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y trabajo en la dirección de esta tesis. Jamás me hubiese planteado la realización de

una tesis doctoral si no llega a ser por su apoyo e insistencia. Por toda su labor estos

años, no me cabe ninguna duda de que he tenido la suerte de contar con no dos, sino

tres directores. Ha sido un placer y un privilegio poder trabajar contigo.
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Chapter 1

Introduction

Computer Vision (CV) systems focus on developing algorithms that process images and

videos to obtain high-level information from them. In recent years, advances in CV

systems have enabled the automation of tasks that were previously thought to be im-

possible to perform without human intervention. This is the case for fields as diverse as,

for instance, security surveillance, medicine or robotics. Some examples of applications

of CV systems in these fields are concealed object detection, cancer detection or self-

driving cars (object detection and image segmentation). In some cases, these systems

are capable of even outperforming humans[1]. The increasing number of sensors that

capture different length-wave ranges in image type content has significantly increased

these systems’ demand. The following phases can be distinguished in CV: formation and

interpretation of the image.

The image formation phase includes all the processes necessary to obtain an image or

video with good perceptual quality from the sensors’ information. This phase includes

those techniques whose objective is related to eliminating noise and deformations that

occur in the image. Some examples are exposure correction, color balance, reducing

noise in the image, increasing the resolution or eliminating distortions in the image due

to other factors such as movement. Of these operations, the most relevant ones are

related to improving image quality in general and involve solving complex mathematical

problems where the solution is not uniquely determined. These tasks’ objective is mov-

ing from known events (the sensor responses) back to their most probable causes (the

“real” image). Some examples are creating High-Resolution (HR) images from Low-

Resolution (LR) images (Super-Resolution (SR)), removing blurring from images (Blind

Image Deconvolution (BID)) or image noise removal. In this dissertation, we will focus

on image and video SR and BID. For a more detailed explanation of these problems, see

Section 1.1.

The second phase, image interpretation, consists of obtaining high-level semantic

information from the image to compute a solution for the task at hand. Image classifi-

cation, object detection and object recognition are currently three of the more relevant

CV tasks associated with image interpretation. From these tasks, object detection [2]

1



Chapter 1. Introduction 2

is considered a key stage to image interpretation. In this dissertation, we focus on two

specific applications of object detection: threat detection using Passive Millimeter Wave

Images (PMMWIs) [3, 4, 5] and mitosis detection [6, 7] in medical images [8, 9]. Both

are relevant problems that have attracted much attention in recent years, with many

factors that make them very challenging tasks. In the case of PMMWIs, the low quality

of the images is the main factor (see Fig. 1.3). Meanwhile, mitosis detection’s difficulty

resides in the high variation of its characteristics depending on the capture process and

tissue type.

Several approaches have been proposed to deal with the problems that we address in

this dissertation. In the case of SR and BID, some of them involve solving an optimiza-

tion problem on a family of possible solutions where the solution reaches a compromise

between its variability and adjustment error with the data [10, 11, 12]. Meanwhile, most

approaches proposed for threat detection in PMMWIs [3, 4, 5] and mitosis detection

[13, 6, 14] usually involve the use of filtering techniques where a detection threshold

has to be manually tuned. Despite the differences, all previous methods can be framed

within what is called regularized optimization. Alternatively, instead of solving this

optimization problem for each new sample, the function f that solves the task can be

learned from data using supervised Machine Learning (ML). Given a set of N training

examples {(x1, y1), ..., (xN , yN )}, such that xi is the input data from the i-th sample

and yi the corresponding desired output, a ML algorithm selects from a family of func-

tions a f : X → Y , where X and Y are the input and output space, respectively, that

minimizes a loss function L(f(x), y). Some examples of these algorithms are Logistic

Regression, Support Vector Machine (SVM), Gaussian Process (GP) or Random Forest.

