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Self-organized bistability and its possible relevance for brain dynamics
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Self-organized bistability (SOB) is the counterpart of “self-organized criticality” (SOC), for systems tuning
themselves to the edge of bistability of a discontinuous phase transition, rather than to the critical point of a
continuous one. The equations defining the mathematical theory of SOB turn out to bear a strong resemblance
to a (Landau-Ginzburg) theory recently proposed to analyze the dynamics of the cerebral cortex. This theory
describes the neuronal activity of coupled mesoscopic patches of cortex, homeostatically regulated by short-term
synaptic plasticity. The theory for cortex dynamics entails, however, some significant differences with respect to
SOB, including the lack of a (bulk) conservation law, the absence of a perfect separation of timescales and, the
fact that in the former, but not in the second, there is a parameter that controls the overall system state (in blatant
contrast with the very idea of self-organization). Here, we scrutinize—by employing a combination of analytical
and computational tools—the analogies and differences between both theories and explore whether in some
limit SOB can play an important role to explain the emergence of scale-invariant neuronal avalanches observed
empirically in the cortex. We conclude that, actually, in the limit of infinitely slow synaptic dynamics, the two
theories become identical but the timescales required for the self-organization mechanism to be effective do
not seem to be biologically plausible. We discuss the key differences between self-organization mechanisms
with/without conservation and with/without infinitely separated timescales. In particular, we introduce the
concept of “self-organized collective oscillations” and scrutinize the implications of our findings in neuroscience,
shedding new light into the problems of scale invariance and oscillations in cortical dynamics.
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I. INTRODUCTION

The theory of self-organized criticality (SOC) explains
how systems can become self-organized to the edge of a con-
tinuous phase transition, i.e., to the vicinity of a critical point
without the apparent need of parameter fine tuning [1–5].
This theory (or mechanism) is often invoked to explain the
emergence of scale-free distributions in the sizes and dura-
tions of outbursts of activity—often called “avalanches”—
interspersed by periods of quiescence in diverse settings such
as earthquakes, vortices in superconductors [1,3,5], and corti-
cal brain activity [6–9], to name but a few.

The basic mechanism for self-organization to the edge
of a phase transition—as exemplified by its most paradig-
matic representatives, sandpile models [2,10,11]—relies on
two essential and intertwined features: The first one is the
presence of two infinitely separated timescales: a fast dynam-
ics characterizes the system intrinsic activity, while a slow
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dynamics modulates the control parameter. This latter acts
differentially on each phase—at each side of the transition—
thus creating a feedback loop that self-organizes the system
to the edge of the transition [5,12–14]. The second important
feature is that the bulk dynamics is conserved, i.e., dissipation
occurs only at the system boundaries: in the presence of bulk
dissipation there would be characteristic timescales—both
in space and in time—incompatible with the idea of scale
invariance.

Nevertheless, self-organized models lacking conservation
—such as forest-fire and earthquake models [15,16]—have
also a long tradition in studies of self-organized criticality.
The main difference between conserved and nonconserved
dynamics in SOC models is that while the first one drives
the dynamics exactly to the critical point with concomitant
scale invariance, nonconserved dynamics leads to a wandering
around the critical point (i.e., with excursions to both sides of
the critical point but not sitting exactly on it). This mechanism
has been termed “self-organized quasicriticality” (SOqC) and
leads to approximate scale invariance for a few decades, which
may suffice to describe what empirically observed in real
systems, without the need to invoke perfect criticality as in
SOC (we refer the reader to Bonachela and Muñoz [14] for a
thorough and pedagogical discussion of these issues).
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The paradigm of self-organized criticality has been very
influential in the context of neuroscience. It has been pro-
fusely employed to rationalize the empirical observation
of scale-free avalanches, i.e., outbursts of neuronal activity
whose sizes and durations are distributed as power laws [17],
as robustly found across species, scales, and experimental
techniques [18,19]. Mathematical models inspired in SOC
have been proposed to account for such scale-invariant
avalanches [7,8,20,21]. Actually, the idea that the cerebral
cortex—as well as other biological systems—might extract
important functional benefits from operating at criticality, has
attracted a lot of interest and excitement as well as some
controversy (see, e.g., Refs. [9,18,19,22,23]); SOC, as well
as SOqC, played a key role in the development of this conjec-
ture [21,24].

Recently, a mechanism similar in spirit to SOC—relying
also on an infinite separation of timescales and on a conserved
dynamic for the control parameter—has been discovered to
be able to self-organize systems exhibiting a discontinu-
ous phase transition to the edge of such a transition. As
a matter of fact, self-organized bistability (SOB)—as the
theory has been named—has been proposed as a new and
very general paradigm for the self-organization to points
of bistability or phase coexistence between two alternative
phases [25].

Systems under SOB conditions turn out to be also charac-
terized by scale-free avalanches of activity. More specifically,
localized small perturbations into the quiescent state
propagate in the form of avalanches with sizes S and durations
T distributed as power laws: P(S) ∼ S−τ and P(T ) ∼ T −α ,
and the averaged avalanche size scales as 〈S〉 ∼ T γ , obeying
the scaling relation γ = (α − 1)/(τ − 1) [26,27]. However,
at odds with SOC, avalanches in SOB systems are distributed
in a bimodal fashion, i.e., for any finite system size
their sizes and times distributions consist of a power-law
complemented with a “bump,” corresponding to anomalously
large system-spanning events [24,25]. Furthermore, the
exponents τ, α, and γ differ from their SOC counterparts and
coincide with those of the usual mean-field branching process
exponents even in low dimensional systems [25,28–30].

