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Discovery of antimicrobials in the past century represented one of the most important advances in public
health. Unfortunately, the massive use of these compounds in medicine and other human activities has
promoted the selection of pathogens that are resistant to one or several antibiotics. The current antibiotic
crisis is creating an urgent need for research into new biological weapons with the ability to kill these
superbugs. Although a proper solution requires this problem to be addressed in a variety of ways, the
use of bacterial predators is emerging as an excellent strategy, especially when used as whole cell ther-
apeutic agents, as a source of new antimicrobial agents by awakening silent metabolic pathways in axe-
nic cultures, or as biocontrol agents. Moreover, studies on their prey are uncovering mechanisms of
resistance that can be shared by pathogens, representing new targets for novel antimicrobial agents. In
this review we discuss potential of the studies on predator-prey interaction to provide alternative solu-
tions to the problem of antibiotic resistance.
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Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2547
2. Predatory bacteria: what are they? How do they kill? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2548
3. BALOS as biocontrol agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2549
4. Myxobacteria as sources of new antibiotics, bioactive products and lytic enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2550
5. Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2552

Declaration of Competing Interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2553
CRediT authorship contribution statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2553
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2553
Appendix A. Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2553
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2553
1. Introduction

Antibiotics revolutionized medicine after the serendipitous dis-
covery of penicillin by Fleming in the 1920s [1], the subsequent
development of synthetic antimicrobials [2], the establishment of
useful platforms for screening and isolation of antibiotic-
producing microorganisms [3], and the development of the phar-
maceutical industry. These antibacterial drugs have saved millions
of lives, not only by combating fatal infectious diseases, but also by
enabling physicians to make advances in surgery, in organ trans-
plantation, in cancer chemotherapy, and in the use of artificial
devices [4,5]. For these reasons, the discovery and use of antibiotics
d Health
etic gene
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in public health is one of the main pillars of modern medicine, con-
sidered one of the great achievements of the 20th century.

Antibiotics are natural products produced by microorganisms
or their semisynthetic derivatives. These compounds have been a
feature of the environment for a long time, so that bacteria have
needed to evolve some forms of antibiotic resistance (AR) to sur-
vive. For instance, bacteria inactivate antibiotics by producing
enzymes that modify them, but they can also alter their target of
action, or prevent the antibiotics from accumulating, either
because they are expelled using efflux pumps or by altering the
permeability of the membrane [6,7]. The antibiotic-resistant genes
(ARGs) are favored in nature due to the selective pressure of natu-
ral production of antibiotics by bacteria. However, the use, overuse,
or misapplication of these drugs, not only for therapeutic purposes,
but also in animal feed and agriculture, have added an additional
selective pressure and accelerated the ability of bacteria to evolve
and, consequently, led to the inevitable emergence and spread of
AR [8–11]. Furthermore, bacteria can collect multiple resistance
mechanisms, and this fact has promoted the appearance of the
so-called superbugs or MDRB (multi-drug resistant bacteria),
which are strains that have acquired resistance to a wide variety
of antibiotics. The World Health Organization (WHO) has issued
the priority pathogens list with thirteen human pathogens that
have developed high levels of resistance across the world [12,13].
Members of the so-called ESKAPE pathogens constitute an espe-
cially urgent threat to human health [14].

The first step in AR transmission is the transfer of ARGs of envi-
ronmental bacteria through mobile genetic elements by horizontal
gene transfer (HGT) to human or animal commensal bacteria or
pathogens, generating resistant clones carrying ARGs that can then
be spread in the environment [15,16]. The interconnection
between humans, animals and their ecosystems leads to the trans-
mission of resistance. Although AR in hospitals or health centers
represents a major concern, the dissemination is not restricted to
clinical settings. Antibiotics eliminated by humans or animals are
discharged into urban, agricultural or farm waste water, and can
be incorporated by food crops through irrigation with those con-
taminated waters, increasing the selective pressure [17]. Moreover,
waste water treatment plants, which receive a great variety of bac-
teria, including antibiotic-resistant bacteria (ARB) from various
sources, act as reservoirs and offer convenient conditions for the
interaction and exchange of ARGs by HGT, contributing to a
broader dissemination [18]. Other types of industrial contami-
nants, such as metals, can contribute to AR, since many resistance
mechanisms that protect against them, such as multidrug efflux
pumps, also confer resistance to antibiotics [19–21]. Finally, phys-
ical forces contribute to their dissemination. The hyper-connection
of the current world promotes the worldwide spread of AR. This
has serious consequences, not only in the treatment of clinical
and/or veterinary infections, but also in maintaining the balance
of microbial communities across the biosphere.

