functional network driver from scratch can
be a daunting task, and hence we have used several methods for supporting a 1-Gb/s
Ethernet service on top of our FPGA designs with incremental modifications to existing
drivers.

• For the WR-compatible Ethernet interfaces of Chapter 5, we made use of a modified
version of the WR NIC driver [131], which is a part of the White Rabbit resources
from the Open Hardware Repository [136]. This driver was then coupled with a
repurposed version of the Xilinx AXI DMA driver [151] through the use of the
DMAEngine kernel API. Although this allowed our design to benefit from the use
of a DMA core to boost the forwarding data rates (up to 428 Mbps), it was also
an ad hoc implementation that required that a kernel update – a patch – be rolled
out for the DMAEngine. This version has since been superseded and replaced for
simpler alternatives in the subsequent experiments of Chapters 8, 9, and 10.
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• The experiment of Chapter 10 uses a new flavor of the WR architecture available
for the WR-ZEN devices of Seven Solutions S.L., which were the main development
platform used for this thesis project. This new architecture supplied a simplified
design that replaced the original WR-NIC and WR Ethernet MAC from the Open
Hardware Repository with simpler, “off-the-shelf” cores from Xilinx: the Xilinx
Ethernet subsystem [154]. Hence, we used a modified version of the corresponding
Xilinx drivers (axienet) for implementing our Ethernet network drivers in this case.
Seven Solutions supplied a version of these drivers for their WR-ZEN platform,
and we had to adapt them to allow simultaneous data transmissions alongside the
WR protocol messages for our experiments integrating TSN and WR timing.

• The FPGA architectures from Chapters 8 and 9 also use a similar implementation of
the Ethernet subsystem to that of Chapter 10. Hence, even though the OS of choice
for these experiments was RTEMS, the Ethernet drivers were also implemented as
a modified version of the Xilinx Ethernet subsystem drivers (axienet); however, they
had to be ported to RTEMS as well. The ported Ethernet drivers for the RTEMS
environment were supplied by our industrial collaborator Seven Solutions.

6.3.3 The configuration interfaces

The operation of a TSN system is eventually determined by its configuration; i.e., the
settings the end user may supply for the TSN network in order to attain a specific
effect or a desired behavior. Most of the time, these effects are related to ensuring the
deterministic delivery of the so-called critical data flows within a tight reception window
to the detriment of the lower priority traffic classes such as best-effort video. It can be seen
that this behavior can only be achieved by the careful definition of a set of configuration
parameters that span the routing topologies in the network, the traffic filtering, or the
traffic shaping policy on the egress paths of the TSN bridges. Although the correct
calculation and derivation of these parameters is paramount if a certain behavior is to be
expected of the system, their derivation is beyond the scope of this study. Nonetheless,
the procedures for working out meaningful configurations for TSN systems are a broad
field of research where a variety of methodologies can be applied for finding efficient
solutions for this problem. The literature shows that there are interesting approximations
for this that range from the modeling of the system with network calculus [155] to the
application of metaheuristics [156].

Hence, provided that the user settings have been determined by an appropriate method,
the configuration interfaces are then responsible for uploading these parameters to the
TSN nodes and their IP cores so that the desired behavior of the system can be achieved.
This has been implemented in the form of two separate application programming
interfaces (APIs): the TSN API and the gPTP API. The former is tasked with supplying
the user configuration parameters to all the TSN elements of the node, such as the GCL
schedules for the traffic shapers, the traffic identification criteria and routing settings for
the VLAN module, or the critical flows that will be subjected to enhanced protection
through redundant forwarding. The latter is concerned with adjusting the operation
of the gPTP synchronization; e.g., the message exchange rate, or the corresponding
port roles of a given node for adjusting the behavior of the best master clock algorithm
(BMCA).
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We have implemented these APIs as complementary libraries that get linked into our
software environment as needed. In the case of Chapters 8 and 9, both the TSN and
gPTP APIs were developed as separate kernel libraries, whereas the experiment from
Chapter 10 replaced the gPTP library for the corresponding functions and interfaces for
managing a WR implementation.

6.3.4 The TSN API

The TSN API consists of four basic elements: a) a set of configuration data structures
describing the applicable settings for the traffic shapers and the VLAN-tagging modules,
b) the high-level user interface for configuring the TSN node, c) a low-level interface with
the traffic shapers for uploading GCL schedules, and d) another interface with the VLAN
module for designating the traffic classes in the system and the operation mode for
redundancy. This API was jointly developed with our collaborators from Seven Solutions
and the Andalusian Institute of Astrophysics (IAA). The relationship between b), c), and
d) of the API can be observed in Fig. 6.3.

a) The API data structures are defined in the configuration header file (config_file.h),
which contains the data models for specifying the behavior of the TSN IP cores.
Hence these structures allow the definition of GCL schedules, preemption status,
use of redundancy, and VLAN-tagging rules on a per-port basis.

b) The high-level functions allow the user to interact with the TSN IP cores after their
configuration has been supplied through the data structures of the configuration
file (the config_file.h header). These functions allow the user to select the TSN-
capable Ethernet port the new settings will be applied to, and then upload the
corresponding parameters to the TAS and VLAN modules associated with the port
under configuration.

c) The low-level interface with the traffic shapers of the system contains all the
necessary functions for accessing the control and configuration registers of the TAS
IP core (7.3.2) in its embedded AXI slave bus interface. These functions can write
the necessary configuration values for adjusting the behavior of the core according
to the schedule specified by the user or the desired preemption status for each
queue of the shaper. Moreover, it also contains a main configuration function for
programming the core that writes the user settings to the TAS registers following
the sequence expected by the TAS internal configuration FSM.

d) Likewise, the low-level interface with the VLAN module contains the functions for
accessing the configuration registers of the VLAN core (see 7.1.3). These functions
can read and write configuration values from the embedded configuration registers
of the AXI slave controller of the core, such as the VLAN tag contents of a given
TSN stream or whether redundancy is used. In addition, it contains a main
configuration function for uploading these settings to the core in keeping with the
expected configuration sequence of its internal configuration FSM.

6.3.5 The user applications
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Figure 6.3
The main components of the TSN configuration API.

New user-level applications can easily be integrated in our nodes with the usual Buildroot
workflow. Thus, its build system also allows the generation of customized file system
images that can be fitted with a number of user utilities. These utilities can either be
third-party tools that the build environment of Buildroot can retrieve from remote content
repositories, or they can also be custom applications that the user can include in the
cross-compilation build process of the system.

Hence, as indicated in the developer manuals of the Buildroot tool suite [83], developers
have a wide range of configuration choices for building an embedded environment that
suits the platform they are targeting. This includes kernel modifications, as indicated
in previous sections, and the contents of the file system image. The latter can be
adjusted through the configuration interfaces of Buildroot itself (e.g., ncurses), which
allows the selection of the applications that will be included in the cross-compilation
build. Furthermore, developers can include their own packages in the build process by
supplying their own code and a specific Makefile for Buildroot (the “.mk” file). In addition,
the code for simple programs can also be cross-compiled and added to the file system
image overlay generated by Buildroot.

Our TSN nodes have been fitted with the usual applications expected in an embedded
Unix-like environment that also doubles as a development and debug platform. Hence,
these utilities include an SSH service, network debug tools such as tcpdump or tshark,
Ethernet management resources such as ethtool, or network benchmark utilities such as
iperf. All of the foregoing items can easily be selected from the Buildroot configuration
menus for their inclusion in the file image. Additionally, we have also added our own
packages to support the main functionalities of a TSN system. These include the following
elements:

• The timing service has been implemented with the “ppsi” [157] utility. This
application instantiates a WR timing service and has been used for the system
images used in our experiments with WR synchronization (Chapter 5) and those
combining WR and TSN features (Chapter 10).

• A configuration utility for adjusting the operation of the system has also been imple-
mented as a custom package. This utility was jointly developed with our industrial
partner Seven Solutions. Hence, this package leverages the TSN configuration API
to produce a simple application that uploads system settings to the appropriate
TSN IP cores. Its use has been featured throughout all of our experiments.

• A number of third-party packages that are part of the default design of the WR-ZEN
system image from Seven Solutions. These packages help control the operation of
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the WR timing service by supplying parameters such as its link calibration values,
or the initialization of the WR-ZEN board, which makes use of a simple tool to
interface with a configurable PLL chip (AD9516 [158]) on the PCB of the node for
generating the required clock sources.

• Other user applications that were added to the WR-ZEN image through the Buil-
droot tool were the message generation utilities that we have used during our
experiments to probe the performance of the TSN system with the emission of
test data streams. Hence, these utilities have consisted of simple programs for
producing UDP messages with different generation rates and header values so that
they could be identified and tagged as required as TSN streams for studying the
operation of a given TSN network.

Yet, some considerations should be made about the experiments of Chapters 8 and
9. Since these experiments have made use of an RTEMS platform, the build process for
integrating third-party or user-designed applications differs from that presented in the
foregoing points, which is intended for embedded Linux environments. RTEMS has its
own build environment, which is called the RTEMS source builder (RSB) [159]. Hence,
we have used the RSB for integrating all the aforementioned user applications, except
for the “ppsi” module for WR as our experiments with the RTEMS OS only used the
gPTP synchronization for TSN. The gPTP synchronization service for RTEMS was jointly
integrated during collaborative research projects (Chapters 8) and 9) with Seven Solutions
S.L. on the WR-ZEN development platform and on the Main Board.

6.3.6 The timing services

The timing distribution service is essential for guaranteeing the correct operation of
any TSN network. In the context of this thesis project, we have worked with two
different synchronization mechanisms: gPTP timing and White Rabbit. The former is the
synchronization protocol that is included in the standard specification of TSN systems
and was developed by our collaborator Seven Solutions in the framework of a technology
transfer project. The latter is the high-accuracy timing and frequency distribution protocol
from CERN that is built into the WR-ZEN boards from Seven Solutions. WR enhances
the precision of PTP synchronization to allow its use for scientific applications such as
high energy or particle physics. We have made an effort to document them so that their
role in the TSN nodes can be understandable to the reader.

The gPTP synchronization service has been used in the experimental cases that we
have showcased in Chapters 8 and 9. Specifically, the implementation of gPTP that we
have supplied is an adaptation of the Open Avnu gPTP project [52], which was migrated
to the RTEMS OS environment that we used for the aforementioned experiments. Hence,
this implementation of gPTP for the RTEMS OS consisted of three major components:
the gPTP protocol itself, its configuration interface, and a debug utility.
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6.3.6.1 The gPTP protocol implementation

The gPTP protocol was implemented as a cyclic task for RTEMS with the structure shown
in the diagram from Fig. 6.4. Its main components are the networking libraries (net,
sys/socket) for interfacing with the TSN-capable Ethernet ports of the node, the main
protocol state machine and the internal variables of the process (commom_port_port_entity,
linux_hal_generic), and the configuration interface (gPTP_API_L1). In addition, the gPTP
service had to include a set of specific libraries for interfacing with our custom FPGA
hardware. These include the interface with the low-level configuration registers of the
PHC (PPS_GEN_REGS), and that with the VCO controller for the fine-grained frequency
adjustments HWClk_MiniAPI. Moreover, the service is intended to follow a two-tiered
execution methodology. Thus, on the first stage, the protocol needs to be initialized.
This step generates all the necessary structures of the protocol and must compulsorily
be run before launching the main synchronization service. The second stage follows
the initialization and consists of the cyclic execution of the gPTP service with all the
components depicted in the diagram.

Figure 6.4
The main components of the gPTP synchronization service used for the TSN nodes built with the RTEMS OS.

6.3.6.2 The configuration API

The configuration API (gPTP_API_L1) is one of the complementary components to the
synchronization service. It is intended to allow the user to supply the set of configuration
parameters governing the behavior and execution of the protocol. Typical examples
include the “announce/sync” message emission rate, which modulates the behavior and
efficiency of the protocol, or parameters such as the clock class, the clock identifier, or its
priority, which guide the operation of the best master clock algorithm. We have developed
a streamlined interface allowing the user to conveniently supply all of these parameters
before the gPTP service can be launched.

6.3.6.3 The debug and supervision component

The other complementary element to the gPTP service is its built-in debug and supervi-
sion process: the “gPTP_Mon” (gPTP Monitor). As the name implies, this is the process
tasked with gathering traces and statistics from the execution of the synchronization
service and then displaying them in a user-readable format. In order to reduce un-
necessary overheads, its use is only recommended for debugging and troubleshooting
purposes. Hence, the gPTP Monitor generates a comprehensive execution trace that
system developers can use to conveniently track the performance of the protocol or help
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them locate the source of any issues arising during its execution. Moreover, it is highly
versatile as well, since it allows the displaying of the execution trace results both locally
on the user shell or remotely on a debug computer, where the results of the real-time
trace on another node can be transmitted.

6.3.7 High-accuracy timing services

We have also worked with WR timing in some of our experiments, such as those described
in Chapters 5 and 10, where we first intended to study the performance of this alternative
synchronization method in the former, and then show its realistic application as an
enhancement to a TSN system in the latter. Thus, the White Rabbit timing service is
available on the WR-ZEN development board as a background Linux service, which is
designated as “ppsi” and was integrated in the system image as a third-party package
with Buildroot. The “ppsi” service is part of the collection of resources for White Rabbit
from the Open Hardware Repository [157]. In this case, we have used an adapted version
from Seven Solutions S.L. [160] that runs on the ARM processor architecture. Moreover,
as is usually the case with analogous timing services, the “ppsi” is bundled with a
host of supporting utilities and services apart from the White Rabbit synchronization
itself. Hence, this implementation of “ppsi” makes use of additional user libraries
for interfacing with the FPGA timing cores (e.g., TSUs, PHC) or for fetching the link
calibration parameters [161] that are required for the correct operation of WR timing.
Furthermore, it also features a lightweight debug mode in the style of that of our
implementation of gPTP.

6.4 DES IGN OF THE NETWORKING SUBSYSTEM

The networking system is responsible for establishing the basic Ethernet communication
service required for transmitting data frames from our TSN nodes. In the context of the
system architecture from Fig. 6.2, it consists of the set of components that allows the
movement of data frames from the ARM processor of the node and between its Ethernet
ports, where they would eventually be injected or retrieved from the network. Hence, the
Ethernet subsystem serves a crucial role in a TSN node, as it allows data transmission
and reception from the user-level applications of the processor as well as data forwarding
amongst its ports. In our implementation, we have used the following elements as its
basic building blocks.

6.4.1 The Xilinx DMA Engine

The Xilinx DMA Engine [145] is an FPGA core implementing the functionality of a DMA
controller. It takes on the role of a bridging device between the main system memory of
the processor and the stream-oriented interfaces of the Ethernet MAC. Thus, it operates
by transforming the data transactions from the AXI-Full memory-mapped bus domain
that connects to the main system memory into data streams over the simpler AXI-Stream
bus, which are bound to or originate from the MAC controller. Thus, in accordance with
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the Xilinx documentation, this IP core can be thought of as an integration of two simpler
AXI Data Movers, which implement the bridge between the memory-mapped and the
stream-oriented bus domains, a module containing the usual AXI-Lite configuration
registers of the core, and an additional scatter/gather (SG) module to further offload the
ARM CPU and handle high-throughput transactions more efficiently.

6.4.2 The Ethernet medium access controller

The Ethernet MAC is one of the central elements of the system, as it handles the access
to the transmission medium of the Ethernet network. Specifically, the ordinary Ethernet
MAC is tasked with formatting the data packets with the appropriate Ethernet frame
format (e.g., adding delimiters and preamble words), checking and calculating the CRC
on new data packets, and even implementing a simple congestion control mechanism in
some cases by sending pause frames (IEEE 802.3-8, clause 31). In addition, the MAC also
acts as a bridge between the AXI-Stream bus domain, which interfaces with the DMA core,
and the underlying physical layer of the network link. This is achieved by transforming
data transactions between the AXI-Stream and the Gigabit media-independent interface
(GMII)[162], which allows connecting the MAC to different types of underlying physical
layers (e.g., 1000Base-X, 1000Base-T, . . . ). Moreover, some MAC implementations may
contain a built-in MDIO controller for configuring their corresponding transceivers. We
have used two different implementations for an Ethernet MAC throughout this thesis
project.

• The Xilinx Ethernet Tri-Mode MAC [147], whose application was featured in our
experiments with White Rabbit and in the early stages of prototyping of our TSN
nodes.

• A lightweight MAC VHDL description from Libre Cores [148] that was enhanced
with the updates for preemption that we studied in Chapters 8 and 9.

6.4.3 The packet coding sublayer and physical medium attachment

The packet coding sublayer and physical medium attachment modules (PCS/PMA) are
responsible for implementing the physical layer protocol of the Ethernet link. In our
experiments, we have used 1-Gb/s Ethernet interfaces over twisted-pair, copper-based
cables, or optical fiber. Hence, the PCS/PMA module is tasked with bridging between
the GMII interface and the serial interfaces for the appropriate link layer transceivers.
Thus, these modules generate all the necessary signaling for maintaining the link active,
even if no user data is present at the time, by sending the appropriate comma characters.
In addition, they include an auto-negotiation unit that sets the operating mode of the link
(e.g., 100Mbps, 1Gbps, full-duplex, . . . ). Likewise, as was the case of the Ethernet MACs,
we have used both external variants of the PCS/PMA and fully FPGA-based ones. The
former were directly built internally within externally PCB-mounted chips, whereas the
latter were the Xilinx PCS/PMA IP core [146] for the Zynq-7000 devices.

6.4.4 The physical layer transceivers
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Lastly, the physical layer transceivers transform the serial data stream from the PCS/PMA
modules into electrical signals adapted for transmission over the appropriate physical
link layer. As we have used two main platforms for supporting our TSN nodes, the
WR-ZEN and the MAIN Board, their corresponding architectures were paired with
different types of transceivers. Hence, the WR-ZEN Boards for prototyping made use of
the internal Xilinx GTP transceivers [149]. This allows for a simpler design of the PCB for
the WR-ZEN Board and is also an inherited feature from its original application to White
Rabbit synchronization nodes, which use a specific instantiation – a particularized VHDL
wrapper – of the Xilinx GTPs to ensure that the transceivers behave deterministically
and that their deserialization delay (bitslide) can be measured accurately. In contrast,
the design of the MAIN Board uses an external PHY chip that supports its intended
application to the avionics of an aerospace vehicle. Furthermore, the use of external
PHYs can serve to lessen the resource requirements on the FPGA, as they only need a
GMII-to-RGMII adaptor [163] to interface with the Ethernet MAC instead of the full
FPGA-based implementation of a PCS/PMA module required by the internal GTPs. As
a result, each type of PHY allows the use of different physical layers: The Xilinx GTPs
provide the necessary serial interface with an SFP module, which in turn allows the use
of either a 1000Base-X optical fiber Ethernet system or, by means of an SFP-to-copper
adaptor, a twisted-pair 1000Base-T Ethernet link. Conversely, the external PHY of the
MAIN Board interfaces directly with a twisted-pair 1000Base-T Ethernet link.

6.4.5 Network drivers for embedded Linux environments

The foregoing architectural elements (e.g., MAC, DMA, PHY) implement the core func-
tionality for data transmission in our TSN nodes over an underlying Ethernet service; i.e.,
they provide the basic communication service. As mentioned previously, the TSN cores
we have designed will then be integrated with the basic Ethernet cores to complement
their functionality and, thus, enable a deterministic communication service. An impor-
tant part of this process revolves around the configuration of the communication service
itself: e.g., data frames have to be forwarded from the processor, the DMA core has to
be able to handle the corresponding data transactions, the Ethernet MAC should be
initialized, and the correct link speed and transmission mode should be selected during
the auto-negotiation. That is the main job of the network drivers, which provide both
an interface for the configuration and the operation of the Ethernet service from the OS
kernel.

We have worked with two different versions for our network drivers: the Ethernet
drivers for the WR-ZEN Board, and those for the RTEMS OS that we presented in the
experiments of Chapters 8 and 9. Moreover, the Linux drivers we selected had two
different variants depending on their underlying WR hardware: the upgrade over the
original WR NIC (Chapter 5) or the new WR-ZEN Board design from Seven Solutions
(Chapter 10). The drivers for the RTEMS OS were ported to this platform as a custom
adaptation of the drivers for the WR-ZEN Board during a separate collaboration project
with Seven Solutions.
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We will focus on the description of the structure and the main features of the drivers
for our Linux-based nodes, since the implementation of the RTEMS OS is beyond the
main scope of this thesis project. Hence, the Linux kernel defines all the necessary data
structures and functions (the driver hooks) for interfacing with the underlying hardware
of different types of devices (e.g., networking interfaces, character devices, PCI bus
peripherals, . . . ). These are defined in the corresponding kernel headers and their use
is well documented in the multiple resources for Linux kernel developers (e.g., training
courses, reference books [85], . . . ). As a result, this section will attempt to provide an
overview of the basic elements that have to be considered for implementing the basic
functionality of a network driver. Therefore, as a rule of thumb, a network driver requires
the use of the following elements.

6.4.5.1 A device tree entry

Since we are working with an embedded Linux image for an ARM processor, the usual
approach that the kernel has for dealing with the large variety of hardware platforms
and their associated devices on ARM-based systems is to adhere to the device tree (DT)
specification from the Open Firmware project. Thus, using a DT allows the kernel to
discover the topology of the system at runtime and thus dynamically load the necessary
kernel modules for handling the devices or peripherals associated with the architecture of
a specific ARM-based platform. This approach also allows for a streamlined compilation
of lighter kernel images, which would only get to include the necessary drivers for
handling the architecture of a given platform as opposed to having “bloated” kernel
images with a generality of unused drivers.

Device tree entries usually include a collection of fields such as the “compatible” prop-
erty, the base memory address of the device, or other implementation-specific options
such as the interrupt (IRQ) line numbers of the device. The “compatible” property
identifies the kernel module version that the kernel should load for handling a specific
type of device. Likewise, the rest of the properties in the device tree entry can supply the
loaded kernel module with the corresponding parameters it should use for adjusting the
operation of the device (e.g., the base memory address, the operation mode, the interrupt
numbers, . . . ) at runtime.

6.4.5.2 The main driver code

Generally, Linux kernel drivers are expected to implement a series of functions. In
particular, our Linux network drivers include the following basic elements.

• A “probe” function. This function is one of the central elements of the driver, as
it is the designated entry point into the kernel module. It usually specifies the
sequence of operations needed for configuring the network interface and calls the
appropriate tasks for accomplishing this goal. As a result, it contains a handler that
matches to the “compatible” property of the DT entry, and makes a series of calls to
functions for setting up parameters such as the auto-negotiation, the MAC address,
. . .
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• There is also a function for supplying the parameters for the auto-negotiation
module of the PCS/PMA over the MDIO interface with the Ethernet MAC. This
allows the kernel to specify the link speed (1 Gb/s, 100 Mb/s, 10 Mb/s) or the
mode of operation (full-duplex, simplex).

• The usual driver hooks are also included and provide access to the main functionali-
ties of the device. Thus, transmissions are initiated when an upper-layer module
issues a call to the “start_xmit()” function, whereas receptions are associated with
receiving a reception interrupt and the execution of its corresponding callback
function (“cb_rx_...”). Furthermore, since our driver implementations are based
on the Xilinx DMA, the drivers we have supplied make use of the necessary data
structures and interfaces for using the scatter/gather (SG) mode of the DMA engine
for handling transactions more efficiently.

• The implementation also includes two buffer descriptor linked lists, with each list
devoted either to transmission or reception transactions. Moreover, each descriptor
contains all the data structures associated with either a received or a transmitted
packet, such as the packet buffer itself (sk_buff), the protocol, time-stamp data, . . .
Hence, the elements in each linked list represent the consecutive packet transactions
handled by the DMA engine for transmissions or receptions; and the amount of
units allocated to each class can have direct implications on the overall system
performance. We verified this claim experimentally in our tests with the ZEN-CTA
node (Appendix B).

• Most importantly given the nature of our application, our Ethernet drivers have
support for hardware time-stamping. This is achieved by calling a specific function
that accesses the time-stamping units of the timing subsystem upon reception or
transmission of a gPTP protocol data frame. The time stamp so retrieved is
then included in the “sk_buff ” structure and passed to the upper-layer protocol
applications.

6.4.5.3 The driver variants

We have worked with two different Linux driver variants throughout the thesis project.
Thus, on the one hand, for the experiments of Chapter 5 we used a modified version
of the WR-NIC and hence developed a customized version of the corresponding White
Rabbit driver from the Open Hardware repository [131] with DMA enhancements. On
the other hand, for the experiments where we used the WR-ZEN boards from Seven
Solutions, the corresponding driver that supported their architecture was an adaptation
from the original Xilinx Ethernet drivers for Linux (“xilinx_axienet_main.c”). These
drivers were also ported to the RTEMS OS to allow the instantiation of an Ethernet
communication service in our experiments with the Main Board (Chapters 8 and 9).

6.5 INTEGRAT ION WITH THE T IMING SUBSYSTEM

As indicated in the previous sections, the timing subsystem provides the common time
base needed to allow the synchronous operation of distributed nodes. In the context of
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TSN traffic-shaping, it supplies the time signal that drives the cyclic scheduling policies
of the TSN TAS shapers and is eventually responsible for bringing about deterministic
communications. This is achieved with a timing service that synchronizes the local PHC
to that of a reference “Master” node, and through the use of the appropriate kernel-level
drivers.

The timing services we have used throughout this project were a gPTP service for
RTEMS, and the “ppsi” synchronization daemon for Linux for WR timing. Their devel-
opment and implementation were beyond the scope of our work. Rather, we leveraged
existing implementations of the aforementioned services that could work with the archi-
tectural blocks (e.g., TSUs, PHC, . . . ) that we provided. In addition, since these services
rely on the extensive use of hardware time-stamping to provide accurate synchronization,
we had to enable time-stamping support where needed in the source code of our Ethernet
network drivers.
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Figure 7.1
Overview of the contents of Chapter 7 detailing the implementation of the TSN subsystem.

This chapter is devoted to providing a thorough description of the implementation of
the main modules of the TSN subsystem of our network nodes. Consequently, it expands
upon the initial, high-level description that we provided in Chapter 6, which aimed
to provide readers with generic system overview, by giving an in-depth description of
the functionality, architectural implementation, operation, configuration, and system
role of the main FPGA cores that we supplied for the design of the TSN subsystem.
Hence, since our architecture can be customized to support the use of traffic identification
(802.1Qcc) and VLAN-tagging (802.1Q) for routing and resource reservation, time-aware
traffic shaping (802.1Qbv) with frame preemption (802.1Qbu & 802.3br), and seamless
redundancy (802.1CB); we give a detailed explanation of the IP cores that we supplied for
supporting these aforementioned features: a VLAN module, a TAS core for traffic-shaping
that was also enhanced with frame preemption, a preemptable Ethernet MAC, and a
Dropper module for discarding redundant duplicates. Also, we explain the role of the
Xilinx crossbar switches for implementing the bridging functionality of our nodes. Lastly,
we conclude by examining the resource usage of the nodes and with the considerations
that led us to define a resource-conserving TSN architecture for FPGA.
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One of the essential steps in the implementation of a TSN node is the design and the
construction of the TSN system itself. Since this is one of the main objectives of this thesis
project, we have devoted an entire chapter to describing the implementation, design,
and operation of the basic building blocks of our TSN nodes. Hence, as indicated in 6.1,
our TSN devices can include time-aware traffic shapers with preemption, enhancements
for redundancy, and a traffic identification mechanism. These are supported with the
appropriate FPGA cores such as a VLAN module, a duplicate traffic dropper, or the TAS
shaper core itself; and their operation and design are described in the corresponding
sections throughout the chapter.

7.1 THE VLAN MODULE

The TSN VLAN Module has been designed to provide basic VLAN tagging and VLAN
tag stripping (untagging) support for the TSN subsystem. Consequently, we have built
support for the following basic operations described below.

• User-generated Ethernet frame encapsulation into user-configured VLAN streams
with custom VLAN identifier (ID), VLAN priority (PRIO), destination MAC Ad-
dress values.

• Multiplexing of different VLAN-encapsulated Ethernet frames to different TX
interfaces, according to VLAN PRIO value specified in VLAN tag.

• VLAN tag stripping (untagging) on the RX Path for user-defined VLAN ID, VLAN
PRIO, destination MAC Address combinations.

• RX data path multiplexing to PL-based AXI-Streaming peripherals, or DMA-based
network interfaces based on programmable “tdest” flag associated with user-defined
VLAN tags.

• Support for handling the emission and reception of redundant TSN streams over
disjoint physical paths, as an enhanced protection mechanism for highly critical
traffic.

• Shared management of multiple Ethernet Ports over a single TSN VLAN module
in order to optimize FPGA logic resource usage.
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7.1.1 The VLAN block design diagram

The TSN VLAN module supplies the VLAN-capable processing circuitry for both the
TX and RX data paths of our nodes in order to handle the VLAN tagging and stripping
operations required for the TSN subsystem. Hence, we provide an overview of the core by
examining the implementation of its TX and RX data paths and how they can be used for
supplying the traffic class identification, resource reservation, and routing features that
are expected in a TSN system. In our design, we have accomplished this by combining
three main state machines (FSMs) for each data path (a parser, a tagger/untagger module,
and a central FSM configuration for each data path) with a configuration memory element
(CFG_MEM).

7.1.1.1 The TX data path

On the TX data path, whose architecture can be examined in Fig. 7.2, the VLAN module
parses the headers of the incoming user-generated Ethernet data frames. The header
values are temporarily stored and then the TX FSM launches a comparison against the
user-supplied configuration entries held in the VLAN Configuration Table (CFG_MEM).
If a matching configuration is found, then the corresponding VLAN tag is applied and
the resulting VLAN-encapsulated Ethernet frame is multiplexed based on its VLAN
PRIO value to the corresponding output TX port for interfacing with the TAS module. In
the event that no matching configuration can be retrieved from the Configuration Table,
then the Ethernet frame is allowed through the VLAN Module “as-is” and multiplexed
to the lowest priority queue of the TAS module (TX1) (see Section 7.3).

Figure 7.2
The TX data path of the VLAN module.

7.1.1.1.1 Considerations on the management of the gPTP traffic in the VLAN
module

We have defined a special case for the handling of gPTP traffic on the TX path of the
TSN VLAN module. Thus, we can detect the presence of incoming gPTP frames when
their parsed Ether Type field matches the designated value of 0x88f7, which indicates
the presence of a gPTP protocol message. As a result, we have used this property to
designate a preferential service for the gPTP messages, which are forwarded through
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the VLAN module without applying any VLAN tag and multiplexed to the highest
priority queue of the TAS module (TXn).

7.1.1.2 The RX data path

On the RX data path, the VLAN module scans (parses) the headers of the received Ethernet
frames to check for the presence of any VLAN tags. This can be seen in the architecture
diagram of Fig. 7.3. If the received frame is found to contain a VLAN tag, then the RX
FSM starts the comparison of its values against the user-supplied configuration entries
held in the VLAN Configuration Table (CFG_MEM). If a matching configuration is found,
the received frame is stripped of its VLAN tag and multiplexed towards the processing
system (DMA-based network interface) or the FPGA programmable logic for interfacing
with additional AXI-Streaming peripherals. Should there be no matching configuration
entries for the received frame, then the frame is allowed through the VLAN module
“as-is” and forwarded to the ARM processing system (DMA-based network interface).

Figure 7.3
The RX data path of the VLAN module.

7.1.1.3 Sharing of multiple Ethernet ports over a single TSN VLAN core

We have fitted the TSN VLAN module with the optional capability of multiplexing the
transmission or reception data paths of several Ethernet ports; i.e., a single VLAN core
could potentially be shared amongst different ports for processing their traffic flows;
rather than instantiating individual cores for handling each port. This feature is intended
to minimize FPGA resource usage when implementing on relatively small devices or
when tight FPGA resource constraints have to be considered in larger designs. Hence,
since throughout our research we found that we had to build our designs with either
small FPGA devices (the Z-7015 SoC) or under strict maximum resource usage limitations,
as was the case of our implementations for aerospace, we concluded that this multi-port
feature allowed us to overcome these hurdles. As a result, we found that not only can we
save resources by having the VLAN module share its packet processing engine amongst
multiple ports, but that we can also target FPGA devices and constraint sets successfully
that would otherwise be unfeasible with a separate VLAN instance per port. This is one
of the defining contributions of our architecture and, contrary to other implementations
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like that from Xilinx [164], it is one of the characteristics responsible for its moderate
footprint.

We have indeed made extensive use of this new approach for supporting the system
designs of the experiments in Chapters 8, 9, and 10. Furthermore, we provide an overview
of the operation of this data path sharing feature amongst Ethernet ports in the following
below.

Figure 7.4
Simplified diagram of the multi-port sharing feature of the VLAN core to reduce FPGA resource usage.

7.1.1.3.1 Sharing on the TX data path.

On the transmission (TX) data path, the multi-port TSN VLAN module can identify the
originating element for a transaction; be it either a DMA controller emitting Ethernet
frames from the ARM processing system, or TSN frames forwarded from the reception
(RX) path of a different Ethernet Port. This is accomplished by furnishing a specific
identifier indicating the element that originated a TX transaction through the auxiliary
tuser signal from the AXI-Stream system bus, which can specify user-defined signaling.
As a result, the multi-port TSN VLAN module will in turn use the identifier supplied
through the tuser signal to determine the appropriate Ethernet port that a specific
Ethernet frame will be forwarded to by feeding it into its corresponding transmission
data path.

7.1.1.3.2 Sharing on the RX data path.

Similarly, on the reception (RX) data path, the multi-port TSN VLAN module can also
identify the Ethernet port over which a specific Ethernet frame was received using the
same tuser identifier signaling mechanism outlined previously. Consequently, the multi-
port TSN VLAN module will in turn use this identifier for determining the element
that the Ethernet frame will be forwarded to in order to handle a specific reception
transaction, which will usually consist of the DMA engine core associated with a specific
Ethernet port.

7.1.2 The VLAN configuration table

The VLAN Configuration Table (CGF_MEM) is intended to hold user-supplied configu-
ration entries, which the user specifies by uploading configuration parameters through
the AXI Slave Configuration registers (see 7.1.3). These entries will be used either for
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applying a specific VLAN tag to transmitted Ethernet frames, or for stripping received
Ethernet frames of their VLAN tag if a matching configuration is located in the table.

The VLAN Configuration Table can be represented logically as a number of user-
configurable, 4-byte table entries (up to 128 4-byte entries) containing a set of VLAN
Configuration Instances to be applied to transmitted and received Ethernet frames on
the TX and RX data paths, respectively. Consequently, each Configuration Instance
spans a block of 8 Configuration Table Entries; whereby the leading three entries contain
a VLAN tag, and the remaining 5 entries hold the Ethernet header values associated
with the aforementioned VLAN tag. As a result, the current implementation of the
VLAN Configuration Table allows the user to configure up to 16 different Configuration
Instances; i.e., 16 different rules for matching traffic to TSN streams. For a discussion on
the actual FPGA implementation of the block, the reader may refer to Section 7.1.2.3.4.
The logical structure for a Configuration Instance, replicated throughout the Configura-
tion Table for all of the user-defined VLAN tagging/stripping configuration instances
supplied, can be examined in Fig. 7.5. This structure allows us to differentiate between
different classes of traffic by parsing key values of the Ethernet frame headers, such as
the destination MAC address, IP address, source/destination port, protocol, . . . We can
afford greater flexibility with this approach for telling apart the TSN flows in our system
with finer granularity. It has also been of enormous assistance for achieving a successful
configuration of our experiments in the Smart Grid and aerospace. This flexibility in
configuration led to the design from Section 7.1.2.3.4 that had to juggle between conscious
resource usage and traffic-processing speed.

Figure 7.5
The logical layout of the configuration instances in the VLAN configuration table.

As can be observed in the figure, the Configuration Instance is divided into two
different sections: the VLAN tag section, and the Configuration Values section. These are
described next.

7.1.2.1 The VLAN tag section

The following fields are stored in the VLAN Tag section for each Configuration Instance.

• MAC_DST_LO (32b). Lower 32 bits of the destination MAC address (usually a
multicast MAC address) to be applied alongside the VLAN tag.

• MAC_DST_HI (16b). Higher 16 bits of the destination MAC address (usually a
multicast MAC address) to be applied alongside the VLAN tag.

• VLAN_ID (16b). VLAN ID field to be applied for the VLAN tag.

• VLAN_PRIO (16b). VLAN priority field to be applied for the VLAN tag.
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• FILTER (1b). Enables the use of the FRER Filtering Function on the RX data path
for redundant TSN streams that are consumed locally or forwarded to another
node. This feature can only be used if the Multi-Port TSN VLAN module has been
paired with a TSN FRER Dropper module (see Section 7.2), which will handle the
detection and discarding of duplicate frames received over different Ethernet Ports
when the Seamless Redundancy protection feature for TSN streams is used.

7.1.2.2 The Configuration Values section

The following fields are stored in the Configuration Values section. This section holds
the Ethernet frame values that trigger the generation of a specific VLAN tag for a given
Configuration Instance.

• MAC_CFG_LO (32b). Lower 32 bits of Ethernet frame Destination MAC Address.

• MAC_CFG_HI (16b). Higher 16 bits of the Ethernet frame destination MAC
address.

• PROTO (16b). Transport protocol field indicated in the Ethernet frame (TCP or
UDP).

• IP (32b). Destination IP address supplied in Ethernet frame.

• PORT (16b). Used in combination with D/S field. Denotes destination/source port
contained within the Ethernet frame.

• VLAN_ID_CFG (16b). VLAN ID field of the Ethernet frame.

• VLAN_PRIO_CFG (16b). VLAN Priority field of the Ethernet frame.

• DSCP (4b). Differentiated services code point field of the Ethernet frame.

• DEST (4b). Destination interface for the received Ethernet frame (PL AXI-Streaming
peripheral, or DMA-based network interface).

• HAS_DEST (1b). Indicates if a destination interface, other than the default DMA-
based network interface, was supplied for forwarding the received Ethernet frames
to a PL AXIS-based peripheral.

• D/S (1b). Indicates if the PORT entry refers to source (“0”) or destination (“1”) Port.

• REDUNDANT (1b). Indicates if the FRER Replication and Splitting functions are
used for the current TSN stream on the TX data path. This configuration flag
effectively enables the use of the enhanced protection mechanism of Seamless
Redundancy for user-designated TSN streams on the transmission path (see Section
7.2).