Given that living systems could have evolved to exploit
the complementary benefits of two alternative coexisting
phases [9], this new paradigm for the self-organization to
the edge of a phase transition has been argued to be of
potential relevance in biological problems, much as SOC is. In
particular, in the original paper in which SOB was introduced,
it was also speculated that SOB might be relevant to explain
the emergence of scale-free avalanches in the neuronal activity
of the cerebral cortex [25].

During deep sleep or under anesthesia, the state of
cortical activity is well-known to exhibit a form of bistability,
with an alternation between two possible states of high
and low levels of neural activity—called “up and down”
states—respectively [31–34]. This underlying bistability,
together with the empirical observation of scale-free
avalanches—appearing sometimes in concomitance with
anomalously large outbursts—in the awake resting brain,
made the authors of Ref. [25] suggest (as a possibility to
explore) that there could be some type of self-organization to
the edge of bistability, rather than the usually postulated self-

organization to criticality [7,8,20,21] or any other alternative
scenario.

In a parallel endeavor, our research group has re-
cently proposed a physiologically motivated mesoscopic
(Landau-Ginzburg) theory, specifically designed to shed light
on the large-scale dynamical features of cortical activ-
ity [35]. The outcome of such an approach is that the relevant
phase transition for cortical dynamics is a synchronization
phase transition (which occurs in concomitance with scale-
invariant avalanches) with no self-organization to such a
transition: parameters need to be fine tuned to observe it.
Moreover, the resulting synchronous-asynchronous phase
transition is of a different nature of the quiescent-active phase
transition assumed to describe avalanches in cortical dynam-
ics, which has motivated a change of perspective in the field
with important consequences.

The most remarkable fact for our purposes here is that the
Landau-Ginzburg theory for cortical dynamics bears profound
similarities with that of SOB. Thus our main goal here is to
scrutinize the analogies and differences between the above
Landau-Ginzburg theory and the theory of SOB. In particu-
lar, we pose the following question: can self-organization to
the very edge of a discontinuous transition with scale-free
avalanches be possibly observed in the (Landau-Ginzburg)
model? Can the SOB theory be modified to reproduce the phe-
nomenology of the Landau-Ginzburg equation? Answering
these questions will pave the way to a deeper understanding
of self-organization mechanisms and their relevance in neuro-
science.

II. THE THEORY OF SELF-ORGANIZED BISTABILITY

Let us overview here the main aspects of the theory of SOB
(for the sake of clarity and self-containment, we present in
Appendix A a simple one-site or mean-field formulation that
might be helpful to gain insight for readers not familiar with
SOB or SOC theories; for a complete description of SOB and
its mathematical formulation, we refer to di Santo et al. [25]).

Given a spatially extended system, the theory of SOB can
be written in terms of two equations, one for an activity field
ρ(�x, t ) (which in sandpiles represents sites over the instability
threshold) and one for a “background” or “energy” field
(which in sandpiles represents the total amount of grains at
a given site).1

More precisely, the set of Langevin equations proposed to
describe the evolution of the activity ρ(�x, t ) and “energy” field
E (�x, t ) in the SOB theory [25] read

ρ̇(�x, t ) = [E (�x, t ) − a]ρ + bρ2 − ρ3 + D∇2ρ + h + η(�x, t ),

Ė (�x, t ) = ∇2ρ(�x, t ) − ερ(�x, t ) + h (1)

[note that some dependencies on (�x, t ) have been omit-
ted in Eq. (1) for simplicity], a, b > 0 are constants, ∇2ρ

stands for a diffusive coupling with diffusion constant D,
and η(�x, t ) is a zero-mean multiplicative Gaussian noise
with 〈η(�x, t )η( �x′, t ′)〉 = ρ(�x, t )δ(�x − �x′)δ(t − t ′) describing
particle-number (“demographic”) fluctuations.

1Note that either name is an abstraction, e.g., in sand piles this field
represents the local amount of sand grains.
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This is the simplest set of equations extending the the-
ory of self-organized criticality [5,14,36,37] to the case in
which there is a discontinuous phase transition [38]. More in
particular, the rationale behind these equations is as follows.
The first one for the field activity exhibits a discontinuous
phase transition for the overall level of activity as the control
parameter (e.g., value of E ) is changed. The second one is
responsible for creating a feedback loop between the control
and the order parameters [12]. When there is no activity, the
local energy field grows with the constant driving +h (shifting
the system towards the active phase) while, in the presence
of activity, dissipation at the boundaries dominates (shifting
the system towards the absorbing phase). Importantly, h is
an arbitrarily small driving rate, which, in analogy with the
driving in sandpile models—where just one sandgrain is
added at the time [1]—is assumed to scale with the inverse
of the system size h ∝ 1/L2. Equivalently ε is the rate of
the activity-dependent energy dissipation, which in sandpile
models is a boundary effect, scaling as ε ∝ 1/L; thus, the
ratio h/ε → 0 in the large system-size limit. In other words,
the SOB limit is obtained when driving and dissipation go to
zero, i.e., the energy equation converges to be conserved and
the timescales of both equations become infinitely separated
(in the jargon of nonlinear systems, this corresponds to a
“slow-fast” dynamics [39]).