Currently there are 700,000 deaths per year due to ARB. It is esti-
mated that by 2025 many of the current antibiotics will be ineffec-
tive [22], and that by 2050 superbugs may cause 10 million deaths
annually worldwide [23]. The problems derived from AR in health-
care could cost theworld a trillionUSDper year in healthcare,which
would lead to a reduction of 2% to 3.5% in gross domestic product
[23,24].

Many public health agencies and economic and political institu-
tions across the world recognize that AR is one of the great chal-
lenges for the 21st century. Many experts consider that we are
initiating the post-antibiotic era, in which we will see the return
of epidemics prevalent during the pre-antibiotic era [5]. But the
antibiotic crisis that we have experienced in the last decade is
caused not only by the appearance of MDRB, but also by the scar-
city of resources dedicated to the search for new products, and, in
this scenario, the pipeline for the discovery of new antibiotics is
running dangerously low [4,5,12,24–27]. Since the development
of resistance is inevitable, even if we make good and sparing use
of antibiotics, the search for new antibiotics and alternative thera-
pies is critical. The WHO, in a recent report, proposes several
guidelines to effectively deal with AR to avoid drifting back to a
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pre-antibiotic era. These leading strategies, along with procedures
to reduce antibiotic pressure and transmission of AR and ARGs, are:
i) developing new ideas that question pre-existing forms of knowl-
edge; ii) protecting research from purely commercial determi-
nants; iii) creating new interpretations and strategies to address
resistance; and iv) reorientating research to better understand
the role of bacteria and human-microbe relationships [22]. In this
context, laboratories around the world are developing new thera-
peutic approaches for reducing the AR burden, which include
microbiota transplant procedures to displace ARB, genetic engi-
neering to interrupt resistance genes (such as editing based on
CRISPR/Cas), metagenomic engineering, phage cocktails against
ARB, vaccines against pathogens, antimicrobial peptides, the use
of metals (Cu, Ag, Ga), development of molecules that interfere
with the ability of bacteria to communicate and group together
in antibiotic-resistant biofilms, the search for new antimicrobial
products, and the use of bacteria as therapeutic agents [16,29].

Predatory bacteria play an essential role in these new lines of
research [16,28–31]. The fact that these micropredators are
designed to lyse and kill other bacteria, including MDRB and those
pathogens that form biofilms, has led to them being proposed as a
reasonable antibiotic alternative to be explored. The aim of this
review is to collect and discuss the advances in the use of preda-
tory bacteria in this fight against AR, either as biocontrol agents
(‘‘living antibiotics”) or as biological resources for innovative
antimicrobial products (‘‘microfactories”).

2. Predatory bacteria: what are they? How do they kill?

Predatory bacteria use other bacteria or yeasts as a food source;
hence, they are able to actively hunt and kill their neighbors to later
consume their macromolecules as nutrients. Various studies have
shown that these predators are widely distributed in many natural
and artificial environments (such as artificial microcosms, experi-
ments in laboratory, waste waters treatment plants, or aquaculture
plants) where they play an important role not only in maintaining
microbial diversity, but also in shaping ecosystems [32–39].

In the context of fighting AR, predatory bacteria in nature con-
tribute to limiting the spread of ARGs in different environments,
because they can prey upon ARB and degrade their DNA [40,41],
reducing the ARG pools and their spread to other bacteria by
HGT via conjugation or transformation [42]. Moreover, they can
also limit the possibility of the transfer of ARGs via transduction
by preying on bacteria targeted by phage-resistant bacteria [43].

Bacterial hunting strategies can be categorized in two major
groups: epibiotic and endobiotic predation [44]. In the epibiotic
strategy, predators attack and consume the prey from the outside.
Two different subgroups can be differentiated within this group:
epibiotic ‘‘solitary hunters”, which, strongly attached to the prey
cell envelope, suck their contents out before dividing into two
daughter cells; and the epibiotic ‘‘cooperative hunters”, where
individual cells cooperate within the community by sharing a com-
bination of diffusible hydrolytic enzymes and secondary metabo-
lites (SMs), including antibiotics, that kill and decompose the
prey in a non-species-specific manner before consuming the
macromolecules [44]. Whether hunting is truly cooperative or
merely communal is not clear [45]. In the epibiotic lone-hunter
subgroup the most studied genera are Micavibrio, Vampirococcus
and Vampirovibrio, and the species Bdellovibrio exovorus, [32]. The
cooperative (or communal) hunting strategy subgroup includes
bacteria whose mode of attack is based on lysis at a distance that
does not require contact with the prey, such as the genus Strepto-
myces [46,47], and those that require close proximity to the prey
cells such as myxobacteria [44,48–52].