• RED_HANDLE (5b). Internal unique integer value supplied for identifying a
Redundant TSN stream and used for accessing its corresponding Sequence Number
Generator (see Section 7.2).

• RED_DEST (2b). Destination interface supplied for forwarding duplicated TSN
frames when the FRER Splitting function is used (see Section 7.2).
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7.1.2.3 Identifying traffic classes with the VLAN Configuration Table

The Configuration Table holds the Configuration Instances that indicate whether a VLAN
tag should be applied or removed from the user-generated Ethernet frames handled by
the TSN node. Hence, in this section we provide an overview of how the traffic class
identification mechanism operates on the basis of the VLAN Configuration Table.

7.1.2.3.1 The operation of the TX data path

On the TX data path, the header values of the transmitted Ethernet frames are parsed
and compared against the Configuration Value sections of each one of the Configuration
Instances stored in the Configuration Table. If any matching entries are found for the
parsed header values in the Configuration Instances; then the corresponding VLAN
tag values associated with a specific Configuration Instance are retrieved and applied
for generating the VLAN tag on the transmitted frame. In the event that the same set
of header values have partial matches for some entries across different Configuration
Instances, then the first Configuration Instance that produces a match in the Configuration
Table is selected for producing the VLAN tag. As a result, caution should be observed by
the user configuring the TSN VLAN core since the priority of the different Configuration
Instances for producing a VLAN tag on a transmitted frame would be determined by the
loading order of the Configuration Instances onto the Configuration Table. The different
types of header match events used for tag generation are outlined in Table 7.1.

Table 7.1
Priorities of header match events.

Priorities of header match events

Priority (Ascending) Header Match Event
5 Destination MAC Address

4 DSCP (Differentiated Services Code Point).
3 Protocol

2 Destination IP

1 Source Port

0 Destination Port

As observed in the table, header match events for the entries held in each Configu-
ration Section are ranked in ascending priority order. It can be observed that a given
Configuration Instance will be selected for producing a VLAN tag in the event that
there is a match on any of the header match events indicated in the table. It should be
noted that the destination MAC address will be given the higher priority for determining
whether the current Configuration Instance produces a match, whereas the destination
port will be assigned the lower priority for determining a match event.

Should there be no matching entries for a certain set of header values in the Configura-
tion Instances, the comparison circuitry of the Configuration Table generates a “no-match”
condition signal to indicate that the Ethernet frame should be allowed through the VLAN
Module “as-is” and multiplexed to the lowest priority TX port (TX0).
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7.1.2.3.2 Operation of the RX data path

On the RX data path, the VLAN tag values of the incoming Ethernet frames are parsed
and compared against the VLAN tag Sections of each one of the Configuration Instances
stored in the Configuration Table. If any matching entries are found for the parsed VLAN
tag values in the Configuration Instances, then the corresponding Configuration Section
is examined to determine if the DEST (destination) and HAS_DEST (“has destination”)
fields have been supplied. If the HAS_DEST field is present, then the VLAN tag is
removed from the incoming Ethernet frame, its destination MAC address is replaced with
that contained in the corresponding Configuration Section, and the frame is multiplexed
to the destination indicated in the DEST field (PL AXI-Streaming); otherwise the frame is
forwarded to the processing system (DMA-based network interface) once its VLAN tag
has been removed.

The possible values of the DEST, the HAS_DEST fields, and their meanings are
summarized in Table 7.2.

Table 7.2
Possible values of the “DEST” field.

Combinations with the destination field

HAS_DEST DEST Meaning

0 0-15
No Destination Information sup-
plied (default). Forward to PS.

1 0-15

PL Destination Port Number. For-
ward to corresponding output port
of TSN Redirector Module as indi-
cated in DEST field.

In the event that no matching VLAN tags can be located in the Configuration Instances
for a set of parsed VLAN tag values for a given incoming frame, then the frame is
allowed through the VLAN module “as-is” and multiplexed to the processing system
(DMA-based network interface).

7.1.2.3.3 The arrangement of the Configuration Instances

As indicated previously, a specific Configuration Instance will produce a match whenever
any of the header match events indicated in Table 7.1 returns an affirmative value when
comparing against an incoming Ethernet data frame. Since the TSN VLAN module
assigns the higher priority value for determining a header match event to the destination
MAC address, and the lower priority value to the destination port, it is recommended
that the different Configuration Instances should be loaded onto the Configuration Table
in reverse tagging priority order in order to ensure proper VLAN tagging operation. As
a result, the configuration software for the VLAN module should guarantee that the
different Configuration Instances are sorted through the Configuration table according to
their preferred type of header match event in accordance with the suggested ordering
depicted in Table 7.3.
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Table 7.3
Recommended Loading Order for Different Types of Configuration Instances.

Suggested loading order for different match events.

Loading Order
Types of Configuration Instance by Header Match

Event
1 Instance matches by Destination Port.
2 Instance matches by Source Port.
3 Instance matches by Destination IP.

4 Instance matches by Protocol.

5
Instance matches by DSCP (Differentiated Services Code

Point).
6 Instance matches by Destination MAC Address.

7.1.2.3.4 Implementation of the TSN VLAN Configuration Table

We have implemented the Configuration Table containing the different Configuration
Instances with a series of distributed memory banks and DSP-based comparators. In
practice, the VLAN Configuration Table is a pattern-matching engine: it has to retrieve
the pointer that indicates the configuration that should be applied for encapsulating
or removing the VLAN tag of a TSN flow. We considered several alternatives for
implementing this engine. The first one consisted of the use of a content-associative
memory (CAM). There are multiple CAM implementations, open-sourced or otherwise,
that could fulfill this role, such as the Xilinx CAM implementation [165]. We also
considered implementing our version of a CAM memory, but eventually opted for a
different approach upon examining the resource usage consumption of the Xilinx CAM
design. In this case, we found that a relatively large CAM for detecting the complex
patterns that we needed would excessively tax our FPGA resources, thereby preventing
us from complying with our maximum usage requirements or from fitting into the
smaller FPGA devices altogether. Consequently, we chose a different approach that
combined distributed memory elements arranged in a matrix-like fashion to store the
patterns that we wanted our matching engine to detect. The pattern lookup would now
have to be a sequential search for each memory block, as opposed to the nearly instant,
same clock-cycle detection of the CAM; and the comparison between stored patterns and
incoming Ethernet frames would have to be done with hardened DSP comparators to
reduce LUT logic usage. This latter option, albeit slower and more complex than a CAM
itself, allowed us to produce a reduced footprint design. Nonetheless, we propose the
replacement of this pattern-matching system with a CAM-based module in our future
work (Section 11.5).

Thus, in our present implementation, each pattern stored for matching (recognition) is
called a header match event. Each distributed memory bank is intended to hold a different
type of header match event for the Configuration Section and VLAN tag Section of the
Configuration Instances stored in the VLAN Configuration Table. Hence, as shown in
Fig. 7.6, this architectural design allows the data from the Configuration Instances to be
searched in parallel upon reception of new Ethernet frames. Thus, this design provides
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Figure 7.6
Implementation of the Configuration Table for the TSN VLAN core with distributed memory and DSP compara-
tors.

a faster, more efficient logic for determining if a match event has been produced for
applying/stripping a specific VLAN tag.

7.1.3 Supplying the configuration: the Slave configuration registers

The VLAN module operation is configured by furnishing the appropriate configuration
values to its AXI Slave configuration registers from the ARM processing system. This
allows the loading of different Configuration Instances to the Configuration Table for
generating or stripping VLAN tags in user-produced Ethernet data frames. The registers
implemented in the AXI Slave configuration module are shown in Table 7.4, along with a
brief description of their functionality.

7.1.3.1 Description of the configuration registers

The following sections contain detailed descriptions of the Configuration Registers
implemented for the TSN VLAN module, the fields present therein, as well as their
functionality.
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Table 7.4
The layout of the TSN VLAN slave configuration registers.

Slave register map for the TSN VLAN core.

Register name Functionality C offset
CR Control Register 0x0

SR Status Register 0x4

CFG1
Configuration Words for VLAN Tag Section of Configura-
tion Instance (I)

0x8

CFG2
Configuration Words for VLAN Tag Section of Configura-
tion Instance (II)

0xc

CFG3
Configuration Words for VLAN Tag Section of Configura-
tion Instance (III)

0x10

RUL1
Configuration Words for Configuration Section of Config-
uration Instance (I)

0x14

RUL2
Configuration Words for Configuration Section of Config-
uration Instance (II)

0x18

RUL3
Configuration Words for Configuration Section of Config-
uration Instance (III)

0x1c

RUL4
Configuration Words for Configuration Section of Config-
uration Instance (IV)

0x20

RUL5
Configuration Words for Configuration Section of Config-
uration Instance (V)

0x24

7.1.3.1.1 The Control register

This manages the operation of the VLAN module. It allows the initiation of the load of an
arbitrary number of Configuration Instances to the Configuration Table and controls the
use of VLAN tagging/stripping functionalities or passthrough operation. Its structure
can be examined in Table 7.5, and the meaning of its corresponding fields can be viewed
in Table 7.6.

Table 7.5
The VLAN control register fields.

0 1 2

Translation Rule
3

Done
4

Next Configuration Entry
5 6 7

Configuration Mode
8

Enable
9

Reset
10 31

Unused
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Table 7.6
Details of the VLAN control register fields.

Description of the CR register fields.

Bits Description
31:10 Unused

9
Reset. [RW] Reset Configuration Table of VLAN Module. Usually
recommended before loading a new set of Configuration Instances.

8
Enable. [RW] Enable VLAN Tagging/Stripping operation of the core.
It is required that this bit be set to ‘1’ before loading a new set of
Configuration Instances.

7:5
Configuration Mode. [RW] Sets Configuration Mode for loading Con-
figuration Instances. Must use default value of ‘0x1’ for loading a new
set of Configuration Instances.

4
Next Configuration Entry. [RW] Indicates that the current configura-
tion values correspond to a new Configuration Instance.

3
Done. [RW] Indicates end of configuration cycle and that all Configu-
ration Instances have been uploaded to the Configuration Table.

2:0
Translation Rule. [RW] Type of translation method used for generating
VLAN tag. Must supply default value of “0x1’’.

7.1.3.1.2 The status register

This shows the current, user-supplied values of the Control Register. Its structure can
be examined in Table 7.7, and the meaning of its corresponding fields can be viewed in
Table 7.8.

Table 7.7
The VLAN status register fields.

0 1 2

Translation Rule
3

Done
4

Next Configuration Entry
5 6 7

Configuration Mode
8

Enable
9

Reset
10 31

Unused
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Table 7.8
Details of the VLAN status register fields.

Description of the SR register fields.

Bits Description
31:10 Unused

9
Reset. [RO] Reset Configuration Table of VLAN Module. Usually
recommended before loading a new set of Configuration Instances.

8
Enable. [RO] Enable VLAN Tagging/Stripping operation of the core.
It is required that this bit be set to ‘1’ before loading a new set of
Configuration Instances.

7:5
Configuration Mode. [RO] Sets Configuration Mode for loading Con-
figuration Instances. Must use default value of ‘0x1’ for loading a new
set of Configuration Instances.

4
Next Configuration Entry. [RO] Indicates that the current configura-
tion values correspond to a new Configuration Instance.

3
Done. [RO] Indicates end of configuration cycle and that all Configu-
ration Instances have been uploaded to the Configuration Table.

2:0
Translation Rule. [RO] Type of translation method used for generating
VLAN tag. Must supply default value of “0x1’’.

7.1.3.1.3 The Configuration register (I)

This holds the lower 32 bits of the destination MAC address that will be applied to the
Ethernet data frames for generating their corresponding VLAN tag. Its structure can
be examined in Table 7.9, and the meaning of its corresponding fields can be viewed in
Table 7.10.

Table 7.9
The VLAN configuration register (I) fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MAC_DST_LOW

Table 7.10
Details of the VLAN configuration register (I) fields.

Description of the CFG1 register fields.

Bits Description

31:0
MAC_DST_LO. [RW] Lower 32 bits of Multicast MAC Destination
Address that will be generated along with the VLAN tag.
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7.1.3.1.4 The Configuration register (II)

This holds VLAN ID and Multicast destination MAC address of the VLAN tag that will
be applied to the user-generated data frames. Its structure can be examined in Table 7.11,
and the meaning of its corresponding fields can be viewed in Table 7.12.

Table 7.11
The VLAN configuration register (II) fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MAC_DST_HI
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

VLAN_ID

Table 7.12
Details of the VLAN configuration register (II) fields.

Description of the CFG2 register fields.

Bits Description

31:16
VLAN_ID. [RW] VLAN Identifier supplied for generating the VLAN
tag.

15:0
MAC_DST_HI. [RW] Higher 16 bits of Multicast MAC Destination
Address that will be generated along with the VLAN tag.

7.1.3.1.5 The Configuration register (III)

This holds the VLAN priority value that will be applied to the user-generated Ether-
net data frames. Its structure can be examined in Table 7.13, and the meaning of its
corresponding fields can be viewed in Table 7.14.

Table 7.13
The VLAN configuration register (III) fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VLAN_PRIO
16 17

RED_DEST
18 19 20 21 22 23 24 25

RED_HANDLE
26 27 28 29 30 31

Unused
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Table 7.14
Details of the VLAN configuration register (III) fields.

Description of the CFG3 register fields.

Bits Description
31:26 Unused.

25:18
RED_HANDLE. [RW]. Unique Internal value supplied for identifying
a specific TSN redundant stream.

17:16
RED_DEST. [RW]. Indicates the user-supplied destination interface for
forwarding duplicated TSN frames.

15:0
VLAN_PRIO. [RW] VLAN Priority value supplied for generating the
VLAN tag.

7.1.3.1.6 The Configuration Rule register (I)

This holds the destination MAC address of the Configuration Section for a given Con-
figuration Instance. Its structure can be examined in Table 7.15, and the meaning of its
corresponding fields can be viewed in Table 7.16.

Table 7.15
The VLAN configuration rule (I) register fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MAC_CFG_LO

Table 7.16
Details of the VLAN configuration rule (I) register fields.

Description of the RUL1 register fields.

Bits Description

31:0
MAC_CFG_LO. [RW] Lower 32 bits of Destination MAC Address to
be loaded for the Configuration Section of a specific Configuration
Instance.
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7.1.3.1.7 The Configuration Rule register (II)

This holds the destination MAC address and packet protocol fields of the Cofiguration
Section for a given Configuration Instance. Its structure can be examined in Table 7.17,
and the meaning of its corresponding fields can be viewed in Table 7.18.

Table 7.17
The VLAN configuration rule (II) register fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MAC_CFG_HI
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PROTO

Table 7.18
Details of the VLAN configuration rule (II) register fields.

Description of the RUL2 register fields.

Bits Description

31:16
PROTO. [RW] Packet Protocol field to be loaded for the Configuration
Section of a specific Configuration Instance.

15:0
MAC_CFG_HI. [RW] Higher 16 bits of Destination MAC Address to
be loaded for the Configuration Section of a specific Configuration
Instance.

7.1.3.1.8 The Configuration Rule register (III)

This holds the destination IP address field of the Configuration Section for a given
Configuration Instance. Its structure can be examined in Table 7.19, and the meaning of
its corresponding fields can be viewed in Table 7.20.

Table 7.19
The VLAN configuration rule (III) register fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IP_DEST

Table 7.20
Details of the VLAN configuration rule (III) register fields.

Description of the RUL3 register fields.

Bits Description

31:0
IP_DEST. [RW] Destination IP Address to be loaded for the Configura-
tion Section of a specific Configuration Instance.
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7.1.3.1.9 The Configuration Rule register (IV)

This holds the VLAN ID and the port fields of the Configuration Section for a given
Configuration Instance. Its structure can be examined in Table 7.21, and the meaning of
its corresponding fields can be viewed in Table 7.22.

Table 7.21
The VLAN configuration rule (IV) register fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PORT
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

VLAN_ID

Table 7.22
Details of the VLAN configuration rule (IV) register fields.

Description of the RUL4 register fields.

Bits Description

31:16
VLAN_ID. [RW] VLAN_ID field to be loaded for the Configuration
Section of a specific Configuration Instance.

15:0

PORT. [RW] Communication Port field to be loaded for the Configura-
tion Section of a specific Configuration Instance. Used in combination
with ‘D/S’ field in Configuration Rule (V) register to indicate whether
the Port field refers to either Source Port (“0”) or Destination Port (“1”).

7.1.3.1.10 The Configuration Rule register (V)

This holds the VLAN_PRIO, DSCP, DEST, and D/S fields of the Configuration Section
for a given Configuration Instance. Its structure can be examined in Table 7.23, and the
meaning of its corresponding fields can be viewed in Table 7.24.

Table 7.23
The VLAN configuration rule (V) register fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VLAN_PRIO
16 17 18 19 20 21 22 23

DSCP
24 25 26 27

DEST
28

HAS_DEST
29

D/S
30

REDUNDANT
31

FILTER

7.1.4 The configuration sequence in the Slave registers for the VLAN core

In order to load a set of Configuration Instances onto the Configuration Table of the
VLAN module and control the start of its tagging/untagging operation, we have devised
the following sequence that programmers should observe when writing configuration
parameters to the AXI-Slave registers of the core.

1. Supply the values of the first Configuration Instance to be loaded onto the Configu-
ration Table and initialize the Control Register.
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Table 7.24
Details of the VLAN configuration rule (V) register fields.

Description of the RUL5 register fields.

Bits Description

31
FILTER. [RW]. Enables the application of the FRER Filtering function
for a specific Configuration Instance in order to discard duplicate
frames received as part of a redundant TSN stream.

30

REDUNDANT. [RW]. Used to indicate that TSN streams transmitted
using a specific Configuration Instance have to be submitted to the
enhanced protection feature of Seamless Redundancy for Reliability
(FRER Stream Identification), thereby enabling the use of the FRER Split-
ting and FRER Sequence Number Generation functions for a specific
TSN Stream.

29
D/S. [RW]. Used in combination with Port field of Configuration Rule
(IV) register. A value of ‘1’ indicates Source Port, and a value of ‘0’
denotes Destination Port.

28

HAS_DEST. [RW]. Used in combination with DEST field of Config-
uration Rule (V) register. A value of ‘1’ activates TSN Redirector to
forward Ethernet frames to Port indicated in DEST field; and a values
of ‘0’ disables TSN Redirector operation.

27:24
DEST. [RW] RX Destination field to be loaded for the Configuration
Section of a specific Configuration Instance.

23:16
DSCP. [RW]. DSCP (Differentiated Services Code Point) field to be
loaded for the Configuration Section of a specific Configuration Instance

15:0
VLAN_PRIO. [RW]. VLAN Priority field to be loaded for the Configu-
ration Section of a specific Configuration Instance

a) Firstly, supply the configuration values for the Configuration and VLAN tag
Sections to the applicable slave configuration registers.

b) Initialize the Control Register to enable operation of the VLAN module and
load the first Configuration Instance onto the Configuration Table.

i) Set Enable bit to “1”.

ii) Set Translation Rule and Configuration Mode to default value of 0x1.

iii) Set Next Configuration Entry to “1” in order to indicate first Configuration
Instance entry.

iv) Set Done to “0”.

2. For the subsequent Configuration Instances, the following sequence should be
applied.

a) Supply configuration values for the Configuration and VLAN Tag Sections to
the applicable slave configuration registers.
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b) Update Control Register to indicate that a new Configuration Instance is ready
to be added to the Configuration Table.

i) Set Next Configuration Entry to modulo2 value of current Configuration
Instance number (#CfgInst%2). Please, note that Configuration Instances
are numbered from 1 onwards.

3. Once all Configuration Instances have been loaded, update the Control Register to
indicate the end of the Programming Sequence.

a) a. Set Done field of the Control Register to “1”.

7.2 SEAMLESS REDUNDANCY FOR TSN: THE DROPPER CORE AND THE EN-
HANCEMENTS FOR THE VLAN MODULE

We have updated the TSN VLAN module to feature compliance with the specifications
for Seamless Redundancy and Duplication for Reliability (802.1CB). As a result, the TSN
system will implement a series of mechanisms for identifying highly critical TSN streams
that will be shielded with an additional layer of protection allowing their redundant
transmission over disjoint physical network paths.

Therefore, the mechanisms for Seamless Redundancy and Replication for Reliability
(FRER) have to support four main features in order to enable this functionality for select
TSN data streams: a) Identification of TSN streams to be submitted for Replication, b)
Sequence Number Generation for Redundant Streams, c) Transmission over disjoint
physical paths (Splitting), and d) Filtering of duplicates at the receiving end (discarding
duplicates). All these aspects can be examined in the following points.

7.2.1 Identification of TSN streams

This function allows the unique identification of the user-configured TSN streams that
are to be submitted to the Stream Replication process for enhanced reliability. Redundant
TSN streams are internally identified using a user-designated “stream_handle”, which
will be associated with a unique MAC source address and VLAN ID pair. The resulting
redundant stream will thus incorporate a Redundancy Tag (R-TAG) and a corresponding
Sequence Number to the VLAN-tagged TSN stream to mark the use of Redundancy
features.

7.2.2 Sequence Number Generation

Another major component for 802.1CB is the sequence generation function, which
produces a unique Sequence Number for each TSN frame transmitted over a redundant
stream. The Sequence Number will therefore be associated with a specific, user-supplied
stream_handle that will identify each redundant TSN stream processed at the transmitting
node. Consequently, this function will generate unique Sequence Numbers for each
redundant TSN stream transmitted from the local node.
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7.2.3 Replication (Stream Splitting)

The splitting function creates a duplicate copy of a redundant TSN stream and forwards it
over the physical interface indicated by the user. This feature implements the Replication
for Reliability functionality, since it allows the forwarding of redundant TSN streams over
the disjoint physical paths configured by the used. Hence, the actual disjoint physical path
for forwarding the redundant TSN streams is specified as a user-supplied configuration
parameter associated with the stream_handle indicated during the configuration of the
FRER features of the VLAN module for a given redundant stream.

7.2.4 Elimination of duplicates (Stream Filtering)

In the context of FRER, filtering refers to the function that discards the duplicates received
at the TSN listener node. The filtering function will thus be tasked with recovering (i.e.,
keeping track of ) the sequence number and eliminating the duplicate frames of a specific
redundant stream marked for filtering at the receiving end by the user.

7.2.5 Overview of the operation of the FRER features

A functional implementation of a TSN networking system with seamless redundancy
requires the combination of the foregoing functions. Thus, the TSN talker will usually
implement the identification, splitting, and sequence number generation functions;
whereas the listener will handle the filtering operations of any redundant duplicates.
Hence, we provide an overview of how these mechanisms interact with each other and
how we have combined them in our design for supplying a working implementation
of 802.1CB FRER: with the use of a dedicated TSN Dropper core and by enhancing the
VLAN core circuitry.

The use of Redundancy features as an added layer of protection for highly critical
streams can be observed in the Fig. 7.7. Thus, we can observe that the Replication scheme
proposed for TSN handles the creation of redundant TSN streams as the emission of
duplicated TSN streams that are routed over disjoint physical paths across the TSN
network. Duplicated TSN streams are in turn encapsulated using the VLAN-based
tagging methodology defined for identifying streams. It should be noted that the VLAN
ID and VLAN priority values generated for each duplicate stream are user-supplied and
can change on a per-link basis, as required by the network scenario.

Consequently, in order to support frame replication, emitter nodes will need to imple-
ment additional frame replication and frame labeling circuitry on the TX data path of the
VLAN module. The TSN streams marked for replication by a user-specified configuration
will in turn be replicated and forwarded to a different TSN Ethernet port by means
of the TSN Redirector (see Section 7.5) module. The duplicated TSN streams emitted
over disjoint physical paths of the emitter node (different ports) will include additional
tagging/labeling for further processing at the receiving nodes. Lastly, the receiving nodes
will need to implement frame discarding logic to eliminate duplicates of frames received
over disjoint paths.
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Figure 7.7
Use of FRER as added protection for TSN Streams. Reproduced from [166].

As a result, the mechanisms outlined previously that are required for supporting
the Redundancy features have to be translated into a series of additional modules and
upgrades for the stream reservation components of the TSN system (the VLAN Module,
chiefly). As a rule of thumb, it can be stated that the TSN talker nodes used for emitting
redundant TSN streams have to implement the FRER functions of Redundant Stream
Identification, Sequence Number Generation, and Transmission over Disjoint Physical
Paths (Stream Splitting). On the other hand, the TSN listener nodes consuming a user-
specified redundant stream have to implement the FRER Filtering function for discarding
the duplicate frames of a given redundant stream received over different physical paths.
Therefore, this has implied the addition of several changes to the traffic-processing
components of the system. We show the extent of these changes in Figs. 7.8 and 7.9,
which depict the main upgrades applied to the VLAN core for supporting FRER alongside
the inclusion of a new TSN Dropper core for implementing the filtering function at the
receiving nodes.

Figure 7.8
Changes to TX data path of VLAN Module to support use of FRER features.

As can be observed in the figures, we had to implement a number of upgrades around
the core functionality of the VLAN Module in order to add support for FRER. Firstly, the
TX data path (Fig. 7.8) needs to incorporate additional mechanisms for producing the
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Figure 7.9
Changes to RX data path of TSN VLAN Module showcasing the use of a TSN Dropper Component to support
discarding of duplicates for FRER.

R-TAG and the corresponding Sequence Number on a per-stream basis. These Sequence
Numbers are in turn stored in an auxiliary Sequence Number Table that keeps track of
the latest Sequence Number generated for each redundant TSN stream, identified by a
unique stream_handle value. Thus, the TSN frame format is correspondingly modified as
shown in Fig. 7.10 when FRER features are used.

Figure 7.10
Modified TSN Frame Format when FRER Features are Enabled.

On the other hand, the RX data path (Fig. 7.9) needs to implement frame discarding
logic for dropping duplicate frames received over different physical paths for a given
redundant TSN stream. This is achieved by a separate module that interfaces with the
VLAN Module for determining the redundant frames that are to be dropped: the TSN
FRER Dropper module (Fig. 7.11).

7.2.6 The TSN FRER Dropper module

The TSN FRER Dropper module can be shared amongst different VLAN modules and
keeps track of the redundant frames that are consumed at the local node for determining
the frames from a given redundant stream that will either be dropped or have their R-TAG,
Sequence Number and VLAN tag fields removed. The TSN Dropper module operates
in a manner such that the first instance of a duplicate frame for a given redundant
stream is allowed to proceed through the VLAN module; and any subsequent duplicate
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instances received for that frame are discarded. Thus, upon receiving a redundant TSN
frame, the VLAN module submits a query to the Dropper module with the source MAC
address, VLAN ID, and Sequence Number of the received redundant frame. Then, the
TSN Dropper processes this information to determine if the Sequence Number for the
redundant stream identified by a given pair of source MAC address and VLAN ID has
been received previously. Once the Sequence Number for the redundant stream has been
processed in accordance with the sliding window mechanism specified in IEEE 802.1CB,
then the Dropper module generates a reply containing the action that the VLAN module
should take for the received frame; i.e., drop the frame or allow it through the VLAN
module. The main components of the TSN Dropper can be examined in the diagram
included in Fig. 7.11.

Figure 7.11
Block Diagram of the Implementation Supplied for the TSN FRER Dropper Module.

Next, we move on to describing the functionalities implemented in each one of the
blocks included in the design of the TSN FRER Dropper in the following points.

7.2.6.1 The AXI-Streaming RX query interface

The AXI-Streaming RX query interface (AXIS RX Query IF) is interface allowing the
reception of Dropper queries from the TSN Multi-Port VLAN module. Each query will
contain a VLAN ID value, SRC MAC address, and the corresponding Sequence Number
associated with the redundant TSN frame being processed. These values will be further
processed by the rest of the TSN Dropper module engine to determine if a specific
redundant frame is to be discarded as a duplicate or allowed to proceed through the
VLAN Module.

Additionally, as the TSN FRER Dropper module can be shared amongst different TSN
VLAN modules, the query received over the interface will also include a VLAN module
identifier (VLAN core ID). This identifier will be used for determining the VLAN module
that the TSN Dropper response to a specific query will be forwarded to.
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7.2.6.2 The CRC-32 pseudohash block

In our design, we have implemented a simple mechanism for telling redundant streams
apart by using a CRC-32 pseudohash block (CRC-32 pHash). Hence, we feed the VLAN
ID and SRC MAC address values identifying a specific TSN Redundant stream into this
device in order to calculate a CRC-based pseudohash. This pseudohash (pHash) value is in
turn stored in a CRC-hash Table and used to retrieve a pointer to the Sliding Window
associated with the Redundant stream being processed, which is stored in the Window
Table component.

7.2.6.3 The CRC-Hash Table and the Table Lookup Mechanism (pHash)

The table containing the pHash values calculated by the CRC-32 component for each SRC
MAC and VLAN ID tuple. Upon reception of a new query from the TSN VLAN module,
the CRC-Hash Table will be scanned using the Table Lookup Mechanism until the position
of the pHash value supplied by the CRC-32 component for given pair of VLAN ID and
SRC MAC address is located. If the requested pHash value cannot be located on the Table,
then it will be recorded in the next available position on the Table. This position will in
turn be used as a pointer to the Window Table in order to retrieve the Sliding Window

values associated with the processing of given TSN Redundant stream.

7.2.6.4 The window table

The table storing the Sliding Window values associated with a specific TSN Redundant
Stream. Each table entry will thus be made up of a 32-bit word containing two different
components: a 16-bit Window Origin, and a 16-bit History Vector. The Window Origin
indicates the origin of the current position of the sliding window, while the History Vector
spans the 16 subsequent positions after the Window Origin and is used for recording the
reception of specific Sequence Numbers within the 16 positions covered by the sliding
Window.

7.2.6.5 The timeout counter bank

This component can be instantiated optionally to provide an additional fail-safe mecha-
nism in the event of a failure in the operation of the functions for seamless redundancy.
Hence, we have built a DSP48-based counter bank implementing the generation of a
timeout signal for each Sliding Window stored in the Window Table. Thus, this counter
bank will enforce a deadline value by keeping track of the evolution of each Sliding
Window from the Window Table. Consequently, this failsafe operates by incrementing
the counter values of each window so long as the node keeps discarding redundant TSN
frames before a maximum deadline of 10 ms can be reached, which would trigger the
generation of a Window Reset signal indicating the expiration of the Sliding Window.
This would prevent the TSN Dropper module from constantly discarding frames in
the event that the Sequence Generation function from the transmitter (the TSN talker)
becomes stuck in a particular value.
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As observed in Fig. 7.11, the implementation we have supplied consists of an array
of timeout counters (“Timeout Cnt Bank”), where each counter is tasked with enforcing
the 10 ms deadline for each one of the Sliding Windows that the core could potentially
be handling. For the sake of simplicity, this design can be thought of as a hardware
implementation of a watchdog timer for each Sliding Window of the Dropper. Hence, the
reception of a new Sequence Number corresponding to the first instance of a duplicated
frame would cause the TSN Dropper to accept the reception of the new TSN frame and
reset the deadline value associated with its Sliding Window; i.e., reset the watchdog timer
for the window.

7.2.6.6 The Dropper finite state machine

This is the implementation of the TSN FRER Dropper Decision Engine, which we have
supplied as a dedicated finite state machine (FSM). This component is therefore tasked
with retrieving the Sliding Windows stored in the Window Table for each VLAN ID and
MAC SRC address tuple received with the queries issued by each TSN VLAN module,
and then generate a Decision based on the Sequence Number supplied with the query.
The Decision value generated by the Dropper FSM will be either Drop or Allow. A Drop

decision is issued when a duplicate frame is detected and will signal the TSN VLAN
module to reject a specific incoming frame, whereas an Allow decision is issued when the
first instance of a duplicated frame is processed and will cause the TSN VLAN module
to accept the new incoming frame.

7.2.6.7 The AXI-Streaming TX response interface

The AXI-Streaming TX response interface (AXIS TX Resp IF) is the master AXI-Stream
Interface used for forwarding the Dropper Decision value generated by the Dropper FSM
as a result of processing the VLAN ID, MAC SRC address, and Sequence Number of a
redundant TSN frame. As the TSN Dropper module can be shared amongst different TSN
VLAN Modules, the TSN VLAN module Identifier (VLAN core ID) originally supplied
with the query will be used for forwarding the Dropper Response to the query – the
Dropper Decision – to the appropriate TSN VLAN module.

7.3 THE T IME-AWARE TRAFFIC SHAPER

The time-aware traffic shaper is one the central components of our TSN implementation,
as it allows the deterministic forwarding of data over the network. Moreover, the IEEE
specification for TSN allows the use of different types of traffic shapers. Hence, to name a
few, there is an asynchronous traffic shaper (802.1Qcr), a credit-based shaper (802.1Qav),
and a time-aware shaper (802.1Qbv). The designer of the system should then choose the
appropriate shaper for their implementation depending on the overall requirements of
the network scenario that their deployment of a TSN system is intended to serve.

The time-aware traffic shaper (TAS) allows the processing of different data flows and
traffic classes with a time-division multiplexing scheme, thus resulting in a more robust
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shaper alternative than the credit-based, asynchronous, or cyclic queueing schemes that
are also contemplated for TSN. Hence, these latter shapers could still be used when less
stringent constraints for end-to-end determinism are needed, as is the case of certain
multimedia or automotive applications. In contrast, the TAS shaper can be selected when
stricter end-to-end latency and determinism have to be enforced. That has been the case
of the avionics and Smart Grid applications where we have conducted the experiments
from Chapters 8 and 9.

The time-aware traffic shaper is described thoroughly in the IEEE 802.1Qbv [9] specifi-
cation, and is meant to allow the cyclic forwarding of data according to a schedule – a
gate control list (GCL) – supplied by the user of the network. This approach results in
a “real-time-like” traffic forwarding system that sends data traffic only during certain
time intervals – time slots – that the user has previously allocated to select traffic classes.
Consequently, the implementation of this traffic shaping methodology requires that all
the TSN nodes in the network be previously synchronized and that they implement
an interface with the PHC time reference from the timing subsystem. These features
allow the TAS core to be able to shape and forward data traffic synchronously and in
coordination with the shapers of other nodes scattered throughout the network. Hence,
the IEEE specification for TAS shaping can achieve these effects by building a time-driven
queueing system with the architecture of Fig. 7.12.

Figure 7.12
Block diagram of the architecture of the TAS shaper for implementing a time-driven traffic selection method
with gates. Image from [9].

This architecture allows our TSN bridges and end systems to schedule transmissions
relative to a known timescale from each one of the queues of the shaper, and we provide
an overview of its operation in the following lines. Hence, as seen in the diagram, the
forwarding of data from a given queue can be enabled by activating its corresponding
transmission gate. These transmission gates, which are also termed gate drivers, can set the
state of the queue to either open (O) or closed (c). Thus, this implies that the open queues
can have their data frames selected for transmission, whereas the closed queues have to
hold their data internally until their queue state can be updated to open.
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The gate drivers are in turn steered by the execution of a so-called gate control list
(GCL), which allows the user to specify a time-driven schedule with a cyclic execution pe-
riod. Thus, the GCL is composed of a series of entries defining the different transmission
slots for the traffic classes handled by the node, with each entry consisting of two separate
components: an array of the applicable configuration values (O/c) for the gate drivers
of the shaper during the execution of the current slot, and a time offset value indicating
when the next entry of the schedule should be executed. In the event that several queues
happened to be open during the execution of a given slot, then a strict priority selection
algorithm would be used to select the queue which would get to forward its messages
first, i.e., the queue would be set to the open state.

Our implementation of the TAS shaper is highly customizable. It was supplied by
a collaborator from the Andalusian Institute of Astrophysics (IAA), with whom we
collaborated closely in the block design specification and functional verification stages.
This is the version that was used for the experiments of Chapters 8 and 9 with our
collaborators. For the experiments of Chapter 10, we worked upon the initial design of
our collaborator to allow the core to interface with a White Rabbit timing source. The
flexibility of the design implies that it has multiple configuration options for its main
parameters, as indicated next:

• The number of queues can range from a single element up to a maximum of eight;
although our designs are generally customized to use four queues as a compromise
between FPGA BRAM usage and performance.

• The amount of entries for the GCL. Likewise, the depth of the GCL list can be set
to a reasonable value, such as the 12 entries we normally use, to reduce FPGA logic
usage.

• We can also adjust the width of the configuration values array for each GCL entry
as a function of number of queues used in a given TAS instantiation.

• The priorities for each queue can be assigned individually, with the design even
allowing for the allocation of the same priority value to different queues. However,
in the TAS implementation that we have supplied for this project, we have assigned
different priorities to each queue in ascending order.

7.3.1 Overview of the operation of the time-aware traffic shaper

The deterministic traffic forwarding behavior of the TAS shaper can be attained as a
result of coupling three different finite state machines: the “list configurator”, the “cycle
timer”, and the “list execute” controller. This can be seen in Fig. 7.13. The functionalities,
signals, and recommended implementation for each one of the preceding elements can be
found in the applicable sections of the 802.1Qbv subcomponent of the TSN specification.
Nonetheless, we provide the reader with an overview of their operation in the following
points to further clarify the description of the TAS shaper.



7.3 the time-aware traffic shaper 123

Figure 7.13
The different FSMs controlling the operation of the TAS shaper and the main signals that they exchange to
attain a coupled behavior.

7.3.1.1 The List Configurator FSM

This is tasked with loading the GCL schedules supplied by the user. Thus, this module
interfaces directly with the AXI slave configuration registers of the TAS shaper (see
Section 7.3.2) to upload the corresponding settings to the rest of the modules of the core.
Hence, as seen in the diagram, this module interfaces directly with its two main functional
blocks: the cycle timer and the list execute FSMs. The duration of the scheduling cycle
(the cycle period) and the relative time offset after which the scheduling policy should be
applied are provided to the former; whereas the latter is supplied with the entries of the
GCL schedule containing the different traffic-shaping slots and the corresponding arrays
of gate driver state values. Once all of the settings for the user-defined traffic-shaping
policy have been defined, then the configuration state machine signals the other FSMs of
the core that a new GCL configuration has been supplied, thus triggering the start of the
application of a given GCL shaping policy.