These shallow ML algorithms are not usually employed on the raw signal because of

its high dimensionality. Instead, they use features extracted from the signal. These

features are hand-crafted, i.e., they have to be manually designed. Although very good

feature extractors have been proposed, like Local Binary Patterns (LBP) [15], Haar [16],

Fisher Vectors (FV) [17] or Vector of Locally Aggregated Descriptors (VLAD) [18], its

performance is limited because the feature extraction can not be optimized with the

loss function L(f(x), y). Kernel transformation in SVM or GP can palliate this issue by

increasing the feature space dimensionality, but this is not enough in some applications.

In recent years, the use of Deep Learning (DL) has shown an astonishing increment

in performance compared to shallow techniques. DL, also called hierarchical learning

and deep structured learning, is “a class of machine learning techniques that exploit

many layers of non-linear information processing for supervised or unsupervised feature

extraction and transformation, and for pattern analysis and classification”[19]. Although

the number of layers for a ML method to be considered deep is ambiguous, in general the

following ML algorithms are considered part of DL [20]: Feed Forward Neural Networks

(NNs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),

Boltzmann Machines (deep and restricted), Deep Belief Networks and Deep Gaussian
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Processes [21]. From DL models, CNNs are the most successful for high level image and

video related tasks like classification, segmentation, detection, parsing, etc., defining the

state-of-art for many of them [22, 23, 24, 25, 26, 27]. Furthermore, they have also been

applied to image and video processing tasks with similar success [28, 29, 30, 31, 32].

DL-based approaches can model complex functions with significantly less number of

parameters than shallow ones [33] and they can learn feature extraction from raw signals,

finding the features that minimize the loss function. However, DL models require orders

of magnitude more training data than shallow ones, which is why they have not been

widely used until recently, despite the first models being introduced more than 20 years

ago [34].

Motivated by the success of DL-based models in image and video problems, in this

dissertation, we develop DL-models for challenging image and video formation and in-

terpretation tasks. These are image and video SR, BID, threat detection in PMMWIs

and mitosis detection in Whole-Slide Images (WSIs). In this thesis, one common point

to all contributions is the use of domain knowledge to improve the solution by develop-

ing and applying specialized architectures, regularizations and restrictions. In the next

subsections, we present the tasks that we have addressed in this dissertation. Next,

we provide a brief introduction to the main DL-based models used in this dissertation:

CNNs and Generative Adversarial Networks (GANs). Finally, we present the objectives

of this work and the structure of the remainder of this dissertation.

1.1 Image and Video Processing: Restoration and Super-
Resolution

The number of pictures and videos taken has increased dramatically in the last years.

There are two main factors behind this massive increase in image and video content: the

rise in social media popularity and smartphones. They have compelled most of the popu-

lation to share pieces of their personal life using visual content. Each day 95M and 350M

pictures are uploaded to Instagram and Facebook, respectively. Moreover, each minute

more than 300 video hours are shared through YouTube. However, these are not the only

sources of new image content. The advances of CV have allowed automatic algorithms

in new tasks involving images and videos: traffic control, hidden threat detection in air-

ports, self-driving cars or cancer detection. Furthermore, the introduction of DL-based

models has further improved their performance. However, these methods’ performance

deteriorates significantly if the content presents degradations or artifacts (noise, blur or

compression artifacts) [35, 36], requiring the use of image processing techniques.

Despite the general quality leap that image and video capturing devices have under-

gone in the last years, the need for image and video processing techniques is still present.

There are several reasons for this fact. First, an essential part of the degradations that
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(a) (b) (c) (d) (e)

Figure 1.1: Examples of degradations that can affect images and videos: (a) Uniform
blur, (b) Non-uniform blur, (c) LR, (d) Compression artifacts or (e) Noise and LR.