The endobiotic strategy is used by lone predatory bacteria that
actively move to encounter their prey, stick to their outside, perfo-
rate and modify the prey cell wall by secreting hydrolytic enzymes,
and penetrate the periplasmic or the cytoplasmic space, devouring
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it from within. Once the cycle is finished, predators move on to
attack neighboring cells. A representative species of this group is
Bdellovibrio bacteriovorus [32,53–55].

Biochemical and microbiological studies carried out in several
laboratories and analyses of the genomes and transcriptomes dur-
ing predation (predatosomes) of obligate epibiotic predators such
as Micavibrio aeruginosavorus, Vampirovibrio chlorellavorus, and B.
exovorus [56–58], and endobiotic B. bacteriovorus and other BALOs
(Bdellovibrio and like organisms), have revealed that they are able
to synthesize and secrete an unusual number of hydrolytic pro-
teins, such as lipases, glycanases, peptidases and proteases, which
are probably involved in damaging and digesting prey cell struc-
tures [53,58–61]. They are, however, non-competent antibiotic
producers [62], since their killing strategies are based on the active
search and recognition of the prey, the specific binding to the
external structures, and its degradation. This particular way of life
has led researchers to mainly focus on its possible application in
alternative live therapies in which the predators’ whole cells can
be used to kill or control the growth of other ARB; that is, the
use of predators in bacterial therapy as biocontrol agents [53,61].

However, the cooperative facultative epibiotic predators, which
include genera of the two most important groups of bacterial SM
and hydrolytic enzyme producers, Actinobacteria and myxobacte-
ria, are by far the most promising resources for innovative bioac-
tive natural products. Within Actinobacteria, the genus
Streptomyces has been thoroughly investigated for many years for
the isolation of antibiotics [63–65], but it has only recently been
described as being a bacterial predator that kills other soil bacteria
by secreting hydrolytic enzymes and SMs far away from the prey
[46,47]. Myxobacteria include broad prey range predators such as
Myxococcus xanthus, Myxococcus flavescens, Myxococcus virescens,
Myxococcus macrosporus, Corallococcus coralloides, Stigmatella
aurantiaca, Chondromyces apiculatus and Chondromyces crocatus
[44]. Compared with Bdellovibrio and BALOs, which exhibit a
restricted prey spectrum, myxobacteria are able to kill a broad
range of bacteria, including clinically relevant species [66–78]. This
is probably due to their capacity to secrete a plethora of lytic
metabolites which, acting either in isolation or synergistically,
are able to attack a wide variety of prey. They are able to produce
cell wall-degrading enzymes, lipases, nucleases, polysaccharidases,
proteases and, unlike many other antibiotic producers, various
classes of antibiotics, some of which are hardly ever found as
microbial SMs [79-82]. Although they have been underestimated
in the past, in the last decade they have emerged as excellent ‘‘mi-
crofactories”, with a high capacity to produce an unlimited number
of previously unknown promising antimicrobials [82].

The use of epibiotic predators in alternative therapies in medi-
cine or as biocontrol in different fields should be done in such a
way that they contribute to the fight against MDBR, without
increasing the accumulation of antibiotics in the environment that
may generate AR.

3. BALOS as biocontrol agents

Endobiotic predators, such as B. bacteriovorus, other BALOs, and
some lone hunters that follow an epibiotic strategy, such as M.
aeruginosavorus, are generating interest for the treatment of intract-
able, antibiotic-resistant infections. Multiple studies, using human
cells or serum, or animal models such as chicks, zebrafish, rabbits,
guinea pigs, mice, and rats, and many in vitro studies have shown
that predator whole cells or their enzymes can be used as therapeu-
tic agents and as alternative or complementary applications in bio-
logical control [83–89] (Fig. 1 and Supplementary Table 1).