As mentioned in the introduction, the outcome of this set
of equations is that the system self-organizes to the point
of bistability between the quiescent and the active phase
with scale-free avalanches [25]. In particular, the associated
exponents τ, α and γ take well-known values, i.e., those of
an unbiased branching process [28,40,41] (actually, to be
more precise, they coincide with those of compact directed
percolation or voter model universality class in all dimen-
sions [27,42,43], and with those of the branching process
above the upper critical dimension d = 2 [25]). Also, as said
above, such scale-free distributed avalanches coexist (for any
finite system size) with anomalously large events or waves,
in which activity spreads ballistically, weeping the whole
system [25].

III. THE LANDAU-GINZBURG THEORY
OF CORTEX DYNAMICS

The set of Eqs. (1) can be directly compared with the phys-
iologically inspired Landau-Ginzburg model that has been
recently proposed to shed light on the large-scale features
of brain activity, relying on synaptic plasticity as a chief
regulatory mechanism [35]. In this modeling approach, neural
activity is described at a coarse-grained level in the spirit
of the approach of Wilson and Cowan to large-scale neural
dynamics [44,45]. On the other hand, short-term synaptic
plasticity is implemented as a main regulatory mechanism—
using the celebrated Tsodyks-Markram model [31] (see also
the very similar approach by Abbott et al. [46])—in line
with previously proposed models of self-organization in brain
dynamics [7,8,47,48]. In particular, the level of neural ac-
tivity at each coarse-grained or mesoscopic region of the
cortical tissue (representing a local subpopulation of neurons)
is encoded in an activity variable ρ(�x, t ), while the local
amount of available synaptic resources is called R(�x, t ). The

following set of equations defines the dynamics of these two
variables [35]:

ρ̇(�x, t ) = (R(�x, t ) − a)ρ + bρ2 − ρ3 + I + D∇2ρ + η(�x, t )

Ṙ(�x, t ) = 1

τR
(ξ − R) − 1

τD
Rρ (2)

[where, again, some dependencies on (�x, t ) have been omitted
for the sake of simplicity]. In the equation for the activity
field—much as above—a, b > 0 are constant parameters, I
stands for a small external incoming input, ∇2ρ stands for the
diffusive coupling between local regions with diffusion con-
stant D, and η(�x, t ) is a multiplicative demographic noise. The
bilinear coupling between R and ρ in the first equation reflects
the fact that the larger the amount of synaptic resources, the
larger the rate at which further activity is generated. On the
other hand, in the second equation, τR and τD are the char-
acteristic scales for the processes of recovery and depletion
of synaptic resources, respectively, ξ is the maximal level of
available synaptic resources that can possibly be reached.

Let us emphasize that—importantly for what follows—this
theory is not self-organized, i.e., the resulting phenomenol-
ogy depends on the value of the baseline level of synaptic
resources ξ :

(1) For small values of ξ the system sets into the quiescent
(or “down”) state, with vanishing activity.

(2) For large values of ξ the system sets into an active (or
“up”) state with a sustained (high) level of activity, which is
sometimes called “asynchronous irregular” phase.

(3) In between the above two regimes there is an interme-
diate one called “synchronous irregular” in which there are
intermittent events which are synchronized; these correspond
to fast waves traveling through the system, and generating
coactivation of many units within a relatively small time
window.

(4) Right at the critical point separating the synchronous
from the asynchronous phase avalanches can be measured by
using a protocol—relying on the definition of a discrete time
binning—identical to that used by experimentalists to detect
neuronal avalanches [9,17].

At the light of these facts, it was proposed that the actual
scale-free avalanches of neuronal activity observed in the
cortex stem from the dynamics operating in a regime close
to the synchronous-asynchronous phase transition, rather than
to the critical point of a standard quiescent-to-active phase
transition as had been assumed before [18]. However, the
mechanism by which the cortex seemingly selects to operate
near such a critical point remains undetermined [35].

IV. ANALOGIES AND DIFFERENCES
BETWEEN BOTH THEORIES

Remarkably, the sets of equations (1) and (2) exhibit
profound analogies (note that the notation in both of them
has been fixed to make the similitudes self-evident). As a
matter of fact, the first equation, which describes in the
simplest possible (minimal) way a discontinuous/first-order
phase transition into an absorbing state, is identical for both
theories. On the other hand, formal differences appear in the
second equation for the “energy” field in SOB theory, Eq. (1),
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which in Eq. (2) is replaced by a field describing the dynamics
of synaptic resources.

A first important difference between both sets of equations
is that in SOB the energy field is conserved in the bulk;
only driving events and boundary dissipation make the total
integral value fluctuate in time, but as specified earlier, they
are both vanishingly small. On the other hand, the above
equation for Ṙ(�x, t ) is not conserved in the bulk, as it includes
a (positive) term for the charging/recovery of resources to
their baseline level ξ , as well as a (negative) term for the
activity-dependent consumption of resources.