7.3.1.2 The cycle timer FSM

This is tasked with enforcing the scheduling cycle period that the network users specify
when they define a new GCL schedule. Hence, this cycle period is the sum of the duration
of all the individual entries that make up the GCL definition. Therefore, in order to
ensure that the shaper gets to execute the scheduling cycle supplied through the GCL,
this FSM has a direct interface with the local time signal generated at the PTP hardware
clock. This time signal is in turn fed into the comparator logic of the module to determine
the points in time when the next cycle of a given scheduling policy should be executed.
This is the key feature on the foundation of the deterministic forwarding of a TSN
system: since the PHC time signals of the TSN nodes are synchronized throughout the
network, we can then leverage this property to get the shapers of each node to operate in
coordination with each other and thus execute a given scheduling policy synchronously,
as opposed to having free-running shapers executing a given cycle without any relative
coordination. In our implementation, which follows the IEEE standard guidelines for
TAS shaping, we have also included support for delaying the start of the execution of
a given scheduling policy by a certain amount of offset. This allows the TAS shaper to
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initiate its shaping policy at a predefined offset with respect to the UTC origin that is
designated as the base time in the standard terminology. Lastly, upon detection of the
condition for starting a new cycle, the FSM signals the list execute module the occurrence
of a new “cycle start” condition, which causes the “list execute FSM to restart the GCL and
then sequentially apply all of its entries.

7.3.1.3 The list execute FSM

This is the module responsible for applying the different traffic-forwarding intervals (slots)
defined in a given GCL scheduling policy. The module is activated upon reception of two
main sets of signals from the previous FSMs: the configuration list (and configuration
status) from the list configurator, and the new “cycle start” condition from the cycle timer.
Hence, the former contains the GCL entries supplied by the user, whereas the latter is the
external trigger that causes the FSM to start the execution of the GCL supplied through
the list configurator signals. Consequently, this module will sequentially fetch each one
of the entries contained in the GCL. Each entry, as mentioned previously, will contain
an array of gate driver states for each one of the queues of shaper, and a relative time
offset indicating when the next entry of the GCL should be fetched. This sequential
execution of the GCL entries is responsible for creating a TDMA-like structure whereby
each slot can be allocated to the transmission of specific traffic classes from the queues of
the shaper.

7.3.1.4 Relationship to the operation of the TAS core

The relationship between the foregoing state machines and the operation of the TAS
shaper is depicted thoroughly in the diagram of Fig. 7.14. Hence, as shown in the
figure, the TAS core has to be programmed first with the appropriate user settings and
parameters, which have to be uploaded to its AXI slave configuration registers in order to
let the core execute a certain policy. Next, the policy itself (scheduling cycle, GCL entries)
will be processed by the TAS FSMs as indicated in the previous points. Lastly, the gate
driver states from the corresponding GCL entry fetched at the list execute machine will
be applied to the queues of the shaper to form the appropriate queue configuration for a
given slot within the scheduling cycle.

7.3.2 Configuration of the time-aware traffic shaper

As depicted in the diagram of Fig. 7.14, the different components of the TAS core
have to be programmed before the shaper can start applying any traffic forwarding
policy. In our design, this can be achieved by having the user upload the appropriate
configuration parameters to the AXI-Lite slave configuration register. Hence, we have 14
different internal registers that the user should configure whilst adhering to a custom
AXI write/read protocol to allow the core to operate properly and execute the supplied
GCL policy as expected. Thus, an overview of the contents of the slave configuration
registers for the TAS shaper can be examined in Table 7.25. The contents of each register
from the AXI configuration slave can also be examined in the following points.
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Figure 7.14
Relationship between the TAS architecture and its FSM modules for implementing a deterministic traffic
forwarding component.

Table 7.25
The layout of the TSN TAS slave configuration registers.

Slave register map for the TSN TAS core.

Register name Functionality C offset
Slave 0: FIFO Configuration Configuration of the queues of the traffic shaper. 0x0

Slave 1: Time interval configuration Time interval length of a GCL slot. 0x4

Slave 2: Time interval used (current gate)
Report of the currently used time interval length during
the execution of a GCL schedule.

0x8

Slave 3: Control list length The number of entries contained in a GCL schedule. 0xc

Slave 4: Cycle time The cycle time of a GCL schedule 0x10

Slave 5: Admin Cycle time extension The sub-second value of the GCL cycle time 0x14

Slave 6: Operation cycle time extension
Report of the currently used cycle time during the execu-
tion of a GCL scheduling policy.

0x18

Slave 7: Base time (bits 31:0)
Bits 31:0 of the base time offset field before the start of the
TAS core operation.

0x1c

Slave 8: Base time (bits 63:32)
Bits 63:32 of the base time offset field before the start of
the TAS core operation.

0x20

Slave 9: Base time (bits 67:64)
Bits 67:64 of the base time offset field before the start of
the TAS core operation

0x24

Slave 10: Operation base time (bits 31:0)
Report of bits 31:0 of the base time offset field before the
start of the TAS core operation.

0x28

Slave 11: Operation base time (bits 63:32)
Report of bits 63:32 of the base time offset field before the
start of the TAS core operation.

0x2c

Slave 12: Operation base time (bits 67:64)
Report of bits 67:64 of the base time offset field before the
start of the TAS core operation

0x30

Slave 13: Error register Error codes associated with the operation of the TAS core. 0x34

7.3.2.1 Slave 0: the FIFO configuration register

This configures several options for the different queues of the shaper. Its configuration
fields can be examined in Table 7.26, whereas their corresponding meaning is outlined in
Table 7.27.
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Table 7.26
Slave 0: the configuration fields of the FIFO configuration register.

0 1 2

Unused
3 4 5

Tick Granularity
6 13

Oper Gate St
14 21

Admin Gate St
22

Gate En
23

Table Full
24

Prog Table
25

Reset FIFOs
26

New Input
27 31

Unused

Table 7.27
Slave 0: the contents of the fields of the FIFO configuration register.

Description of the FIFO configuration register fields.

Bits Description
31:27 Unused

26
New input. [RW]. When set to “1”, the FSM knows there is a new gate control list
ready to start operation. The GCL must be supplied before writing this bit.

25 Reset FIFOs. [RW].

24
Programming Table. [RO]. Indicates that the GCL table is currently being pro-
grammed.

23 Table Full. [RO]. Indicates that the programming of the GCL table has completed.

22

Gate Enabled. [RW]. Enables operation of the TAS gate drivers for executing a GCL
scheduling policy. Produces the following effects on the operation of the gates.

– “1”: Enabled. Time shaper operation allowed.

– “0”: Disabled. Gates are always open, no time-shaping processing is applied.

21:14

Admin Gate State. [RW]. Array of gate driver state values. These 8 bits define the
driver state for each of the eight possible queues of the shaper. Thus, a “1” indicates
an open queue, and a “0” refers to an inactive queue. If fewer queues are used, then
only the least significant bits will be considered.

13:6 Oper Gate State. [RO]. Reports current gate driver state configuration.

5:3 Tick Granularity. [RW]. Sets the desired system clock granularity value.

2:0 Unused.

7.3.2.2 Slave 1: the time interval configuration register

This supplies the time interval, i.e., the slot duration for a given entry of the GCL schedule.
The time interval is expressed in terms of clock ticks. As a result, a value for the clock
granularity should be supplied during the programming process as well. Once the value
for the time interval has been supplied, its value should be added to the GCL schedule
by means of the FIFO control register. The structure of the register can be examined in
Table 7.28.

Table 7.28
Slave 1: the fields of the time interval configuration register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Time Interval
30 31

Unused
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7.3.2.3 Slave 2: the used time interval register

This implements a core operation status register that can be read by the processor as
required. This allows the processor software to determine the interval length being cur-
rently applied during the execution of a given GCL policy. As before, the returned value
is given in terms of system clock ticks, thus implying that the system clock granularity
should be known beforehand. The structure of the register can be examined in Table 7.29.

Table 7.29
Slave 2: the fields of the used time interval register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Time Interval
30 31

Unused

7.3.2.4 Slave 3: the control list length register

This supplies the applicable length of a given GCL schedule. Its structure can be examined
in Table 7.30, and the contents of each field are outlined in Table 7.31.

Table 7.30
Slave 3: the fields of the control list length register.

0 1 2 3 4 5 6 7

Oper Ctrl List Len
8 9 10 11 12 13 14 15

Admin Ctrl List Len
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Unused

Table 7.31
Slave 3: the contents of the fields of the control list length register.

Description of the control list length register fields.

Bits Description
31:16 Unused

15:8
Admin Ctrl List Length. [RW]. The value of the control list length (“admin” value)
written by the processor. It must be programmed before writing the gate control list.

7:0
Oper Ctrl List Length. [RO]. The length of the control list being currently executed
by the processor (the operation – “oper” – value).

7.3.2.5 Slave 4: the cycle time register

This is used for specifying the duration of the traffic-shaping cycle of a given GCL policy.
In accordance with the format of the TAI signal from the PHC, the cycle time of the TAS
shaper is expressed as a combination of a seconds field and a “sub-second” field (the
cycle time extension). Hence, this configuration register specifies the seconds field of the
scheduling cycle duration. Its structure can be examined in Table 7.32, and the contents
of its fields can be seen in Table 7.33.
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Table 7.32
Slave 4: the fields of the control list length register.

0 1 2

Oper Cycle Time
3 4 5

Admin Cycle Time
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Unused

Table 7.33
Slave 4: the contents of the fields of the cycle time register.

Description of the cycle time register fields.

Bits Description
31:6 Unused

5:3

Admin Cycle Time. [RW]. Admin cycle time written by the processor. The total
time to execute the whole gate control list (in seconds). If programmed correctly,
this will cause the periodic execution of the entries of the gate control list with the
periodicity indicated in this field.

2:0
Oper Cycle Time. [RO]. The cycle time for the gate control list being currently
executed by the processor.

7.3.2.6 Slave 5: the cycle time extension register

As indicated previously, this register specifies the sub-second field of the scheduling cycle
duration for a GCL policy. The cycle extension should be supplied in nanoseconds, which
are internally translated into clock ticks according to the designated clock granularity.
The structure of the register can be examined in Table 7.34.

Table 7.34
Slave 5: the fields of the cycle time extension register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Admin Cycle Time Extension
30 31

Unused

7.3.2.7 Slave 6: the operational cycle time extension register

This is a status register for reporting the currently used cycle time extension value at the
TAS shaper. The operation cycle time extension is reported in nanoseconds to the software
modules accessing the configuration parameters of the TAS core from the processor. The
structure of the register can be examined in Table 7.35.

Table 7.35
Slave 6: the fields of the operational cycle time extension register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Oper Cycle Time Extension
30 31

Unused
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7.3.2.8 Slave 7: the administrative base time register (least significant bits)

This register contains the lest significant bits (LSB) of the base time configuration parameter.
As explained previously, this allows the user to specify a relative time offset before the
TAS core can start running a given GCL. Its value is supplied in the standard UTC format
(seconds and clock cycles). The contents of this register are shown in Table 7.36.

Table 7.36
Slave 7: the structure of the LSB administrative base time field contained in the register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Admin Base Time (31:0)

7.3.2.9 Slave 8: the administrative base time register (intermediate bits)

This register contains the intermediate bits of the administrative base time of the traffic
shaper, which is supplied in the standard UTC format (seconds and clock cycles). Its
structure is shown in Table 7.37.

Table 7.37
Slave 8: the structure of the register with the intermediate bits of the administrative base time field.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Admin Base Time (63:32)

7.3.2.10 Slave 9: the administrative base time register (most significant bits)

This register contains the most-significant bit (MSB) field of the base time configuration
parameter of the TAS shaper, which is supplied in the standard UTC format (seconds
and clock cycles). Its structure is in turn depicted in Table 7.38.

Table 7.38
Slave 9: the structure of the configuration register containing the MSB field of the administrative base time.

0 1 2 3 4

Admin Base Time (67:64)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Unused

7.3.2.11 Slave 10: the operational base time register (least significant bits)

This is a status register for reporting the current base time at the TAS core. The register
reports the initial 32 bits of the base time value (LSB part). Its structure is in Table 7.39.

Table 7.39
Slave 10: the structure of the status register containing the LSB field of the operational base time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Oper Base Time (31:0)
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7.3.2.12 Slave 11: the operational base time register (intermediate bits)

The intermediate bits of the operational base time value for reporting the currently used
base time to the processor. Its structure can be examined in Table 7.40.

Table 7.40
Slave 11: the structure of the register containing the intermediate bits of the operational base time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Oper Base Time (63:32)

7.3.2.13 Slave 12: the operational base time register (most significant bits)

This register contains the MSB field of the operational base time value for reporting the
currently used base time to the processor. Its structure can be examined in Table 7.41.

Table 7.41
Slave 12: the structure of the register containing the MSB field of the operational base time.

0 1 2 3 4

Oper Base Time (67:64)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Unused

7.3.2.14 Slave 13: the error register

This contains the error condition field, which can signal the occurrence of different types
of issues during the execution of a schedule or during the general operation of the TAS
shaper. In our design, the error field contains 8 bits. This allows us to raise an error signal
for any of the three possible conditions that we have contemplated in our implementation;
although the unused bits in the field would still allow for the consideration of additional
error conditions. The error codes considered for our current implementation are listed in
Table 7.43, and the structure of the register can also be seen in Table 7.42.

Table 7.42
Slave 13: the structure of the error code register.

0 1 2 3 4 5 6 7

Error Code
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Unused

7.3.2.15 The configuration sequence of the time-aware traffic shaper

The preceding registers have to be programmed with the TSN configuration API, which
is tasked with supplying the traffic class identification parameters as well as uploading
the corresponding GCL settings to each one of the TAS shapers in the system. Hence, in
our design, the following sequence should be applied to the configuration registers of
the TAS core from the corresponding configuration utility running on the processor to
ensure its correct operation.

1. Write the control list length.
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Table 7.43
Slave 13: Possible values of the TAS error codes and their meaning.

Possible TAS error codes.

Error Code Description
0x1 Attempted write to a FIFO queue before the read operation has finished.

0x2 Transmission overrun condition.

0x3 Error while applying the core settings (configuration error).

2. Write the base time value.

3. Write the cycle time and its cycle time extension.

4. Supply all the rows of the GCL schedule in sequence. For each entry of the GCL,
the interval (slot) duration must be written first.

5. Write the gate state array – the FIFO configuration of the shaper – associated with
the GCL entry (bits 21:14, Slave0 register). Bit 26 of the Slave0 register must be set
to “0” during this operation. Once the gate state array has been supplied, then the
configuration FSM of the AXI Slave registers of the core is ready to accept the next
GCL entry.

6. Repeat steps 4 through 5 until the entirety of the GCL has been uploaded to the
core.

7. Once the full GCL has been written, the configuration utility should signal the list
configurator FSM to start configuring the rest of the components of the TAS shaper
and thus launch its operation. This is accomplished by writing a “1” to bit “26”
of the FIFO configuration register. Likewise, bit “22” must also be set to “1” to
enable the operation of the TAS module. In addition, caution should be exerted
with regards to the clock granularity supplied during the configuration process, as
the configuration FSM will only acknowledge the granularity value of the last GCL
entry written to the FIFO configuration register, and then it will apply it to all the
entries of the GCL while uploading the corresponding settings to the TAS core.

8. To signal the end of the configuration process, the configuration utility must write
a “0” in bit 26 of the FIFO configuration register. Otherwise, the FSM will become
stuck in a wait state for new configuration parameters. The rest of the bits in the
register must be kept to their last value.

9. All set! Once all the foregoing steps have been applied, the list configurator will
kickstart the operation of the cycle timer and list execute FSMs of the core to start
the deterministic forwarding of all the TSN traffic classes that are present in the
system.
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7.4 TRAFFIC PREEMPT ION: ENHANCEMENTS FOR THE TAS AND THE ETHER-
NET MAC CORES

TSN systems, especially those designed for industrial or avionics applications, often
have to guarantee the delivery of highly critical data with a large degree of determinism.
The guaranteed delivery service of these critical flows is taken care of by the use of
the enhancements for seamless redundancy that we introduced in Section 7.2, which
avoid the loss of highly critical data in the event of network congestion or even if the
transmission path is severed given their use of a frame replication scheme with redundant
routing. Thus, this is an enhancement for the system robustness. In this context, enforcing
a deterministic delivery is the job of the time-aware shaper of the TSN system, which
can provide bounded end-to-end latency by applying a cyclic time-driven schedule.
Some select types of traffic such as those found in the highly critical applications of
industrial automation or avionics may also require that the data not only be delivered
within a specific time bound, but with minimized latency variation as well. This can be
accomplished with the use of the enhancements for preemption and the interspersing of
express traffic (802.1Qbu [41] & 802.2br [40]), which can enormously boost the degree of
determinism of a TSN network.

The basic notion behind the use of frame preemption is that this mechanism should
allow the interruption of lower priority Ethernet data frames to favor the transmission of
highly critical – express – frames, as depicted in Fig. 7.15. In practice, this avoids the
degradation of the deterministic delivery of the critical flows by mitigating the effects of
interfering, lower priority traffic. Therefore, this methodology allows the segmentation
and the subsequent reassembly of the lower priority frames directly over the link-layer
Ethernet service when they come into conflict with the critical express traffic.

Figure 7.15
A representation of the effects of the frame preemption mechanism to avoid interfering traffic and the degra-
dation of the system determinism. Adapted from [166].

The use of these features for preempting the lower priority traffic has several implica-
tions on the design of the main components of the TSN system, as this functionality was
conceived as an incremental upgrade to the operation of the time-driven shaper of TSN
(802.1Qbv) and to its underlying Ethernet link layer (IEEE 802.3). Consequently, in order
to benefit from the use of frame preemption in our experiments, like those from Chapter
9, we had to introduce a number of modifications to our original implementations of
the TAS shaper and the Ethernet MAC cores, which we present in the following points.
These enhancements were supplied by our collaborators from the Andalusian Institute of
Astrophysics (IAA) and our industrial partner Seven Solutions for the preemptable TAS
shaper (802.1Qbu). Seven Solutions was also responsible for providing the design and
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implementation of the 1-Gb/s preemptable Ethernet MAC (802.3br). These components
were used in the context of the experiments that we present in Chapters 8 and 9.

7.4.1 The time-aware traffic shaper with frame preemption

As stated previously, the use of the frame preemption feature has the objective of
supplying a method whereby the transmissions of express traffic should always preempt
the transmission of the lower priority messages; i.e., pause the forwarding of non-critical
messages and resume their transmission at a later time once all the express traffic has
been sent. In order to add support for this functionality to our initial implementation of
the TAS shaper (Section 7.3), we had to introduce modifications to its queueing model,
gate driver and queue selector behavior, as well as changes to its internal control logic and
its interfaces with other external components. Some of these changes include the addition
of a preemption status table, multiple changes to its internal FSMs, new configuration
fields for the AXI slave registers, or the implementation of expanded communication
interfaces with the Ethernet MAC, such as new signaling connections and bus interfaces
for sending the express and preemptable data over separate transmission paths. The
resulting architecture can be examined in Fig. 7.16.

Figure 7.16
The resulting architecture of the TAS shaper core after implementing all the necessary changes for supporting
the use of frame preemption.

As seen in the figure, the changes to the TAS core can be summarized along the
following lines.

• The use of a renewed queueing model. With the use of frame preemption, the
queues of the TAS shaper can potentially be designated as either express (e) or pre-
emptable (p). The preemptable queues will handle the low-priority flows, whereas
the express queues will be used for forwarding the highly critical data frames.
Each type of queue will in turn interface with a revamped strict priority selection
mechanism that will prioritize the selection of express frames when different types



134 detailed implementation of the tsn subsystem

of traffic flows contend for access to the Ethernet link. This allows the execution
of GCL scheduling policies that can activate both types of queues simultaneously
throughout the execution of their respective entries.

• The strict priority selection mechanism of the TAS shaper will now be split into
two different branches: one for the express queues and another one for the pre-
emptable queues. As was the case with the original 802.1Qbv shaper, the strict
priority mechanism is intended to select data for transmission from the higher
priority queue amongst all the queues that it handles which are open at a given
time. Therefore, the use of separate selectors for both types of queues will allow the
simultaneous forwarding of the higher priority express and preemptable frames, re-
spectively, to the underlying Ethernet MAC at any given time during the execution
of a GCL schedule. As we will see in 7.4.2, the Ethernet MAC will then arbitrate
between both types of packets (e/p) as needed.

• The implementation of changes to the internal control logic of the shaper, most
notably the design of a preemption status table. Hence, the former will include
changes to the design of the internal FSMs of the TAS shaper to allow the des-
ignation of its queues as either express or preemptable, as well as to allow their
respective activation during the execution of a given GCL. The latter is an auxiliary
table allowing users to supply an array of preemption status values for each queue
of the shaper. This will result in each queue being assigned to one particular strict
priority selector depending on the value of its preemption status. Furthermore, the
queueing elements with an express designation will be given priority for forwarding
their messages over those from the preemptable queues.

• The implementation of additional interfaces with the Ethernet MAC module.
This can be seen in Fig. 7.16, where we show the main modifications that we
built into the TAS shaper to enable the use of frame preemption. These changes
are twofold and, thus, require the deployment of additional signaling and bus
interfaces.

– The use of a new signaling channel with the underlying MAC is visible in the
figure. In our design, we used this channel for sending “holdRequest” signals to
the preemptable Ethernet MAC. These signals are part of the IEEE specification
for frame preemption and are meant to be sent during the execution of each
GCL entry upon the reception of new critical frames bound for the express
queues that are open during a given time slot. Thus, the “holdRequest” signal
can take two possible values: when a value of “1” is issued, the shaper indicates
the preemptable MAC that the forwarding of lower priority messages should
be halted to allow the transmission of critical express frames. Conversely, a
value of “0” signals that the forwarding of the lower priority frames should be
allowed to proceed undisturbed. It can be seen that the use of this mechanism
is largely responsible for the enhanced determinism of frame preemption, as
it prevents the transmission of a lower priority frame from spilling onto the
slots reserved for express traffic and thus clash with the critical messages of
the system.

– The use of duplicated bus interfaces for injecting Ethernet frames into the
preemptable Ethernet MAC is also evident in the picture. Thus, as the new
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architecture design for the TAS shaper effectively divides the processing of
the express and preemptable data over two separate data paths, then each
path has its own separate bus interface for connecting to the Ethernet MAC as
well. Hence, as seen in the diagram, we have built an express AXI-Streaming
bus interface for injecting the express critical frames from the priority selector
for the express queues into the Ethernet MAC. Likewise, there is also another
AXI-Streaming interface for delivering the low-priority preemptable data.
This allows the TAS shaper to process both types of messages separately
before sending them to the Ethernet MAC service, which would then arbitrate
between and apply packet segmentation as needed before they can be granted
access to the physical Ethernet link. Additionally, the enhancements for greater
determinism and lower latency of frame preemption could also potentially
allow for the implementation of an additional cut-through interface that could
effectively bypass the queueing mechanism of the shaper. Even though this
would further reduce the latency variation of highly critical flows, we opted to
leave the implementation of this feature outside of the scope of our design to
further simplify the architecture of the Ethernet MAC arbitration mechanism
and thus avoid making excessive use of FPGA resources.

• Lastly, the TAS shaper also required changes to its internal configuration logic. This
was the case of the AXI-Lite slave configuration registers, which had to expand their
fields so that the values of the preemption status table could be supplied during the
configuration of new GCL scheduling policies. Specifically, we have supported the
definition of preemption status values for each queue by adding eight additional
configuration registers, with each register dedicated to each queue of the shaper
out of a possible maximum number of up to eight queues. The structure for each
register is relatively simple and can be examined in Table 7.44.

Table 7.44
Slaves 14-21 : the preemption status registers.

0

e/p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Unused

7.4.2 The preemptable Ethernet MAC

The enhancements for preemption also extend to the overall design of the MAC core for
accessing the physical Ethernet links of the system. These changes require a thorough
redesign of the standard Ethernet MAC, which will now have to include an arbitration
mechanism between the express and the preemptable traffic flows; as well as the necessary
segmentation and reassembly logic for handling the fragments of preemptable messages
on the fly. Hence, in order to use these features in our experiments, like those from
Chapter 9, we had to replace the original Xilinx Ethernet Tri-Mode MAC from the
prototyping stages with a customized version of a 1-Gb/s Ethernet MAC from the Open
Cores repository [148] instead as mentioned in 6.4.2. This MAC module has a lower FPGA
usage footprint, thus allowing us to bundle with it all the necessary additional elements
for supporting frame preemption without making excessive use of FPGA resources. The
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resulting architecture of the new preemptable Ethernet MAC and its main features can
be seen in the diagram of Fig. 7.17.

Figure 7.17
The block diagram of the new preemptable MAC, featuring two dedicated paths for transmitting express and
preemptable traffic, arbitration and segmentation mechanisms between these paths, and the reassembly logic
on the reception path.

As observed in the figure, the new MAC design consists of three main elements: the
new transmission interfaces with the preemptable TAS shaper, a MAC merging sublayer,
and the reassembly logic on the reception path. Hence, the transmission data path was
duplicated with an interface for an express MAC (eMAC) and another interface for a
preemptable MAC (pMAC), thus allowing us to interface with the corresponding express
and preemptable interfaces of the TAS core, which had its internal data path duplicated
as well. Consequently, this extended MAC service can provide differentiated access to
the Ethernet transmission links by applying two different user-selectable forwarding
methods: express low-latency forwarding, or low-priority preemptable forwarding. Yet,
in the event that the user did not specify a preference for the Ethernet MAC forwarding
method, then the TAS shaper would inject all data through the express port of our MAC
core. This would result in the Ethernet MAC handling all transactions as express data to
maintain backward compatibility with the ordinary Ethernet specification.

The arbitration mechanism resides in the MAC merging sublayer. This component
is one of the main modifications implemented over the legacy Ethernet service as a
result of adding support for the frame preemption features. Thus, in our design, the
merging sublayer features a bus arbitration mechanism for selecting the transmission
of either express or preemptable frames. Moreover, this arbiter has the ability to stop
the transmissions of preemptable frames from the pMAC and start their subsequent
segmentation to avoid interference with data injected from the eMAC. These fragmented
frames are known as “mPackets” in the terminology of the IEEE standard. Overall, we
have designed this arbiter system to prioritize the transmission of express traffic to reduce
its delivery jitter.

As for the reception data path of the MAC, it is one of the few components that remain
relatively unchanged with respect to the original MAC from Open Cores. Nonetheless,
it also had to undergo minor changes as we had to implement a simple packet filter to
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detect fragmented frames and then supply the corresponding reassembly logic, which
consisted of a simple FSM and a temporary buffer.

Thus, after providing a glimpse into the operation of the new preemptable MAC,
its main components, and the relationship between them, we also give an in-depth
explanation and a thorough overview of their operation in the following points.

7.4.2.1 The preemptable message format

The Ethernet messages injected from the TAS shaper core over the preemptable MAC
could potentially be subjected to the use of preemption by segmenting their data into
several fragments. Thus, according to the standard, this preemption and segmentation
process can take place for a given frame as many times as necessary in the event that it
is preempted by higher priority traffic so long as two main conditions hold true for the
remaining of the preempted frame: that at least the initial 60 B of the frame have already
been transmitted, and that more than 64 B of the frame still remain to be transmitted.
Otherwise, segmentation will not occur.

The operation of the segmentation and reassembly tasks of the preemptable frames is
controlled with the use of a signaling mechanism that combines the calculation of partial
cyclic redundancy checks (CRCs) with the inclusion of new delimiters and fragment
count fields into the Ethernet frame. Hence, this allows the reassembly logic to ensure
the orderly reception of fragments or detect when the last fragment of a preempted
message is received. Since the use of preemption requires that the Ethernet frames for
the preemptable messages include these new fields, the resulting frames are designated
“mPackets” and their fields can be examined in Fig. 7.18.

a b

Figure 7.18
The internal structure of “mPackets” for the frames carrying the first segment of a preempted message (Fig.
7.18a), and the structure of the subsequent frames carrying the “continuation” segments to a fragmented
message (Fig. 7.18b).
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7.4.2.2 Segmentation signaling for packet preemption

We use a relatively simple signaling mechanism with frame preemption to keep track
of all the segments of a preempted frame in the case that it had to segmented to avoid
interference with express traffic. This signaling scheme uses custom delimiter values
and a partial CRC for determining the reception of the last fragment of a given packet.
This can be examined in Table 7.45, which contains the possible values that the different
Ethernet preambles, fields, and delimiters are supposed to take when preemption is used.

Table 7.45
Values of the SMD delimiter for each type of “mPacket”: the initial fragment of a preemptable message, or the
subsequent “continuation” fragments of a segmented message.

Possible values for the SMD delimiter.

mPacket type SMD name Frame count Value

Express packet SMD-E - 0xD5

SMD-S0 0 0xE6

SMD-S1 1 0x4C

SMD-S2 2 0x7F
Packet Start

SMD-S3 3 0xB3

SMD-C0 0 0x61

SMD-C1 1 0x52

SMD-C2 2 0x9E
Continuation Fragment

SMD-C3 3 0x2A

Since the preemptable Ethernet MAC is required to maintain backward compatibility
with the ordinary Ethernet specification, which does not support layer-2 (L2) data frag-
mentation, the core relies on the use on a particularized signaling technique that indicates
the reception of the different parts of a segmented frame by means of supplying specific
Ethernet frame delimiter values, other than the standard value of 0xD5 for ordinary Eth-
ernet frames, for each part of the fragmented message. This can be seen in conjunction
with the diagrams from Fig. 7.18. Hence, when the preemptable MAC indicates the
transmission of the initial fragment of a preempted message by producing a frame with
the format from Fig. 7.18a that is marked with the use of one of the corresponding
segmentation start delimiters (SMD-Si). Likewise, the subsequent frames of a segmented
message will use the format from Fig. 7.18b and will be marked by the use of their
corresponding segment continuation delimiter (SMD-Ci). In addition, each segment
continuation delimiter is in turn associated with a corresponding segmentation start de-
limiter (SMD-Si) for a given preempted message. Furthermore, the segment continuation
frames are also fitted with an additional fragment counter field (“Frag Count”) for use in
the reassembly process and for keeping track of the number of segments that a given
message is split into. The values of the counter field are also normalized, and we show
them in Table 7.46.

Thus, given the maximum transmission unit (MTU) of standard Ethernet frames of
up to 1500 B, the specification for frame preemption contemplates a maximum of up to
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Table 7.46
The values of the fragment counter field as a function of the fragment number.

Values of the fragment counter.

Fragment Count Value
0 0xE6

1 0x4C

2 0x7F

3 0xB3

four different fragments in practice for transmitting the segmented parts of a preempted
message. Moreover, since this signaling scheme is based on the use of different values
for the Ethernet delimiter field, it has the advantage of retaining backward compatibility
with ordinary Ethernet frames, which are designated with the usual value of 0xD5 for
their delimiter. Thus, when preemption is not used, the messages injected into the MAC
are forwarded as express frames and therefore make use of the ordinary Ethernet frame
format; i.e., the express messages use the ordinary Ethernet frame delimiter value of
0xD5 for the SMD field and are sent over an “mPacket” with the format from Fig. 7.18a.

7.4.2.3 Arbitration on the transmission path: the MAC merging sublayer

The last component on the transmission data path before the “mPackets” can be injected
into the physical layer, which is unaware of the use of preemption, is the arbitration
process of the merging sublayer. Hence, this module arbitrates between transactions
originating from either the pMAC or eMAC submodules, thereby granting priority to
the express messages for accessing the transmission medium. This implies that, in the
event of a conflict between a preemptable message and an express frame, the former
message, which is usually lower in priority as well, will be preempted in favor of the
express frame and its segmentation will be triggered. Nonetheless, once the transmission
of a preempted message is underway, it cannot be preempted again until the minimum
Ethernet frame size has been reached.

7.4.2.4 Reassembly on the reception data path

Lastly, the reassembly of fragmented mPackets is performed on the reception data path of
the Ethernet MAC, which we fitted with additional packet filtering and reassembly logic
in our design. Thus, on the one hand, our implementation forwards the express messages
directly to the upper layer components of the TSN node, as they do not require any
additional post-processing. On the other hand, the different segments of the preempted
messages received from the network are handled by the reassembly logic. This logic
uses a temporary buffer to store the segments of mPackets with matching SMC-Si and
SMD-Ci delimiter values; i.e., the start frame and all the subsequent continuation frames
of a segmented message. The fragment count is then used internally to keep track of the
size of all the reassembled fragments, and the last fragment is detected by inspecting
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the value of the CRC field. Thus, an express frame or a preemptable message that was
transmitted without segmentation will contain the value of the CRC of the entire message
in the corresponding CRC field. On the contrary, fragmented mPackets will replace the
CRC with a temporary value (the mCRC) for all frames, except for the last fragment,
which will contain the CRC of the whole preempted message. The mCRC consists of
a partial checksum of the contents of the current fragment which is then applied to
an XOR with the 0x0000FFFF value. Hence, the internal reassembly logic can detect the
reception of the last frame of a preempted message when the partial checksum of the
reassembled data matches that of the current mPacket. This condition would signal that
the reassembly operation is complete and that the reassembled frame can be forwarded
to the upper-level cores for further processing.

7.5 THE SWITCHING ELEMENTS

Although they are not strictly a part of our TSN core design, our nodes are multi-port
devices with bridging capabilities allowing them to forward data amongst their Ethernet
ports, or between the ports and their embedded ARM processor. Thus, in our design,
controlling the flow of traffic to determine how the TSN frames handled at a specific
node should be routed is the responsibility of our TSN cores. The routing itself is taken
care of by the use of dedicated switching elements, which in our implementation were
the off-the-shelf switching cores from Xilinx [150]. These switches come with all the
necessary bus adaptation and conversion stages between the subsets of the AXI bus
protocol as needed. A schematic diagram of their implementation can be seen in Fig.
7.19.

Figure 7.19
The internal structure of the AXI-Streaming crossbar interconnects used as the main switching elements of
our nodes.

These switches are AXI-Streaming crossbar switches with a round-robin arbitration
policy. They are responsible for routing data frames between their AXI master and AXI
slave ports as indicated by the value of the “tdest” signal of the AXI-Streaming bus. This
signal is in turn supplied by the routing logic of TSN VLAN module, which we have
endowed with a traffic redirection feature that allows the implementation of the bridging
functionality of our nodes.

Resource consumption can be an important issue with this type of switches. Hence,
their resource usage is bound to grow exponentially when larger switches are required.
Thus, their FPGA usage is usually driven by the logic elements demanded by the
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implementation of the crossbar switching matrix, which mainly uses LUTs and flip-
flop (FF) primitives. Consequently, their resources are clearly a function of their size,
expressed as M ⇥ N (M slaves to N master ports). Moderately sized crossbars such as 1x2
switches can fetch LUTs on the order of the hundreds of primitives, which is relatively
low for the devices we have worked with, whereas matrices larger than 4⇥ 4 may quickly
cannibalize a substantial amount of resources. That is the reason why we opted for a
two-tier architecture, as shown in Fig. 6.2, where we have an initial switching stage for
transmission and reception, and a forwarding stage – the “Redirector” – for implementing
the bridge functionality or to send data between the processor, the node Ethernet ports,
or even third party IP cores in the FPGA logic.

We aimed to produce small crossbars with this strategy, such as 1 ⇥ M or 2 ⇥ M
switches, which usually result in a lower footprint. We prioritized this aspect throughout
our work as having low resource usage was part of the requirements of the projects
described in Chapters 8 and 9, where we had the opportunity to conduct our experiments.
Since this was a major requirement, it had multiple implications that, in the case of the
switching elements, materialized as the two-level switching architecture that we have
mentioned. At any rate, this is effective for conserving resources, but the use of crossbars
with arbiters may introduce undesired delays in the processing of the TSN messages that
may degrade the deterministic performance of the system. This is one of the aspects for
improvement that we may study during continuing work after this thesis project; such as
the replacement of all the packet switching crossbars with shared memory switches.

7.6 COMMENTS ON THE FIRMWARE VERS IONS AND THEIR NODE VARIANTS

We have used the preceding elements to implement the TSN subsystems of the different
types of nodes that we built for our experiments. As stated in previous sections, we have
made use of two main node variants.

• The WR-ZEN board was our platform for prototyping, verification, and debugging.
We also used it to support our tests for integrating White Rabbit timing and a TSN
networking system from Chapter 10.

• The Main Board is the platform where we developed the low-cost avionics solution
from Chapter 9 and the nodes for the Smart Grid from Chapter 8.

In both cases, we had to design TSN systems with moderate resource usage by
combining the different elements of the TSN subsystem that we have introduced in this
chapter. This requirement stemmed from different facts for both platforms.

• In the case of the WR-ZEN board, the moderate footprint was a consequence of
the fact that this node uses the Z-7015 SoC from Xilinx, which is a low-cost, albeit
relatively small, device.

• In the case of the Main board, since it was originally conceived for the development
of the avionics of a microlauncher, it was a requirement that the TSN implementa-
tion should not exceed 50 % average utilization of the Z-7030 device. This would
allow the inclusion of additional mission-related IP cores in the design.
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As a result, we eventually designed three different firmware variants for these platforms
under these requirements: one for the WR-ZEN board, and two for the Main board
for its avionics and its Smart Grid versions, respectively. In all cases, we supplied
the implementation of the TSN system with a lightweight design – TSN “Lite” – with
moderate resources, although with some of the design tradeoffs that we have mentioned
(e.g., VLAN sharing between ports, crossbars with arbitration, reduced VLAN tagging
rules).

The architecture of each firmware variant is discussed in detail in the corresponding
sections of Chapters 8 and 9 (for the Main board), and Chapter 10 for the WR-ZEN.
Meanwhile, we outline the individual resource consumption of each component of the
TSN system in Section 7.7.

7.7 RESOURCE CONSUMPT ION

Lastly, to further contextualize our TSN implementation, we have gathered the raw
utilization figures of the different cores of the TSN subsystem. This should give the
reader a general idea of the broad range of Xilinx devices that could somehow incorporate
either a full version of the TSN system or a partial version of it with support for a reduced
subset of TSN (e.g., TAS shaping only without redundancy). Thus, the FPGA utilization
of each core can be examined in Table 7.47, where we also compare them to their relative
usage in a Z-7030 device. Furthermore, the overall utilization in the Z-7015 and Z-7030
devices that we used in our experiments is discussed in their corresponding chapters.
Nonetheless, to estimate the resource consumption of our architecture on their platform,
the reader should anticipate that the following elements are usually needed for an n-port
design: n

2 · (VLAN) + n · (TAS + MAC) + Dropper + Crossbars.