The potential of these predatory bacteria as a preferred or sup-
plementary treatment of multidrug-resistant bacterial infections is
supported by a range of evidence.

First, predators such as Bdellovibrio andMicavibrio have the abil-
ity to kill human Gram-negative pathogens such as Acinetobacter,
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Aeromonas, Bordetella, Burkholderia, Citrobacter, Enterobacter,
Escherichia, Klebsiella, Listonella, Morganella, Proteus, Salmonella,
Serratia, Shigella, Vibrio, Yersinia, Helicobacter pylori, and Legionella
that have acquired, or are at risk of acquiring, resistance to antibi-
otics [86,90–95]. These predators also reduce the bacterial burden
of drug-resistant members of the ESKAPE group such as K. pneumo-
niae, A. baumannii [86,96–98] or P. aeruginosa [99], Stenotrophomo-
nas maltophilia [100] and other MDRB Gram-negative clinical
pathogens such as Shigella [101]. The ability to kill all these
Gram-negative bacteria makes BALOS to postulate as an alternative
to fight against most of the MDBR identified as a critical priority by
WHO. However, there are also several Gram-positive bacteria in
this list, what makes interesting to explore the capacity of BALOs
to kill them. In fact, it has recently been reported that B. bacteri-
ovorus seems to attack S. aureus cystic fibrosis isolates by using
an unusual epibiotic strategy [99].

These predatorsmay also alter the commensal microbiota, and it
is known that they increase the number of Gram-positive species in
the gutmicrobiomeof chickens and rats [94,102]. The consequences
of this imbalance on animal health remain to be investigated. Iebba
et al. [103] reported that Bdellovibrio is present and abundant in the
human gut microbiota populations of healthy individuals and sug-
gested that the use of predatory bacteria as probiotics could restore
the balance in the intestinal ecosystem to control dysbiotic events.
However, studies by Shatzkes et al. [102] on the effect on rat gut
microbiota showed mixed effects, since they found that intrarectal
inoculation of Bdellovibrio contributes to health, while M. aerugi-
nosavorus has potential adverse consequences. Therefore, although
further studies are required to decipher the consequences of
changes in the microbiota due to the administration of predatory
bacteria, it is worth bearing in mind that antibiotics also may have
adverse effects on commensal bacteria.

Second, these predators are able to inhibit the formation of, or
reduce, preformed Gram-negative and even Gram-positive bio-
films through a plethora of secreted enzymes, particularly pro-
teases and nucleases [86,92,104–108]. Biofilms can be found in
many natural environments and on industrial equipment, waste
water treatment plants, hospital surfaces, health care settings
and instruments. Bacteria are able to persist as reservoirs within
these multicellular structures, and biofilms inside the host allow
pathogens to overcome innate immune defenses. This capacity to
disrupt biofilms of relevant pathogens and to remove environmen-
tal and industrial biofilms opens the way to using these predators
or their enzymes not only in medicine, but also in many biocontrol
processes that will be discussed below [100,109,110].

Third, topical application, ingestion, injection, or intranasal
inoculation of whole cells have no apparent cytotoxicity, neither
in terms of pathological effects, nor in terms of diminution in cell
viability in in vitro cell culture models [111–113] or in vivo animal
models [94,96,101,102,113–116].

Fourth, they do not incite a systemic or sustained immune
response, most likely due to the special structure of their
lipopolysaccharide, which lacks the typical negatively charged
phosphate groups, resulting in only low binding affinity to the
lipopolysaccharide receptors in human immune cell pathogens
[101,117]. They are passively engulfed bymacrophages and are able
to persist inside these cells over 24–48 h as non-replicative forms,
although they retain their predatory competence. Although they
do not affect host cell viability, they stimulate moderate cytokine
responses [111–113,115]. Predator persistence inside macrophages
for sufficient time to prey on pathogens opens the way to using
predatory bacteria to eliminate intracellular pathogens, such as Sal-
monella, Klebsiella or Francisella species. Moreover, the relatively
benign occupancy of macrophages by Bdellovibrio could prevent
other intracellular pathogens from entering. However, this passive
uptake suggests thatmacrophagesmight present predatorybacteria
to antibody-forming cells and, consequently, humans could develop



Fig. 1. Applications of Bdellovibrio and BALOs in medicine and as biocontrol agents.