The second (related) difference is that in Eq. (2) there is no
perfect separation of timescales. Actually, the synaptic time
constants τR and τD are biologically motivated parameters,
e.g., τR = 103 and τD = 102 time units [35], that cannot be
assumed to scale with the system size (as would be required
in SOB) [21].

In third place, in Eq. (2), there is a baseline level of
synaptic resources ξ which, as said above, plays the role of
an overall control parameter: by tuning it one can shift the
system between different phases from a quiescent regime with
no activity, to one with oscillations, waves, etc. (see Ref. [35]);
such a tuning parameter has no counterpart in SOB, Eq. (1).
Indeed, the very existence of a control parameter allowing to
shift between dynamical regimes is at odds with the very idea
of self-organization.

Thus our aim in what follows is to explicitly explore
whether Eq. (2) can lead to the same behavior of SOB—i.e.,
to true self-organization—in some limit and, also, the other
way around: to see what modifications of SOB lead to the
Landau-Ginzburg phenomenology.

V. RESULTS

Let us start with a single unit (or mean-field) analysis of
the local/individual components of Eq. (2) in the stationary
state, for which one needs to detect where the two nullclines
of the associated deterministic equations (for the one-site
dynamics) intersect (see Appendix B for more details as well
as Appendix C for a related model). The fixed points (ρ∗, R∗)
of the dynamical system depend on the maximal level of
synaptic resources, ξ . For small values of ξ , the deterministic
system settles in a “down” state with ρ∗ = 0 and R∗ = ξ . In
contrast, an “up” state with sustained activity, ρ∗ > 0, with a
depleted level of resources, R∗ < ξ , emerges for sufficiently
large values of ξ .

Separating these two limiting states, there is a range of
values of ξ where a stable limit cycle emerges if the timescale
separation is large enough (see leftmost inset of Fig. 1(a)
and purple-shaded region in Fig. 1). As discussed in detail
in Appendix B, the limit cycle is created via a homoclinic
bifurcation at ξ = a and destroyed via a Hopf bifurcation at
a value of ξ that depends on the timescales. In particular,
for a biologically plausible separation of the characteristic
timescales τR and τD (i.e., τD/τR = 0.1 and τR = 103 as cho-
sen in Ref. [35]) the system exhibits an intermediate regime
with oscillations as illustrated in Fig. 1(a) and Appendix B.
These oscillations at the individual sites are at the origin of
the propagating waves and emerging synchronous behavior in
the spatially extended system [35]. On the other hand, in the

(a)

(b)

(c)

FIG. 1. Phase portraits and nullclines for the deterministic dy-
namics at an individual site of the Landau-Ginzburg theory, Eq. (2).
Insets: the nullcline for ρ̇ = 0 is colored in black, while nullclines
for Ṙ = 0—for three different values of the baseline level of synaptic
resources ξ– are plotted in orange, purple, and green color, respec-
tively. The small grey arrows represent the vector field for (ρ̇, Ṙ) and
the light purple curve represents a limit-cycle trajectory. [Inset (a)]
For τD/τR = 0.1 and τR = 103, the system may display a down state
(orange nullcline, ξ = 0.2), a limit cycle (purple nullcline, ξ = 1.5)
or an up state (green nullcline, ξ = 3.5). [Inset (b)] For τD/τR =
0.001 and τR = 107 the system approaches the SOB behavior and the
dependence on the control parameter ξ becomes very weak, meaning
that for a wide range of values of the control parameter above the
down state (ξ = 1, 5, 10 for orange, purple, and green nullclines,
respectively) the system sets in the oscillatory phase. [Inset (c)]
When the separation of timescales is very low, the system only
displays bistability between up and down states with no oscillations
whatsoever, no matter the value of ξ . (Main) The global behavior
of the system depending on the timescale separation is coded in
the main figure with different background colors: purple when the
limit cycle appears, and green when only bistability is possible.
Parameters are set to I = 10−3, a = 0.6, b = 1.3, in both cases.

opposite limit in which the timescales are both relatively fast
and not very separated—a case that we do not discuss here in
further detail—there is no intermediate regime of oscillations
and the system just shifts from a quiescent (down) to an active
(up) state as ξ is increased [see the green-shaded region in
Fig. 1 and inset (c)]. This regime is likely to be useful to
describe up-and-down transitions as observed in the cerebral
cortex.

Given that the mechanism of the recovery of synaptic
resources (with a characteristic timescale τR) plays the role
of driving, while the depletion of resources (with a char-
acteristic scale τD) plays the role of dissipation in pres-
ence of neural activity, we conjecture that the SOB limit
of infinite separation of timescales could be only possibly
recovered taking formally the double limit 1/τR → 0 and
1/τD → 0, with τD/τR → 0. In particular, in what follows
we consider different sets of values for the timescales τR
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FIG. 2. Avalanches in the limit of a large separation of
timescales, for the spatially extended (two dimensional) version
of the Landau-Ginzburg theory for cortical dynamics, Eq. (2).
Probability distribution for avalanche durations T (a), avalanche
sizes S (b) and average avalanche size as a function of duration
(c) in double logarithmic scale, for square-lattice systems of sizes:
N = 212, 214, and 216. The dashed lines are plotted as a guide to
the eye, and have slopes corresponding to the expectations for an
unbiased branching process (α = 2, τ = 3/2, and γ = 2, respec-
tively). The “bumps” correspond to anomalously large events, i.e.,
synchronized spiking events. The cut-offs/bumps change with N
obeying finite-size scaling as in the theory of self-organized bistabil-
ity [25]. Parameters: b = 0.5 a = 1, I = 10−7, τD = 104, τR = 106,
and D = 1.

and τD—regardless of their real meaning in neuroscience–
approaching a large separation of timescales [e.g., τD/τR =
0.001 rather than τD/τR = 0.1 as above; see Fig. 1(b)].