Figure 1.2: Illustration of the forward problem (1.1) and inverse problem. First, the
degradation operator A is applied to the latent image x and noise n is added, obtaining
the observed image y. The objective of the inverse problem is obtaining an estimation of
the latent image. For illustration purposes, we use as the degradation operator A blur
and downsampling with scale factor 8.

image and video content can exhibit is not due to the capturing device but rather to the

conditions in which the scene is taken: movement or shaking of the camera (see Fig 1.1a)

or object movement in the scene (see Fig 1.1b). Second, old image and video content

were taken in a much lower resolution than today’s standard. Its resolution needs to

be increased to property show it in modern high-definition displays, or it will look too

blurred (see Fig.1.1c). Finally, in some applications, there are physical and economic

factors that limit the quality of the image or video captured, such as the compression

artifacts that appear due to the high compression needed to transmit through specific

channels (see Fig 1.1d) or the non-stationary noise and LR of PMMWIs (see Fig 1.1e).

In most cases, we can model the degraded observed signal (image or video) y as the

result of applying a transformation A, the degradation operator, to the latent signal x
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and adding noise n. This is the forward problem and can be written as

y = Ax+ n. (1.1)

The kind of problem to solve depends on A and n: Deconvolution or image restoration

(A is a matrix performing a convolution operation at each point of x with a Point Spread

Function (PSF), which is unknown in the case of BID), SR (A is a combination of a blur

operator B and downsampling ↓s by factor s) or Denoising (A = I and n 6= 0). The

objective of most image processing techniques is to solve the inverse problem and recover

x, see Fig 1.2. The difficulty of solving this inverse problem stems from the properties of

A and n. These usually determine the system to be ill-posed in the Hadamard sense [37];

that is, small variations in the input data result in large variations in the solution. The

presence of noise also makes it so there exist infinite possible solutions of x compatible

with the observed y, even when A is known. The information loss in SR or the need to

estimate A in BID only exacerbate this issue. Despite the difficulty, several algorithms

have been proposed to solve these problems, both classical [10, 11, 12, 38, 39, 40, 41, 42]

and DL-based [28, 29, 43, 44, 45, 30, 46, 47, 31, 48, 49, 50, 32, 51], which demonstrates

their importance.

1.2 Threat Detection in Passive Millimeter-Wave Images

Millimeter waves are electromagnetic radiations in the 0.001-0.01m wavelength range

(30-300GHz frequency range). Objects naturally emit them because of their heat.

Millimeter-waves can go through clothes revealing concealed objects behind them. Be-

cause of this fact, they are useful in hidden object detection and have been integrated

as part of theft and threat detection systems [52] in places such as airports, train and

metro stations and warehouses. We can distinguish two types of millimeter-wave sensors:

active, which direct waves to the subject and collect the reflected energy; and passive,

which collect the radiation emitted and reflected by the objects in the scene (see Fig. 1.3

for an example of the produced images). In contrast to active millimeter systems and

other alternatives, like back-scatter X-ray, passive millimeter systems fully respect the

user’s privacy. See [53] for a study of health and privacy issues of these systems.

Despite their advantages, PMMWIs suffer from several issues that make the task of

threat detection challenging:

• Low signal to noise ratio.

• Low resolution. Although it can be increased by using a higher sampling rate, this

will decrease the low signal to noise ratio even further.

• In-homogeneous signal intensity is caused by the differences in temperature be-

tween the objects in the scene.

Because of these issues, current detection algorithms have a high false-positive ratio
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Figure 1.3: Examples of PMMWIs used for threat detection. The threat is indicated
with a red box.

when avoiding false negatives. This harms the real-world application of these techniques.

However, PMMWIs can still be used to distinguish between the body and hidden objects,

as shown in [54].

Although sensor modeling, image processing and clustering techniques have been

used on PMMWI threat detection problems [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66],

no ML-based detection solutions have been proposed yet, likely because of the absence

of a large database of PMMWIs to work with. If such database is available, we believe

that CNN models would be a good fit for this task, since they have been demonstrated

to outperform other models in detection and segmentation tasks [24, 26, 25] as well as

noise removal [67].