J. Pérez et al. Computational and Structural Biotechnology Journal 18 (2020) 2547–2555
immune reactions against them after repeated exposures [30]. In
fact, Raghunathan et al. [118] detected, although at low levels, IgG
and IgM antibodies against two B. bacteriovorus strains inmore than
90% of human serum samples from a biobank, suggesting that the
predatory treatment could be used only once. On the other hand,
experiments in immune-compromised zebrafish inoculated with
B. bacteriovorus HD100 demonstrated that cooperation between
the host immune system and bacterial predation is important, and
it must be taken into consideration in order to maximize antibacte-
rial therapy benefits [101]. Although a lot of progress has beenmade
in recent years, more research is needed to understand not only the
interactions and fate of these predatory bacteria within human
immune cells, but also to elucidate the processes involved in their
uptake by phagocytic cells, how long bacteria survive in the host
cells, and the mechanisms induced by the predatory bacteria.

Fifth, Bdellovibrio is an aerobic predator, conditioning it to be an
effective treatment in aerobic environments such as superficial
burns or wounds, eyes and lungs [85,96,119,120]. Nevertheless,
this predator is able to tolerate microaerophilic conditions, which
widens its areas of use to treating gastrointestinal and periodontal
infections [83,85,121–124].

Sixth, one of the main advantages of using these predators as
therapeutic agents is the failure of prey bacteria to develop
induced resistance against predation. The main reason for this is
that these predators are not antibiotic producers, and their killing
mechanisms do not target specific receptor proteins that can
evolve resistance. However, predation can weaken due to different
adaptations arising in the prey bacteria. For instance, transient
resistance has been observed in some prey similar to bacterial per-
sistence [83,125]. As a consequence, Bdellovibrio predation never
completely kills off the attacked population. To resolve this diffi-
culty, the combined use of B. bacteriovorus and antibiotics in a
co-therapy has been proposed [85]. This combined therapy has
the additional advantage of expanding the individual killing spec-
tra of both the antibiotics and the predator. Im et al. [126] have
confirmed that a combination of Bdellovibrio and violacein is effec-
tive against Gram-positive bacteria, multidrug-resistant patho-
gens, and Gram-positive and negative mixed species populations.
However, for an efficient development of these co-therapies it is
necessary to determine the correct predator-antibiotic combina-
tion to increase the antimicrobial efficiency, while avoiding devel-
opment of drug resistance. With this in mind, researchers are
making efforts to determine the sensitivity of Bdellovibrio against
antibiotics [127], and more research must be carried out to deter-
mine its ability to grow on antibiotic-inactivated cells and the AR
mechanisms developed by the predator. Recently, experiments
using Bdellovibrio and prey-specific bacteriophages eradicated
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E. coli when preyed upon by both predators, demonstrating the
potential of this innovative co-therapy as a future alternative
antibacterial treatment that would reduce the selection for single
predator-specific resistance [128].

And seventh, there is a lack of uptake of prey genetic material
during predation, and it has been shown that, even after regular
repeated high exposure to the prey genome, there is no incorpora-
tion of any major pathogenicity island(s) or of any potentially vir-
ulent genes from the prey [129]. The exchange of genetic material
would have an additional negative impact because prey could also
incorporate ARGs, which could contribute to the spread of resis-
tance. The absence of DNA interchange further strengthens the
possibility of using these bacteria in the future as a safe alternative
in the fight against AR.

Besides clinical uses (Fig. 1, Supplementary Table 1), BALOs are
also being explored as a feasible alternative to antibiotics as bio-
control agents in horticulture, aquaculture, livestock farming and
food processing. In addition, they are being assayed for their appli-
cation in other biotechnological processes such as waste water
treatment, extraction of bioplastics, reduction of horizontal trans-
fer of ARGs, and other environmentally-friendly applications in
which the reduction of unwanted bacteria would be positive
[43,85,130–132] (Fig. 1, Supplementary Table 1).

The use of epibiotic predators as biocontrol agents remains lar-
gely unexplored. However, the ability of myxobacteria (besides
their predatory behaviors) to glide on solid surfaces, produce a
wide variety of antibiotics, and form myxospores, make these bac-
teria excellent, commercially viable candidates for the biocontrol
of phytopathogenic bacteria and fungi [69,73,133–135] (Supple-
mentary Table 1).