First of all, we observe that the larger the separation of
timescales, the weaker the dependence on the control param-
eter ξ [see in particular in Fig. 1(b) how the three different
Ṙ = 0 nullclines—for three different values of ξ—become
very close to each other]. This allows us to reproduce one
of the main features of the self-organization mechanism:
robustness on changes of the tuning parameter emerges as the
limit of infinite separation of timescales is approached (see
Appendix B for more details).

Second, when the separation of timescales tends to infinity,
the slope of the nullcline Ṙ = 0 converges to zero at the inter-
section point. Then, both nullclines intersect in a tangential
way, giving rise to a limit cycle, much as in the mean-field
SOB (see Appendix A).

To go beyond the single-site or mean-field analysis we now
study computationally a full (spatially explicit) system. Under

the conditions of a large separation of timescales we have
performed computer simulations of the full set of Eqs. (2).
In particular, we considered square lattices with sizes from
N = 212 to 216 to analyze finite size effects and performed
up to 108 runs for different parameter sets. It is possible to
measure avalanches of activity by defining a small threshold
(e.g., θ = 10−6) for the overall (integrated) activity and ana-
lyzing the statistics of excursions (sizes S and times T ) above
such a threshold [25,41]. Results of our extensive computer
simulations are shown Figs. 2 and 3.

In particular, Fig. 2 reveals the existence of scale-invariant
episodes of activity—whose distributions are very well fitted
by the exponents of the unbiased branching process– appear-
ing together with anomalous “king” avalanches in full analogy
with the theory of SOB [25]. These computational results are
very robust to changes in the control parameter ξ as illustrated
in Fig. 3. Actually, hardly any difference is observed in the
probability distributions when ξ is increased from a value 1
to 10. This reveals the emergence of true self-organization
regardless of the specific value of the parameters in the limit
in which an infinite separation of timescales is imposed.

Thus, at the steady state, the system with infinitely sep-
arated timescales actually self-organizes to the edge of a
discontinuous/first-order phase transition, where active and
absorbing phases coexist and scale-invariant episodes of ac-
tivity emerge, as in SOB.

Finally, observe that the lack of a diffusion term in the
equation for synaptic resources does not seem to be a problem,
indicating that diffusion in the second equation is not essential
(“relevant” in the jargon of the renormalization group) feature
and that possibly it could also be removed from the minimal
set of Eqs. (1) describing SOB (this claim is also supported by
our own computational analyses).

VI. DISCUSSION

We have shown, by using the recently proposed Landau-
Ginzburg model of cortex dynamics [35], that self-
organization behavior to the edge of a discontinuous phase
transition with bistability can be recovered by considering
extremely slow synaptic timescales.

First, from a theoretical point of view, our analyses re-
veal that different regulatory mechanisms for the control

FIG. 3. Weak dependence on the control parameter in the limit of large separation of timescales, for the spatially extended (two
dimensional) version of the Landau-Ginzburg theory for cortical dynamics, Eq. (2). Different colors represent different values of ξ . There
is essentially no visible change in the probability distributions for avalanche durations T (a), avalanche sizes S (b), and average avalanche size
as a function of duration (c), for different values of ξ , in particular, ξ = 1, 3, 5, 7, and 10. The dashed lines are plotted as a guide to the eye
and their slopes correspond to unbiased branching process exponents. Parameters are fixed as in Fig. 2 with N = 214.
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parameter—i.e., different equations for the “energy” field,
with different meanings and possibly with diverse fea-
tures such as conserved dynamics or not, or with or with-
out a diffusion term—can be considered in the context of
self-organization to the neighborhood of a discontinuous
transition. The SOB phenomenology—which is character-
ized by scale-free avalanches controlled by branching pro-
cess exponents, appearing together with anomalously large
avalanches—emerges once the “self-organization limit” is
taken: in the case considered here this means that the dynam-
ics of charging and discharging synapses needs to be infinitely
slow.

Our approach allows us to illustrate that, one can use
diverse dynamical models to recover scale-free distribu-
tions of neuronal avalanches—with the empirically observed
branching-process exponents—but, the synaptic timescales
needed to recover them in the limit of SOB are not compatible
with those of a realistic short term plasticity dynamics. Indeed,
as reported by neurophysiological measurements, realistic
synaptic timescales are comprised between few hundreds
of milliseconds up to few seconds [31,46,49,50], which are
clearly far from the SOB limit, requiring a much slower dy-
namics. For instance, the unit of time, in the Landau-Ginzburg
model, should be understood in terms of the spontaneous de-
cay of neural activity: one time unit in Eq. (2) is of the order of
the millisecond, which means that in order to recover the SOB
limit, the recovery timescale for synaptic resources should
be of the order of several minutes! On the other hand, the
Landau-Ginzburg model—leading to verifiable predictions—
is based on the consideration of realistic timescales. In other
words, the “imperfect” form of SOB, with finite time scales is
much more adequate to describe neural dynamics than SOB
itself.