Table 7.47
The overall utilization of the TSN cores. Percentage usage figures with respect to a Z-7030 device for reference.

Module Slice LUTs Slice Registers Multiplexers BRAM DSPs
TSN VLAN Core (incl.
TX Redundancy) 4220 5.37% 4624 2.94% 55 0.093% 3.5 1.32% 8 2%

Dropper Module (RX Re-
dundancy) with timeout
counters

854 1.09% 1697 1.08% 6 0.010% 0 0 % 34 8.50%

Time-Aware Traffic Shaper
(TAS) with preemption 1813 2.31% 3089 1.97% 99 0.168% 20 7.55% 0 0%

Time-Aware Traffic Shaper
(TAS) w/o preemption 1458 1.85% 2468 1.57% 34 0.058% 9 3.4% 0 0%

1G Ethernet MAC &
Buffering & Preemption 1581 2.01% 1948 1.24% 12 0.020% 6 2.26% 0 0%

1G Xilinx Tri-Mode Ether-
net MAC & Buffering &
No Preemption

3304 4.20% 5594 3.56% 45 0.076% 4 1.51% 0 0%

Switching Crossbars – 4
Ethernet ports 1796 2.28% 1798 1.14% 0 0% 9 3.40% 0 0%
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The resource usage of the implementation of the crossbar switches is highly dependent
on the number of ports. The figures that we show in the table are illustrative for a 4-port
device, and a particularized record of the consumption for each of the node architectures
that we have implemented can be found in the corresponding sections of Chapters 8, 9,
and 10.

7.8 HIGHL IGHTS OF THE TSN ARCHITECTURE

We have implemented a versatile TSN subsystem for our network nodes that is based on
a collection of configurable FPGA IP cores. As a summary of the main features of our
design, we enumerate our cores, their role in the system, and their main configuration
options in the following points.

– We have supplied an implementation of the VLAN-tagging module for identifying
the different traffic classes that will be handled in the TSN system (802.1Q). It uses
our DSP-based Configuration Table, which can be configured to detect up to 16
different traffic classes. It is also tasked with redirecting TSN flows between the
different Ethernet ports of the node.

– We have included enhancements to increase the robustness of the system with
the use of seamless redundancy (802.1CB). These features are supported through
improvements to the VLAN core and with an additional Dropper module for
discarding duplicates. The use of redundancy can be optionally enabled in our
design.

– The deterministic data forwarding is taken care of by the time-aware traffic shaper
(802.1Qbv), which was jointly developed with our collaborators. The TAS shaper
can be customized with a choice of forwarding queues and length of the GCL.

– The TAS shaper has been enhanced with frame preemption (802.1Qbu). This
also called for the development of a preemptable Ethernet MAC (802.2br) that
could interface with the TAS shaper. The use of preemption is optional in our
implementations and was provided by our partners from the IAA and Seven
Solutions.

– Lastly, our TSN nodes have bridging capabilities that are controlled by the corre-
sponding VLAN modules. Our current design uses the Xilinx crossbar switches
with an approach that uses small cascaded crossbars to reduce resource consump-
tion. They may be replaced with a shared memory switch in future versions of our
architecture.
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A P P L I C AT I O N O F T S N F O R T H E S M A RT G R I D

Figure 8.1
Overview of the contents of Chapter 8, where we present our use case for the Smart Grid.

This chapter presents one of the main use cases of our TSN system. Hence, we show
how it can be successfully applied to support the deployment of the Smart Grid and its
features by providing a unified communication interface for all the data flows in an elec-
trical substation. This is a clear example of an application for one of the typical industrial
use cases that TSN networks are intended for. We show the feasibility of this application
by building a proof-of-concept system that we deployed in an actual substation facility,
where we verified that our TSN network was capable of handling critical data, GOOSE
substation signaling, and best-effort video simultaneously while also prioritizing the
delivery of critical data with greater efficiency than the legacy electromechanical systems
of the substation. After that, we performed a thorough laboratory characterization of
the system to study the accuracy of its gPTP synchronization, and to learn about the
effects that the specification of different types of GCL policies may exert on the attainable
determinism and PDV values of the critical flows in the network. As a result of these
experiments, we concluded that the end-to-end latency of a TSN flow was a parameter
that the user could control precisely through the specification of different cycle times and
slot structures in a given GCL.

We performed this study in the framework of an industrial transfer project with our
industrial partner Seven Solutions, where we had the opportunity of collaborating with a
local electricity provider from Granada (Grupo Cuerva S.L. [167]) in the development
of a prototype TSN-capable switch for the Smart Grid. It was a pioneering project that
showed one of the most promising applications for TSN systems in industrial scenarios.
Consequently, it caused a substantial interest in the community, as evidenced by several
appearances in the local media such as in [168]. Moreover, the results of the study
have had a significant scientific and engineering value, which led to the production of a
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research article [169] that summed them up as a journal contribution. Thus, the rest of the
chapter presents a transcription of the journal article, whose reference is also provided
below, to illustrate the development and application of our TSN system to streamline the
deployment of the Smart Grid.

J. Sanchez-Garrido, A. Jurado, L. Medina, R. Rodriguez, E. Ros and J. Diaz, “Digital
Electrical Substation Communications Based on Deterministic Time-Sensitive Network-
ing Over Ethernet,” in IEEE Access, vol. 8, pp. 93621-93634, 2020, doi: 10.1109/AC-
CESS.2020.2995189.
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8.1 ABSTRACT

This work presents a novel use case with Time-Sensitive Networks (TSN) for imple-
menting a deterministic system allowing the joint transmission of all substation commu-
nications over the same Ethernet-based infrastructure. This approach streamlines the
transition to Smart Grid by simplifying the typically complex architecture of electrical
substations, characterized by multiple field buses and bridging devices. Thus, Smart Grid
represents a disruptive innovation advancing substations to an “all-digital” environment
with a uniform interface to access, manage, and update their communications and vari-
ables. TSN can serve as its underlying foundation as it is based on open, interoperable
standards and enhancements for Ethernet that can establish deterministic communica-
tions with bounded end-to-end latency. This is shown with a TSN Proof of Concept (PoC)
in a real-life substation that can integrate its most usual signals: digitized analog triggers
for critical events or interlocks, GOOSE signaling (IEC 61850), and Best-Effort “Internet-
like” traffic. This TSN PoC is shown to be versatile enough to propagate digitized critical
events around 160 µs earlier than legacy substation equipment while preserving the
integrity of background traffic. Furthermore, its flexibility was characterized in-depth in
controlled laboratory tests, thereby confirming TSN as a viable alternative for supporting
Smart Grid so long as the appropriate configuration is supplied.
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8.2 INTRODUCT ION. SMAR T GRID AND THE MOTIVAT ION FOR THE APPL ICA-
T ION OF TSN NETWORKS

This paper describes the application of a Time-Sensitive Networking (TSN) system to
support the deployment of Smart Grid features in electrical substation environments.
Time-Sensitive Networking is conceived as a number of enhancements for regular Ether-
net networks [30] allowing the coexistence of data flows with different levels of criticality,
bounded end-to-end latency, guaranteed bandwidth, and ensured determinism for crit-
ical traffic. Hence, these networks, which are based on interoperable open standards,
implement so-called convergent communication systems that allow the aggregation of
different flows according to user-defined criteria.

The concept of Smart Grid emerges from the application of new techniques and
processes to legacy power grids replacing their traditional hierarchy with a completely
integrated environment to efficiently process system services, exchange process data, and
forward system transactions. Hence, its implementation is an ongoing transformation
on all the levels of the power grid (from the generation to the distribution stages) that is
being driven by the need to provide an efficient communication layer for accommodating
the management of new energy sources. This results in power supply infrastructure with
improved fault tolerance, and enhanced safety and quality [170, 171].

On the distribution level, this upgrade is aimed at digitizing the different control
and communication equipment of substations handling the operation of the power
distribution subsystems, including their sensors and actuators. A fundamental aspect of
this transformation is the communication technology amongst the different substation
processes, which will be replaced by Ethernet networks (either on optical fiber or copper-
based links), instead of using vendor-specific solutions.

These Ethernet networks have the potential of allowing a streamlined exchange of
data and the establishment of redundant communication paths for critical flows but
cannot enforce any delivery guarantees or ensure end-to-end determinism. Thus, in a
substation scenario, this traffic is usually handled with a three-tier architecture supported
by dedicated field buses. These tiers are the Field Level, which implements lower-level
interfaces with sensors and actuators; the Bay Level, which includes the equipment
controlling the operation of the substation; and the Substation Level, which defines
communication interfaces with other elements from the power grid.

Thus, the Field-level processes usually have to handle time-critical traffic, such as event
alarms, trigger signals, or the interlocking mechanisms of closed control loops. This
type of traffic is usually propagated using the IEC 61850 standard [172] protocol, which
carries these messages from the Merging Units (MUs) of the substation to the Intelligent
Electronic Devices (IEDs), where the corresponding monitoring, control, protection, and
diagnostics tasks of the substation are implemented.

For its application in Smart Grid, the IEC 61850 protocol needs to be complemented
with additional features; such as node discovery, reconfiguration, aggregation of different
priority flows, or guaranteed determinism as bounded end-to-end latency. Additionally,
its messages have to be transmitted using Ethernet-based networks. There are several
Ethernet-based approaches that can be applied for Smart Grid, such as PRP (Parallel
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Redundancy Protocol) or White Rabbit (WR) HSR (High-Availability Seamless Redundancy)
[173]. The former allows the creation of redundant network topologies, whereas the
latter uses a customized implementation of the White Rabbit synchronization stack to
distribute timing information and to implement redundant ring topologies with ⇠3 µs
recovery times [171]. However, none of these systems can enforce any type of message
delivery guarantee. Hence, TSN represents the ideal alternative to support the migration
to Smart Grid, as it can implement a deterministic communication network with support
for redundant ring topologies for select flows, as mandated by IEC 61850, with zero
switchover time using its 802.1CB [44] component.

Consequently, this paper shows that TSN is a viable alternative for supporting sub-
station communication flows in accordance with the specifications of IEC 61850 [174].
The operation of the system is characterized in-depth in the following sections, but
further reliability studies can still be conducted following the guidelines proposed in
[175]. Therefore, after introducing the motivations for the adoption of TSN, its main
functionalities and components are described in Section 8.3. Next, the architecture of the
TSN network nodes used in this work is explained in Section 8.4. Then, the feasibility of
applying a TSN network for integrating Smart Grid communications is shown in Section
8.5 with the deployment of an experimental Proof-of-Concept (PoC) setup in a real-life
substation. The results of the initial PoC are further characterized with a laboratory test
bench in Section 8.6, where the effects of applying different configuration parameters can
be studied. Lastly, Section 8.7 concludes by showing the viability of applying TSN for
Smart Grid. The effects of user-driven configuration on achievable determinism are also
outlined, and future lines of work are presented, such as the development of a specific
TSN profile for Smart Grid.

8.3 T IME-SENS IT IVE NETWORKING (TSN)

This section is intended to give the reader a brief overview of the concept of Time-
Sensitive Networking (TSN) and its application on Ethernet-based networks. Readers
already familiar with the concept and operation of TSN technologies may directly proceed
to Section 8.4.

TSN emerges as a set of enhancements for Ethernet networks set forth by the IEEE
Standardization Committees. Traditionally, Ethernet has been considered a robust
technology that can fulfill the communication needs of general-purpose applications
and, as a result, its use became pervasive alongside the widespread deployment of the
Internet. It is thus a well-known standard that has become the foundation of the so-called

“open world” communications. These are the IP-based flows that make up the bulk of most
of today’s popular Internet applications; such as HTTP web browsing or audio/video
streaming. Typical Internet traffic is Best-Effort (BE) in nature and is usually supported
with Ethernet networks, which share the same service philosophy.

The scenarios where timing and determinism guarantees are required usually rely
on specialized, vendor-specific solutions. This is the case of industrial plants, avionics
systems, or sensor-actuator control loops in general. These implement “closed world”
communications and typically make use of field buses, such as ModBus or CAN, to
guarantee that their timing and real-time constraints can be met. In heterogeneous
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environments, their use can lead to complex architectures with different bus domains,
hence making their integration and maintenance highly costly. Furthermore, some
scenarios may even require a separate data network, which adds up to system complexity.

TSN allows the combination of the aforementioned Internet-like, “open world” com-
munications, with the “closed world” traffic associated with industrial monitoring and
control using the same standard-based Ethernet network. An initial approach to this
was the development of AVB (Audio/Video Bridging) [176], which was geared towards
professional multimedia environments. Later on, AVB was superseded and targeted to
broader applications including industrial automation, hence giving rise to Time-Sensitive
Networking. Its components are outlined next.

• System-wide Synchronization provides a common time reference for the network.
This allows the nodes of a distributed TSN system to work synchronously and
forward messages consistently with the time of the network. This reference is main-
tained by the gPTP service (802.1AS) [6], which implements a PTP profile tailored
for TSN. In the context of Smart Grid, gPTP timing can provide synchronization on
the order of tens of nanoseconds (experiment 8.6.3.1) for the substation equipment,
far exceeding the ⇠1 µs specification of IEC 61850 Part 5 [177]. As this reference
will be distributed over Ethernet links, it is a safer alternative than the GPS-based
systems that synchronize Phasor Measurement Units in some substations, adding
protection against accidental or intentional GPS malfunction [178].

• Bounded End-to-End Latency. TSN networks define different queueing and for-
warding mechanisms for guaranteeing end-to-end latency. The Time-Aware Traffic
Shaper (TAS) [802.1Qbv] [9] stands out, as it forwards traffic according to a Gate
Control List (GCL) schedule supplied by the user. This is complemented with the
enhancements for preemption of lower priority messages in favor of critical, express
traffic (802.1Qbu & 802.3br) [40, 41]. Their action allows TSN systems to guarantee
system-level determinism for critical messages and the coexistence with Best-Effort
data in the same Ethernet network.

• System Configuration and Traffic Identification. TSN handles traffic according to
its Traffic Class. Thus, it implements several mechanisms for specifying the network
topology, the criteria for assigning messages to a given traffic class, or the GCL
Schedule of the traffic shapers. This is accomplished with resource reservation pro-
tocols (802.1Qcc, 802.1BA) [36, 47], which disseminate these parameters throughout
the system. The traffic classes identified with these parameters will be denoted with
a VLAN-tagged TSN stream (802.1Q) [46], whose associated priority will indicate
the forwarding queue of the TAS module that it will be assigned to.

• Reliability. Seamless Redundancy. TSN networks can make use of the 802.1CB
[44] component for protecting highly critical messages by allowing their transmis-
sion over disjoint physical paths in the network using a standard-defined frame
replication scheme. This feature is often required in scenarios where the delivery of
time-critical messages has to be guaranteed. This is the case of Smart Grid, where
the use of redundancy mechanisms is expected in IEC 61850.

This work shows the application of a TSN approach for Smart Grid using two purpose-
built nodes, whose architecture is described in Section 8.4.
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8.4 IMPLEMENTAT ION OF A TSN-CAPABLE NETWORK NODE

The experiments presented in this work make use of two different TSN nodes: the
WR-ZEN board and the MAIN TSN Switch. They are both based on the Zynq-7000
devices from Xilinx [7]. These devices are programmable Systems-on-Chip (SoCs), featuring a
dual-core ARM Processing System (PS) for running an embedded OS (e.g., Linux, RTEMS
[152]), and FPGA Programmable Logic (PL) for implementing HDL coprocessors that
can interface with the PS. These two TSN nodes share the same underlying architecture
but use different SoC devices depending on their role in the system.

8.4.1 The TSN Network Nodes

• The WR-ZEN Node implements a two-port network device that can operate both
as a TSN Listener (Receiver) or a TSN Talker (Transmitter) of highly critical messages.
Hence, it implements a reduced TSN system in the relatively small, low-cost Z-7015
programmable SoC. Additionally, this node includes a dedicated HDL coprocessor
(DIO) for digitizing analog substation triggers in order to forward them over
the network as high priority TSN messages. This node repurposes the original
architecture of the WR-ZEN board [8], which was originally used for distributing
White Rabbit timing [74].

• The MAIN TSN Switch. This node implements a four-port TSN bridge that for-
wards different TSN messages amongst its ports in accordance with user-specified
settings. The bridge functionality requires the use of a greater amount of FPGA
resources to support a multi-port implementation. This led to a design that uses
the larger Z-7030 Xilinx device, which was integrated in the purpose-built MAIN
circuit board.

8.4.2 TSN Node Architecture

Fig. 8.2 shows the common architecture for the foregoing nodes. It features both FPGA
subsystems and software-based components. The FPGA subsystems are implemented in
the PL of the corresponding Zynq-7000 device and consist of several units that interact
with one another. These are the Ethernet Networking Subsystem (blue), the Timing
Distribution Subsystem (orange), the switching cores (green), and the TSN Subsystem
(red). The DIO coprocessor is an exclusive component of the WR-ZEN node and is
highlighted with a blue box. The software components run on the ARM-based PS and
control the operation of the aforementioned subsystems. These components include the
RTEMS OS, the gPTP service, configuration APIs, or other user tasks.

• The Ethernet Networking Subsystem provides the underlying Ethernet service
for establishing a functioning TSN network. It consists of several off-the-shelf
components allowing the instantiation of ordinary Ethernet ports in the PL of the
Zynq-7000 device. These components include DMA controllers, a lightweight 1G
Ethernet MAC ported from an open core design [148], the Xilinx PCS/PMA core,
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Figure 8.2
General system architecture diagram for the TSN nodes used in this work, highlighting the different subsys-
tems within the FPGA Programmable Logic and their interactions. Image from [169].

and Ethernet transceivers (GTP blocks for the WR-ZEN or a dedicated PHY chip
for the MAIN node).

• The Timing Distribution System (gPTP) provides the crucial timing synchroniza-
tion required for any TSN system as specified in the 802.1AS subcomponent [6].
This component defines an implementation of PTP particularized for TSN, which
was applied to Smart Grid using an FPGA-based design like that shown in [179].
Thus, the subsystem requires two main cores in the FPGA logic that will be coor-
dinated by a system service of the PS implementing the gPTP protocol: The PTP
Hardware Clock (PHC) and the Time-Stamping Units (TSUs). The PHC contains
the internal time representation of the node, which is steered by the execution of
the gPTP synchronization service. The TSUs will be used for retrieving time stamps
associated with the exchange of gPTP protocol messages.

• The TSN Subsystem implements the essential elements allowing the establishment
of deterministic communication flows. In Fig. 8.2, these elements, which are
instantiated on a per port basis, are the TSN VLAN Core and the Time-Aware
Traffic Shaper (TAS). The VLAN Core operates as an input and forwarding stage: it
identifies different types of traffic according to user-defined criteria, which are then
encapsulated into VLAN-tagged TSN streams and delivered to the appropriate
port and queue over the AXI Switching Core. The Time-Aware Traffic Shaper
works synchronously with the time reference supplied from the PHC. It forwards
messages deterministically by periodically activating its priority queues according
to a user-defined Gate Control List (GCL) Schedule.

• The Software Environment of the TSN nodes. The TSN nodes make use of Zynq-
7000 devices with a dual-core Processing System that supports the execution of
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the embedded real-time RTEMS 5.0 OS [152] environment. This OS provides the
framework to support the various software components, modules and services to
handle the operation of the TSN system: a gPTP synchronization service, Ethernet
network drivers, and configuration APIs. The synchronization service updates
the time representation of the PHC with the gPTP protocol (802.1AS [6]) and was
developed as a custom RTEMS port of the OpenAvnu Project [52]. The network
drivers initialize the Ethernet Subsystem and were adapted into RTEMS from
the Xilinx Ethernet Network drivers [151]. They were additionally customized to
allow their interaction with the Timing Subsystem. Lastly, the system uses two
different APIs. The gPTP API is used to pass configuration parameters to the gPTP
synchronization service (e.g., oscillator quality). The TSN API is used to indicate
the traffic classes and applicable GCL schedules to the TSN Subsystem.

8.4.3 Considerations on FPGA Footprint

These experiments make use of two different flavors of TSN nodes: The WR-ZEN
node and the MAIN TSN node. These are based on Zynq-7000 devices and have
different resource requirements depending on their role in the network. Thus, while the
former implements an End-System with just two Ethernet ports, the latter is a four-port
bridge with advanced switching capabilities. The system architecture of Fig. 8.2 shows
that some cores are instantiated on a per port basis, and that others have FPGA slice
usage dependent on their number of bus interfaces, as is the case of the AXI Switching
Core. Hence, resource consumption is bound to be dependent on the number of ports
instantiated in a particular node. Consequently, the WR-ZEN node will require relatively
reduced FPGA logic and can be fitted in the small, low-cost Z-7015 device (70% overall
usage), whereas the MAIN node will require greater resources and will have to use the
larger Z-7030 device (60% overall usage) to support its four-port design. These figures
were achieved with a design that prioritized moderate FPGA footprint, which led to
some compromises in the implementation, like the use of relatively modest 4 kB buffers
for each queue in the traffic shapers to reduce the utilization of Block RAM primitives.

8.5 EXPERIMENTAL VAL IDAT ION. ELECTR ICAL SUBSTAT ION FIELD TESTS

The main premise of this work is to show that a TSN system can manage to successfully
integrate all the data flows of electrical substations, especially the critical ones, over
Ethernet networks extending the capabilities of the communication buses currently de-
scribed in the IEC 61850 standard. Specifically, the proposed TSN system can implement
the underlying communication layer of a Smart-Grid-enabled substation and, as a key
difference from existing approaches, it allows for the joint transmission over shared phys-
ical links of internal control signaling [180], monitoring messages, and digitized analog
triggers associated with critical events, which typically required the use of dedicated
analog interfaces. Consequently, a Proof-of-Concept system demonstrating the feasibility
of the application of TSN for Smart Grid was deployed in the real-life substation facility
of the local electricity provider Grupo Cuerva S.L. [167] in Granada (Spain). This facility
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features a typical substation environment for performing a number of field tests for the
TSN PoC, and its components can be examined in Fig. 8.3.

8.5.1 The Substation Environment

The substation architecture consists of a central control element, the CPX Substation
Central Unit from ZIV Automation [181], that interfaces with the rest of the equipment
in the facility. The CPX Substation Central Unit operates on the Substation Level and
is therefore tasked with implementing a number of supervisory and control processes
over the rest of the equipment operating on the lower Bay Level. Units such as the
Transformer Control Unit (ZIV RTN) or the Line Protection Unit (7IRD) stand out
amongst the elements in this latter level. The supervisory tasks over these units are
supported using dedicated TX/RX optical fiber link pairs. These links do not implement
a proper Ethernet network, but are rather used to efficiently implement an electrically
isolated communication channel. Additionally, the entire substation can be remotely
managed using a dedicated RF link that interfaces with the CPX unit.

Figure 8.3
Simplified system diagram of components and architecture in an electrical substation from Grupo Cuerva
S.L., where the field tests were conducted. Image from [169].

8.5.2 The Substation Field Tests

The field tests conducted in this work consisted of the deployment of a TSN system oper-
ating on the Bay level of the substation facility in order to evaluate the performance of the
application of a TSN network for the transmission of highly critical data, GOOSE control
signaling, and Best-Effort messages. To this end, the experimental TSN demonstrator
interconnected the 7IRD Line Protection Unit with other substation equipment, as shown
in the diagram of the PoC system of Fig. 8.4 or the picture of the actual deployment in
the substation facility of Fig. 8.5.
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Figure 8.4
Diagram of the experimental TSN network deployed in the substation, highlighting its application for trans-
mitting digitized signals originating from the 7IRD unit as high-priority TSN messages. Image from [169].

These tests made use of two main switching devices (the MAIN TSN nodes), and two
end-systems (the WR-ZEN nodes) for establishing the demonstrator TSN network. In this
setup, one of the WR-ZEN nodes assumes a TSN Talker role (ZEN-Pub) and is tasked
with digitizing the analog triggers produced at the 7IRD unit and forwarding them as
critical TSN messages. These messages will be received at the other Listener end-system
(ZEN-Sub), which regenerates the analog trigger on reception of these messages. The
digitalization and analog conversion of the critical messages is supported by the DIO
feature of the WR-ZEN nodes. The network also uses two laboratory PCs for producing
additional background traffic in the TSN system. These flows will be injected from
the Emitter PC and forwarded to Receiver PC over the two MAIN nodes (MB0 and
MB1). These flows include GOOSE substation signaling, which is generated with a
custom application developed at CIRCE Foundation [182], and Best-Effort traffic, which
is emitted with a general-purpose traffic generator [183].

8.5.3 Communication Flows defined for the Substation Field Tests

Consequently, the following communication flows were established during the experi-
ments:

• A high priority flow (VLAN Priority: 3/2). The messages resulting from the
digitalization of the analog triggers originating from the 7IRD node which are
forwarded from the ZEN-Pub to ZEN-Sub nodes.

• A medium priority GOOSE signaling stream (VLAN Priority: 1). The TSN stream
between the two laboratory PCs simulating the presence of background substation
signaling with the GOOSE protocol.

• A Best-Effort flow (VLAN Priority: 0). Bulk Ethernet messages simulating the
presence of additional, Internet-like traffic, typically non-critical monitoring.
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Figure 8.5
Picture of the experimental setup used in the electrical substation where the field tests were conducted, high-
lighting the actual test equipment, measuring instruments, and the connection to the 7IRD Line Protection
Unit. Image from [169].

8.5.4 Configuration Parameters for the substation field tests

The substation field tests have the objective of comparing the performance of the legacy
transmission mechanism of critical events in substation facilities to what is achievable
with a TSN Proof-of-Concept system. To this end, two different experiments, whose
settings are outlined in Table 8.1, were devised: Performance of the Legacy Analog System,
for studying the former, and the TSN Proof of Concept, for the latter.

8.5.5 Experimental Validation at the Substation Facility

This section presents the field tests carried out at the substation facility to demonstrate
the feasibility of the application of TSN networks for supporting Smart Grid deployments.
These tests translate into the implementation of two major experiments with the goals of
characterizing the legacy systems of the substation and showing the potential application
of a TSN network in this environment, respectively.

An overview of these experiments is contained in Table 8.2, where each experiment is
introduced, its goals are presented, its experimental setup and measurements are briefly
described, and its corresponding outcome is outlined. The results of each experiment are
also discussed in greater detail in the points 8.5.5.1 and 8.5.5.2.

8.5.5.1 Performance of the Legacy Analog System

This experiment was meant to establish the reference, baseline performance of the legacy
substation equipment that is used for propagating high priority signals and events. In the
substation facility, this mechanism consisted of a dedicated analog link that transmitted
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Configuration settings applied for the substation field tests

Configuration Parameters Performance of the Legacy Analog
System TSN Proof of Concept

Traffic Classes & Priority N/A (Analog triggers for signaling
critical events)

– gPTP: PCP 3

– Critical: PCP 3

– GOOSE: PCP 1

– Best-Effort: PCP 0

Scheduling Policy N/A Configuration Set I (Table 8.5)

Network Routing Analog link from the 7IRD Unit to
the Substation Relay Default Routing in Table 8.4

Timing Distribution N/A
ZEN-Pub Node operating as Grand

Master for all Nodes in the TSN
System

Table 8.1
Configuration parameters applied for the characterization of the analog system and the TSN Proof of Concept.
The PCP (Priority Code Point) applied for the VLAN tag of each traffic class also denotes their corresponding
TAS queue. Table from [169].

critical events in the form of simple analog triggers. These triggers, which originate
from the 7IRD Unit, are then delivered to a substation relay that interfaces with the
appropriate controller.

Thus, the experiment characterized their propagation time along this analog circuit.
As a result, it was found that the transmission latency was around ⇠ 209 µs, as can
be observed in Fig. 8.6a (Left). It can be seen that the dedicated analog link is a
reliable means for transporting critical signals; however, this comes at the expense of
forfeiting transmission speed, as the circuit incurs additional latency by activating an
electromechanical substation relay, and larger deployment costs, as these links have to be
set up separately for each type of event handled at the substation.

8.5.5.2 Feasibility of the TSN Proof of Concept

This experiment was used to demonstrate the feasibility of applying a TSN network to
support the transmission of critical process data over shared Ethernet interfaces while
other substation traffic is also present in the background, such as GOOSE or Best-Effort
flows. This was shown with a Proof-of-Concept setup that measured the propagation
time of critical events that were digitized and forwarded over the TSN system. It was
found that the same critical events originating from the 7IRD Unit could now be delivered
within 30 µs, that is, around ⇠ 169 µs faster delivery than the legacy analog system. This
can be seen in Figs. 8.6b and 8.6c (Center and Right). This delivery time corresponds to
the propagation time along the three hops of the network.

These results are a significant Proof of Concept of the application of TSN for Smart
Grid-capable substations. It is also proof of its scalability and versatility, as multiple
flows with different levels of criticality and priority can now be deployed sharing the
same physical TSN link, thereby removing the need for costly dedicated analog interfaces
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Experiments performed for the substation field tests
Configuration

Parameters Objective Laboratory Setup Characterization
Measurements Results

Performance of the
Legacy Analog System

Assess the
performance of

the analog-based
transmission

mechanism at the
substation

Injection of single
analog trigger
from the 7IRD

Unit.

Measure time difference
between rising edges of
analog triggers at points

1b) & 2b) (Fig. 8.4).

– 209 µs TX latency using
the legacy analog system.

– Fig. 8.6a (Left).

– Discussion in 8.5.5.1.

TSN Proof of Concept

– Measure the
performance of
the TSN System.

– Compare
against that of
the legacy, analog
system.

– Inject single ana-
log trigger from
the 7IRD Unit into
the DIO input of
the ZEN-Pub node.

– Generate
GOOSE from
Emitter PC (⇠0.6
Mbps).

– Produce Best-
Effort video from
the Emitter PC (50
Mbps).

– Measure end-to-end la-
tency for the critical TSN
messages as the time differ-
ence between 1b) & 2c) (Fig.
8.4).

– Characterize propaga-
tion time over the TSN
System.

– 30 µs propagation time
over the TSN system for
critical messages.

– Faster than the legacy
system with the substation
relay (Figs. 8.6b [Center]
and 8.6c [Right]).

– Successful integration of
Best-Effort, GOOSE, and
critical messages (digitized
triggers) over TSN.

– Discussion in 8.5.5.2.

Table 8.2
Overview of the experiments at the substation facility characterizing the Legacy System and the TSN PoC.
Table from [169].

with complex electromechanical components that were often required for propagating
critical signals.

The level of performance of this TSN flow aggregation mechanism is largely determined
by the configuration parameters supplied by the user, which can enormously impact
variables such as the packet loss ratio or the end-to-end latency. The influence of these
parameters could not be studied at the substation where the TSN PoC demonstrator
was deployed, as the electromechanical elements of the 7IRD Unit and the substation
relay can only be safely activated a limited number of times before causing excessive
wear. Hence, this characterization was performed thoroughly in a controlled laboratory
environment, where the TSN demonstrator was replicated and larger data sets could be
compiled.
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a b c

Figure 8.6
Results obtained in the tests carried out at the substation; Figs. 8.6a (left), 8.6b (center), and 8.6c (right).
Signal probing points referred to Fig. 8.4. Left (Fig. 8.6a): Propagation latency through the analog circuit of
triggers generated at the 7IRD: ⇠ 209 µs. Yellow trace: injection at (1-b)). Blue trace: output at substation
relay (2-b)). Center (Fig. 8.6b): Propagation delay of digitized critical trigger through the TSN system: ⇠ 30
µs. (T) indicates the oscilloscope trigger at 1-b), the Yellow trace contains the regenerated trigger at 2-c), and
the Blue trace shows the output of the analog system at 2-b). Right (Fig. 8.6c): The TSN network propagates
event messages around 169 µs sooner than the legacy equipment. Yellow trace: regenerated trigger at 2-c).
Blue trace: output of the analog system at 2-b). Image from [169].

8.6 SYSTEM CHARACTERIZAT ION. LABORATOR Y EXPER IMENTS AND RESUL TS

As introduced at the end of Section 8.5, different settings can vastly affect the outcome of
the data processed and propagated in a TSN system. In light of this, an in-depth charac-
terization of the system was carried out in a controlled laboratory setup that replicated
the original environment of the substation. This was accomplished by characterizing
the different elements of the system, namely the performance of the timing distribution
mechanism or the end-to-end latency and packet-loss ratio attainable under different
settings. As a result, it is expected that these experiments will provide some valuable
insight into the production of meaningful configuration designs for TSN systems at Smart
Grid substations.

8.6.1 Elements of the Experimental Laboratory Test Bench

The laboratory test bench presented in this section is intended to replicate that of the
electrical substation field tests so that the system can be characterized thoroughly. Thus,
the setup used for conducting the laboratory experiments will be similar to that presented
in Section 8.5, but will introduce a few modifications to suit the new laboratory testing
environment. These are introduced below.

• The TSN network nodes. As before, the TSN network will be formed by two
different types of devices: The End-Systems, which use the WR-ZEN nodes, and
the main switching nodes, which are implemented with the two TSN MAIN nodes.

• The substation event simulator. As opposed to the field tests, which used the 7IRD
unit for producing critical event analog triggers, the laboratory characterization
made use of an off-the-shelf signal generator instead. This signal generator can
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produce analog triggers at varying rates, which will be used for producing a larger
number of events for the system characterization than could otherwise be generated
at the substation environment.

• The measurement instrumentation. The experiments characterize the performance
of the system in terms of its timing distribution accuracy, propagation delay of
critical messages, packet loss ratio, and attainable bandwidth. These two latter
parameters will be measured using a regular network sniffing tool [92], while
the first two ones will be measured with a TDC Counter instrument [88]. The
TDC Counter will replace the oscilloscope given its efficiency to perform multiple
back-to-back measurements of end-to-end latency values, which are stored as large
data sets that can be used to easily derive statistical indicators.

• The substation traffic simulators. The laboratory validation uses the same two
laboratory PCs for emitting and receiving both Best-Effort traffic and GOOSE
signaling. Traffic integrity statistics will be derived at the Receiver PC.

This experimental setup is only concerned with characterizing the performance of the
TSN system and hence the analog transmission circuit found at the substation is not
replicated for these experiments. A picture showing the laboratory setup that was built
for conducting the experiments presented in this section is included in Fig. 8.7.

Figure 8.7
Picture of the laboratory setup replicating the substation field test environment. In the image, the network
nodes, traffic flows, and connections used for conducting the laboratory validation tests are highlighted. Image
from [169].

8.6.2 Configuration Parameters for the Experimental Characterization

The laboratory characterization has the goal of determining the effects that the application
of different configuration parameters can pose on the achievable determinism of critical
messages as well as the integrity of the lower priority flows traversing the network. To
this end, five different experiments have been conducted to further analyze the operation
of the elements of the TSN system, such as the traffic aggregation mechanism or its
timing distribution component, by replicating the environment of the substation field
tests in a controlled laboratory setup.
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Each experiment will thus make use of different configuration sets aimed at producing
diverse effects in specific aspects of the system; namely on its ability to guarantee
timely deliveries of critical messages or the integrity of the lower priority messages.
In general, TSN systems need to be supplied with two main sets of parameters for
their operation: a set of Traffic Classes for associating different types of traffic with
VLAN-tagged TSN streams and a traffic shaping policy (GCL). Traffic classes can be
identified in the presented solution by providing specific Ethernet header fields, like
the "Destination MAC Address", and an associated priority value (PCP code). In order
to minimize resource usage, this implementation was customized to handle priorities
ranging from 0 (Best-Effort) to 3 (critical). The traffic shaping policy will be defined
by a main scheduling cycle time (Tcyc) divided into constituting intervals (In) and will
have to be applied on the shapers of the egress ports of the nodes in the network. The
combined action of the traffic classes and the scheduling policies are the main drivers
of the achievable determinism, but the user also needs to provide routing information
for each traffic class and configure at least one of the nodes in the system to operate
as a gPTP synchronization Master. Table 8.3 contains a summary of the configuration
parameters that were tapped for each subsystem of the TSN network in order to perform
each characterization experiment.

Configuration settings applied for the laboratory validation tests

System
Component

Experiment I
(Timing)

Experiment II
(Baseline)

Experiment III
(Highest

Attainable Rate)

Experiment IV
(Moderate Use)

Experiment V
(Worst Case)

Traffic
Classes &
Priority

gPTP: PCP 3

Critical: PCP 3

GOOSE: PCP 1

Best-Effort: PCP 0

gPTP: PCP 3

Critical: PCP 2

GOOSE: PCP 1

Best-Effort: PCP 0

Scheduling
Policy

All Queues Open
All the Time Configuration Set I Configuration Set

II
Configuration Set

III

Network
Routing

No TSN flows
routed Default Routing in Table 8.4

Timing
Distribution ZEN-Pub Node operating as Grand Master for all Nodes in the TSN System

Table 8.3
Configuration parameters applied for performing each experiment in the laboratory validation tests. The PCP
(priority) values indicated for the VLAN tag of each type of message also denote their corresponding TAS queue.
Table from [169].

In particular, the Routing settings can be examined in Table 8.4, which indicates that the
critical traffic is exchanged between the ZEN nodes, whereas the GOOSE and Best-Effort
flows are exchanged between the two laboratory PCs.

Furthermore, the scheduling policies applied throughout the experiments can be seen
in the Tables for the Configuration Sets I (Table 8.5), II (Table 8.6), and III (Table 8.7). Sets
I and II share the same structure, as they define a 4 ms periodic schedule divided into
three different intervals, with the main difference between the two of them being that
Set II enforces a more restrictive policy that limits the transmission of critical frames to a
designated slot with a segregated queue (Q2) from that of gPTP synchronization. Set III
studies the effects on the variation of the end-to-end latency of critical messages and the
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TSN Stream Routing Settings

Start Node Hop#0 Hop#1 End Node
ZEN-Pub.[Critical TSN

Stream]
ZEN-Sub

PC Emitter.[GOOSE
Signaling & Best-Effort]

MB0 MB1
PC Receiver

Table 8.4
Routing configuration used in the laboratory validation experiments. All the TSN flows are forwarded over the
MAIN TSN nodes to the appropriate recipient. Table from [169].

integrity of the rest of the traffic in the network when a number of scheduling policies
are iteratively applied to the system.

Configuration Set I

Interval
No.