4. Myxobacteria as sources of new antibiotics, bioactive
products and lytic enzymes

Although Bdellovibrio and BALOs are mainly being explored
within the concept of whole cell therapy, other investigations are
being carried out that aim tomake use of the large amount of bacte-
rially destructive lytic enzymes that predators employ to kill their
prey [59,61,130,131,136,137]. Those applications include some
interesting uses such as tools for antibody analysis or for controlling
the spread of ARGs in mixed microbial communities through the
degradation of cell-free DNA or inactivation of phage particles, thus
limiting two of the genetic DNA transfer processes that dictate the
outcome of spread: transformation and transduction [43].

For the discovery of new antimicrobial agents, cooperative
predators are the most promising bacteria. In the past, the produc-
ers of antibiotics and other bioactive products were mainly iso-
lated from soil and tested by traditional diffusion methods using
culture filtrates or extracts [4,138]. The advent of the post-
genomic era, with the increase in genome sequencing and annota-
tion, next-generation sequencing technologies, modern proteomic,
transcriptomic and metabolomic tools, and scientific and techno-
logical advances in genetics, biology, robotics, chemistry, meta-
bolic engineering, and bioinformatics, has amplified the range of
methodologies used for the isolation and identification of produc-
ers and has opened new doors to the identification of their
‘‘antibiotic’omes”, defined as the specific subset of microbial natu-
ral products with antibiotic activity [65,139–141].

Although isolation of new bacterial producers is one of the pri-
ority lines in antibiotic discovery, another approach is the use of
new technologies to exploit the knowledge accumulated over the
years about well recognized ‘‘microfactories”. The term ‘‘OSMAC”
(one strain many compounds) was introduced at the beginning
of this century [142], and it refers to the fact that a single bacterial
strain is capable of producing a diverse collection of structurally
different SMs. Bacteria never produce the full collection of com-
pounds encoded by their genomes at the same time under a speci-
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fic environmental condition, since this would be energetically
costly. To avoid unnecessary costs, they modify their transcrip-
tomes, proteomes, and metabolomes to survive under changing
conditions. For that reason, biosynthesis pathways are firmly con-
trolled by complex regulatory networks that respond to internal
and/or external signals, many of which are still unknown. The
OSMAC approach focuses on the systematic alteration of culturing
parameters, such as medium components (salts, amino acids, car-
bon source), temperature, pH, culture aeration, type of culture ves-
sel, etc., to imitate in the laboratory those natural environments
that optimize the production of useful compounds [143]. The
detailed study of every single step of the complex metabolic path-
ways for the biosynthesis of SMs, their regulative crosstalk, and the
signals that activate the regulatory bacterial sensors is facilitating
the discovery of novel products from one bacterium or fungus
[144]. Myxobacteria are perfect candidates to be considered from
the OSMAC point of view [82,142]. The Helmholtz-Center for Infec-
tion Research in Germany has a collection of myxobacteria with
more than 9,000 strains, and more than 1,000 biosynthetic gene
clusters (BGCs) associated with myxobacteria are deposited in
the antisMASH database (antismash.secondarymetabolites.org).

M. xanthus DK1622, besides being a predator, is also a model
organism for studying prokaryotic development. Over many years,
numerous groups have accumulated a deep knowledge about the
production of SMs and lytic enzymes, multicellular behavior,
intra- and extracellular signaling, movement mechanisms, adapta-
tions to changing environments, etc. [145]. This predator holds a
large genome with an unprecedentedly high number of regulatory
mechanisms [146–148] and an outstanding biosynthetic capacity
for degradative enzymes and SM production, including 18 nonribo-
somal peptide synthetases (NRPS), 22 polyketide synthases (PKS),
and six mixed PKS/NRPS, which concords well with its predatory
lifestyle [146,149]. Analyses using the antisMASH server calculate
that those clusters correspond to a total of 14.5% of its 9.1 Mb gen-
ome [150]. Several of these natural products have been isolated
[80,82,151–158] (Fig. 2) and even expressed in heterologous hosts
[159]. However, many BGCs are not yet assigned to their corre-
sponding hypothetical SMs, probably because some of these genes
remain silenced (cryptic genes) or are expressed at low levels,
yielding low quantities of the respective compounds in the growth
conditions assayed [82,149,160]. The same situation is observed in
Streptomyces, a genus notorious for its ability to produce a large
quantity and variety of antibiotics and SMs [65,161]. Streptomyces
genomes are also large and typically contain more than 20 BGCs
dedicated to specialized metabolism such as NRPSs and PKSs. In
the case of Streptomyces coelicolor A3, these enzymes are found
in up to 27 clusters, which represent 10.6% of its 8.7 Mb genome
[162,163]. Only a small fraction of them are transcriptionally active
under laboratory conditions and most of their products have never
been characterized [161,164].