Thus self-organization to the edge of bistability can
be achieved only by considering an infinite separation of
timescales that does not seem to be plausible in the cortex,
at least not by considering short-term plasticity as a chief
regulatory mechanism. Importantly, the same criticism can
be made—and has been explicitly made [21]—to models for
neural dynamics based on self-organized criticality: they also
require an infinite separation of timescales to work. In order to
circumvent, this conceptual problem in SOC, i.e., to deal with
real systems that are not perfectly conservative nor operate
under the strict condition of perfectly separated timescales—
as mentioned above—researchers introduced the concept of
self-organized quasi criticality (SOqC). Such quasicritical
systems self-organize to operate within a neighborhood of
the critical point, with continuous excursions to both sides.
In other words, when the strict mathematical conditions for
SOC are relaxed, the resulting self-organized systems are not
perfectly critical nor show perfect scale invariance. Rather
they hover around the critical point and exhibit imperfect
scaling [14].

Thus, in full analogy with SOqC, we propose that in
order to describe “imperfect” SOB systems, such as the
Landau Ginzburg theory discussed here, one should use a
terminology, such as “self-organized quasi bistability,” or bet-
ter, “self-organized collective oscillations”: if the separation
of timescales is not large, then—depending on the control
parameter value—the system is either in a down state, up

state, or in an intermediate range of large waves or collec-
tive oscillations. However, as the separation of timescales
is progressively increased, the system becomes more and
more SOB-like, with scale-free avalanches and progressively
less frequent large waves of activity (see Eq. (2) as well as
Refs. [51,52]).

From the viewpoint of neuroscience, it is important
to recall that the original Tsodyks-Markram model for
short-time synaptic plasticity implements an additional vari-
able describing a “facilitation” mechanism whose timescale
could be much longer than the depression one considered
here [31,46,53]. This would make the dynamics more com-
plex and eventually regulate the baseline of synaptic re-
sources, allowing self-tuning to the transition point. Also, one
could explore the role played by other types of plasticities, in-
cluding facilitation, such as spike-timing dependent plasticity.
In particular, plasticity operates in the cortex through a wide
spectrum of timescales. For example, long term potentiation
is known to involve different mechanisms, such as the pro-
duction of new ion channels, modifying the excitability of the
units for a long-lasting period. It is likely that for homeostatic
mechanisms with larger separation of timescales, behavior
closer to SOB could emerge.

Actually, in order to illustrate the generality of the discus-
sions, here we have conducted similar analyses on a similar
model for neural dynamics in the presence of adaptation
(rather than synaptic plasticity), recently introduced by Leven-
stein et al. (see Appendix C). This research line seems promis-
ing and we leave a careful exploration of this possibility for a
future work.

Summing up, self-organized bistability with its concomi-
tant scale-free avalanches of activity can be obtained as a
limiting case of the Landau-Ginzburg model for cortex dy-
namics. However, this only occurs in the unrealistic limit
of an extremely slow dynamics for synaptic resources is
considered. On the other hand, relaxing the strict conditions
for SOB (i.e., not imposing a huge separation of timescales)
one obtains a version of the SOB theory—that have also very
remarkable features—and that we call self-organized quasi
bistability, or better, “self-organized collective oscillations,”
that can be much more adequate to describe real systems, e.g.,
in neuroscience.
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APPENDIX A: MEAN-FIELD APPROACH TO SOB

Here we perform a detailed single-site or mean-field analy-
sis of the dynamical system describing SOB, i.e., Eqs. (1) but
neglecting spatial dependence and noise. The first equation in
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FIG. 4. Two forms of self-organization. Diagram showing the
steady-state solutions ρ∗ of Eq. (A2) as a function of E . The solid line
indicates stable fixed points, while the dashed line indicates unstable
ones. Taking E as a control parameter there are three different
regions: a down state, a bistability region, and an up state. When
a dynamics for E is added, the system may display oscillations.
For the sake of comparison, nullclines are displayed for both the
SOB, Eq. (A3) (horizontal dotted line) and the Landau-Ginzburg
for the cortex, Eq. (B1) (curved dotted line) models. Note that
the nullclines in these two cases tend to cut tangentially at the
bifurcation point, ξ = a—becoming locally indistinguishable—as
the large timescale separation limit is approached. Gray arrows
represent the corresponding vector field for the case of the Landau-
Ginzburg model. Parameters have been set to a = 0.6, b = 1.3, h =
0.005, ε = 0.1, and ξ = 1.0.