Duration
(ms)

Queue Settings
[Q0|Q1|Q2|Q3]

Description

I0 2 1001 BE & Critical & gPTP

I1 1 0101 GOOSE & Critical & gPTP

I2 1 0001 Critical & gPTP

Table 8.5
Configuration applied to Experiments II (8.6.3.2) and III (8.6.3.3). The table defines a 4 ms periodic cycle
divided into three different intervals where the critical flow and the gPTP messages share the same queue (Q3).
Table from [169].

Configuration Set II

Interval
No.

Duration
(ms)

Queue Settings
[Q0|Q1|Q2|Q3]

Description

I0 2 1001 BE & gPTP

I1 1 0101 GOOSE & gPTP

I2 1 0011 Critical & gPTP

Table 8.6
Configuration applied to Experiment IV (8.6.3.4). The table defines a 4 ms periodic cycle divided into three
different intervals where the critical flow gets its own separate queue (Q2) from the gPTP messages (Q3). Table
from [169].

8.6.3 Characterization Experiments

This section covers the laboratory characterization that expands on that performed at the
substation facility of the TSN system. This is achieved through a series of experiments
with a twofold goal. On the one hand, they will aim to characterize the attainable
performance and operation of the system (Experiments I through IV), whereas, on the
other hand, they will also attempt to delimit the effects that the application of different
settings can exert on the achievable determinism of critical TSN flows (Experiment V).
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Configuration Set III
Scheduling Policy Interval 0 Interval 1 Interval 2

Iteration No. Total Cycle (µs) Duration (µs) Configuration
[Q0|Q1|Q2|Q3]

Duration (µs) Configuration
[Q0|Q1|Q2|Q3]

Duration (µs) Configuration
[Q0|Q1|Q2|Q3]

0 48 24 12 12
1 96 48 24 24
2 192 96 48 48
3 384 192 96 96
4 768 384 192 192
5 1536 768 384 384
6 3072 1536 768 768
7 6144 3072 1536 1536
8 12288 6144

BE & gPTP
[1001]

3072

GOOSE & gPTP
[0101]

3072

Critical & gPTP
[0011]

Table 8.7
Scheduling policy for the iterative sweep of different scheduling cycle times performed during Experiment V
(8.6.3.5). Each row corresponds to a specific iteration, which is associated with a given cycle time that is
divided into three separate intervals. Table from [169].

A general overview of these experiments is presented in Table 8.8, where each ex-
periment is introduced, along with its goals, the experimental setup that was applied,
the measurements that were performed, and the corresponding outcome that resulted
from the experiment. These outcomes are subsequently discussed in greater detail in the
corresponding discussion sections for each experiment (Sections 8.6.3.1 through 8.6.3.5).

8.6.3.1 Performance of the Timing Distribution System

The timing distribution is one of the crucial components required to ensure proper
operation of a Time-Sensitive Networking system. Thus, its task is to propagate an
accurate time base that will be shared amongst all the nodes that are part of the TSN
network to guarantee the deterministic forwarding of critical messages, as it enables
the synchronous operation of the different time-aware queues throughout the network.
Overall, the achievable determinism of the TSN system is limited by the robustness of its
timing distribution service, that is, the gPTP component, which is characterized in this
experiment.

This characterization was carried out by means of deriving the Allan Deviation (ADEV)
[96], which was calculated by recording PPS time differences between the ZEN-Pub and
ZEN-Sub nodes for 65 hours. The ADEV indicator was then derived and represented
using the AllanTools toolset [97], as shown in Fig. 8.8. The results indicate that the system
remains stable in the long term and behaves linearly as its phase noise corresponds to
that of a Gaussian process. Furthermore, the plot shows that the timing distribution has
a degree of accuracy in the vicinity of tens of nanoseconds (⇠ 10 ns) for averaging times
on the order of one second, which is in the same range as other commercial PTP-based
solutions.

8.6.3.2 TSN Flow Aggregation over Ethernet Links. Baseline Scenario

This test defines the baseline experimental case as it characterizes the system using a
trivial configuration similar to that used during the substation field tests. The results can



8.6 system characterization. laboratory experiments and results 165

Experiments performed for the laboratory tests
Configuration

Parameters
Objective Laboratory Setup

Characterization
Measurements

Results

Experiment I
(Timing)

Measure the performance
of the timing distribution

system.

– ZEN-Pub acting as Tim-
ing Master.

– MB0, MB1, and ZEN-
Sub are Timing Slaves.

-Measure PPS time
difference between the

ZEN-Pub and ZEN-Sub
nodes (1a) & 2a) in Fig.

8.4).

– Calculation of the Allan Devia-
tion (ADEV) for time synchroniza-
tion stability.

– ADEV Plot (Fig. 8.8).

– ⇠10 ns, PTP-like accuracy.

– Discussion in 8.6.3.1.

Experiment II
(Baseline)

Characterize the TSN Link
Aggregation mechanism

with trivial configuration.

– Inject 1 Hz triggers into
the DIO of the ZEN-Pub.

– Generate GOOSE from
Emitter PC (@ ⇠0.6 Mbps).

– Produce Best-Effort
video from the Emitter PC
(4 Mbps).

– Measure end-to-end la-
tency variation for the crit-
ical flow (1b) & 2c) in Fig.
8.4).

– Study level of traffic
integrity preservation for
the GOOSE and Best-Effort
flows.

– Critical Traffic Latency in Table
8.9.

– Traffic Integrity in Table 8.10.

– Verified end-to-end determinism
of critical messages and aggregation
of other flows (BE, GOOSE).

– Discussion in 8.6.3.2.

Experiment III
(Highest

Attainable Rate)

Characterize resilience of
the TSN Link Aggregation

mechanism by
determining the highest
attainable transmission

rate of critical traffic.

– Incremental sweep on
trigger generation rates in-
jected into the DIO of the
ZEN-Pub.

– Generate GOOSE from
Emitter PC (@ ⇠0.6 Mbps).

– Produce Best-Effort
video from the Emitter PC
(4 Mbps).

– Determine trigger rate
that causes critical packet
losses during network
transmission (1b) & 2c) in
Fig. 8.4).

– Detected as non-zero to-
talization condition in the
Counter instrument.

– Highest achievable rate under
current configuration: 670 Hz.

– Subsequent experiments will gen-
erate critical messages at 100 Hz.

– Discussion in 8.6.3.3.

Experiment IV
(Moderate Use)

Study the effects of the
application of a more
restrictive scheduling
policy with separate

queues for critical and
gPTP traffic.

-Measure impact of new
scheduling on the

end-to-end latency of
critical traffic (1b) & 2c) in

Fig. 8.4).

– Critical traffic Latency in Table
8.11.

– End-to-end latency as a function
of cycle & interval time.

– Discussion in 8.6.3.4.

Experiment V
(Worst Case)

In-depth characterization
of the influence on

determinism of different
scheduling designs by
applying an iterative

sweep of policies with
growing cycle times and

interval lengths.

– Inject 100 Hz trigger
signals for producing
critical traffic into the
DIO input of the
ZEN-Pub.

– Generate GOOSE
from Emitter PC (@
⇠0.6 Mbps).

– Produce Best-Effort
flow from the Emitter
PC (50 Mbps).

– Measure end-to-end la-
tency of critical traffic for
each iteration of Configu-
ration Set III (1b) & 2c) in
Fig. 8.4).

– Measure integrity of the
GOOSE and Best-Effort
flows for each iteration of
Configuration Set III.

– Critical traffic Latency in Table
8.12.

– Traffic Integrity in Table 8.13.

– Determinism for critical flows
can be set by the scheduling policy.

– Found effects of cycle & interval
in (8.1) for this scenario.

– Discussion in 8.6.3.5.

Table 8.8
Overview of the experiments in the laboratory validation environment. Table from [169].

be examined in Tables 8.9 and 8.10, which show the transmission latency of critical TSN
messages and the level of integrity of the lower priority flows in the network (GOOSE
and Best-Effort), respectively.

The experiment measured the operation of the system for 300 seconds and found that
the applied scheduling policy yielded minimized end-to-latency for the critical messages
transmitted over the network. This minimized latency oscillates between 25.8 µs, which is
associated with the message propagation time, and a peak of 38.7 µs, which is accounted
for by the effect of interfering gPTP traffic sharing the same queue (Q3) as the critical
traffic, as can be seen in Table 8.9. Hence, in this experiment the main variable affecting
the determinism of the critical flow is its associated priority regardless of the interval
distribution in the scheduling cycle, which in this case was set to a 4 ms cycle (Tcyc) with
a 1 ms interval for the critical traffic (I2). As the traffic shapers implement a strict priority
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Figure 8.8
Allan Deviation plot showing the degree of accuracy and timing distribution stability calculated for the gPTP
synchronization component of the TSN system after recording PPS difference samples for approximately 65
hours. Image from [169].

selection mechanism when several queues are active during the same interval, having
the critical flow share the higher priority queue of gPTP (priority 3), which must always
be open, would yield this minimized end-to-end latency.

Furthermore, it was shown that this particular policy allows the preservation of the
integrity of the GOOSE substation signaling messages at the expense of the Best-Effort
traffic, which undergoes minor degradation (< 1%) under this configuration (Table 8.10).

Critical Traffic Delivery Jitter

MAX (µs) min (µs)
Peak-to-Peak

(MAX-min) (µs)
Std.Dev. (µs)

38.70 25.80 12.938 1.173

Table 8.9
Transmission latency associated with the highly critical traffic in the baseline characterization scenario. Table
from [169].

GOOSE Best-Effort (BE) Results

Cycle
(µs)

NTX
[pckts]

NRX
[pckts]

BW(TX)
[Mbps]

BW(RX)
[Mbps]

NTX
[pckts]

NRX
[pckts]

BW(TX)
[Mbps]

BW(RX)
[Mbps]

GOOSE PL
(%)

BE PL
(%)

4000 129493 129493 0.573 0.573 698250 693252 3.9 3.8 0 0.716

Table 8.10
Summary of the traffic integrity level for the medium priority and Best-Effort flows traversing the network
in experiment 8.6.3.2, as indicated in the Packet Loss (PL) entries. In the table NTX and NRX indicate the
number of packets sent/received, and BW(TX) and BW(RX) indicate the measured bandwidth on transmis-
sion/reception. The integrity of the medium priority GOOSE signaling is preserved at the expense of the
Best-Effort messages, which undergo minor degradation (< 1%). Table from [169].
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8.6.3.3 TSN Flow Aggregation over Ethernet Links. Highest attainable rate for
critical traffic

The goal of the experiment was to determine the highest generation rate of critical
messages under the baseline configuration that allows their transmission without incur-
ring any data losses. This was measured by totalizing the number of critical messages
forwarded from the ZEN-Pub node to the ZEN-Sub node, and then detecting packet
losses as non-zero counter totalization.

It was determined that the highest attainable critical message transmission rate was
670 Hz for this experiment and configuration set in particular, and that higher rates gave
rise to congestion losses. Consequently, the subsequent experiments will generate critical
messages at 100 Hz in order to produce larger data sets for deriving statistical indicators.

8.6.3.4 TSN Flow Aggregation over Ethernet Links. Moderate Link Utilization
with Best-Effort Traffic.

This experiment studies the effects of the application of a more restrictive scheduling
policy, whereby critical messages will now have a separate, designated queue (Q2) which
only gets activated during a specific interval of the Configuration Set II (Table 8.6). The
synchronization queue (Q3) is always active. Thus, it is expected that critical messages
will be prone to be severely impacted by the user-designed schedule applied in the
experiment. This is shown in Table 8.11, where it can be seen that the end-to-end latency
variation is directly related to the length of the scheduling cycle.

Critical Traffic Delivery Jitter

MAX (µs) min (µs)
Peak-to-Peak

(MAX-min) (µs)
Std.Dev. (µs)

3030 26 2999.013 900.075

Table 8.11
Transmission latency associated with the critical traffic from experiment 8.6.3.4. The test uses a segregated
queue for the critical traffic (Q2) and a long scheduling cycle with a small service slot for Q2, resulting in
significant end-to-end latency variation (⇠3 ms). Table from [169].

Specifically, this policy still allows the realization of a minimum ⇠26 µs latency, which
corresponds to the minimum propagation and processing time through the Ethernet links.
However, the maximum end-to-end latency will now be determined by the relationship
between the cycle time of the scheduling policy of the Configuration Set II and the length
of time that the queue for critical traffic remains idle. Hence, it should be noted that
unlike the case of Experiment 8.6.3.2, the choice of a priority value other than 3 for the
critical messages will result in the fact that the scheduling cycle and its internal interval
distribution will now be the decisive factors for establishing the end-to-end latency of a
given flow.

This is confirmed in the experimental data, where the ⇠3 ms latency variation measured
corresponds to the length of time that the critical message queue is inactive, as the applied
policy defines a 4 ms cycle (Tcyc) with a 1 ms slot when Q2 is active (I2). Besides, as the
critical traffic generator is not synchronized to the TSN system time, the 900 µs standard
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deviation of the end-to-latency of the critical messages indicates that most critical frames
are forwarded within the 1 ms slot when Q2 is active. This leads to the conclusion that a
poorly designed schedule could result in catastrophic system operation, causing critical
data to miss delivery deadlines or even experience congestion losses.

8.6.3.5 TSN Flow Aggregation over Ethernet Links. Worst-case End-to-End La-
tency for Critical Traffic and Effects on the Integrity of Lower Priority
Flows.

The tests carried out in this section set out to delimit the influence of different scheduling
policies on the attainable determinism for critical messages and the integrity of the
lower priority flows in the network. This was achieved by applying the different policies
defined in each iteration of the Configuration Set III (Table 8.7).

The results of the end-to-end latency for the critical messages under each iteration can
be examined in Table 8.12, where it can be seen that the relationship determining the
maximum latency variation between the schedule cycle time and the duration of the slot
for critical traffic that was pointed out in 8.6.3.4 still holds, and can be described with the
expression in (8.1).

Latmax = Tcyc � I2 + tprop + tdel (8.1)

Critical Traffic Delivery Jitter for each Iteration
It.

No.
Cycle
(µs)

MAX
(µs)

min (µs)
Peak-to-Peak

(MAX-min) (µs)
Std.Dev.

(µs)
0 48 81.225 27.101 54.124 13.814

1 96 117.201 27.019 90.182 25.168

2 192 187.464 27.052 160.412 50.147

3 384 332.210 27.082 305.128 97.818

4 768 619.064 27.053 592.01 193.117

5 1536 1192.346 27.085 1165.261 382.413

6 3072 2340.611 27.072 2313.539 764.557

7 6144 4644.351 27.057 4617.294 1525.328

8 12288 9251.809 26.992 9224.817 3050.670

Table 8.12
Values for the end-to-end latency associated with the critical flow obtained for each iteration defined in Table
8.7. Table from [169].

This expression describes the effect that the configuration applied for the experiment
has on the latency variation. Hence, it was found that the maximum end-to-end latency
was determined by the duration of the scheduling cycle (Tcyc) and the length of the slot
for critical traffic (I2), with the additional contributing delays of the propagation time (27
µs) through the Ethernet links of the TSN system (tprop), and a peak processing time of 17
µs (tdel). This empirical derivation of (8.1) is meant to show that the user would be able
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GOOSE Best-Effort (BE) Results (Packet Losses %)
Cycle
(µs)

NTX
[pckts]

NRX
[pckts]

BW(TX)
[Mbps]

BW(RX)
[Mbps]

NTX
[pckts]

NRX
[pckts]

BW(TX)
[Mbps]

BW(RX)
[Mbps]

GOOSE
PL (%)

BE PL(%)

48 24371 24371 0.099 0.098 1233030 1233026 49 49 0 0.000324

96 31549 31549 0.129 0.129 1232509 1232505 49 49 0 0.000325

192 32298 32296 0.133 0.132 1206781 1206777 49 49 0.006192 0.000332

384 142503 142503 0.577 0.577 1234170 1234169 49 49 0 8.1026 · 10�5

768 142309 142309 0.577 0.577 1235835 1235835 49 49 0 0

1536 141115 141115 0.569 0.568 1228597 1228593 49 49 0 0.000326

3072 141771 141771 0.577 0.576 1241574 1013543 49 40 0 18.366283

6144 141044 141044 0.577 0.577 1229649 809817 49 32 0 34.142426

12288 139467 139467 0.576 0.575 1233620 716424 49 28 0 41.925066

Table 8.13
Summary of the traffic integrity level for the medium priority and Best-Effort flows traversing the network
throughout the iterations of experiment 8.6.3.5, as indicated in the Packet Loss (PL) entries. In the table, NTX
and NRX indicate the number of packets sent/received, and BW(TX) and BW(RX) indicate the measured band-
width on transmission/reception. GOOSE signaling is preserved, even though some of the policies applied
cause significant degradation for Best-Effort traffic (> 20%). Table from [169].

to adjust the end-to-end determinism by supplying different values for Tcyc and I2 for
the scenario under evaluation with the current choices of priority for the critical flow and
network topology. For instance, a 384 µs cycle (Tcyc) combined with a 96 µs interval for
the critical traffic (I2) should yield a maximum latency of 332 µs, which closely resembles
the experimental data for iteration 3 in Table 8.12 (MAX: 332.210 µs). Other scenarios with
different network topologies or a greater number of flows and priorities might lead to
different expressions that the user should evaluate and leverage to design configurations
that can target the desired levels of determinism.

The level of integrity of the lower priority flows in the network for each iteration of
the experiment was also examined in parallel, as shown in Table 8.13. These results
have a twofold implication. On the one hand, the determinism of critical flows is a
parameter that can be designed for to meet the requirements of a given system (e.g.,
delivery deadlines). On the other hand, there is a compromise with the integrity of the
lower priority flows, which could experience congestion losses with growing cycle times
and comparatively short service slots. This is the case of the iterations under study, where
the Best-Effort can undergo significant degradation in some cases, while the GOOSE
signaling remains protected given its lower bandwidth usage and higher priority.

It is important to note that the buffer depth (4 kB per queue) of the current implemen-
tation is an important factor in the integrity results. The Best-Effort traffic is generated at
a constant rate of 50 Mbps using 1500 B frames and, since a general-purpose OS is used,
occasional bursts may occur. As the Best-Effort queue can only hold two 1500 B frames
at a time when it is idle, we have found that there are cycle/interval combinations where
the occasional frame may be dropped (⇠4 frames on average) for cycles shorter than
1536 µs, and others, like 768 µs, that manage to avoid dropping any messages altogether.
GOOSE traffic uses a higher priority queue with frames of 168 B (26 messages per queue),
but it could still be affected if the traffic were to be emitted in sufficiently large bursts.
This was the case of the 192 µs cycle iteration. These effects would be mitigated using
larger buffers.

Lastly, it is worth noting that the application of the scheduling policies of Set III
produces the maximum end-to-end latency described in the expression in (8.1) when
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applied to the current system. However, more complex topologies with a greater number
of flows may require the derivation of more complicated policies. These policies should
be able to take into account the fact that TSN messages may have different associated for-
warding times as a result of internal processing delays, impact of arbitration mechanisms,
or the use of redundant paths (802.1CB). This latter case is especially sensitive, as the
propagation times of redundant messages over different paths can be widely different.
In the literature there are several works for calculating meaningful policies under such
complex scenarios, and the work in [184] provides a useful framework for assessing the
synchronization error in message forwarding associated with the application of a certain
policy in systems with time-varying delays.

8.7 CONCLUS IONS AND FUTURE WORK

This work has shown the feasible application of a TSN system to a substation environment
to enhance the new Ethernet-based networks that are being deployed in these facilities
during the transition to Smart Grid. It is expected that the use of Smart Grid will
provide a unified framework for managing and handling all the different data flows of
the substation. Ethernet-based networks already allow the transmission of the signaling
data and non-critical messages that are usually propagated in these environments. In
this context, critical event data messages, which cannot be handled by regular Ethernet
networks, could benefit from the use of the proposed TSN system, which would allow
their deterministic transmission alongside the other flows of the substation over the same
Ethernet-based infrastructure. Hence, this would provide Smart Grid-enabled substations
with a flexible networking stack allowing simultaneous propagation of ordinary IP flows,
GOOSE signaling (IEC 61850), or the critical traffic typically found in the supervisory
and control processes on the Bay Level equipment of the substation.

This latter point was proven by devising and deploying a Proof-of-Concept TSN system
in an actual electrical substation from a local power utility [167], where several field tests
managed to show that a TSN system could be successfully applied to unifying all the
communications in the substation over a shared Ethernet-based bus: critical messages
carrying digitized trigger data, medium priority GOOSE signaling from the IEC 61850
standard, and Best-Effort flows.

Next, this work performed an in-depth characterization of the influence of different
configuration parameters on the performance of the system in a controlled laboratory
environment. Thus, this stage started with the evaluation of the gPTP synchronization,
which was pegged to the tens of nanoseconds. After that, the ability of the TSN system
to combine background substation traffic (GOOSE, Best-Effort) with critical flows was
assessed, and it was verified that a deterministic delivery for the critical messages could
be enforced. In this context, the influence of the scheduling policy on the end-to-end
latency of the critical flows was determined to be the result of the combined effect of the
application of different cycle times and interval durations in the traffic shapers: bounded
latencies between 81 µs and 9.251 ms could be achieved with cycles (Tcyc) and critical
intervals (I2) between 48 µs and 12 ms. Hence, it was found that the design of the
traffic-shaping schedule is the chief parameter governing the attainable determinism
for a TSN flow, allowing the user to target application-specific requirements. Overall,
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this has shown that the system is highly versatile and scalable, given its multiple user
configuration options for handling different types of traffic, and flexible enough to
allow the deployment of distributed applications supported with highly accurate gPTP
synchronization (tens of nanoseconds accuracy).

After this characterization work, we have planned a number of future actions, like
the development of a user-directed utility for the centralized configuration of the entire
system or the design of larger TSN switches. Further applications of TSN for Smart Grid
domains could also be considered, like the definition of a Smart Grid Profile for TSN, its
application for monitoring low-voltage grids [185], or the implementation of an OPC-UA
interface over TSN for managing substation equipment.
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Figure 9.1
Overview of the contents of Chapter 9, where we present the application of our TSN system to the avionics of
the Miura 1 microlauncher.

This chapter examines the development of a TSN system to support the avionics of a
microlauncher vehicle. One of our main contributions is that we have demonstrated how
COTS components can successfully be applied to the construction aerospace platforms.
Specifically, we have shown this by deploying an Ethernet-based TSN system to handle
the communication requirements of the Miura 1 sounding rocket. We have validated this
claim with extensive system testing and by building a demonstrator of our proposed
TSN-based avionics network. These tests show that our implementation features the
necessary robustness and determinism to support the communication requirements of
the Miura 1 sounding rocket.

This study is the result of a joint collaboration with Seven Solutions S.L. and GMV
Aerospace SAU; and the results thereof presented in this chapter are a preliminary
version of a submitted journal contribution that is currently under review for future
publication.
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9.1 AEROSPACE MICROLAUNCHERS AND THE CASE FOR TSN IN SPACE.

Microlaunchers are versatile vehicles that have gained notoriety in the context of the
so-called “New Space” endeavors [186]. These are launch vehicles that are usually meant to
deploy relatively reduced payloads of up to 300 kg on most occasions to the lower Earth
orbits (up to ⇠700 km above the Earth’s surface). Hence, these platforms are built with
the goal of providing direct, convenient, and affordable access to space for different actors,
such as businesses, corporations, or governments. They are an alternative to traditional
vehicles like Ariane [187]. As a result, these vehicles follow a different paradigm for
their design from that of traditional space missions: they need faster development cycles,
they usually attempt to pursue the reusability of the vehicles themselves, and fast project
development turnarounds. Hence, these projects prioritize these aspects over the ability
of carrying larger payloads or the greater power of traditional space launchers.

One of the main results of this new design methodology is that manufacturers are
overwhelmingly opting for COTS solutions as a means of reducing development time
or for enhancing interoperability. Furthermore, the use of COTS could also bring in
additional benefits, such as increased computing power or a simplified integration with
components from other suppliers. Although the process for procuring and integrating
COTS elements has to follow strict guidelines for aerospace projects, their use for building
the high-performance computing systems of space vehicles is well-documented, as was
the case of the Demeter microsatellite [188]. Another notable example is the Ariane 6
launch vehicle, which uses an adaptation for space of the COTS-based time-triggered
Ethernet protocol from TTTech [71, 189].

Thus, the design of space vehicles has often relied on the traditional fieldbuses for
aerospace, which are the de-facto standards for the development of space missions.
Some well-known examples, as mentioned in the State of the Art (Chapter 3) are the
MIL-STD-1553B [18] or the Spacewire [62] buses. The former originated in 1978 and has
been widely used; although it is now mostly superseded in favor of Spacewire. Both
solutions could deliver the deterministic, robust, and redundant communications that
are expected in space missions, albeit at the expense of requiring non-interoperable,
vendor-locked equipment.

Consequently, since the dominant trend in the design of “New Space” vehicles is
to opt for interoperable, COTS-based standards and solutions, there is an interest in
replacing these space fieldbuses with Ethernet-based communications. Hence, Ethernet
networks can provide decentralized topologies with interoperable devices, as the standard
is well-known in the engineering community and supported by a large vendor base.
Nonetheless, we had not been able to use these systems for aerospace vehicles up until
recently on account of their best-effort nature. However, with the advent of TSN [30],
the replacement of the multiple legacy fieldbuses for aerospace with an Ethernet-based
interface is technically feasible. As we mentioned in Chapter 3, this can be seen as part
of a larger trend that seeks to replace fieldbuses at large with one “single, true, and open”
standard. Its application to aerospace would be but another one of its profiles. In fact,
given the broad areas of application of TSN technologies for aerospace, there is a growing
interest in the aerospace industry in the development of a standardized specification of a
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TSN profile for space, as evidenced by the ongoing standardization efforts at the TSN
WG [65].

In this context, the study that we present in this chapter looks into the construction and
application of a TSN system to support the avionics of the Miura 1 [190] microlauncher
from GMV [191] and PLD [192]. We use this project to examine the feasibility of applying
TSN to aerospace. We accomplished this by designing a suitable hardware platform for
the avionics nodes of the microlauncher and, in the process, we fitted the nodes with
all the elements of TSN that we posited were needed for supporting the deterministic
communications of an avionics system. Hence, we could consider this design an early
proposal of a TSN profile for aerospace, which we claim should support the use of
802.1AS timing, 802.1Qbv time-aware traffic shaping with frame preemption (802.1Qbu,
802.3br), and seamless redundancy (802.1CB). Furthermore, we supported this with a
real-time OS (RTEMS).

9.2 THE PROPOSAL OF A TSN PROFILE FOR AEROSPACE

As stated previously, there is a growing interest in the development of a TSN profile for
aerospace. Indeed, its specification is currently underway at the TSN WG [30]. We have
proposed a possible profile that could be applied to space and avionics systems. Hence,
given the main components – the “pillars” (Section 3.3) – of TSN, we analyze how we
could deploy TSN systems for these applications. Ultimately, our goal is to ensure that
our avionics implementation uses a) system-wide synchronization, b) bounded end-to-
end latency, c) system management and traffic class identification, and d) robust message
forwarding.

a) The system-wide synchronization, as expected in the specification of TSN, can
be supplied through the gPTP timing described in the 802.1AS [6] standard. In
addition, to enhance the system robustness, we also contemplate the use of the best
master clock algorithm (BMCA). This allows the system to quickly switch over to
a secondary timing source in the event of a failure in the grand master or if the
network path to the time source is severed or becomes unavailable.

b) The bounded end-to-end latency can be supplied with the time-aware traffic shaper
(TAS) defined in 802.1Qbv [9] for the cyclic forwarding of TSN streams during the
time slots of a given GCL schedule. It is also a requirement that we should reduce
the end-to-end jitter of the flows in the microlauncher. As a result, we selected the
feature of frame preemption (802.1Qbu [41] & 802.3br [40]) to achieve this.

c) The system-wide configuration and management can be achieved by supplying
the necessary configuration parameters that the system will in turn use to identify
the different types of traffic (802.1Q [46]), enforce a certain topology, activate the
use of redundant paths, or execute a given GCL schedule. We can achieve this
with resource reservation protocols (802.1Qcc [47]). In this project, we designed a
custom API to this end that could supply these parameters (see 6.3.4).

d) The robust message forwarding that is expected in avionics systems can be
achieved with the corresponding TSN feature of seamless redundancy (802.1CB
[44]). Hence, we could use this component to carry duplicated versions of the most
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critical messages of the system over disjoint physical paths and, thus, ensure the
reception of the most critical data with the use of redundant rings.

The foregoing specification should result in the definition of a minimum working
set of components for implementing an avionics network that is based on TSN-capable
interfaces. Not only is this a major step towards showing a potential application of a COTS
solution to space, it also goes a long way towards starting the definition of an aerospace
profile for TSN. Hence, we claim that this initial specification should contemplate the
use of 802.1AS timing, time-aware traffic shaping (802.1Qbv) with frame preemption
(802.1Qbu & 802.3br), seamless redundancy (802.1CB) for greater robustness, and the
BMCA for improved resilience. We set out to verify this hypothesis by implementing,
and then verifying, the Miura 1 microlauncher that we present in the following section.

9.3 OVER VIEW OF THE MIURA 1 MICROLAUNCHER. THE SYSTEM ARCHITEC-
TURE.

The Miura 1 is a suborbital sounding rocket that falls into the scope the new genera-
tion of low-cost, affordable space vehicles. Its construction is intended to showcase a
demonstration of the technologies that will eventually be deployed in the larger Miura 5
vehicle, which will be able to lift payloads of up to 300 kg to the low Earth orbit (⇠400
km). Thus, the Miura 1 has been developed to adhere to the principles of affordability
and reusability that can be expected of the “New Space” vehicles. We have implemented
the avionics systems of the launcher in accordance with this paradigm. We carried out
this project in the framework of an industrial transfer action with collaborators from
the Andalusian Institute of Astrophysics (IAA) and from our industrial partner Seven
Solutions. We gave a presentation describing our preliminary results and the system that
we built in collaboration with GMV Aerospace and Defense SAU in [193]. Thus, from the
standpoint of the avionics nodes that we had to build, this paradigm placed a series of
requirements that we outline in Section 9.3.1.

9.3.1 System Requirements for the Miura Avionics

Our TSN platform for supporting the avionics of Miura had to enforce several key
requirements. Chief among them was the need to support robust and deterministic data
transmission. We outline the main requirements of our system in the points below, which
will drive the definition of the specifications that we present in Section 9.3.3.

– The communication interface had to be based on the standard, Gigabit Ethernet
links over twisted pair wiring. Furthermore, the TSN system should be capable
of handling flows with multiple priorities, including critical data, and reduce the
overall PDV with frame preemption. In this context, the attainable determinism
had to be better that 50 µs over 10 hops when sending 512-B frames. In addition,
we needed to ensure a robust delivery of data with the use of seamless redundancy.

– The network nodes would be built out of a programmable SoC and feature two
different versions: one with support for a four-port switching device – the Main
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Board –, and a lightweight one – the Secondary Board – for a dual-port node.
Moreover, we make an emphasis on the use of COTS components for its production
and on the moderate resource consumption of the design, which had to allow the
integration with other third-party cores from our partner GMV SAU for performing
mission-related tasks. The nodes should be designed for a suborbital flight with
relaxed radiation resistance constraints.

– The software environment would be based on a real-time OS: RTEMS v5 [152].
This environment would therefore allow us to support the execution of the real-
time user-level tasks for our avionics nodes. Furthermore, we can also provide an
execution environment with enhanced safety with a static memory paradigm for
handling the internal variables of our applications. The RTEMS OS should also
be able to handle the communications over the TSN interface with custom driver
support. In this context, it should also integrate the necessary configuration APIs
for TSN.

9.3.2 An Introduction to the Avionics of Miura 1

The Miura 1 launcher will need to implement a redundant TSN system to handle three
different flows that are commonly found in avionics systems: command and control
traffic, housekeeping telemetry data, and best-effort flows. The first two types of traffic
are generally high-priority and, thus, require the use of redundancy protection. The
latter class is usually composed of either best-effort video feeds or monitoring data. This
specification drove the design of the network architecture that we show in Fig. 9.2.

Figure 9.2
Expected high-level topology of the avionics network of the Miura 1 microlauncher.

This is a ring-style topology with the five different types of nodes that we describe
below.
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• The on-board computer (OBC) handles most flows in the system. It emits and
receives control and telemetry data, and works as a TSN listener (a data sink) for all
the video streams from the launcher. It is built with the four-port Main node and
comes with additional built-in modules, such as a radio frequency interface (RF)
for sending data back to ground control facilities.

• The engine control unit (ECU) handles the telemetry and control traffic. It is built
with the four-port Main board to act as a bridge between the ground node and the
rest of the network of the launcher.

• The sensor and actuator boards (Ni nodes) are intended to interface with the
sensing and control elements of the rocket. Hence, their role is usually to operate
as either TSN listeners or talkers for the processing of commands, telemetry or the
occasional best-effort video feed. In our topology, they are built out of the dual-port
Secondary boards and are placed on the main ring of the network in a daisy-chain
layout.

• The payload nodes (PLk), as implied by their designation, interface with the
payload modules of the launcher. They are placed on their own separate ring,
where they operate as TSN listeners or talkers for handling telemetry or command
messages.

• The ground (GND) node is one of the IC-317x series modules from National
Instruments [194]. It supplies the time synchronization source before the start of
the mission.

As for the classes of traffic that are expected to coexist on the TSN network of the
Miura 1 avionics, we provide a short overview in the following points. Nonetheless, a
more complete description can be found in [195].

– The critical command and control flows normally originate from the sensor/actuator
nodes or the payload nodes; and are routed towards the OBC and ECU units for
further processing or for relaying them to a ground station. These messages may be
associated with control loops (and hence are periodic) or critical alarms. They must
be handled with seamless redundancy (802.1CB) and traffic shapers with frame
preemption (802.1Qbu & 802.3Qbr) to ensure their timely delivery without any data
losses.

– The medium priority housekeeping data are the telemetry messages that are
emitted from all the nodes in the system. They are usually forwarded to the OBC
over redundant paths (802.1CB) to ensure their reception.

– The best-effort flows are the low priority video streams originating from sev-
eral sensor/actuator nodes. They consist of different video feeds emitted at a
constrained rate of 8 Mb/s.

9.3.3 Design of the TSN Avionics Nodes

We have supported the requirements for our use case by supplying a design based on the
Z-7030 device from the Zynq-7000 family [7] from Xilinx. These are devices that feature
a dual-core ARM processor with a separate section of programmable FPGA logic (PL).
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Thus, we can run software components such as an operating system (OS) on the former
and implement custom FPGA cores on the latter that could potentially interface with the
ARM processor.

The architecture of our TSN nodes can be examined in Fig. 9.3. This design is
parameterizable to allow us to target different versions of the architecture with different
FPGA footprint. Thus, we could produce a four-port version for the design of the
Main node, or a lightweight dual-port version for the firmware of the Secondary node.
This architecture is highly versatile and lends itself to multiple applications, such the
experiments with the Smart Grid that we presented in [169].

Figure 9.3
The general, system-level design of the Miura 1 avionics nodes, highlighting its RTEMS-based environment
on the ARM processor and its FPGA-based elements.

9.3.3.1 FPGA firmware of the Avionics Nodes

The design of our TSN nodes relies on the combination of the following subsystems.

9.3.3.1.1 The Ethernet subsystem

This comprises the blocks tasked with supporting the underlying 1-Gb/s Ethernet
communication service of the TSN system. These include several off-the-shelf and custom
elements: The Xilinx DMA [145] for forwarding Ethernet data frames, a preemptable
Ethernet MAC (802.3br) adapted from [148], RGMII/GMII bus infrastructure, and an
external transceiver (PHY).
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9.3.3.1.2 The timing subsystem

This ensures the deterministic operation of the TSN node by providing a common time
reference for synchronizing the TSN traffic shapers. It is supported by the PTP hardware
clock (PHC), which holds this time signal internally. It is in turn disciplined by the gPTP
software on the ARM PS. This also includes the time-stamping units (TSUs) of the node
for producing the hardware time stamps used by the gPTP protocol.

9.3.3.1.3 The TSN and switching subsystem

This takes care of the core functionality of the nodes: the deterministic forwarding
amongst multiple ports. Consequently, the subsystem features data switching intercon-
nects (“Primary” and “Forwarding”); time-aware traffic shapers for each port (802.1Qbv)
that are complemented with frame preemption (802.1Qbu); VLAN modules (802.1Q)
for traffic identification, flow routing, and redundant transmissions; and a Dropper
Module for discarding duplicate packets when the seamless redundancy feature is in use
(802.1CB).

9.3.3.2 FPGA Resource Utilization

It is a requirement in our design to conserve resources and maintain overall usage below
60% to allow the integration with other mission FPGA cores. Hence, our architecture
represents a compromise between deterministic performance and the correspondingly
sensible usage of resources that this requirement entails.

We found that the main drivers of resource consumption were the TSN TAS traffic
shapers, the VLAN modules, and the packet forwarding stages. They demand large
amounts of block RAM (BRAM) primitives and general look-up table (LUT) logic for
implementing buffers, finite state machines and traffic identification engines. As a
result, we adhered to the approach that we outlined in Section 7.7 for implementing
this architecture and preserving resources at the same time. Thus, this involved design
decisions such as the use of shared VLAN modules between every two ports, support
for 16 rules in the VLAN matching engine, the customization of the TAS to handle just
four different priorities (queues), the use of small buffers (4 kB) for the TAS queues,
or replacing the main comparators in the VLAN module with DSPs. The internal
transceivers of our Z-7030 device were left idle, as we used an external PHY.

The main result of this design is that we can fit our architecture into the Z-7030 device
whilst also allowing for the integration of other mission-related IP cores. This has resulted
in an architecture that uses comparably fewer resources than other alternatives, like that
of Xilinx [164]. In fact, the TSN architecture from Xilinx can only be targeted to larger
Zynq-7000 or UltraScale devices to attain a similar level of features. The results of Table
9.1 show how our architecture can comply with these requirements by achieving overall
LUT usage of ⇠60% and ⇠45% for the Main and the Secondary nodes, respectively. We
obtained these utilization figures by combining our IP cores according to the approach
that we outlined in Section 7.7.