This huge untapped biosynthetic potential makes the unlocking
of the cryptic pathways of those cooperative predators another
good strategy for antibiotic discovery. It is reasonable to think that
one of the ecological roles of antibiotics in nature is to be used as
weapons against susceptible bacteria during predatory processes
and, in fact, some of them have been shown to be involved in pre-
dation [46,165]. It has been recently found that although the genes
responsible for SM biosynthesis in M. xanthus are expressed during
growth, their expression increases during development [148].
These expression profiles suggest that SMs are used to protect
developing cells from other microbes in the soil, to defend spores
inside the fruiting bodies or to release nutrients from prey to pro-
mote germination [148]. It is also realistic to infer that production
of such metabolites by predators might be regulated by contact
with and/or proximity to the prey. Therefore, it would be useful
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to design efficient screening methods in the presence of a variety
of pathogens for the induction of novel antibiotics against them.

But interspecies cross talk can also trigger the production by prey
of specific bioactive compounds for defensive purposes and other
resistance mechanisms to counterattack such as biofilm formation
[166], spore differentiation, or induction of new ARGs [167]
(Fig. 3). Co-cultivation experiments, followed by deep analysis of
the influence on the secondary metabolome, are gaining increasing
attention and are already yielding exciting results. Some studies
have demonstrated that the presence in cultures of other bacteria
stimulates Streptomyces to produce some SMs [144,164]. Most of
these pairwise interactions have been assayed with other related
Actinobacteria or Bacillus. Moreover, M. xanthus is able to induce
theoverproductionof theblue antibiotic actinorhodinwhile preying
on S. coelicolor (Fig. 3A) [168]. Other results involving the production
of SMsduringpredatory relationships are the inductionof bacillaene
by B. subtilis [76,169], or the biosynthesis of melanin by S. meliloti to
protect against predation by M. xanthus (Fig. 3) [77,170].

The first transcriptomic study during a predatory process of M.
xanthus against E. coli [171] indicated that M. xanthus does not per-
ceive live prey as food, and that the prey shows extensive transcrip-
tomic changes when co-cultured with the predator. Moreover, M.
xanthus supernatants and secreted outermembrane vesicles (OMVs,
see below) also induced changes in the expression of large numbers
of prey genes. Another transcriptomic analysis confirmed the acti-
norhodin overproduction observed in Streptomyces by Pérez et al
[168], and confirmed that it is iron competition during this interac-
tionwhich leads to the activation of actinorhodin BGC plus 21 other
SMBGCs [172] (Fig. 3A). This is a goodexampleof howbasic research
on bacterial predator-prey interaction is helping to discover new
ways to activate cryptic biosynthetic pathways and is improving
our comprehension of awakening mechanisms.

Another aspect to be considered in the search for innovative
applications for predators are the Gram-negative OMVs. OMVs
are spherical portions of the bacterial outer membrane with a
diameter of ~ 20–250 nm, which represent an alternative to gen-
eral secretion systems. The myxobacterial OMVs contain a highly
concentrated dose of hydrolytic enzymes and molecules associated
with antibiotic activity, and are able to deliver these compounds to
distant and inaccessible locations, enabling more efficient epibiotic
cooperative killing of prey [50,51,173,174]. The OMVs can be used
as shuttles to deliver hydrophobic compounds with any desired
properties (Fig. 2). For instance, they have been confirmed to be
good adjuvants in vaccine delivery [175]. The myxobacterial OMVs
have recently been explored as natural antimicrobial carriers able
to deliver these products to target cells. They are able to kill some
pathogenic bacteria such as E. coli or P. aeruginosa [176,177].
Recently, they have also been confirmed to be efficient tools for
fighting intracellular bacterial pathogens such as S. aureus. Those
infections are difficult to treat because several classes of antibiotics
are unable to reach the pathogen, and higher concentrations and a
longer therapy time are needed. In these assays, OMVs from Cysto-
bacter velatus and Sorangineae species exhibit low toxicity in var-
ious cell lines and primary immune cells, and are able to take them
up into infected cells [177,178]. From these results it is possible to
envision the exploitation of OMVs from myxobacteria as novel
therapeutic delivery systems to combat bacterial infections. The
reports onM. xanthus OMV proteomics show that they are enriched
(along with toxic proteins and antibiotics) in hypothetical proteins
of unknown function which remain to be studied in depth
[173,176,179,180]. Moreover, a recent proteomic study of the
OMV cargo from several M. xanthus strains seems to indicate that
genetically similar strains of myxobacteria have diverse OMV pro-
teomes [51,181], giving rise to new research challenges.