Eqs. (1) can then be simply written as

ρ̇ = (−a + E )ρ + bρ2 − ρ3 + h, (A1)

where now ρ is the overall density of activity. Let us analyze
this equation for Ė = 0, i.e., for a fixed value of E , with
vanishing driving h and dissipation ε. Then Eq. (A1) has the
typical form of a discontinuous transition for ρ. Actually,
imposing stationarity, ρ̇ = 0, one obtains three possible so-
lutions: ρ0 = 0 (stable for E < a) and a positive and negative
pair,

ρ± = b

2
±

√
b2

4
+ (−a + E ) (A2)

emerging at a saddle-node bifurcation. As illustrated in Fig. 4,
these last ones exist (as real solutions) only for E > a − b2/4
and ρ+ is stable for a − b2/4 < E < a. On the other hand,
ρ− is unstable in this region, and becomes nonphysical, i.e.,
negative for E > a. This gives a bistability region (shaded
in magenta color in Fig. 4) where two stable fixed points ρ0

and ρ+ coexist, with a branch of unstable fixed points ρ− in
between.

These are the solutions of the problem for constant “en-
ergy” E . For the full system, including the dynamics for E
(i.e., for h �= 0, ε �= 0) the mean-field dynamics of the control
parameter E is given by

Ė = h − ερ. (A3)

Observe that this dynamics acts differentially depending on
the phase, i.e., on the value of ρ: in the absence of activity it
increases owing to the driving h, while as activity grows the

dissipation (negative) dominates the dynamics. The only pos-
sible fixed point—where these two contributions balance—
is ρ∗ = h/ε. Observe that, this equation defines a nullcline
which is a horizontal line in Fig. 4. Note also that in the double
limit of conservation h, ε → 0 with an infinite separation of
timescales h/ε → 0, this is necessarily a point of vanishingly
small activity and, as seen above (see Fig. 4), the branch of
points with low activity is unstable. Indeed, from Eq. (A2)
at stationarity, one obtains E∗ = a − bh/ε + (h/ε)2, which
corresponds to an unstable spiral focus. Inspection of the asso-
ciated velocity field reveals that the dynamics exhibits a stable
limit cycle around such an unstable fixed point (see Fig. 4),
shifting cyclically between the upper and the lower branches,
with high and low activity, respectively. Note that in the limit
h/ε → 0, the timescale between succesive cycles increases
(in particular, the imaginary part of the eigenvalues associated
with the unstable spiral (ρ∗, E∗), scales as ∼(h/ε)−1, meaning
that the frequency of oscillations goes to 0 as happens in an
infinite period bifurcation [54]).

This simple mean-field approach shows that the system
behaves as an excitable system in which following external
driving there are cycles of periodic activity. As shown in detail
in Ref. [25], going beyond mean-field—i.e., turning back to
a spatially explicit system such as a lattice—this mechanism
generates scale-free avalanches alternating with system-wide
spanning waves of activity. The reason behind such a change
is that in the above situation, driving may induce local jumps
of the activity from the lower branch to the upper one, and
from this it can propagate to nearest neighbors coupled to it,
giving rise to a local avalanche of activity [25].

APPENDIX B: MEAN-FIELD APPROACH
TO THE LANDAU-GINZBURG THEORY

Here, we discuss the single site or mean-field description
of the Landau-Ginzburg theory for cortex dynamics. The first
single-unit equation is identical to Eq. (A1), while the second
one reads

Ė = 1

τR
(ξ − E ) − 1

τD
Eρ. (B1)

where E is now the overall “energy” or density of synaptic
resources. We call it here E rather than R as in Eq. (2) to make
a more direct comparison with Appendix A; also to make the
parallelism with the SOB theory even more explicit, we define
h = 1/τR and ε = 1/τD, and study the double limit of slow
synaptic dynamics h, ε → 0 with � ≡ h/ε → 0, in which the
two synaptic timescales are infinitely separated.

The main difference between this mean-field theory and its
SOB counterpart (in Appendix A) is the existence in Eq. (B1)
of a key parameter ξ , which bounds the largest possible value
of E . Three cases can be distinguished depending on the value
of ξ and the separation of timescales.

(i) If ξ < a obviously E < a, and then equation (A2) has a
negative linear term, implying that ρ = 0 is the only possible
stable state. In other words, the two nullclines intersect in the
absorbing phase, i.e., for ρ = 0 [see orange line in Fig. 1(a)].

(ii) More in general, imposing Ė = 0, one finds the fixed
point value E∗ = hξ

(h+ε)ρ (defined only for ρ > 0) which in

the limit of large timescale separation becomes E∗ 
 �ξ

ρ
,
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FIG. 5. Invariance on ξ . Behaviour of the Landau-Ginzburg
system as a function of the control parameter ξ , as the limit
� → 0 is approached. Each color represents a different phase
(see legend). Note that as the separation of timescales increases
(i.e., as � → 0, in the SOB limit) the oscillatory phase takes
more space until it comprises the whole region ξ > a. Parameter
values: a = 0.6, b = 1.3.

implying that the nullclines intersect at an unstable fixed
point (see red line in the leftmost inset of Fig. 1), after a
homoclinic bifurcation at E = a. This leads to oscillations in
the following way: within the absorbing state, energy slowly
increases as Ė = h(ξ − E ) and—if ξ > a– at some point the
system reaches the value E = a where the absorbing state ρ =
0 becomes unstable and activity grows. Then, the energy fixed
point is given by E∗. If the energy is larger than this value, it
decreases in a fast way, until E = E∗. However, if � is very
small, the fixed point is E∗ 
 0, meaning that E decreases
until the up-state branch becomes unstable again—falling to
the absorbing state. When the absorbing state is reached, E∗ is
unstable and the cycle starts again. This simple back-and-forth
mechanism is responsible for the emergence of limit cycles in
the dynamics for ξ > a (see also Ref. [32] where a mechanism
very similar to this is termed “Sisyphus effect”). This type of
effect is well-known in the theoretical-neuroscience literature
(see e.g., Refs. [33,34,49,55–60]).