9.3 overview of the miura 1 microlauncher . the system architecture . 181

Table 9.1
Resource consumption of the TSN implementation for the avionics nodes on the Z-7030 device.

Resource usage of the FPGA subcomponents

Module Slice LUTs Slice Registers Multiplexers BRAM DSPs
Xilinx DMA 2128 2.71% 3681 2.34% 1 0.002% 2 0.75% 0 0%

1G Ethernet MAC & Buffering 1581 2.01% 1948 1.24% 12 0.020% 6 2.26% 0 0%

GMII to RGMII Bridge 62 0.08% 132 0.08% 0 0% 0 0% 0 0%

Ethernet Transceiver* 0 0% 0 0% 0 0% 0 0% 0 0%

Time-Stamping Unit (TSU) 1463 1.86% 2016 1.28% 0 0% 2 0.75% 0 0%

PTP Hardware Clock (PHC) 980 1.25% 1159 0.74% 2 0.003% 0.5 0.19% 0 0%

Switching Interconnects (a) 1796 2.28% 1798 1.14% 0 0% 9 3.40% 0 0%

Switching Interconnects (b) 545 0.69% 767 0.49% 0 0% 4.5 1.70% 0 0%

TSN VLAN Core 4220 5.37% 4624 2.94% 55 0.093% 3.5 1.32% 8 2%

Dropper Module 854 1.09% 1697 1.08% 6 0.010% 0 0 % 34 8.50%

Time-Aware Traffic Shaper (TAS) 1813 2.31% 3089 1.97% 99 0.168% 20 7.55% 0 0%

AMBA AXI Bus Infrastructure (a) 6150 7.82% 5221 3.32% 0 0% 0 0% 0 0%

AMBA AXI Bus Infrastructure (b) 3488 4.44% 3110 1.98% 0 0% 0 0% 0 0%

Implementation Totals
(a) Main: 4 Ethernet Ports 46408 59.04% 62587 39.81% 566 0.960% 136.5 51.51% 50 12.5%

(b) Secondary: 2 Ethernet Ports 34649 44.08% 48643 30.94% 313 0.53% 88.5 33.40% 42 10.50%

*The nodes use an external transceiver chip.
Implementation totals from combining the FPGA cores as indicated in Section 7.7.

9.3.3.3 The Software Components

The development of the software environment was beyond the scope of this thesis
project. Instead, it was supplied by our industrial partner Seven Solutions. This is the
framework that will include the main software elements of our avionics nodes, which
will be executed on the ARM processor of the Z-7030 device that our platform is based
on. A diagram of the main elements of this software ecosystem can be examined in Fig.
9.3. Hence, we can observe that the entire software stack is built on top of the RTEMS OS.
We made this choice of OS since it can provide a deterministic execution environment,
and hence it is commonly used for avionics systems. In our implementation, we used
the RTEMS OS to build a safe real-time execution environment with a static memory
paradigm. The main elements that it integrates are the implementation of the gPTP
protocol itself, which we adapted from [52] into a cyclic executive service, its custom
Ethernet drivers for TSN ported from the Xilinx repositories, configuration APIs for
TSN, and a real-time scheduling interface for launching custom user-level tasks with
real-time execution constraints. To the best of our knowledge, this is one of the first
implementations of a real-time OS (RTEMS) to feature an integration with the gPTP
protocol for aerospace and, as a result, this implementation is suitable for receiving an
ESA certification for space flight.

9.3.3.4 The Embedded Platform for the Avionics Nodes

We built a customized embedded platform to support the avionics nodes of the Miura 1
microlauncher. Thus, our design uses a PCB with a 160 mm by 160 mm form-factor, which
simplifies its integration into the structure of the vehicle. It prominently features multiple
interfaces for interacting with the main sensors and controllers of the launcher, such as
a CAN interface, FMCs with low-pin count connectors, 20 generic I/O pins (GPIOs),
and four Gigabit Ethernet ports. Furthermore, since the Miura 1 is a sounding rocket
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Figure 9.4
A picture of the hardware platform supporting the two variants (Main and Secondary) of the avionics nodes.

intended for a suborbital flight for demonstrating the application of new technologies.
This implies that the requirement of radiation resistance on the electronics of the launcher
will be more relaxed than that of a traditional space mission [196]. That is the reason why
we based the construction of the embedded platform on an automotive-grade variant of
the Z-7030 device, which would be enough for withstanding the thermal and vibration
stresses of the suborbital flight. A picture of the resulting PCB for our nodes can be seen
in Fig. 9.4. This is the common platform that supports both the Main and Secondary
nodes of the Miura 1 avionics.

9.4 SYSTEM CHARACTERIZAT ION AND PERFORMANCE EVALUAT ION

We have characterized the operation of our avionics nodes through several test benches
studying the performance of the TSN system under network scenarios comparable to
those expected during the Miura 1 mission. We performed this evaluation with an
incremental methodology: Firstly, we measured the performance of key elements of
the system separately, such as its forwarding efficiency or the timing synchronization
component. Next, we studied the behavior of the system in a larger system integration
test that simulated the type of network environment that would be expected in a realistic
avionics environment.

9.4.1 Performance of the gPTP timing distribution with ring network topologies

A correct operation of the gPTP timing service is essential for guaranteeing the syn-
chronous operation of the traffic shapers in the TSN network, so that they can operate
in a coordinated manner for sending data deterministically. Thus, we claimed that not
only does its application to an avionics environment require a high level of accuracy, but
a heightened level of resilience is desirable as well. We have assessed these aspects by
studying the accuracy of the gPTP synchronization and its support for ring topologies in
a laboratory environment (Fig. 9.5a).
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The use of ring topologies is a requirement for building an aerospace avionics network,
which usually mandates that additional safeguards be provided in the form of redundant
systems. From the perspective of the gPTP timing service, we can achieve this with the
use of the best master clock algorithm (BMCA). Hence, the BMCA supports redundant
timing paths and automatically adjusts the role of each port to either Master, Slave,
or Passive. As a result, the configuration of the gPTP service at each node can adapt
dynamically to changes in the system topology originating from events such as link or
node failure. Thus, with the use of the BMCA we can assure that synchronization would
not be lost so long as there is an alternative path for reaching the timing source from the
gPTP slave device.

The test that we present in this section has two main objectives. On the one hand, we
aimed to verify the action of the BMCA by by supplying the Main nodes in Fig. 9.5a with
the appropriate configuration whereby nodes ID54 and ID48 get to operate as timing
slaves of ID8. On the other hand, we also assessed the timing distribution accuracy of
our gPTP implementation for RTEMS between the master time source (ID8) and the slave
nodes (ID54 and ID48) in the ring.

We verified that the BMCA operated correctly by examining the log files generated at
each slave node. Hence, we noted that both the ID54 and ID48 were taking node ID8 as
their timing source and that the role of their ports was adjusted accordingly (textitSlave
or Passive) to ensure the reception of the protocol messages from the timing source. As
for the attainable accuracy of the system, we assessed it through the synchronization jitter
value that the gPTP service reported at each node. This jitter value is the slave-to-master
time difference between the PHCs at the master and slave nodes in the network. Hence,
we found that we could support ring topologies with accuracy levels below 100 ns.

a

b c

Figure 9.5
Characterization of the gPTP synchronization performance with ring configurations. Assessment of the gPTP
synchronization efficiency using a ring topology configuration. Fig. 9.5a is the diagram of the experiment,
which measures the synchronization accuracy between the master node ID8 and the slaves at ID54 (Fig. 9.5b)
and ID48 (Fig. 9.5c).
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9.4.2 The Baseline Determinism Efficiency for Data Forwarding

The forwarding efficiency of the underlying FPGA switching fabric in our nodes is one
the decisive aspects impacting the overall determinism of the TSN nodes. Hence, if the
underlying switching fabric presents large PDV swings under relatively idle conditions,
it may be difficult to apply a GCL schedule with the TSN TAS shapers that manages to
attain a low delivery variation. Thus, in order to estimate the baseline performance of the
system, we studied the attainable PDV of our nodes in test scenario that is fully devoted
to the transmission of probe frames.

Figure 9.6
The probing points along the transmission and reception data paths of our nodes for measuring the perfor-
mance of the TSN system with the assistance of a TDC counter.

This test would therefore allow us to estimate the attainable baseline determinism of
our nodes. Our setup used a one-hop network (a daisy-chain of nodes) to perform an
experimental characterization which consisted of the injection of more than a million
probe frames between two Main nodes. The nodes were in turn fitted with a diagnostics
core that could produce an analog trigger upon detecting the start of an Ethernet frame,
as shown in Fig. 9.6. Next, we used a time-to-digital converter (TDC) counter [88]
connected between the points a) (egress path of the emitter) and a’) (ingress path of the
receiver) to calculate the flight time of the packets across the network and, thus, calculate
their main statistical indicators, such as the PDV or the average end-to-end latency.

As a result, this test provides an estimation of the expected packet delay variation
(PDV) of the system under ideal conditions. Hence, for 500-B probe frames, the average
single-hop delay was pegged to 17.49 µs with a PDV of ⇠301 ns, as observed in Fig. 9.7.

9.4.3 Evaluation of Determinism in a Demonstration Avionics Setup

We concluded the characterization phase by studying the attainable determinism of our
TSN solution in a simulated avionics network that implemented a representative layout
of the type of system that would eventually be built into the Miura 1 launcher. The layout
of the test bench can be seen in Fig. 9.8, and it is in turn a simplified version of general
network architecture that we introduced in Fig. 9.3. This is a representative test that we
also demonstrated as part of our presentation in [193].
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Figure 9.7
The end-to-end latency of a single-hop TSN network shows that the average latency (determinism) in this ideal
test remains around 17.49 µs, with a PDV of 300.97 ns and a standard deviation of 12.23 ns.

Figure 9.8
Diagram of the test bench for simulating the traffic landscape of a typical microlauncher mission.

The test uses three Main nodes (Boards 8, 48 and 54) to create a ring topology, and
two TSN end-points for injecting and receiving time-critical flows based on the dual-port
ZEN Board from Seven Solutions S.L. [8], which we have used as a development platform
in a previous project [169]. The TSN flows handled by the system are indicated in Table
9.2, where we can observe that our test will make use of command and control (CC)
messages, payload telemetry (Tel), bulk best-effort (BE) video, and gPTP synchronization
messages.

9.4.3.1 Configuration of the Demonstration Setup

In our test, we forward the commands and control messages from the TSN ZEN talker
towards the ZEN listener using a redundant network path. These messages are deemed
high-priority critical messages, and we inject them into the network upon receiving
analog triggers produced at a signal generator with a variable rate that is connected to
the ZEN talker. Hence, we can vary the frequency of the signal generator to simulate the
production of critical messages at different rates. The bulk, best-effort video is injected
through one of the available Ethernet ports of the ZEN talker and sent to a receiving PC
attached to the ZEN listener. As for the payload telemetry, we simulated its presence
in the system by having an RTEMS task inject these messages into the network at the
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Table 9.2
The traffic classes considered for the demonstration of the TSN avionics system, alongside their main charac-
teristics.

TSN Flows in the Demonstration

Traffic Class Priority Level Traffic Profile Critical Redundant
gPTP (Synchro-
nization)

3
60-B gPTP proto-
col messages

e (BMCA)

CCl VLAN PCP 2
400 B at variable
rate

e Yes (802.1CB)

Tel VLAN PCP 1
500 B at 1
frame/ms

e -

BE (Video) VLAN PCP 0 750 B at 20 Mb/s p -

Main Board 48. The medium-priority telemetry would then be routed towards the ZEN
listener. Additionally, all the nodes in the system would get to exchange gPTP protocol
messages amongst one another (on a point-to-point basis).

In our configuration, we considered that the synchronization, the commands and
control, and the telemetry flows should be considered time-critical. Therefore, they
required non-preemptable, express (e) forwarding and redundancy. The redundancy
was in turn implemented either through the features of 802.1CB for TSN flows or by
the action of the BMCA for synchronization. Moreover, since the best-effort video is the
lower priority flow, we designated it as a preemptable (p) and assigned it with the lowest
priority queue of the TAS shaper.

The assignment of TSN flows to the TAS queues follows the convention that they are
associated with the queue number matching their VLAN priority code point (PCP). This
is true for all TSN flows, except for the gPTP messages, which are always assigned to
the higher priority queue (Q3). The traffic shaping policy applied to the entire network
can be examined in Table 9.3, which describes the structure of the GCL policy that we
used for the test: the slots designated for forwarding the different flows, their associated
queue (Qk) settings, and the corresponding relative offsets (“base time”) of the shapers in
each node to compensate for forwarding delays in the network. Although we determined
these settings analytically for this relatively simple setup, we acknowledge that there exist
different methodologies and algorithms that could be put to use when more complex
topologies with aperiodic flows are used. An example of such a methodology is discussed
in [197].

9.4.3.2 Experimental Results

We have assessed the overall determinism that could be achieved in our avionics test-bed
by measuring the end-to-end latency for both CC and Tel messages in our test bench.
Their end-to-end latency is defined as the flight time through the network, and we used
their latency results to calculate the corresponding PDV for each flow. Thus, we measure
the end-to-end latency of our flows as the difference between the time at the egress paths
(b)) of the Zen talker and Board 48 for the CC and Tel flows, respectively, and that at the
ingress path (b’)) of the ZEN listener, which is the designated end-point for both flows. It
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Table 9.3
The GCL configuration applied during the demonstration. The table shows the configuration for each slot
within the 1.012 ms cycle of the GCL by showing its corresponding contents, queue (O/c) and preemption
status (e/p). The base time for each node in the network is also indicated.

Traffic Shaping Policy for the Demonstration TSN System

Interval (µs) Q3(e) Q2(e) Q1(e) Q0 (p) Slot Contents

28

O O

O O gPTP, CC, Tel, BE
478 c c gPTP, CC
28 O O gPTP, CC, Tel, BE
478 c c gPTP, CC

Node ID ZEN 12 Board 8 Board 48 Board 54 ZEN 30

Base Time (µs) 0 10.5 21 21 -

should be noted that although both flows are designated as express, non-preemptable
flows, their respective levels of priority for the TSN shapers are different. This resulted in
the end-to-end latency values obtained in Fig. 9.9, where we can observe how this GCL
succeeded at avoiding interference amongst the CC flow, the Tel traffic injected at Board
48, and the background video traffic.

Figure 9.9
The end-to-end latency between the CC and Tel critical flows of the demonstration. We verified that the latency
and PDV remain stable as mutual interference is averted by the TSN system.

Hence, in our results, the CC flow attained an end-to-end latency centered about
⇠24.85 µs, with a PDV of 600 ns, whereas the Tel flow, which takes a shorter path through
the network, achieved a PDV of 141 ns and a lower latency of ⇠17.4 µs. Nonetheless, we
observed that the PDV of the CC traffic would remain below ⇠150 ns during most of
the test, and that it presented occasional peaks of up to 600 ns. We have attributed this
effect to the larger generation rate of CC messages, which would make interference with
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the higher priority gPTP messages more likely. We have speculated that this effect is a
result of the compromises that we made in the implementation of our FPGA architecture
to conserve resources. Specifically, these peaks are probably the result of contention
at the internal switching crossbars. Therefore, we may be able to obtain better results
architecture with larger switching and buffering elements in enhanced, future versions of
our architecture.

Lastly, we studied the system reliability by characterizing the CC TSN flow during the
experiment, which was protected with the use of redundant transmissions (802.1CB) given
its classification as a time-critical flow. Our methodology for estimating the reliability in
the reception of this flow consisted of totalizing the number of CC frames at the egress
path (b)) of the ZEN talker, and those at the ingress path (b’)) of the ZEN listener after
all the duplicates transmitted over the redundant ring in Fig. 9.9 are discarded at Board
54. The totalization operation is one of the built-in functions of the TDC counter and,
as implied by its designation, it is a simple difference between the number of analog
triggers detected at its two inputs. In our tests, since the ZEN boards generate an analog
trigger when they transmit or receive a high-priority frame, we can use these signals
in combination with the TDC to estimate the robustness of the system. Hence, during
the experiment, we found that the difference between the number of transmitted and
received CC frames remained constant at zero, even one of the redundant links (direct
path or fallback path through Board 48) was severed. This is indicative that the integrity
of the critical flow could be preserved with the use of the seamless redundancy feature.

9.5 CONCLUS ION

We have shown that our TSN platform can be applied successfully to the resource-
constrained scenario of the Miura 1 microlauncher. We have confirmed this claim
through several experiments, which have validated our hypothesis that the use of COTS
components, which is a prevalent trend in the new space vehicles, can also be applied to
the implementation of their avionics systems.

We achieved this goal by supplying a TSN interface that makes considerate use of
the available FPGA resources in our platform, while maintaining the required level of
determinism and reliability that is expected in the forwarding of the time-critical flows
handled in avionics systems. Furthermore, we could even consider this implementation
an initial proposal of a TSN profile for aerospace applications and, given our results,
we can confidently claim that any working application of TSN for space should at least
contemplate the use of 802.1AS timing, 802.1Qbv traffic-shaping with frame preemption
(802.1Qbu & 802.3br), and seamless redundancy (802.1CB). We think that our results
indicate that this design is a promising solution with the capability of superseding the
many legacy space fieldbuses that had commonly been used in space missions so far,
such as Spacewire or MIL-STD-1553B, given the comparable levels of determinism and
reliability of our solution. In addition, since our design is supported with a COTS
platform with standard-based Ethernet physical interfaces, it is highly interoperable, and
it can also achieve a far superior bandwidth of up to 1 Gb/s.

We have supported the development of our TSN avionics nodes with a platform
that is based on the automotive-grade Z-7030 device, which provides the necessary
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flexibility and robustness needed to withstand the thermal, mechanical and radiation
stresses of the suborbital flight that the Miura 1 sounding rocket will cover during its
mission. Thus, this device features a powerful, highly modular architecture with an
FPGA framework for supporting the design of the TSN communication cores, and an
ARM microprocessor for running the RTEMS OS environment where we implemented
the gPTP synchronization. Furthermore, to the best of our knowledge, our platform
has been one of the first successful implementation to feature a fully functional gPTP
timing stack for space in combination with the RTEMS OS. All of these elements have
allowed us to attain a PDV value below 1 µs for the handling of the critical flows in the
system, although we acknowledge that this figure could be improved if we repurposed
our design to prioritize performance, rather than conserve resources. This would imply
the implementation of larger buffers, faster packet processing stages, or more efficient
switching interconnects, like the FPGA router design in [198].

In conclusion, we have shown a viable application of a TSN system for the implementa-
tion of the avionics of the Miura 1 microlauncher with a solution based on commercially
available components that is highly flexible, interoperable, and easily upgradeable. Fur-
thermore, we have supplied a real-time OS (RTEMS) to leverage the deterministic TSN
interfaces of the avionics nodes of the launcher. This RTEMS implementation allows us
to schedule real-time user tasks that can inject critical messages into the deterministic
TSN system for further processing and forwarding. In addition, the RTEMS environment
comes with one of the first successful applications of gPTP for aerospace. As a result,
we can conclude by stating that our TSN-based avionics nodes for the Miura 1 can
indeed deliver the deterministic performance required for avionics scenarios and could
be considered a plausible COTS-based alternative for similar microlauncher platforms.
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Figure 10.1
Overview of the contents of Chapter 10, where we feature an experimental integration of our TSN cores with
WR timing.

The contents of this chapter are devoted to presenting our experimental integration
with White Rabbit timing. We start by outlining the motivation for integrating our TSN
cores with a WR system, which revolves around the fact that WR can deliver a more
robust and precise form of synchronization that could pave the way for the use of TSN in
scientific projects or for its integration in even larger industrial networks. Furthermore,
the PDV could be enormously reduced. As a result, we developed a “hybrid” architecture
combining our TSN cores with a WR timing system. This is the first aspect that we
introduce in the chapter, where we also indicate that we used the WR-ZEN node [8]
for prototyping the new architecture. Part of this study was conducted jointly with
collaborators from the Technical University of Denmark (DTU) during a research visit
in 2019. This is presented next, as we introduce our joint experimentation whereby we
characterized the internal processing delays of the WR-capable TSN system and used
this information for exploring the automatic generation of GCLs with an experimental
tool from DTU. We conclude by assessing the determinism of the system, identifying its
“bottlenecks”, and proposing an upgrade path to enhance the attainable determinism as
future work.
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10.1 MOTIVAT ION FOR ENHANCING THE T IMING STACK OF TSN

After characterizing our TSN system and demonstrating its applicability to the Smart Grid
(Chapter 8) and as a low-cost solution for space microlaunchers (Chapter 9), we set out to
implement an enhancement on its timing subsystem by replacing its components with an
implementation of White Rabbit timing [101]. Indeed, we verified that gPTP could offer
a degree of performance on the order of the tens of nanoseconds, which is in line with
the results of other generic PTP implementations [179] that use hardware time-stamping,
and this translates into a corresponding PDV on a similar scale. This was evidenced in
our results in point 9.4.3.2. Hence, our rationale for seeking this upgrade was that since
our traffic shaping elements are directly steered by a timing signal synchronized by the
gPTP service, we would be able to achieve a lower PDV if the timing signal that we fed
into the TAS shaper were more precise; i.e., the queues of the shaper would be activated
with greater accuracy. WR timing can provide sub-nanosecond synchronization [75] and
could therefore allow us to benefit from a substantial enhancement in the TSN system
determinism; i.e., the TAS shapers could be synchronized on a sub-nanosecond scale
theoretically.

To achieve this, we tapped into an existing design of this timing protocol which was
implemented on the WR-ZEN Board from Seven Solutions [121]. This has also been our
development and prototyping platform throughout most of this thesis project, and we
introduced its main features in Section 4.1. This platform already features a working WR
design on top of which we integrated our implementation for the IP cores of our TSN
subsystem. Even though WR timing has not been contemplated officially by the IEEE
standardization committees, the fact is that the latest specification for the high-accuracy
PTP synchronization in the IEEE 1588-2019 [199] standard is heavily based on WR timing.
Hence, we have posited that its use could substantially improve the performance of a TSN
system and pave the way for its application to new scenarios, such as the data gathering
and control networks of scientific infrastructure. Therefore, we outline the goals that we
pursue with this experimental integration of TSN and WR in the points below. We will
also characterize their degree of compliance with the tests that we present throughout
this section to propose possible areas of improvement in future projects. Hence, our main
goals with this experimental integration are:

• To improve the robustness of the TSN system. Since WR timing can support the
establishment of large network topologies without a substantial loss of accuracy
[139], it could be used to replace the standard gPTP synchronization for TSN, which
may be unable to fulfill the requirements of large industrial networks with hundreds
of elements [32]. These networks are usually mandated to provide synchronization
accuracy better than 1 µs, as is the case of industrial automation or automotive
networks, and the inaccuracies of large chains of nodes can eventually build up
and degrade the gPTP synchronization up to a point when it can no longer fulfill
the requirements of a particular network scenario. Hence, we have proposed the
use of the more robust WR timing to circumvent this issue.

• To assess the influence on determinism of the use of a more precise timing solution.
That is one of the reasons why we opted for an integration with WR timing, as its
enhanced accuracy may allow for the definition of more precise GCL schedules.
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Hence, this could result in better control of the end-to-end latency of the critical
flows or even a reduced latency variation.

• To identify the components of the data path of our TSN nodes that represent
determinism “bottlenecks” and propose the corresponding improvements to our
architecture for reducing internal processing time jitter and latency.

• To discuss the feasibility of applying this enhanced TSN system for supporting the
networks of scientific facilities, such as particle accelerators or telescope arrays; i.e.,
the use of TSN for science.

10.2 THE ARCHITECTURE OF OUR DEVELOPMENT PLATFORM

Our prototype of a WR-enhanced TSN system is based on the WR-ZEN timing board,
which uses the Z-7015 SoC. This is a low-cost device, albeit fairly limited in its FPGA
resources. We presented it in Section 4.1, where we introduced some of its main features,
such as its dual-core ARM processing system for running an embedded Linux OS, or its
built-in implementation of a functioning WR timing stack from our collaborator Seven
Solutions. Therefore, to conduct our experiments with this new platform, what we did
was to integrate our components for TSN networking, i.e., our FPGA IP cores for TSN,
with the baseline WR timing design of the WR-ZEN Board. This resulted in the new
hybrid, dual-port “TSN & WR” architecture that we show in Fig. 10.2.

Figure 10.2
The system architecture of the experimental integration of TSN and WR timing on the Z-7015-based WR-ZEN
Board.
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As shown in the figure, the design includes both hardware and software components.
The hardware comprises the original PCB design from Seven Solutions and the modified
FPGA firmware with our IP cores for including the TSN functionality. Since the Z-7015
device comes with a reduced-size FPGA, we had to consider several tradeoffs to ensure
that our proposed architecture could fit in the available resources of the device. We
indicate these design compromises alongside the description of the main components of
our implementation in the points below.

• The version of the TSN subsystem that we included in this architecture featured
one single VLAN tagging/untagging module, a TAS shaper without preemption,
and the enhancements for redundancy. As indicated previously, since the FPGA
resources were highly constrained, we opted for a shared VLAN module between
the two ports of the board, and we intentionally left out the use of frame preemption
to maintain a lightweight TAS shaper.

• The networking subsystem is largely unchanged from the original architecture of
the WR-ZEN board and provides a 1-Gb/s service. It uses the Xilinx cores for
Ethernet networking by combining the Xilinx AXI-Streaming DMA engine and
the Xilinx tri-mode Ethernet MAC with the PCS/PMA cores. Moreover, since the
WR-ZEN Boards feature WR timing, they make use of a customized instantiation
of the internal GTP transceivers of the Z-7015 device to ensure their deterministic
behavior.

• As for the timing system, it contains the usual elements of a PTP hardware clock,
designated as PPSGen in WR implementations, and time-stamping units. The
use of WR timing results in the introduction of additional components for the
timing system as well; such as a VCO for correcting phase differences, or a digital
dual-mixer time difference (DDMTD) phase comparator for keeping track of small
(sub-clock cycle) phase offset variations.

• Since our WR-ZEN nodes are dual-port devices with bridging capabilities, we
implemented all the necessary crossbars to allow the forwarding of TSN packets
between their ports. Nonetheless, in order to conserve FPGA resources from exces-
sively large crossbar matrices, we used a setup with the same two-tier switching
layout that we discussed in 7.5.

• Lastly, since the development of a prototype requires extensive validation, we also
included several experimental debug cores within the architecture as needed to
assist with the debugging process. These cores are usually meant to produce an
analog trigger upon detection of a specific type of traffic to help measure the end-
to-end latency or the latency variation with an external time counter. We also made
use of traffic generators for injecting probe TSN frames during our experiments.

The software part of the design is run on an ARM processor for the most part; except
for the process for steering the VCO oscillator with a PID controller, which is run as
a standalone utility on an LM32 processor embedded within the WR logic (PPSGen).
Admittedly, the development of the software stack for supporting a WR implementation
is beyond the scope of this study. Nonetheless, we outline its main components in the
following points and emphasize the elements that we added to complement our design.



10.2 the architecture of our development platform 197

• The embedded Linux OS of the WR-ZEN board was originally part of the system
design from Seven Solutions, and hence most of its content was left unchanged.

• The Ethernet network drivers are a version of the original Xilinx Ethernet drivers
and we have patched them to support the use of hardware time-stamping.

• A hardware abstraction layer (HAL) for managing the system peripherals of the
board.

• The WR timing synchronization daemon: ppsi.

• We have also added a TSN configuration API (see Section 6.3.4) for interfacing with
our cores.

Lastly, we have compiled the FPGA resource consumption of the different components
of our architecture in Table 10.1. Thus, upon examining the usage figures of our imple-
mentation, we can highlight that one of the main outcomes of our design is that we have
managed to fit a functioning TSN system with bridging and end-point capabilities into a
small, low-cost cost device with support for WR timing. Larger FPGA devices are usually
needed for running a TSN system, and hence we can conclude that this architecture
showcases the versatility of our design, which we could fit into the Z-7015 SoC. In
contrast, the Xilinx-based implementations of TSN [164], albeit more feature-rich than
ours, usually target the higher end range of the Zynq-7000 SoCs or even the UltraScale
devices; i.e., the range of SoCs above the Z-7030 device.

Table 10.1
The overall utilization figures of our experimental TSN node enhanced with WR timing on the Z-7015-based
WR-ZEN Board.

Usage of the experimental TSN & WR architecture

Module Slice LUTs Slice Registers Multiplexers BRAM DSPs GTPE
Xilinx DMA engine 2267 4.91% 3707 4.01% 0 0.00% 5 5.26% 0 0.00% 0 0 %

Xilinx 1G Ethernet Tri-
Mode MAC & Ethernet
Subsystem

3304 7.15% 5594 6.05% 45 0.13% 4 4.21% 0 0.00% 0 0%

White Rabbit Transceivers 756 1.64% 1062 1.15% 0 0.00% 1 1.05% 0 0.00% 2 50%

White Rabbit timing core 3160 6.84% 3205 3.47% 32 0.09% 31,5 33.16% 3 1.88% 0 0%

Time-stamping units 1373 2.97% 1975 2.14% 0 0.00% 2 2.11% 0 0.00% 0 0%

Switching Crossbars 857 1.85% 1299 1.41% 47 0.14% 8 8.42% 0 0.00% 0 0%

TAS shaper (no preemp-
tion) 1458 3.16% 2468 2.67% 34 0.10% 9 9.47% 0 0.00% 0 0%

VLAN (9 tagging rules) 4801 10.39% 5528 5.98% 55 0.16% 3,5 3.68% 8 5.00% 0 0%

Dropper (no timeout coun-
ters) 583 1.26% 688 0.74% 3 0.01% 0 0.00% 0 0.00% 0 0%

Debug Core 17 0.04% 9 0.01% 0 0.00% 0 0.00% 0 0.00% 0 0%

Traffic Generator 131 0.28% 118 0.13% 0 0.00% 0 0.00% 0 0.00% 0 0%

Common AXI4 Bus Infras-
tructure 4342 9.40% 4264 4.61% 0 0.00% 0 0.00% 0 0.00% 0 0%

Implementation Totals – Dual-port WR-ZEN
Dual-port TSN & WR 31730 68.68% 43906 47.52% 295 0.85% 84 88.42% 11 6.88% 2 50%

The utilization figures in the table show the feasibility of fitting a working TSN design
into a Z-7015 device with the application of our node architecture from Fig. 10.2 and
our FPGA IP cores. This architecture offers a lightweight TSN implementation with
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some of the main features expected in these types of systems: time-aware traffic shap-
ing (802.1Qbv), traffic identification with VLAN-tagging (802.1Q), resource reservation
(802.1Qcc), and seamless redundancy (802.1CB). Furthermore, since our implementa-
tion consisted of a development platform, we also integrated debug cores and traffic
generators into the design of the node to assist in the validation of its operation.

The overall usage figures show that the combined FPGA occupancy of all the sub-
systems in the node is relatively high: close to ⇠69 % LUT usage or up to ⇠88 %
block RAM primitives. Nonetheless, this result goes a long way to show how our TSN
architecture is flexible enough to allow different block connectivity combinations and
customizations to target FPGA devices so constrained in their resources that they would
easily fall out of the synthesizable scope of other larger TSN IP solutions from other
manufacturers/implementers. The Z-7015 with WR timing could be considered a bor-
derline use case for our architecture with a baseline set of features for TSN. Hence, this
would allow us to target even larger devices where we could gradually expand our TSN
architecture features as more FPGA “real estate” becomes available. In the case of the TSN
and WR design that we present in this section, we had to make several implementation
decisions to ensure that we could make such a tight fit. We enumerate some of these
implementation decisions alongside the main characteristics of our design in the points
below.

• Since the existing implementation of the WR timing and Ethernet subsystems
already took up a substantial amount of FPGA resources on their own (e.g. ⇠33
% and ⇠4 % of all the BRAM primitives for the WR timing core and the Ethernet
subsystem, respectively), we had to reduce the features of our TSN cores and share
some resources between the data paths of the two Ethernet ports of the WR-ZEN.
Specifically, our architecture makes use of the following approach for instantiating
the cores:

– 2⇥ Ethernet subsystems (one per port): Xilinx DMA, Xilinx 1G Ethernet
Subsystem & Tri-mode MAC, WR Transceivers.

– 1⇥ WR timing core for the entire node.

– 2⇥ time-stamping units (one per port).

– 1⇥ VLAN-tagging module (shared between the two ports).

– 1⇥ switching crossbar split into a primary and a forwarding stage between
the two ports.

– 2⇥ TAS shapers (one per port).

– 1⇥ TSN Dropper module shared between the two ports.

– 2⇥ debug cores and 3⇥ traffic generators for validation purposes for the entire
node.

• Besides instantiating the system cores using the aforementioned methodology,
we also trimmed their occupancy by leaving out some of their features from our
implementation, as indicated next.

– For the TAS shaper, we left out the use of the frame preemption mechanism to
conserve BRAM primitives.
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– For the VLAN module, we reduced the maximum number of translation
rules that its comparison logic can handle internally down to nine rules. This
reduced LUT and comparator usage.

– For the TSN Dropper module for discarding duplicates, we omitted the fail-
safe timeout counter mechanism of its internal sliding windows. This reduced
the use of DSP comparators and the associated routing congestion of their
implementation.

The foregoing considerations have thus allowed us to successfully implement a TSN
system with WR timing on a relatively small device with the utilization values of Table
10.1.

10.3 EXPERIMENTAL CHARACTERIZAT ION

We have characterized the new architecture by firstly carrying out an evaluation of its
efficiency for forwarding packets. Then, we assessed its attainable determinism as the
resulting end-to-end latency after applying an automatically generated GCL schedule
that could take the peculiarities of our architecture into account. This latter part was part
of the joint characterization studies of the system that we carried out during a research
visit at the Technical University of Denmark (DTU) in Köngens Lyngby (Denmark).

10.3.1 The evaluation of the forwarding delays

The characterization of the new platform starts off by examining the forwarding delays
for packets of varying sizes. An accurate characterization of these values is essential
for producing optimum GCL schedules analytically or even manually, as the routing
and schedule generation algorithms for TSN usually require a sound knowledge of the
internal routing delays and processing delays in the node logic to produce a meaningful
time slot structure for handling the TSN flows with a time-driven schedule.

Our goals with this characterization were twofold: on the one hand, we wanted to
evaluate if the use of the high-accuracy WR timing could pose any benefit for our TSN
system. On the other hand, since these experiments were conducted in the framework of
a research visit at DTU with Prof. Paul Pop, we wanted to show that the production of
GCLs could be automatized with their metaheuristics-based tools [156]. Specifically, we
aimed to validate that the automatically generated GCL policies we worked with could
fulfill the requirements of a given network scenario, provided that our forwarding delay
model of the node is correct.

Hence, the reason why we performed this characterization was because the automated
GCL-producing tools for TSN need to take several parameters into consideration: the
desired network topology, the types of flows that will be forwarded (including frame size,
emission period, deadline, . . . ), and the expected processing delays at each bridge node.
The first two parameters are usually specified by the user or implied by the application,
whereas the latter parameters are implementation-dependent and should be supplied
by the implementer. As a result, we set out to study the processing delays of our nodes
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associated the transmission (TX), reception (RX), and forwarding (FWD) operations of
the different types of Ethernet frames handled in the system. We accomplished this
by building a model of the corresponding data path and then deriving an analytical
expression for estimating the delays of frames with different sizes. The model for the TX
data path can be seen in Fig. 10.3a, that of the RX path is in Fig. 10.3b, and that of the
FWD path is depicted in Fig. 10.3c. The corresponding analytical expressions for each
path are in the equations in (10.1), (10.2), and (10.3), respectively.

a b

c

Figure 10.3
The data path models for estimating the inherent forwarding and processing delays of our architecture for its
integration with an automated configuration tool from DTU. The models study the delays of TX (Fig. 10.3a),
RX (Fig. 10.3b), and FWD (Fig. 10.3c) data paths.

Aside from the fact that some of our IP cores can incur different processing delays as a
function of the type of frame (i.e., gPTP, TSN, or ordinary Ethernet), some of the main
sources of internal delays stem from the use of AXI-Streaming crossbar switches. These
switches need to implement arbitration mechanisms between their ingress ports and may
also include internal buffering elements that, in some cases, were configured to operate in
“packet mode” forwarding; i.e., they accumulate the entire frame before it is injected into
the crossbar switch. These characteristics can further increase the internal forwarding
delays of the node or even contribute to an undesired increase in packet delay variation.

Thus, our delay models have two main components: a fixed delay part, and a variable
delay parameter. We found that this latter parameter was a function of the frame size
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and the type of message. This can be seen in the following expressions for the estimated
TX (10.1), RX (10.2), FWD (10.3) delays.

dtx =


d0,1 + d0,2 + dTAS,open + DVtx,i +

N
4
+ arb(t)

�
t50MHz +[d1 + ceiling(0.625N)]t125MHz

(10.1)

drx = [d2 + N] t125MHz +


d3,1 + d3,2 + d3,3 + DVrx,i +

N
4
+ arb(t)

�
t50MHz (10.2)

drxn,txi = [d2 + N + d1 + ceiling(0.625N)] t125MHz +


N
2
+ arb(t)tx + arb(t)rx + d3,1 + d3,2+

+ d3,3 + DVrx,i + DVtx,i + d0,2 + dTAS,open
⇤

t50MHz

(10.3)

In the preceding expressions, the fixed delay terms of d0,i, d1, d2, d3,k, and dTAS,open are
associated with the propagation of a given message through the logic fabric of the node.
During our characterization, we determined that these elements had a fixed latency of
a few clock cycles and were usually associated with the packet going through several
concatenated data registers along its path. In contrast, the variable delay terms are
associated with clock domain crossings (the “ceiling(*)” terms), the internal buffering
elements, or the processing of different types of packets on the TX or RX paths of the
VLAN module: DVtx,i and DVrx,i respectively. Thus, they may have a dependence on the
packet size (N) or the type of traffic (TSN, gPTP, Ethernet).

As shown in Fig. 10.3, our architecture deals with two main clock domains for data
transmission: 50 MHz and 125 MHz. Consequently, we estimated the values of the
preceding parameters experimentally by inserting ILA debug cores into our design to
measure the propagation time through our logic as clock cycles in their corresponding
domain. Other parameters such as the delay of clock domain crossings were estimated by
transmitting packets of varying sizes for building a linear regression estimation. For the
processing delays of the VLAN core, we used the values of its behavioral simulation to
quantify its processing delay for different types of messages. We outline the meaning of
each parameter in the following points, and the values that we determined experimentally
for each one can be found in Tables 10.2 for the fixed delay terms, 10.3 for the VLAN
TX/RX latency.