Finally, it has been shown that myxobacterial predatory activity
varies depending on the prey [77,78,182]. Moreover, Sutton et al.
[183], using genome-wide association studies with 29 myxobacte-



Fig. 2. The cooperative predator M. xanthus as a source of antibiotics and new products. A. During predation, M. xanthus secretes lytic enzymes, antibiotics and other
secondary metabolites, some of them included in OMVs. B. Antibiotics and bioactive products identified in M. xanthus species. 1: myxochromide; 2: myxalamid; 3:
myxovirescin TA; 4: cittilin A; 5: myxoprincomide; 6: althiomycin; 7: saframycin Mx1.
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rial strains, identified different numbers of predation genes
depending on the prey organisms. They suggested that the broad
prey range of myxobacteria seems to be a consequence of the accu-
mulation of arrangements of prey-specific predation genes, rather
than possession of a set of general antibiotic genes. These results
clearly indicate that the awakening of cryptic genes should be
Fig. 3. Defense mechanisms in the prey with biotechnological applications. A.
Silenced antibiotics are induced in the prey during the predatory process. In the
pictures, M. xanthus (Mx, predator) induces in Streptomyces coelicolor (Sc, prey) the
blue antibiotic actinorhodin, in solid and liquid media. B. Novel antibiotic resistance
mechanism have been discovered in B. thuringensis: myxovirescin TA glucosylation.
C. Other physical/chemical defenses mechanisms induced by M. xanthus predation
in different bacteria. Galactoglucan (left picture) and melanin (middle picture)
protect Sinorhizobium meliloti from predation. M. xanthus induces development in
Streptomyces (right picture). Pictures from panel A and right picture from panel C
are reproduced from Pérez et al. (2011) Microb Biotechnol 4: 175–183. Left picture
in panel C is adapted from Muñoz-Dorado et al., (2016) Front Microbiol 7: 781.
Middle picture in panel C is from Contreras-Moreno et al. (2020) Front Microbiol 11:
94. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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assayed in the presence of pathogens against which we are looking
for a drug, since they may reinforce the positive results of the strat-
egy of testing other bacteria as prey and assaying new products
against resistant bacteria.

5. Summary and outlook

Development of AR by many pathogens is one of the main chal-
lenges for researchers in order to avoid a new era in which the
number of deaths from infectious diseases that were thought to
be under control increases to a level that represents an unaccept-
able health and economic cost. Finding new alternatives to kill
these pathogens requires a focus on various different strategies,
and one of these promising strategies is learning about the behav-
iors of bacterial predators and prey in nature. Understanding the
strategies developed by predatory bacteria during evolution is
helping researchers to emulate and use them in different antimi-
crobial approaches. Research on the use of predators as living
antibiotics is yielding promising results, and although more
research is required to demonstrate their efficacy in vivo, they rep-
resent a serious alternative to be considered. Currently, finding
structural genes and regulatory elements involved in predation
and the induction of silenced and cryptic genes or BGCs during
these dynamic predatory processes is not only starting to help in
the discovery of new antibiotics with novel mechanisms of action
and new classes of bioactive natural products, but also facilitating
the establishment of the best laboratory conditions for optimal
scaled-up industrial production of metabolites. Finally, from the
studies of the antagonistic predator–prey relationships, research-
ers are learning about the attack strategies used by the hunters,
which are opening innovative research lines such as the use of
OMVs as antimicrobial carriers. The mechanisms developed by
the prey to defend itself are also proving useful in finding out about
new determinants of AR. All of the studies reviewed here about
bacterial predators are not only opening new doors for the discov-
ery of new antibiotics, but also harnessing the enormous potential
of bacterial predators as whole cell therapeutic agents. Taken
together, these studies will help to prepare us for a near future
when many antibiotics fail to treat MDRB. However, they require
more support from government initiatives, along with changes in
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regulation to pave the way for valuable, efficacious, highly tar-
geted, pathogen-specific antimicrobial therapies.
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