(iii) For larger values of ξ , such that the nullclines intersect
in the (stable) up-state branch (see the brown line in the left-
most inset of Fig. 1) there are no oscillations and the system
sets in an active state with E∗ = �ξ

ρ
(the oscillations disappear

at a Hopf bifurcation). Observe that the condition for this case
(iii) to emerge depends on the separation of timescales, �. In
particular, in the limit � → 0, a value ξ → +∞ is required to
destabilize the cycle limit. This effect is illustrated in Fig. 5,
where it can be seen that as the � → 0 limit is approached the
regime of oscillations broadens (up to infinite).

Finally, let us note that in case (ii)—which is the one
for which avalanches are obtained once the spatially explicit
version of the model is considered—the nullcline associated
with Eq. (B1) becomes very similar to its counterpart for the
SOB case: both of them intersect the unstable branch of ρ

solutions in the same part of it and with flat slopes in both
cases in the limit � → 0. Also, observe in the upper inset of

Fig. 1 that the nullclines are quite insensitive to the specific
value of ξ (as long as ξ > a) when such a limit is taken. Thus
the same phenomenology is expected to emerge in both cases.

APPENDIX C: NEURAL MODEL WITH ADAPTATION

The ideas exposed above can be applied to models of
neural activity relying on regulatory mechanisms other than
synaptic plasticity. To illustrate this, here we consider a model
recently proposed by Levenstein et al. [60] to describe cortical
dynamics. The model is defined by two differential equations,
one for the spike rate r of a cortical mesoscopic region and
another one for an “adaptation variable” a that regulates the
spiking rate; in particular:

ṙ = −r + S(ωr − ba + I, 1, I0), (C1)

ȧ = −a + S(r, k, r0), (C2)

where S(x, k, x0) = 1/[1 + exp(−k(x − x0))] is a sigmoidal
function whose steepness is controlled by the parameter k,
x0 is a threshold, I the external input, and ω and b are the
coupling and the adaptation strengths, respectively.

The equation for the mean rate is very similar to the corre-
sponding one for the Landau-Ginzburg theory Eq. (A1); actu-
ally, truncating the series expansion of S around the threshold
I0, transforms the first equation into a third-degree polyno-
mial, exhibiting also a discontinuous transition as Eq. (A1).

To ease the comparison between Eq. (C2) and the Landau-
Ginzburg theory given by Eq. (2), we perform a change
of variables E = 1/a. Expanding in power series in r − r0

and truncating up to leading order, the adaptation equation
becomes Ė = E [1 − E (2 + k(r − r0))/4]. Observe that here
E = 1/a plays a role analogous to that of the synaptic re-
sources in the Landau-Ginzburg theory, and that the similitude
between both theories (at a mean-field level) is self-evident.

Notice also that the energy charge (positive term) is of
order unity, while the discharge (negative) grows with k; thus,
taking the limit k � 1 of very steep adaptation and taking
the whole adaptive dynamics to be arbitrarily slow, leads to

FIG. 6. Width of the region in which collective oscillations
emerge in the model for adaptation model of Levenstein et al. [60].
It shows that either increasing k or, alternatively, decreasing the ratio
ω/b enhances the region of collective oscillation, as in Fig. 5. Taking,
either of these combinations of parameters to their limit k → ∞ or
ω/b → 0 one observes a huge range for self-organized collective
oscillations.
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similar effect as the infinite separation of timescales limit in
the case of the Landau-Ginzburg theory.

An alternative, more efficient, way to achieve the limit of
self-organization is to modify the coupling and the adaptation
strength variables (ω and b). Actually, our Fig. 1 is very sim-
ilar to Fig. 3 B in Ref. [60], where the role of the timescales
τR and τD is played by ω and b. This implies that taking
the limit ω/b → 0 while increasing both variables should
enlarge the oscillatory region in the same way that happens
with the nonconserved SOB and Landau-Ginzburg theory (see
Appendices A and B). However, the SOB limit of perfect
self-organization cannot be reached in this model, as there is
no absorbing or quiescent state.

We performed numerical simulations of Eq. (C2) and
measured the length of the oscillatory region as a function of
parameters (k on the one hand or ω, and b on the other). We
find—as illustrated Fig. 6—that the width of such a region
increases as the separation of timescales is enlarged (much as
in Fig. 5).

Thus self-organized collective oscillations emerge in a
rather generic way for reasonable parameter choices in this
model. This result illustrates that the ideas discussed before
for neural dynamics and self-organization are not specific of
the Landau-Ginzburg theory relying on short-term synaptic
plasticity, but can be also extended to other models of neural
dynamics.
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