• The system clock domains present along the data path are indicated by t50MHz
(20-ns clock cycle), and t125MHz (8-ns clock cycle).

• For the TX data path, the following parameters apply:

– d0,1 is the propagation delay from the DMA controller to the main interconnect.

– d0,2 is the path delay from the TX VLAN tagging module through to the TAS
interface.
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– dTAS,open is the propagation time through the TAS module when no GCL is
supplied and all of its queues are open.

– d1 is the constant path delay through the MAC and the Ethernet transceiver
modules.

– DVtx,i is the processing latency of the TX path of the VLAN module for different
types of packets: Regular Ethernet frame/PTP or TSN-tagged Ethernet frame.

• As for the RX data path, the following parameters apply.

– d2 is the constant RX path delay through the MAC and the Ethernet transceiver
modules.

– d3,1 is the path delay from the RX interconnect to the RX path of the VLAN
processing module.

– d3,2 is the propagation delay from the VLAN Module to the Redirector Intercon-
nect (the forwarding crossbar).

– d3,3 is the path delay from the redirector (forwarding) interconnect to the RX
interface of the DMA controller.

– DVrx,i is the VLAN RX processing delay, dependent on message type: Regular
Ethernet Frame/PTP or TSN-tagged Ethernet frame.

• The arbitration delays incurred at the different crossbar switches on account of
the effects of their arbitration mechanisms are designated as arb(t). This is a
non-deterministic parameter dependent on network occupation and the size of the
crossbar switches. For this characterization, we estimated it as the worst-case value
in (10.4), where Np is the largest possible Ethernet frame size of 1500 B, and np is
the number of input ports into the crossbar.

arb(t) = 2 +
�
np � 1

� Np

4
(10.4)

Table 10.2
The fixed delay terms on the TX and RX paths of the experimental node integrating TSN & WR timing.

Fixed delay terms

Parameter d1 d2 d0,1 d0,2 dTAS,open d3,1 d3,2 d3,3

Cycles 39 28 1 15 27 5 10 9

Clock Domain 125 MHz 50 MHz

As a result, we calculated the expected processing delays at the node for different types
of messages and packet sizes by plugging the values of this characterization into our
expressions in (10.1), (10.2), and (10.3). The results of these estimates are shown in Tables
10.4, 10.5, and 10.6 for the expected TX, RX, and FWD latencies of the node, respectively.
Thus, after conducting this characterization, we supplied these results to the scheduling
tools from DTU [156] to proceed with the next phase of our experiments where we assess
the overall performance and determinism of the system (see Section 10.3.2).
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Table 10.3
The processing time on the TX and RX paths of the VLAN module for different types of traffic.

DVtx,i (50 MHz)
PTP Ethernet TSN

42 cycles 55 cycles 62 cycles

DVrx,i (50 MHz)
PTP Ethernet TSN

26 cycles 40 cycles

10.3.2 The GCL scheduling tests. The collaboration of the DTU research visit

We assessed the overall system-level performance of our WR-enhanced TSN prototype
during the next phase of our characterization experiments. This involved the definition
of an experimental test bench where we could deploy several of our WR-ZEN prototypes
to try out the effects of different configuration profiles produced with the tools from
DTU.

This led to the deployment of a test bench like the one shown in Fig. 10.4. As seen in the
picture, the setup consisted of three WR-ZEN boards fitted with our experimental design
that were connected back-to-back in a daisy chain. For the purpose of the experiment,
each board was termed as a TSN “switch” (SW) to emphasize their role as bridging
devices, even though our implementation could only work as a dual-port device at the
time (future versions of our prototype may come with an expansion card for additional
Ethernet interfaces). Thus, our experiment will feature three different daisy-chained
switches whereby the switches at either edge of the network will be forwarding different
TSN flows to each other. The intermediate switching node will therefore operate as a
bridge between the switches at the edges.

Figure 10.4
Schematic representation of the experimental test bench for evaluating the performance of our prototype
implementation of TSN with WR timing.

As shown in Fig. 10.4, the switches SW1 and SW3 will be tasked with exchanging
probe TSN messages between each other. These messages will be produced with the
traffic generator IP cores that we introduced when we presented the architecture of the
system in 10.2. We modeled this transmission as an exchange between two end systems
(ESi): a traffic generator working as a publisher at the transmitting switching node (ES0),
and the receiving switch itself (ES1) in the role of a subscriber.
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Table 10.4
The estimated TX forwarding latency of the TSN & WR architecture.

Estimated TX forwarding latency

N (Bytes) PTP [t(ns)] Ethernet [t(ns)] TSN [t(ns)]
60 4116 4376 4516

100 - 5776 5916

200 - 9272 9412

300 - 12776 12916

400 - 16272 16412

500 - 19776 19916

600 - 23272 23412

700 - 26776 26916

800 - 30272 30412

900 - 33776 33916

1000 - 37272 37412

1100 - 40776 40916

1200 - 44272 44412

1300 - 47776 47916

1400 - 51272 51412

1500 - 54776 54916

To assess the performance of the system, we measured the determinism of each flow
handled by the TSN network as the flight time between the egress path of the transmitting
switch and the ingress path of the subscriber (the egress path of the receiving switch). As
observed in the figure, both probing points are located after a TAS shaper to synchronize
the frames injected into the network to the GCL schedule, since the traffic generator at
ES0 is not synchronized to the TAS traffic-shaping schedule. Thus, the main indicators
of the attainable performance of the system will be the end-to-end latency of each flow
during the experiments, and its associated packet delay variation (PDV). A reduced value
for the PDV will therefore result in enhanced determinism.

The configuration for our tests was driven by the use of the automated configuration
tool from DTU. As mentioned previously, the use of the tool takes advantage of our
forwarding model (Section 10.3.1) to produce a meaningful configuration that we could
use for assessing the overall determinism of the system. For our tests, we had the tool
produce a configuration with four flows (two flows emitted per switch) that were emitted
periodically within a hyperperiod (Tp) interval. The message emission schedule of each
flow at the end systems is summarized in Table 10.7, whereas the resulting GCL policy
that the automated derived for each TSN switch is shown graphically in Fig. 10.5. The
study that we have presented for this thesis project contains preliminary results of our
characterization for hyperperiod values of Tp = (4800, 9600)µs.
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Table 10.5
The estimated RX forwarding latency of the TSN & WR architecture.

Estimated RX forwarding latency

N (Bytes) PTP [t(ns)] Ethernet [t(ns)] TSN [t(ns)]
60 2912 2912 3192

100 - 3632 3912

200 - 5432 5712

300 - 7232 7512

400 - 9032 9312

500 - 10832 11112

600 - 12632 12912

700 - 14432 14712

800 - 16232 16512

900 - 18032 18312

1000 - 19832 20112

1100 - 21632 21912

1200 - 23432 23712

1300 - 25232 25512

1400 - 27032 27312

1500 - 28832 29112

This is a relatively trivial case, but useful for proving the usefulness of the tool for
producing a meaningful configuration, which is driven by the user-supplied constraints
for the traffic classes of the system (periodicity, payload size, deadline, . . . ) and the
corresponding system latency model. We discuss our results in Section 10.3.2.1, and the
insights on the production of GCL schedules that we derived from these experiments are
outlined in 10.3.2.2.

10.3.2.1 Preliminary experimental results

The automated scheduling tool from DTU produced the settings with the time slot
structure that we have shown in Fig. 10.5. This time slot structure is valid for fulfilling
the requirements of our experimental scenario, but, given the experimental nature of
the DTU configuration tool, we realized that the time length for each one of the slots in
the GCL schedule was actually larger than the frame transmission time for each type of
message; i.e., the slot was longer than the time it took to transmit the messages of a given
traffic class. Since the traffic generators of our nodes were not synchronized to the TAS
scheduling cycle, this had the undesired effect of producing a large latency variation.
Hence, we adjusted the slot lengths manually for those GCL entries intended for the
transmission of TSN messages so that the corresponding queues would only remain open
long enough to allow the transmission of one single TSN frame at a time.
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Table 10.6
The estimated FWD bridging latency of the TSN & WR architecture. Bridging is only allowed for TSN messages.

Estimated FWD bridging latency

N (Bytes) TSN [t(ns)]
60 7080

100 9200

200 14496

300 19800

400 25096

500 30400

600 35696

700 41000

800 46296

900 51600

1000 56896

1100 62200

1200 67496

1300 72800

1400 78096

1500 83400

In consequence, we conducted these validation experiments with a modified version of
the configuration produced by the DTU scheduling tool. This modified configuration
retained the original time structure of Fig. 10.5, which indicates that our processing delay
model for each node from Section 10.3.1 is valid, but used a shorter slot duration for
the GCL entries reserved for the transmission of TSN frames. We determined that this
modification helped reduce the PDV in our experimental setup (see 10.3.2.2), and the
new slot duration for these entries can be easily derived from the characteristics of our
system implementation, as shown in (10.5). In the expression, Ni indicates the frame
length of the corresponding traffic class, and t50MHz is the clock cycle time of the system
bus in the 50 MHz clock domain of the TAS shaper (Fig. 10.3a). Since we are using a
traffic shaper without preemption, the transmission of a frame cannot be halted once it is
underway and the value of (10.5) can be taken as the maximum slot duration.

ts  ceiling


Ni
4

�
· t50MHz (10.5)

We show the preliminary results of these characterization experiments in Table 10.8.
This table summarizes the behavior of the end-to-end latency observed for each one of
the TSN flows in the experiment, where we generated two sets of GCL schedules for the
two test cases with hyperperiod values of 4800 µs and 9600 µs, respectively.



10.3 experimental characterization 207

Table 10.7
The constraints on the traffic classes involved in the experiment: period, frame size, priority, and routing.

The traffic classes for the test

Flow ID Size (B) Priority Period Routing
f1 400 1 Tp

4 SW1 ! SW3
f2 100 2 Tp

2

f3 300 1 Tp
3 SW3 ! SW1

f4 60 2 Tp

Figure 10.5
The GCL policy generated by the automated tool to fulfill the requirements in Table 10.7.

In the results, the “peak-to-peak” column is of special importance, as it shows the
attainable determinism of the system and corresponds to the packet delay variation of
a given flow. Moreover, these results show how the application of a scheduling policy
with the traffic shaper can be used to tightly control the delivery times of a given TSN
flow within bounded latency values. In the experiment, we achieved this by combining
the effects of the application of the “base time” shaping offset of the TAS core with
the definition of slot intervals with the duration specified in (10.5). Thus, provided
that our model of the worst-case internal processing delays at each node is correct, this
configuration has allowed us to control the end-to-end latency of the TSN flows in the
experiment and, in addition, minimize their latency variation to enhance the overall
degree of determinism of the system. The attainable PDV in our results sits below
the microsecond threshold for most of the flows and remains around the hundreds of
nanoseconds; except for the flow f3, which had a PDV of ⇠1.80 µs. This difference may
be a consequence of an unforeseen arbitration issue or the effect of recurrent interference
with the PTP messages of the WR protocol exchanged between the nodes, which have a
higher priority (Q3) than those of flow f3 (Q1). These results led us to derive the insights
that we discuss in Section 10.3.2.2 on different strategies for producing GCL schedules.

10.3.2.2 Insights on GCL schedule production

The manual tuning process that we had to perform on the results of the DTU scheduling
tool to minimize the PDV provides some clues as to how the generation of a GCL
schedule can be directed to attain different effects. Indeed, we have observed that
the time structure of the slots in the GCL policy can be adjusted to a) optimize the
bandwidth of rate constrained flows, b) minimize the end-to-end latency, or c) target
highly deterministic applications by minimizing the delivery jitter.
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Table 10.8
The preliminary results of our evaluation of the attainable determinism of the experimental design of our
WR-enhanced TSN nodes.

End-to-end latency for the test cases

MAX min Std.Dev. Peak-to-Peak
Flow ID Tp = 4800 µs Tp = 9600 µs Tp = 4800 µs Tp = 9600 µs Tp = 4800 µs Tp = 9600 µs Tp = 4800 µs Tp = 9600 µs

f1 58.34 µs 58.33 µs 57.86 µs 57.84 µs 163.78 ns 167.16 ns 487.22 ns 493.21 ns

f2 19.89 µs 19.88 µs 19.75 µs 19.76 µs 29.85 ns 26.97 ns 135.84 ns 119.88 ns

f3 46.27 µs 46.27 µs 44.46 µs 44.47 µs 128.65 ns 135.81 ns 1.82 µs 1.80 µs

f3 15.82 µs 15.82 µs 15.76 µs 15.76 µs 9.72 ns 9.48 ns 63.13 ns 57.41 ns

a) The TSN system can be optimized to implement a simple time-division multiplexing
scheme to prioritize the bandwidth of the lower priority, rate-constrained flows.
In these cases, the duration of the slot for forwarding the rate-constrained traffic
should be proportional to its emission rate and its maximum burst size.

b) Likewise, we could also minimize the end-to-end latency of a given flow by ensuring
that its corresponding queue is assigned a higher priority and remains open during
a substantial portion of the GCL schedule. Moreover, no “base time” scheduling
offset should ideally be provided for these cases.

c) Lastly, for those scenarios requiring a service with “hard” determinism; i.e., a
known delivery deadline and the reception of the TSN frames within a narrow
window, we could apply a similar strategy to the one we deployed during the
experimental characterization of our TSN nodes in the previous section. Hence,
this methodology relies on the use of an accurate processing delay model that can
characterize the worst-case internal propagation delay through the system nodes.
Then, as shown in Fig. 10.6, we could use the “base time” offset setting of the TAS
shaper at each node to compensate for the worst-case switching and processing
delays of each node. We can further complement this strategy by applying the
expression in (10.5) to reduce the length of the GCL entries forwarding the TSN
traffic down to the minimum transmission time for emitting a particular frame.
Since the TSN flows handled by the system are usually not synchronized to the
TAS cyclic schedule, this step helps to reduce the PDV by synchronizing the TSN
frames as they are injected into the network, as seen in Fig. 10.7.
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Figure 10.6
The application of the “base time” offset to deliver flows within a deadline and thus compensate for internal
processing delays and worst-case forwarding jitter at each node.

Figure 10.7
An example showing the relationship between the slot length for forwarding TSN messages and the attainable
PDV.
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10.4 FUTURE IMPROVEMENTS TO THE INTEGRAT ION WITH WR T IMING

Even though we have managed to implement a working TSN system that replaced its
gPTP synchronization service with a WR timing stack, the experimental results that
we obtained in 10.3.2.1 are not substantially better (i.e., showing a greater degree of
determinism) than those we showcased in the experimental validation of our use case for
an avionics network (Section 9.4.3). In fact, the end-to-end latency variation values of
both cases are comparable and on the order of the hundreds of nanoseconds. This leads
us to conclude that, although the use of WR timing can be beneficial given its robustness
for transferring timing information with high accuracy over large networks [32], there
does not seem to be an evident advantage to its use for enhancing the determinism of a
TSN flow for our architecture in its current form.

White Rabbit timing can provide a highly accurate, sub-nanosecond synchronization
service. As we mentioned in the strategy c) from our GCL generation insights (see
10.3.2.2), if we applied the suggested method of combining “base time” offsets with
short intervals and steered the internal FSMs of the TAS shaper with a WR-synchronized
timing signal simultaneously, we would then be able to synchronize the injection of data
packets into the network on the same scale as WR timing. Since we are observing a worse
level of performance than expected, we set out to identify its possible root causes and the
actions for future improvement in the following points.

10.4.1 Suggested optimizations to the TAS shaper

We reviewed our implementation of the TAS shaper for TSN to identify possible sources
of jitter in its operation that could degrade the overall determinism of the system. As
WR timing is so highly precise, the presence of any inaccuracy in the design of our IP
cores could easily be comparable in magnitude to the uncertainty of WR synchronization
and, thus, degrade the determinism of the system. This does not necessarily imply a flaw
in the design of the TAS shaper, which we built with the guidelines of the IEEE 802.1Qbv
standard; but rather that its architecture was devised to be used jointly with gPTP timing,
which usually has an accuracy on the order of the hundreds of nanoseconds. In the
standard description of the TAS shaper, the use of elements such as synchronization
chains for implementing crossings between different clock domains is implied. This
should not pose an issue for gPTP timing but can be a major source of jitter if WR-like
accuracy is to be targeted.

We verified this claim by measuring the synchronization jitter between the shapers at
SW1 and SW3 in the experimental test bench of Fig. 10.4. The synchronization between
any pair of shapers can be readily examined by comparing the relative points in time
when their respective “Cycle Start” signals are triggered. As explained in 7.3.1.2, this
signal is triggered periodically when the logic of the core detects that a new execution of
the GCL scheduling cycle should be performed. Thus, we used the debug cores from our
WR-enhanced TSN nodes to output the respective “Cycle Start” signals from nodes SW1
and SW3 into a TDC counter to quantify the amount of jitter that could be attributed to
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the implementation of the TAS shaper. The results of the experiment can be seen in Fig.
10.8.

Figure 10.8
The distribution of the synchronization jitter between the TAS shapers in our experiment.

In the experiment, we applied a “base time” offset between the shapers of ⇠19 µs,
which is visible in the figure. We can also appreciate that the offset distribution shows
evenly spaced peaks every ⇠ 8 ns, with a peak-to-peak variation of 48.105 ns. This is
a visualization of indeterminism stemming from the use of clock-crossing logic. This
performance matches that of a gPTP service, as we saw in the Smart Grid experiments
from Section 8.6.3.1. Nonetheless, it completely prevents us from taking full advantage of
WR to enhance the determinism of our solution. As stated previously, we have identified
the clock domain crossings at the interfaces between the TAS FSMs as the main culprits
of this behavior, and hence we will work to optimize this aspect in future versions of our
cores after this thesis project.

10.4.2 Other optimizations for the node logic

As seen during the modeling phase of the processing delays in our architecture, some
of main contributors to the relatively large processing latency of our data path are the
VLAN core and the effects of the crossbar arbitration mechanisms. Some of these issues
stem from the fact that the same VLAN core for packet processing had to be shared
between the two Ethernet ports of our nodes in order to conserve resources so that the
design may fit into a small FPGA device.

This sharing of resources can produce contention between packets originating from
several sources simultaneously, such as a message emitted from the processor and a
redirected TSN frame from another Ethernet port. Since the TX/RX data paths have to be
shared between the ports, the use of an arbiter between transactions becomes mandatory.
This could in turn increase the worst-case switching latency, which would also become
dependent on the overall network utilization. On top of this, the VLAN module could
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also take a relatively long time to produce a tagged/untagged TSN frame. This could
further contribute to increasing the packet processing delay of the core.

This is the reason why we have also proposed the implementations of several improve-
ments on the data path of the nodes. These improvements could include the development
of a lightweight version of the VLAN module that is faster for processing data frames,
the use of a shared memory switch to mitigate the contention and arbitration issues
associated with the use of crossbars, or the design of a low-latency MAC module.

In conclusion, we can state that even though WR timing can provide a more robust
type of synchronization, the architectural limitations of our current TSN cores hinder us
from achieving lower packet delay variation. Consequently, we will attempt to implement
alternative designs in future versions of these cores to overcome the architectural issues
that prevent us from taking full advantage of the high degree of determinism of WR
timing for shaping traffic.

10.4.3 Interoperability with standardized TSN equipment and gPTP timing

We also performed an initial evaluation of the compatibility between WR and gPTP. To
do this, we configured our WR-enhanced TSN nodes to exchange traffic with third-party
equipment from KONTRON [51]. KONTRON is known for manufacturing a PCI-based
TSN evaluation board that can be fitted into an industrial PC enclosure to assist in the
deployment of TSN networks in industrial environments. This simple test with the
KONTROL device allowed us to realize that, even though the data exchange of different
TSN flows could proceed between our experimental nodes and the standards-compliant
KONTRON device given their use of a standard Ethernet link for communication, our
WR nodes could not exchange synchronization information with the KONTRON device.
The WR implementation of the WR-ZEN boards from Seven Solutions relies on the ppsi
synchronization daemon (see Sections 6.3.6 and 6.3.7), whereas the KONTRON node
uses the well-known ptp4l [50] stack for Linux. The WR protocol needs the execution of
several additional steps to those of standard PTP, of which gPTP is just another profile.
This makes both protocols incompatible. As a matter of fact, both gPTP and WR share
the same “raw” (level-two) message transmission mode, but the WR link delay model is
inherently different (more accurate) than that of gPTP, and it also introduces additional
operations to compensate for the master-to-slave offset and the sub-clock cycle offset
differences. As a result, the accompanying implementation of ppsi for WR, albeit highly
accurate, does not currently contemplate the use of an alternative degraded mode in its
state machines for supporting a standard PTP (or gPTP) protocol.

We consider that enabling interoperability between both protocols could eventually
simplify the integration with equipment from different manufacturers, thus allowing the
deployment of more complex scenarios. This is one of the tasks that we will propose as
continuing work after the completion of this thesis project.
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T H E C O N C L U S I O N S

Figure 11.1
Overview of the contents of Chapter 11 with the conclusions of our research.

This chapter contains the summary of the main results of this thesis project, alongside
its main objectives and the future work. Hence, we start by providing the reader with a
review of the main objectives for the thesis project that we outlined in the Introduction.
In the review, we also clarify the degree of compliance that we could achieve for each
objective and, when needed, we indicate any possible future research that will follow
up the results of a specific objective of the thesis. Once the review of the objectives is
complete, we move on to stating and reviewing the main capabilities, attributes, charac-
teristics, and highlights of the functional TSN systems that we have implemented. After
that, we recount the scientific production, including journal and conference contributions,
that we have published as a result of the studies and experiments that we have presented
throughout the manuscript. Lastly, we enumerate the main areas of the system that could
be the subject of further improvement in the section devoted to the future work.
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11.1 OVER VIEW OF THE CONCLUS IONS

The main result of this project is that we have managed to implement a TSN network
system with a resource-conserving architecture and multiple customization options.
Our initial study with the CTA telescopes provided a useful reference framework for
establishing the foundation of our TSN design. Hence, our architecture can be adapted
to target different FPGA devices with a moderate footprint utilization and still deliver a
deterministic performance, as evidenced by the experimental use cases for the Smart Grid
and avionics that we have documented. These are novel use cases for the TSN technologies
that will likely gain traction in the future, as the IEEE, other major standardization
committees (SAE), and leading industry forums (AVNU, TSN/A Conferences) ready
the corresponding specifications for industrial and aerospace profiles for TSN. We also
had the opportunity to explore advanced topics for TSN during a research visit at the
Technical University of Denmark (DTU) in Köngens Lyngby (Copenhagen). During
the research visit, we looked at WR for improving the determinism of TSN systems.
Furthermore, we combined this with the development of device models for their use with
constraint-programming, metaheuristics tools to explore the production of automated
settings for our nodes.

Hence, in this chapter we will proceed to review the main objectives, claims, and
assumptions that guided us during the design, implementation, and experimental stages
of the project. During this review, we will clarify the degree of compliance that we
reached for each main objective and, when needed, we will also indicate the future lines
of work for continuing some aspects of the research that we have presented in this thesis
project. Thus, we start this review process by reminding the reader of the main goals of
the project in the points below.

11.2 A REVIEW OF THE OBJECT IVES OF THE PROJECT

As a reminder to the reader, we review the main objectives and motivations driving the
development of the TSN-capable network nodes that we have introduced throughout this
thesis study. Hence, these are outlined in the following points, where we also ascertain
the degree of compliance that we have achieved for each item.

• Objective 1: We have shown how White Rabbit timing and the transfer of ordinary
Ethernet payloads can coexist over the same physical link during our study for the
small-sized telescopes in the Cherenkov Telescope Array (CTA) in Chapter 5.

– This motivational experiment has confirmed that if we had applied our TSN
enhancements for our development in CTA, we would still have been able to
transmit our scientific data payload of time stamps, although we would have
had a guaranteed bandwidth.

– The use of TSN would make the link characterization for transmission in-
tegrity (section 5.6.2.2) in CTA redundant, as the sole method for guaranteeing
integrity and determinism in a legacy Ethernet network is by overprovisioning
its resources; i.e., we would not have had to ensure that the system would be
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able to withstand a rate of up 7.14 MHz for producing time stamps, which
is unrealistic for the small-sized telescopes in CTA (they required far slower
rates), to be confident that the underlying Ethernet communications would
provide the responsiveness (bandwidth and latency) that we required for CTA
(latency lower than 100 ms) even under the worst-case conditions.

– TSN and WR could therefore be applied to scientific facilities to provide timing
and deterministic data forwarding over an open, standards-based interface.

• Objective 2: The primary goal of the project was to develop a working TSN system
based on a collection of different FPGA IP cores. Since TSN functionalities can be
added as an enhancement on top of an ordinary Ethernet network link, we fulfilled
this objective by supplying the following elements:

– We developed a set of FPGA cores that can support the use of some of the main
functionalities of a TSN system. These included a VLAN module for resource
reservation and routing management (802Qcc), and for traffic tagging and
identification (802.1Q). We also supplied designs for the use of redundancy
(802.1CB) with a TSN Dropper core, traffic shaping with preemption (802.1Qbv
& 802.1Qbu), and a preemptable MAC core (802.3br).

– In addition, we have complemented these elements with the necessary soft-
ware and management APIs. This is in line with points 2.1) and 2.2) of the
general objectives of the project, whereby we should supply methodologies
for identifying different types of traffic.

• Objective 3: Another one of the objectives of the design was to provide a highly
versatile and configurable TSN solution. Moreover, our solution had to be highly
parameterizable to tailor its features and resource usage to different devices, con-
straints, and designs.

– We accomplished this by designing a generic architecture for the implementa-
tion of TSN nodes, as shown in Fig. 6.2 (Chapter 6). This is the template that
we have successfully applied for implementing functioning TSN systems across
different devices, for multiple use cases, and under different requirements of
maximum utilization.

– In the avionics use case our proposed architecture would not take up more
than half of the available resources of a Z-7030 device. This was a major
design requirement that called for moderate resource usage to allow for the
integration of other third-party cores alongside our TSN system. We achieved
a fit into the Z-7030 SoC with an overall utilization of ⇠59% LUT slice logic,
⇠52% BRAM primitives, and 12.5% DSPs under the most demanding four-port
configuration.

– The flexibility of our cores allowed us to fit our architecture into the much
smaller Z-7015 device in a completely different context: the experimental inte-
gration of WR timing and TSN. In this case, the application of our architectural
template and the customization options of our IP cores allowed us to deploy a
functioning TSN system within a very small device. We achieved overall use
of ⇠69% LUTs, 84 % BRAMs, and 7% DSPs. This factors in the usage of our
architecture and that of the WR timing service.
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• Objective 4: We have characterized the performance of our implementation as we
explored its application to new scenarios; such as the Smart Grid (Chapter 8) or
aerospace microlaunchers (Chapter 9).

– Our experiments with the Smart Grid use case showed that the TSN system
could successfully aggregate substation flows of different nature (point 4.1)),
while avoiding interference with other traffic (point 4.2)) and enforcing a
deterministic service with bounded latency and PDV dependent upon user-
specified settings (point 4.3)).

– The test bench for the Smart Grid use case represents a novel use of TSN
for industrial networks, demonstrating that is a preferrable alternative for
aggregating substation flows such as GOOSE, critical messages, and best-effort
messages. In this context, we verified that critical messages could be delivered
more reliably and faster than with the legacy of the substation (up to ⇠169 µs
sooner than the legacy analog electromechanical signaling). We also verified
that the bounded latency was a function of the GCL cycle time (points 4.2)
and 4.3)).

– We also verified that our gPTP timing service for TSN delivered synchroniza-
tion on the order of the tens of nanoseconds (see ADEV plot in Fig. 8.8), which
can keep up with the industrial requirements for the Smart Grid (1 µs) and
aerospace (50 µs).

– Our experiments with the aerospace avionics of the Miura 1 microlauncher
have shown that COTS components can successfully be applied to aerospace
and guarantee the robust delivery of critical data with the enhancements for
seamless redundancy (802.1CB – point 4.4)). Furthermore, we could provide a
deterministic delivery service with low reception jitter (up to 600 ns) with the
assistance of frame preemption (802.1Qbu & 802.3br).

– We have verified that the application of different TSN cores and with their
corresponding settings can heavily impact the transmission of data. Hence,
the configuration of the GCL can impact the upper bound of the latency of
the TSN flows, as we saw during the experiments with the Smart Grid. In
the experiments for the aerospace avionics system, we realized how the use
of preemption contributed to minimizing the packet delay variation, whereas
the use of redundancy ensured a robust communication with a minimized
possibility of data losses.

• Objective 5: We have explored the application of timing enhancements for TSN
by replacing its standard gPTP synchronization with the more robust WR timing
protocol. This could potentially allow the use of TSN for supporting the data and
control planes of scientific facilities.

– We verified that implementing a “hybrid” architecture with TSN traffic-
processing blocks and WR timing was feasible on the small Z-7015 device.

– We performed an initial assessment of the attainable determinism resulting
from the application of WR timing to our TSN system (point 5.1)). We con-
ducted this assessment during a research visit at DTU, where we used a
hardware model of the system plugged into an automated GCL-production
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tool. The results of the experiments showed that the attainable determinism
when WR timing was in use (Table 10.8) was on the order of the hundreds
of nanoseconds, which is comparable to the behavior of a standard TSN im-
plementation with gPTP, as we saw in our experiments for aerospace (Fig.
9.9).

– Nonetheless, our experiments have demonstrated that TSN systems can be
used as deterministic forwarding methods for high-priority traffic.

– In spite of the lack of a substantial improvement in the determinism of the
system when WR timing is used, we think that it would still make sense to
deploy this hybrid architecture (TSN & WR) from the standpoint of industrial
applications, as WR timing is more stable than gPTP timing, even over large
topologies. This would make it possible to deploy larger networks that
maintain the expected levels of sub-microsecond accuracy over long chains of
devices for industrial cases (e.g., Smart Grid, industrial automation).

– Moreover, the experiments with WR and TSN during the research visit at
DTU provided some insight as to how the generation of a GCL policy can
be directed towards achieving different effects. In light of our results, we
suggested an upgrade path for our architecture incorporating changes for the
crossbar switches and the TAS shaper (point 5.1)). This would allow us to fully
take advantage of the use of WR timing alongside TSN.

• Objective 6: Lastly, we have modeled the internal processing delays of our archi-
tecture. We supplied this model to the automated configuration tool from DTU
during our research visit to study different strategies for producing GCLs. In
addition, the results of this characterization pointed to possible bottlenecks in our
data path that we will optimize during future work to reduce the latency and
enhance the determinism of the system. The upgrade path for enhancing the overall
determinism of the solution includes:

– The main items flagged for improvement: the VLAN core, the TAS shaper,
and the internal crossbar switches (point 6.1)).

– In this context, we found that the clock-domain crossing logic of the TAS
shaper was one the main reasons why we could not take full advantage of
WR timing: the interfaces between the WR clock domain and those of the
FSMs of the shapers meant that we could only synchronize our TAS shapers
with a peak-to-peak synchronization of 48.105 ns, which is far larger than the
sub-nanosecond performance of WR.

– We verified that our TSN architecture had some interoperable elements with
other third-party designs, such as its VLAN-tagging routing for TSN streams,
but that compatibility between WR timing and gPTP synchronization still
required work (point 6.2)).
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11.3 THE CAPAB IL IT IES OF OUR SYSTEM

As a result of the development tasks that we have carried out during this project, we
have managed to build different types of TSN systems based on a common architecture
template and a shared set of building blocks. The capabilities afforded by these elements
allow us to deploy TSN network nodes that can fulfill the most usual requirements of a
real-time system. These are outlined in the following points.

• Our nodes can guarantee the aggregation of traffic flows of different nature and
apply a differentiated treatment for each traffic class. This traffic processing policy
avoids interference amongst flows with different criticality and priority levels. This
is one of the main features that make TSN stand out as an alternative to field buses.

• Our system includes support for the most usual features of TSN networking. Each
feature is the domain of the corresponding IEEE standard, and we have supplied
the necessary components to attain the basic functionality expected of a TSN
system: traffic identification and VLAN-tagging (802.1Q), resource reservation on a
node-by-node basis with software APIs (802.2Qcc), traffic shaping (802.1Qbv) with
preemption (802.1Qbu & 802.3br), and seamless redundancy (802.1CB).

• We can target multiple applications and different networking scenarios by applying
customized versions of the foregoing elements. Moreover, since they can be readily
configured to selectively enable their different features, we can use them to target
the multiple scenarios; such as the industrial networks for our experiments with the
Smart Grid, or even the avionics of a microlauncher vehicle. These scenarios have
different requirements. Thus, our experiments with the Smart Grid only needed to
ensure the deterministic forwarding of data, and hence they only made of a TAS
shaper for running a GCL schedule. In contrast, our experiments for aerospace
required the configuration of a redundant network with seamless redundancy and
frame preemption to minimize the packet delay variation.

• Our TSN architecture can be integrated with other third-party scheduling tools to
produce meaningful settings driven from a set of user constraints, as shown in our
experiments at DTU (Chapter 10). This streamlines the design and configuration of
complex network scenarios with multiple flows and paves the way for integrating
our solution with centralized network configuration utilities.

• The integration with automated GCL generation tools requires a previous modeling
phase. We have produced a reference model that could consistently generate
meaningful scheduling policies when used in combination with the tool from DTU.
Furthermore, it allowed us to identify areas and components of our data path that
will be the subject of future improvement work after the completion of this thesis
project.

• Our implementation of TSN can be deployed incrementally on top of an ordinary
Ethernet link. Not only does this comply with the specifications of the standard, but
it also ensures that our TSN nodes are backward-compatible with legacy Ethernet
equipment.

• Our design is modular enough as to allow the substitution of its gPTP timing
component for the more robust WR synchronization stack. This allows the use of
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our TSN system for supporting larger networks or for its application to scientific
facilities. Nonetheless, on account of the limitations of our resource-conserving
design, we could not achieve enhanced levels of determinism as compared to those
of our experiments with industrial-level scenarios when WR timing was in use. We
could still achieve a deterministic delivery of the data flows in the system, but some
parts of our architecture should be redesigned to fully take advantage of the use of
WR timing, as we mention in 11.5.

• Also in the context of our integration of WR timing with our traffic-processing cores
of the TSN system, we verified that even though we could assemble a network of
TSN-capable WR devices; we cannot build at present a hybrid network combining
both gPTP and WR within the same network subsystem domain. As a rule of
thumb, generic implementations of PTP are largely incompatible with the design
of the WR protocol that was implemented in our prototyping WR-ZEN nodes.
Enabling compatibility between these two timing stacks will be the focus of future
work (see 11.5).

11.4 PUBL ICAT IONS
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11.5 THE FUTURE WORK

As evidenced during our experiments with the WR-enhanced TSN node prototypes
that we developed for the research visit at DTU (Chapter 10), the architecture we have
devised for our nodes has succeeded at providing a low-footprint design that is flexible
enough for its integration in multiple FPGA devices: we could potentially target any of
the Zynq-7000 family devices starting from the small, low-cost Z-7015, which we could
consider our “corner” case for a feasible system synthesis. Although this flexibility and
modularity have been useful for building our system on multiple platforms for different
use cases with differing caps on resource usage, we have also found that it is this very
same flexibility that can be the source of some of the main limitations of our design.

The effort to preserve FPGA usage led to a compromise between performance and
resources in the design of our cores. The VLAN module is a clear example of this. Hence,
we designed this core with a limited number of traffic identification rules (up to 16 rules)
and its frame-matching engine was based on a sequential lookup mechanism over a
memory bank. Even though it was relatively flexible and could identify different types of
traffic according to parameters such as their destination MAC address, IP address, ports,
or protocol; it could still take up to ⇠1 µs to appropriately identify a TSN stream and tag
it with its corresponding VLAN values. This delay, as seen in Table 10.3, is one of the
causes for the large overall processing latency of our TSN data path. Moreover, it could
also introduce additional processing jitter and thus prevent us from enhancing the system
determinism when we combine our TSN cores with WR. That is the reason why the future
work awaiting this core will mainly consist of implementing several redesigns for making
its packet-processing engine faster: We have envisioned the use of a content-addressable
memory (CAM) [165] for much faster rule matching, potentially within two clock cycles,
and increasing the number of traffic identification rules. Other changes to the VLAN
core could include the implementation of a faster, “lightweight” version of its current
architecture that uses fewer resources and produces a faster response.

We are also considering some others of our cores for enhancements; such as the
TAS shaper or the internal crossbar switches. Implementing an upgrade for the TAS
is paramount if we intend to increase the level of determinism of the system for data
forwarding. This improvement will consist of a redesign of the different interfaces
between the FSMs of the TAS and the main system bus of our data path. This redesign
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should therefore eliminate the use of unnecessary clock domain crossings and circumvent
the issue that we detected during our characterization in the point 10.4.1.

We also claim that the crossbar switches should be replaced in an enhanced version
of our architecture. The Xilinx crossbars that we have used have provided a convenient
way of implementing a node with switching capabilities with promptness and agility.
Nonetheless, the use of crossbars poses a hurdle for building large TSN switches, as
resource consumption can quickly grow exponentially with the number of ports. This
issue is compounded by the presence of arbitration issues or effects such as head-of-line
blocking (HOL). HOL can prevent packets from being forwarded to an output port
because their ingress path into the crossbar is currently being halted by the arbitration
mechanism, even if their output port is idle at the moment. Hence, large crossbars can
be a major source of indeterminism in a TSN system, and their replacement for more
efficient designs such as shared memory switch should be contemplated.

Another line of future work lies in the system modeling domain of our TSN nodes.
We aim to build a more accurate model of the internal architecture of our TSN system,
even possibly combine it with the results from simulation tools, to build a thorough
characterization of the system that could be supplied as a specific hardware profile for
automating the production of GCL schedules and other configuration parameters with
constraint-driven tools. An accurate characterization and modeling of our nodes could
also work as a previous stage to the development of a centralized configuration system
for TSN. This would involve an improvement to the configuration APIs of our nodes
so that their parameters can be exposed in a canonical form to a centralized network
configurator (CNC) for distributing configuration parameters from a single point of
control and management, as opposed to the node-by-node approach we have used so far.

Lastly, after our initial characterization and preliminary results of the experimental
integration of WR timing with our TSN nodes, we intend to revise our results to build
a WR-enhanced TSN system that can fully take advantage of WR for improving the
determinism of data forwarding. The upgrades we have proposed for some of our
major cores should be enough to achieve better results than those we saw in Table 10.8.
However, we would also like to explore the use of faster Ethernet links, such as 10 Gb
Ethernet, with frame preemption, as we claim that the use of a faster link layer with finer
clock granularity should make the benefits of using WR instead of gPTP more evident by
comparison to the use of slower versions of the Ethernet link layer.
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Figura 12.1
Visión general de los contenidos del Capítulo 12 de conclusiones de nuestra investigación en castellano.
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12.1 V IS IÓN GENERAL DE LAS CONCLUS IONES

El principal resultado de este proyecto es que se ha conseguido implementar un sistema
de red con TSN con una arquitectura que reduce el uso de recursos y que presenta
múltiples opciones de parametrización. En nuestro estudio inicial con los telescopios de
CTA establecimos un marco de referencia útil y sentamos las bases para abordar nuestro
diseño de TSN. Por lo tanto, hemos diseñado una arquitectura que puede adaptarse
con éxito para implementarse en dispositivos FPGA de distinto tipo con un consumo
de recursos moderado, al tiempo que se consigue ofrecer un rendimiento determinista,
tal como se demuestra en los casos de uso experimentales para Smart Grid y aviónica
que se incluyen en esta memoria. Se trata de casos de uso novedosos para las tecnologías
TSN que probablemente ganarán cada vez más terreno en el futuro; tal como evidencia
el trabajo del IEEE, junto con otros organismos importantes de estandarización (SAE) y
los principales foros de la industria (AVNU, las conferencias de la serie TSN/A, ...); que
se encuentran ultimando las especificaciones de los perfiles industrial y de aeroespacial
para TSN. También tuvimos la oportunidad de explorar temas avanzados en relación
con TSN durante una estancia de doctorado en la Universidad Técnica de Dinamarca
(DTU) en Köngens Lyngby (Copenhague). Durante la estancia, analizamos el papel de la
sincronización de WR como un medio para mejorar el determinismo de los sistemas TSN.
Además, este estudio se hace en combinación con un proceso de modelado de nuestros
dispositivos TSN de modo que puedan integrarse con herramientas de programación
con restricciones y otras metaheurísticas para explorar la generación de configuraciones
de manera automática para nuestros nodos.

En consecuencia, en este capítulo procederemos a revisar los objetivos principales,
atributos, afirmaciones y supuestos que nos guiaron durante las etapas de diseño,
implementación y experimentación del proyecto. Durante esta revisión, aclararemos
el grado de cumplimiento que alcanzamos para cada objetivo principal y, cuando sea
necesario, indicaremos también las líneas de trabajo futuro sobre las que continuaremos
algunos aspectos de la investigación del proyecto de tesis. Por lo tanto, comenzamos este
proceso de revisión con un recordatorio de los objetivos principales del proyecto, que se
desglosan a continuación.

12.2 REV IS IÓN DE LOS OBJET IVOS DEL PROYECTO

A modo de recordatorio, se procede a revisar los principales objetivos y motivaciones
que han propiciado el desarrollo de los nodos para TSN que se han introducido a lo
largo de la exposición de esta tesis. Por tanto, dichos objetivos aparecen detallados en los
puntos siguientes, en los que también constatamos el grado de cumplimiento asociado
que se ha logrado en cada caso.

• Objetivo 1: Hemos mostrado cómo la sincronización de White Rabbit y la trans-
ferencia de tramas Ethernet pueden coexistir sobre el mismo enlace físico con
nuestro estudio para los telescopios de pequeño tamaño en el Array de Telescopios
Cherenkov (CTA), tal como se muestra en el Capítulo 5.
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– Éste fue un experimento con el que se establece una motivación para el
desarrollo de TSN; al confirmar que de haber aplicado nuestras mejoras para
TSN en el desarrollo de los módulos para CTA, la transmisión de la carga
útil científica de sellos de tiempo seguiría siendo posible, pero se habría visto
favorecida con la característica del ancho de banda garantizado.

– Con el uso de TSN, la caracterización que fue necesario realizar de la capacidad
del enlace Ethernet para verificar la integridad de las transmisiones (sección
5.6.2.2) en los experimentos con la ZEN-CTA sería accesoria, ya que el único
método del que se dispone para garantizar la integridad y el determinismo en
una red Ethernet convencional es el sobredimensionamiento de sus recursos.
Por lo tanto, al usar TSN, no hubiéramos tenido que asegurarnos de que
el sistema era capaz de soportar una tasa de hasta 7.14 MHz para producir
marcas de tiempo, lo cual no es realista para los telescopios de pequeño
tamaño en CTA (necesitan tasas mucho menores), para dar una garantía de
que el sistema de comunicaciones Ethernet sería capaz de dar el nivel de
respuesta (ancho de banda y latencia) que sería necesario para CTA (latencia
inferior a 100 ms) aún en el peor de los casos.

– En consecuencia, vemos que TSN y la sincronización WR podrían aplicarse a
infraestructuras científicas para proporcionar servicios de temporización y de
transmisión deterministas que operen sobre interfaces abiertas y basadas en
estándares.

• Objetivo 2: El objetivo principal del proyecto ha consistido en desarrollar un
sistema TSN funcional basado en la combinación de una serie de cores IP diversos
para FPGA. Dado que las funcionalidades TSN pueden incorporarse de forma
incremental sobre la especificación base para los enlaces Ethernet, pudimos cumplir
este objetivo con el desarrollo de los elementos siguientes:

– Desarrollamos un conjunto de cores IP para FPGA que proporcionan las
principales funcionalidades del sistema TSN. Entre ellos se incluyen un módulo
VLAN para la reserva de recursos y la gestión de enrutamiento (802.1Qcc),
así como para el etiquetado e identificación del tráfico (802.1Q). También
suministramos diseños para el uso de redundancia (802.1CB) con el core TSN
Dropper, e incluimos módulos de clasificadores de tráfico dependientes de la
temporización con las mejoras de interrupción de tramas – frame preemption –
(802.1Qbv & 802.1Qbu), así como un diseño de MAC para FPGA compatible
con frame preemption (802.3br) que prioriza la transmisión del tráfico más
crítico.

– De modo adicional, el diseño de los elementos anteriores se complementa
con todos los componentes software y de gestión (APIs) necesarios. Esto está
en línea con los puntos 2.1) y 2.2) de los objetivos generales del proyecto,
según los cuales deben especificarse metodologías con las que se identifiquen
y gestionen diferentes tipos de tráfico.

• Objetivo 3: Otro de los objetivos del diseño fue proporcionar una solución TSN
altamente versátil y configurable. Además, nuestra solución tenía que ser altamente
parametrizable para adaptar sus características y uso de recursos a diferentes
dispositivos, restricciones y diseños.
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– Esto se logró con el diseño de una arquitectura genérica para la implemen-
tación de los nodos TSN, como se muestra en la Fig. 6.2 (Capítulo 6). Esta
arquitectura supone la plantilla de diseño que hemos aplicado con éxito para
implementar sistemas TSN funcionales para distintos tipos de dispositivos, en
múltiples casos de uso, y bajo diferentes requisitos de máxima utilización.

– En el caso de uso de aviónica, la arquitectura que propusimos no ocupa
más de la mitad de los recursos disponibles de un dispositivo Z-7030. Éste
era un requisito de diseño importante en este caso, ya que se imponía un
uso moderado de recursos que permitiese que nuestra solución TSN pudiera
integrarse junto con otros cores IP para FPGA de terceros. De este modo, se
consiguió implementar el diseño en el SoC Z-7030 con una utilización general
del ⇠ 59 % de lógica general (LUT), ⇠ 52 % de las primitivas BRAM, y un 12.5 %
de los DSPs cuando se parametrizaba la arquitectura con la configuración más
exigente de cuatro puertos Ethernet.

– La alta flexibilidad de nuestros módulos para FPGA también nos permitió
“encajar” el diseño en el dispositivo Z-7015, que es mucho más pequeño,
en un contexto completamente diferente al del punto anterior: la integración
experimental de la sincronización de WR con la red TSN. En este caso, al aplicar
nuestra arquitectura maestra para el diseño de los nodos en combinación con
las opciones de parametrización de los cores IP, pudimos implementar un
sistema TSN funcional en un dispositivo muy pequeño. Se logró un uso general
del ⇠ 69 % de LUTs, 84 % de BRAMs, y un 7 % de DSPs. Estos resultados tienen
en cuenta el consumo de nuestra arquitectura junto con el de los módulos
para la sincronización de WR.

• Objetivo 4: Hemos caracterizado el rendimiento de nuestra implementación con-
forme íbamos explorando su aplicación en nuevos escenarios; tales como en las
Smart Grids (Capítulo 8) o para los microlanzadores en aeroespacial (Capítulo 9).

– Nuestros experimentos con el caso de uso de Smart Grid han demostrado con
éxito que la aplicación de un sistema TSN puede servir para agregar todos
los flujos de distinta naturaleza que están presentes en la subestación (punto
4.1)), al tiempo que se evita la interferencia con otros tipos de tráfico (punto
4.2)), y se hace cumplir en estos casos un servicio determinista con latencia
acotada y PDV dependientes de la configuración suministrada por el usuario
del sistema (punto 4.3)).

– El banco de pruebas para el caso de uso de Smart Grid representa un uso no-
vedoso de TSN en redes industriales, demostrando que supone una alternativa
preferible para agregar los flujos de datos presentes en subestaciones eléctricas,
tales como GOOSE, mensajes críticos y mensajes de baja prioridad (best-effort)
con entrega de mejor esfuerzo. En este contexto, verificamos que es posible
hacer la entrega de los mensajes más críticos de forma más rápida, robusta, y
fiable que con el equipamiento convencional de la subestación (hasta ⇠ 169 µs
antes que los mecanismos electromecánicos de señalización tradicionales).
También verificamos que era posible controlar el valor de la latencia extremo
a extremo acotada en función del tiempo de ciclo que se especificara en el
definición del GCL (puntos 4.2) y 4.3)).
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– También verificamos que nuestro servicio de temporización gPTP para TSN
era capaz de proporcionar un nivel de sincronización del orden de las decenas
de nanosegundos (véase el gráfico de la ADEV en la Fig. 8.8), que es capaz de
cumplir con los requisitos esperados en sistemas industriales para Smart Grid
(1 µs) y para aeroespacial (50 µs).

– En nuestros experimentos con la aviónica para aeroespacial del microlanzador
Miura 1, hemos demostrado que es factible aplicar componentes COTS para
desarrollos de espacio (y aeroespacial en general) con las garantías de robustez
y fiabilidad en la entrega de datos críticos que proporcionan las mejoras de re-
dundancia para TSN (“seamless redundancy” – 802.1CB - punto 4.4)). Además,
vimos que el determinismo en estos casos puede mejorarse enormemente con
un sistema de entrega determinista con bajo jitter en la recepción (hasta 600
ns) con ayuda del componente de interrupción de tramas de baja prioridad de
“frame preemption” (802.1Qbu & 802.3br).

– Hemos verificado que la aplicación de diferentes núcleos TSN junto con el
uso de parámetros de configuración distintos puede impactar enormemente
la transmisión de datos. Por lo tanto, la configuración que se suministre para
el GCL puede afectar directamente al límite superior de la latencia de los
flujos de TSN, tal como se verificó durante los experimentos en Smart Grid.
En los experimentos para el sistema de aviónica en aeroespacial, pudimos
constatar cómo el empleo de los mecanismos de interrupción de tramas menos
prioritarias (frame preemption) podía contribuir a minimizar la variación del
retardo de los paquetes, mientras que el uso de la redundancia aseguraba
al mismo tiempo que se establecía una comunicación robusta en la que se
minimizaba, además, la probabilidad de pérdida de datos.

• Objetivo 5: Hemos explorado la aplicación de mejoras en el sistema de sincroni-
zación para TSN al reemplazar su implementación por defecto de gPTP, tal como
contempla el estándar, con el protocolo de sincronización WR, que proporciona ma-
yor robustez y rendimiento. Esto podría permitir el uso de TSN como la tecnología
de base de los planos de control y datos en las infraestructuras científicas.

– Verificamos que implementar esta arquitectura “híbrida” con bloques de WR
y de procesado TSN era factible, incluso usando el dispositivo Z-7015 de
recursos reducidos.

– Realizamos una evaluación inicial del determinismo alcanzable como resultado
de la inclusión de la sincronización WR en nuestro sistema TSN (punto 5.1)).
Esta evaluación se realizó durante una estancia de doctorado en DTU, para
la cual usamos un modelo del hardware del sistema en combinación con una
herramienta de generación de configuraciones GCL automatizada. Los resulta-
dos de los experimentos nos han mostrado que el determinismo alcanzable
cuando se usaba la sincronizacióin de WR (véase la Tabla 10.8) era del orden
de los cientos de nanosegundos, que es comparable al comportamiento de una
implementación estándar de TSN con gPTP; tal se vio en los experimentos
para el caso de aeroespacial (véase la Fig. 9.9).
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– Sin embargo, sí que hemos demostrado con nuestros experimentos que los sis-
temas TSN se pueden usar como un método para la transmisión determinista
del tráfico de alta prioridad.

– A pesar de no poder observar una mejora sustancial en el determinismo del
sistema cuando se utiliza la sincronización de WR, creemos que todavía tendría
sentido implementar esta arquitectura híbrida (TSN & WR) desde el punto
de vista de las aplicaciones industriales, dado que la sincronización de WR
puede comportarse de forma más estable y determinista que gPTP, incluso en
cadenas largas. Esto permitiría desplegar redes más grandes que mantuvieran
los niveles esperados de precisión en rangos inferiores al microsegundo cuan-
do se emplean topologías con cadenas muy extensas de dispositivos, como
suele el caso en muchas aplicaciones industriales (por ejemplo, Smart Grid o
automatización industrial).

– Además, gracias a la realización de los experimentos con WR y TSN de
la estancia de doctorado en DTU, hemos llegado a la conclusión de que
existen formas diferentes de ajustar la generación de las configuraciones de
los GCLs para conseguir efectos distintos en el tipo de tratamiento que recibe
el tráfico. Tomando en consideración nuestros resultados en estas pruebas,
hemos sugerido una hoja de ruta para actualizar nuestra arquitectura de modo
que incorpore cambios para los elementos conmutadores de barras cruzadas
y el clasificador de tráfico TAS (punto 5.1)). Esto nos permitiría aprovechar
al máximo el uso de la sincronización WR junto con TSN para mejorar su
determinismo.

• Objetivo 6: Por último, hemos modelado los retardos de procesamiento interno de
nuestra arquitectura, para pasar a combinar este modelo con las herramientas de
configuración automatizadas de DTU durante la estancia de doctorado y, de este
modo, realizar el estudio de diferentes estrategias para producir GCLs. Además,
los resultados de esta caracterización señalaron posibles cuellos de botella en el
camino de datos de nuestra arquitectura. Éstos serán los principales puntos que
trabajaremos para optimizar durante el trabajo futuro con el fin de reducir la
latencia y mejorar el determinismo del sistema. Esta hoja de ruta de trabajo futuro
y actualizaciones contempla los elementos siguientes:

– La realización de mejoras en los principales elementos que hemos identificado
que necesitan actualizarse: el módulo de VLAN, el clasificador de tráfico
dependiente de la temporización (TAS), y los conmutadores internos de barras
cruzadas (punto 6.1)).

– En este contexto, se determinó que los elementos lógicos que implementan
los cruces de reloj entre los distintos dominios del clasificador de TSN (TAS)
eran los principales responsables de impedir que se pudiera sacar provecho al
máximo del rendimiento de la sincronización de WR. Esto se debía a que las
interfaces entre el dominio de reloj de WR y las máquinas de estado (FSM) del
clasificador TAS únicamente permitían que los distintos TAS presentes en la
red se pudieran sincronizar entre sí con una diferencia pico a pico de 48.105
ns, que es mucho peor que el rendimiento que es capaz de proporcionar WR,
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el cual es mucho más preciso y capaz de alcanzar un rendimiento por debajo
del nanosegundo.

– Hemos comprobado que nuestra arquitectura TSN era capaz de ser interopera-
ble con algunos elementos y diseños de terceros, tales como el mecanismo de
etiquetado y encapsulado del VLAN para flujos TSN (streams). No obstante,
se hace necesario continuar trabajando en mejorar la compatibilidad entre la
sincronización de WR y temporización gPTP de TSN (punto 6.2)).

12.3 CAPAC IDADES DEL S ISTEMA

Como resultado de las tareas de desarrollo que hemos llevado a cabo durante este pro-
yecto, hemos logrado construir distintas variantes de sistemas TSN siguiendo un patrón
maestro para su arquitectura arquitectura junto con una serie de módulos funcionales
básicos que se han compartido en todos nuestros diseños. Las capacidades que brindan
estos elementos nos permiten implementar nodos de red TSN que pueden cumplir
con los requisitos más habituales de los sistemas de tiempo real. A modo de resumen,
proporcionamos una recapitulación de las principales capacidades del sistema en los
puntos siguientes.

• Nuestros nodos pueden garantizar la agregación de flujos de tráfico de diferente
naturaleza y proporcionar un nivel de tratamiento y procesado diferenciado para
cada clase de tráfico. De este modo, al aplicar distintas políticas para el procesado de
los distintos flujos, la red evita la interferencia entre flujos con niveles de criticidad
y prioridad distintos. Ésta es una de las principales características que hacen que
TSN se destaque como una alternativa a los buses de campo.

• Nuestro sistema incluye soporte para las funciones más habituales de las redes
TSN. En este tipo de sistemas, cada característica funcional se especifica dentro
del subestándar del IEEE correspondiente. De este modo, hemos implementado
los componentes del estándar necesarios para proporcionar las principales fun-
cionalidades de un sistema TSN: identificación de tráfico y etiquetado de VLAN
(802.1Q), reserva de recursos de nodo a nodo mediante APIs de configuración
software (802.2Qcc), clasificación de tráfico (802.1Qbv) con interrupción de tramas
de baja prioridad (802.1Qbu & 802.3br), y transmisiones redundantes (802.1CB).

• Se hace posible abordar con éxito aplicaciones diversas y los requisitos de múltiples
escenarios de red mediante la generación de versiones parametrizadas a medida de
nuestra arquitectura (combinando elementos de los puntos anteriores). Además,
dado que pueden configurarse fácilmente y permiten la habilitación selectiva de sus
diferentes prestaciones, podemos producir diseños especializados que se adapten
a escenarios distintos; como las redes industriales para nuestros experimentos
con las Smart Grids, o incluso la aviónica de un vehículo microlanzador. Estos
escenarios tienen diferentes requisitos. Por lo tanto, nuestros experimentos con
Smart Grid solo necesitaban asegurar la transmisión determinista de datos y, de
este modo, únicamente requerían del uso de un clasificador de tráfico TAS que
ejecutase un GCL determinado para procesar los flujos de red. Por el contrario,
nuestros experimentos del caso de aeroespacial requirieron la configuración de
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una red redundante (con el componente de redundancia de TSN) y del uso del
mecanismo de interrupción de tramas de baja prioridad para minimizar la PDV.

• Nuestra arquitectura TSN se puede integrar con herramientas automáticas de gene-
ración de configuraciones de terceros; que produzcan parámetros de configuración
significativos en base a una serie de requisitos y condicionantes que defina el usua-
rio del sistema, tal como se muestra en nuestros experimentos en DTU (Capítulo
10). Esto puede agilizar el diseño y la configuración de escenarios de red complejos
con múltiples flujos, además de allanar el camino para integrar nuestra solución
con sistemas de configuración de red centralizados.

• La integración con herramientas de generación de GCLs automatizadas necesita de
una fase de modelado previa. Para ello, hemos generado un modelo de referencia
que puede usarse para producir configuraciones y políticas significativas de proce-
sado de tráfico de manera consistente al combinarse con la herramienta de DTU.
Además, como fruto de esta integración, pudimos identificar áreas y componentes
de nuestro camino de datos que son susceptibles de mejora en el trabajo futuro que
continúe la investigación de esta tesis.

• Nuestra implementación de TSN se puede añadir de forma incremental sobre
cualquier tipo de enlace Ethernet convencional. Esto no solo cumple con las especi-
ficaciones del estándar, sino que también asegura que nuestros nodos TSN sean
compatibles con equipamiento que incorpore versiones convencionales del estándar
Ethernet.

• Nuestro diseño es lo suficientemente modular como para permitir la sustitución de
su componente de sincronizacióngPTP por el sistema WR, que proporciona una
sincronización más robusta. Esto permite que se emplee nuestro sistema TSN para
dar soporte a redes más amplias o para su aplicación a infraestructura científica.
No obstante, dadas las limitaciones en torno al uso reducido de recursos que se
han impuesto sobre nuestro diseño, no pudimos lograr niveles de mejoría en el
determinismo con la sincronización de WR que superasen a aquéllos de nuestros
experimentos en escenarios industriales o en aviónica. En estos casos, verificamos
que seguía siendo posible lograr una entrega determinista de los flujos de datos en
el sistema, pero algunas partes de nuestra arquitectura necesitaban de un rediseño
para que pudieran aprovechar completamente el uso de la sincronización WR para
mejorar el determinismo del sistema, tal como se menciona en 12.5.

• Asimismo, en el contexto de nuestra integración de la sincronización de WR con
nuestros módulos FPGA para TSN, pudimos verificar que, a pesar de que se ha
podido realizar el montaje de una red de varios dispositivos TSN mejorados con WR,
no ha sido posible por el momento montar una red híbrida en la que se combinen
tanto dispositivos gPTP como con nodos WR dentro del mismo subsistema de red.
En general, llegamos a comprobar que las implementaciones genéricas de PTP son
incompatibles en gran medida con el diseño del protocolo WR, que se encuentra
presente en nuestros nodos WR-ZEN de prototipado. Habilitar la compatibilidad
entre estos dos protocolos de sincronización será uno de los principales objetivos
del trabajo futuro (véase 12.5).
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12.5 TRABAJO FUTURO

Tal como se ha demostrado con nuestros experimentos con los prototipos de nodo TSN
mejorados con WR de la estancia de doctorado en DTU (Capítulo 10), la arquitectura que
hemos diseñado para nuestros nodos ha sido capaz de proporcionar con éxito un diseño
con un consumo moderado de recursos que es lo suficientemente flexible como para
permitir su integración en distintos tipos de dispositivos FPGA; esto es, la flexibilidad
es tal que potencialmente podríamos implementar nuestro diseño en cualquiera de
los dispositivos de la familia Zynq-7000, tomando el dispositivo Z-7015 de tamaño
reducido y bajo coste como punto de partida. Éste sería el caso extremo con los requisitos
más exigentes a partir del cual sería factible realizar la síntesis del sistema. Aunque
esta flexibilidad y modularidad han sido útiles para implementar nuestro sistema en
múltiples plataformas en casos de uso distintos en los que se imponían límites en el uso
de recursos diferentes, también hemos podido constatar que esta misma flexibilidad es
precisamente la que puede ser la fuente de algunas de las principales limitaciones del
rendimiento del diseño.

Como hemos realizado un esfuerzo importante en preservar y reducir el uso de FPGA,
en nuestro diseño llegamos a establecer un equilibrio entre el máximo rendimiento
aprovechable y la cantidad de recursos asociada con la implementación de cada uno
de nuestros cores IP. El módulo de VLAN representa un ejemplo claro. De este modo,
su diseño usa un número limitado de reglas de identificación de tráfico (hasta 16
reglas distintas), y su motor de comparación, que identifica las tramas Ethernet como
pertenecientes a distintas clases de tráfico, está basado en el uso de un mecanismo
de búsqueda secuencial en una zona de bancos de memoria. Aunque este mecanismo
es relativamente flexible y permite identificar distintos tipos de tráfico atendiendo a
parámetros tales como la dirección MAC de destino, dirección IP, el número de puerto
o de protocolo; durante el modelado caracterizamos que el retardo que introduce esta
aproximación podría ser del orden de hasta ⇠1 µs antes de que el bloque sea capaz
de identificar a un flujo TSN correctamente y de aplicarle el encapsulamiento VLAN
correspondiente. Este retraso, como se ve en la Tabla 10.3, es una de las principales
causas de la gran latencia en el procesado de los paquetes en el camino de datos de
nuestra arquitectura TSN. Además, también podría contribuir a introducir jitter adicional
en la transmisión y, de este modo, evitar que se pueda mejorar el determinismo del
sistema cuando combinamos nuestros núcleos TSN con la sincronización de WR. Ésta
es una de las razones principales por las que el trabajo futuro que se emprenderá sobre
el módulo de VLAN versará principalmente en rediseñar su motor de procesamiento
y comparación de paquetes para hacerlo más rápido. En esta línea, hemos previsto el
uso de una memoria direccionable por contenido (CAM) [165] que permita la detección
de clases de tráfico con mayor rapidez, posiblemente en menos de dos ciclos de reloj, y
que ,además, facilite la definición de un mayor número de reglas para detectar aún más
flujos TSN. Otros cambios en el núcleo de VLAN podrían orientarse por la vertiente de
proporcionar una versión más “liviana” y rápida del mismo con su arquitectura actual,
pero que use menos recursos y que mejore su velocidad de respuesta.

También se considera la aplicación de mejoras en el resto de nuestros módulos para
TSN; tales como el clasificador TAS o los conmutadores internos de barras cruzadas.
Implementar una mejora para el módulo del TAS resultaría esencial para mejorar el nivel
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de determinismo que presenta el sistema al transmitir datos. Esta mejora consistirá en
un rediseño de las interfaces entre las máquinas de estado (FSMs) del TAS con el bus
principal del sistema en el camino de datos. Por lo tanto, el principal objetivo de esta
mejora debería ser evitar el uso de lógica de cambio de dominio de reloj innecesaria y, de
esta forma, eludir el problema que se detectó durante la caracterización del TAS en el
punto 10.4.1.

Asimismo, también afirmamos que los conmutadores de barras cruzadas deberían
reemplazarse totalmente en una versión mejorada de nuestra arquitectura. Los conmu-
tadores de barras cruzadas de Xilinx son un bloque estructural importante que nos
ha permitido diseñar nuestra arquitectura de forma ágil y cómoda para cumplir con
las funcionalidades esperadas en los objetivos del trabajo. No obstante, el uso estos
elementos da lugar a limitaciones importantes para diseñar conmutadores (switches) de
gran tamaño con un elevado número de puertos, ya que la implementación en FPGA de
switches de barras cruzadas puede disparar exponencialmente el consumo de recursos
cuando se usan parametrizaciones para un número elevado de puertos. El problema se
agrava todavía más en estos casos con los efectos de los mecanismos de arbitraje, como
el bloqueo de cabeza de línea (head-of-line blocking - HOL). Este efecto es un problema
típico en estructuras de barras cruzadas. De este modo, puede llegar a causar el bloqueo
momentáneo en la transmisión de ciertos paquetes hacia su puerto de salida, aunque éste
se encuentre inactivo, porque su ruta de entrada al conmutador está detenida actualmente
por acción del arbitraje entre otros paquetes anteriores destinados a otro puerto. Por
lo tanto, el uso de conmutadores de barras cruzadas puede ser una fuente importante
de indeterminismo en un sistema TSN. En consecuencia, con el fin de producir un
sistema con mayor rendimiento, se debe contemplar su reemplazo por otros diseños más
eficientes, como los conmutadores de memoria compartida, que eliminan este problema.

Otra línea de trabajo futuro radica en el área del modelado de nuestros nodos TSN. En
este contexto, tenemos como objetivo producir un modelo más preciso de la arquitectura
interna de nuestro sistema TSN, e incluso posiblemente combinarlo con los resultados
de herramientas de simulación para aumentar su precisión. De este modo, podríamos
construir una caracterización completa del sistema que podría proporcionarse como un
perfil de hardware específico del mismo a herramientas automáticas de generación de
los GCLs y de los otros parámetros de configuración del sistema, al tiempo que tengan
en cuenta las restricciones y condicionantes especificados por el usuario de la red. Estas
caracterizaciones y modelados precisos también podrían servir como una etapa previa al
desarrollo de un sistema de configuración centralizado para TSN. Este paso conllevaría
una mejora en las APIs de configuración de nuestros nodos para que sus parámetros
se puedan exponer de forma canónica a un elemento central de gestión de red (CNC).
El CNC distribuiría en este caso los parámetros de configuración específicos de cada
nodo como un único punto de control y gestión, en contraposición a la filosofía de
programación individual nodo a nodo que hemos venido empleando hasta ahora.

Por último, tras haber realizado una caracterización inicial y haber obtenido resultados
preliminares de la integración entre WR y nuestros nodos TSN, tenemos la intención
de revisar nuestros resultados para construir sistema TSN con WR en el que se pueda
aprovechar de manera completa el uso de la nueva sincronización para mejorar el deter-
minismo en las comunicaciones. Las mejoras que hemos propuesto para los principales
módulos FPGA del sistema deberían permitir obtener resultados bastante mejores que
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los que presentamos en la Tabla 10.8. Sin embargo, también nos gustaría explorar el uso
de enlaces Ethernet más rápidos, como Ethernet a 10 Gb combinado con el mecanismo
de interrupción de tramas menos prioritarias (frame preemption), ya que postulamos que
con una capa de enlace Ethernet a mayor velocidad y, por lo tanto, con una mayor
granularidad de reloj, debería hacer que las ventajas de usar WR en sustitución de gPTP
se hagan patentes en comparación con el uso de versiones de menor ancho de banda de
Ethernet.
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A
Z E N - C TA S O F T WA R E E N V I R O N M E N T

This section shows part of the supplementary material from [1]. We use this appendix
to provide the reader with an overview of the software ecosystem of the ZEN-CTA
node. Since this node is a customized version of the WR-ZEN boards [8] that we have
extensively used for prototyping our TSN solutions, the features and characteristics that
we present in this section are also applicable to the WR-ZEN boards that we used during
the thesis project. Moreover, some of the concepts and features that we outline in the
appendix have guided our development efforts in the areas of Linux kernel configuration
and driver development, integration of new user-level applications, and use of third-party
system services. Hence, its inclusion with the manuscript is illustrative and should help
the reader get a broader overview of the typical development workflow in a generic
embedded environment, like those of the ZEN-CTA or the WR-ZEN nodes.

© 2020 IEEE. Reprinted, with permission, from J. Sanchez-Garrido et al., “A White
Rabbit-synchronized accurate time-stamping solution for the small-sized cameras of the
Cherenkov Telescope Array”, IEEE Transactions on Instrumentation and Measurement,
July 2020. DOI: 10.1109/TIM.2020.3013343.
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A.1 THE SOFTWARE ENVIRONMENT OF THE ZEN-CTA NODES

White Rabbit Zynq (WRZ) devices, including the ZEN-CTA node, feature a dual-core
embedded processing system (a microprocessor) that allows the running of several
software tasks. In this context, a complete Linux ecosystem has been generated using
embedded tools such as Buildroot [83]. This tool can be configured to create a specific
image containing different applications, a Linux kernel and a device bootloader. For the
Linux Operating System (OS) and bootloader, we use the Linux kernel and U-boot from
Xilinx GitHub repositories ([200] and [201]). Upon determining the OS and bootloader for
the WRZ device, specific software development tasks have been performed to design and
implement user space tools and kernel drivers for use in CTA [99]. The WRZ software
ecosystem is shown in Fig. A.1 and the main blocks are briefly discussed in the following
lines. Additionally, a complete description can be found in [132].

Figure A.1
Diagram of the Software Ecosystem for the ZEN-CTA node, based on the generic environment of the WR-ZEN
family of nodes. © 2020 IEEE.

A.2 USER SPACE TOOLS

Some utilities have been implemented to program the FPGA device and access the
hardware resources of the platform.

– zen-ts. This configures the TDC module inside the FPGA to retrieve time-stamp
data from new incoming events using either a software-assisted or a coprocessor-
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enhanced mode: The former sends time stamps from the TDC to the ARM pro-
cessing system, where they are transformed into a human-readable format and
forwarded over the DMA engine (Section 5.5.1); whereas the latter mode uses an
FPGA coprocessor (Section 5.5.2) to transmit raw time-stamp data directly over the
new data path without processor intervention.

– wrz-cl. This programs the soft-processor inside the FPGA device. This soft-
processor is in charge of implementing the WR protocol for the high accuracy
timing synchronization.

– wrz-date. This reads/writes the time counters from the time baseline core inside
the FPGA device. It is especially useful if a network time protocol (NTP) server is
used as time reference.

– wrz-fwloader.sh. This is responsible for programming the FPGA device with a
specific gateware bitstream.

– wrz-mem. This allows other applications to access hardware registers of different
Intellectual Property (IP) blocks inside the FPGA gateware.

– wrz-vuart. This acts as virtual universal asynchronous receiver-transmitter (VUART)
terminal between the main CPU and the soft-processor inside the FPGA gateware.

A.3 KERNEL DRIVERS

In addition to the userspace tools, a kernel driver has been implemented to handle
the WRZ device. This module is responsible for accessing hardware resources by
reading/writing relevant information to the registers in the IP blocks. Moreover, a Linux
network driver has been developed to expose the optical fiber ports of the WR End-Points
(WRE) as conventional Linux network interfaces for the rest of the applications in the user
space domain. WRZ can configure the underlying hardware to use a DMA module for
high-bandwidth data transfers (Section 5.5) or switch over (MUX) to the legacy NIC [131],
which is disabled in our implementation. With regards to the DMA mode, the WRZ
driver uses the Linux DMAengine Application Programming Interface (API) to request
DMA descriptors for the Xilinx AXI DMA driver. Consequently, the WRZ driver presents
a generic implementation that handles the DMA module through a kernel-maintained
abstraction layer.

A.4 SYSTEM SERVICES

The system implements a lightweight Linux environment with several useful services;
such as a dynamic host configuration protocol (DHCP) client for acquiring local network
settings, an NTP client for retrieving Internet time, or a secure shell (SSH) server for
providing management shell access to the end-user. Additional components, such as
an Object Linking and Embedding for Process Control: Unified Architecture (OPC-UA)
server for slow control could also be installed from resource repositories if needed.
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L I N U X K E R N E L - L E V E L S U P P O RT F O R N E T W O R K D R I V E R S

This section shows part of the supplementary material from [1]. We use this appendix to
introduce some advanced topics on network driver development and optimization that
we encountered initially during our study and development efforts with the ZEN-CTA
board. Hence, we discuss some of the main considerations applicable to the optimization
of our network drivers for the ZEN-CTA, which we supplied as an upgrade over the
legacy WR-NIC [131]. These optimizations allowed our network driver to take advantage
of the available 1-Gb/s link bandwidth by applying a series of customizations and
configuration options to our code. These considerations are generally common for
network driver development and, thus, we introduce them in the appendix to provide
the reader with greater context on the usual engineering challenges that are normally
associated with the implementation of kernel modules for handling interfacing with
FPGA-based network interfaces or other generic peripherals.

© 2020 IEEE. Reprinted, with permission, from J. Sanchez-Garrido et al., “A White
Rabbit-synchronized accurate time-stamping solution for the small-sized cameras of the
Cherenkov Telescope Array”, IEEE Transactions on Instrumentation and Measurement,
July 2020. DOI: 10.1109/TIM.2020.3013343.

Chapter contents
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B.1 L INUX KERNEL-LEVEL SUPPOR T FOR THE NEW DMA-BASED UPGRADE

The implementation of the DMA-based upgrade for the WR-compatible interfaces of the
ZEN-CTA requires the development of the necessary kernel-level support to integrate
their new data path with the Linux networking stack. As explained in Appendix A, a
kernel driver has been used to expose the WR ports of the WRPC as regular Ethernet
interfaces for the user applications and the Linux OS of the Zynq-7000 processing
system. Hence, this allows the convergence over the same physical link of deterministic
WR messages from the WRPC and ordinary data traffic from user applications in the
processing system of the Zynq-7000 SoC transmitted over the high-speed DMA path
developed in this design.

We determined that the highest achievable throughput performance of the newly
developed driver was highly dependent on a number of configuration parameters;
such as the number of buffer descriptors reserved for handling transmission or reception
transactions from the DMA module, the amount of allocated RX/TX memory for the UDP
and transmission control protocol (TCP) kernel components, disabling the use of the TCP
SACK (Selective Acknowledgements) mechanism, or even the Processor Affinity assigned to
each user space task transmitting data over the WR-compatible network interfaces. As
a result, a number of kernel configuration parameters were modified iteratively using
simple sysctl commands in accordance with some of the recommendations explained in
[202]. These parameters are summarized in Table B.1.

Configuration Parameters

txqueuelen 5000

netdev_backlog 5000

wmem_max, rmem_max 212992 B

tcp_mem “285108 380145 570216” B

tcp_sack Disabled

Processor Affinity

Adjusted Processor Affinity value to the second core out of
the two cores available at the ARM-based processing system
for the user space applications producing TX transactions
on the WR-compatible Ethernet interfaces

Optimization Flags

Enabled optimization flags for compiling the necessary kernel
modules implementing the WR-compatible network interfaces
(e.g.,“-Ofast”), as well as the Embedded Linux environment
running on the processing system.

Table B.1
Overview of the Linux kernel configuration parameters used for fine-tuning the highest attainable throughput
of the DMA-based, WR-compatible network interfaces. © 2020 IEEE.

The foregoing points summarize the main optimization strategies used to enhance the
stability and throughput of the kernel modules handling the operation of the DMA-based,
WR-capable Ethernet interfaces. Further optimizations could include customizing the
kernel with TCP modules tailored to support high-speed links [203], or fine-tuning
the number of buffer descriptors allocated to the Xilinx DMA module for processing
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transactions. This latter approach is fairly effective and could achieve an optimum
throughput of 426 Mbps (TX) and 564 Mbps (RX) when 55 and 80 buffer descriptors were
reserved for TX and RX transactions, respectively. The attainable bandwidth is ultimately
limited by the CPU clocking rate of the ZEN-CTA node, but is nonetheless in line with
the performance of the Xilinx 1G Ethernet drivers for Zynq-7000 devices [151]. Even
though this is a significant improvement over the original WR-NIC, the transmission of
TDC time stamps from user applications could only at best use approximately half of the
capacity of the 1-Gigabit Ethernet links.
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