1.3 Mitosis Detection in Whole-Slide Images

In recent years, the field of digital pathology (a pathology sub-field that focuses on

using information generated from digitized specimen slides) has seen a growth in research

interest by the ML community, leading to significant achievements in key areas like

automatic cancer detection. These achievements have been facilitated by the availability

of public and private datasets of WSIs. A WSI is a scan of a complete microscope slide

into a single HR image file. This process involves scanning several image tiles or strips

and combining them, which may cause some artifacts. For ease of visualization and

processing, the image is scanned at different resolutions reaching 0.35-0.16 microns per

pixel, obtaining images of the order of 1010 pixels. Before scanning, the tissue must

be stained. The most widely used stains in medical diagnosis [68] are Hematoxylin and

Eosin (H&E). This is a combination of two stains: Hematoxylin is adsorbed by cell nuclei

and has a blue color, while Eosin stains the extracellular matrix and cytoplasm in pink.

Other structures in the tissue are stained with mixed colors. Notice that other stains

can be used depending on the application.

One of the most relevant tasks in WSIs is mitosis detection. The quantity of mitosis
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(a) Prophase (b) Metaphase (c) Anaphase (d) Telophase

Figure 1.4: Examples of mitosis in H&E WSIs for each phase of the mitosis process. Im-
ages were taken from [69]. Notice the drastic changes in shape and appearance between
phases.

per mm2 is one of the most important factors in the prognosis of several cancer types.

Mitosis is the process in which one cell divides itself into two identical cells and has

four distinct phases: Prophase, metaphase, anaphase and telophase. Cells undergoing

this process are called mitotic figures. Some examples of mitotic figures are shown in

Fig. 1.4. Notice the geometric and color variation despite being from the same tissue

type. As can be seen, the manual quantification of mitosis is a very time-consuming task

since the WSI has to be analyzed at a large magnification. Furthermore, several factors

make it very difficult:

• The shapes and appearances of the mitosis change drastically along its four stages:

prophase, metaphase, anaphase and telophase (see Fig 1.4).

• Color variability of the WSIs caused by stain intensities and differences between

scanners makes it very difficult to transfer the knowledge learned. This issue is

alleviated thanks to the introduction of techniques for color deconvolution and

normalization [70, 71, 72].

• Further geometric deformations due to changes between different tissue types ex-

acerbate the difficulty of transferring the knowledge learned in one kind of tissue

to another.

• H&E indirectly helps mitosis identification by staining the mitotic cell nucleus

intensely. However, other tissue parts are also stained similarly.

The first approaches for mitosis detection in digital images date back more than two

decades [13, 6, 14]. These methods were significantly limited by their day’s computer

power and the lack of availability of WSI datasets. They rely on image processing

techniques to detect mitosis. Although they are very fast, they suffer from low accuracy.

Advancements in WSI scanning technology and CNNs have reignited interest in this

problem. This has manifested in the appearance of several challenges, such as MITOS

ICPR-2012 [73], MITOS-ATYPIA [74] and TUPAC-2016[75]. These challenges have
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provided new datasets that have been used by new CNN-based approaches [7, 76, 77,

78, 79], significantly outperforming other methods.

Having described the problems we address in this dissertation, we now provide a

brief introduction to the main tools we use to solve them.

1.4 Brief Introduction to Convolutional Neural Networks
and Generative Adversarial Networks

CNNs were first introduced by LeCun et al [34] in 1998. They are a class of feed-

forward NNs designed to exploit the spatial dependencies among neighboring pixels in

images. A cascade of previously learned convolutional filters and poolings summarizes

the image in a vector of features representing information in large image regions. Local

spatial weights and shifting invariance are the two main properties of the filter masks.

The most common operations in a CNN, are described below:

• Convolution: This is the basic operation in a CNN. The input is convolved with a

bank of learned filters. Since this is a linear transformation, after the convolution,

a non-linear pointwise function is applied. Some examples of such operations are

the Sigmoid or the Rectified Linear Unit (ReLU)[80]. This gives the CNN the

capacity to learn non-linear transformations of the input data.

• Pooling: It reduces the input’s spatial size by replacing adjacent pixels regions

with a statistics summary. The most common operations are max pooling and

average pooling and report the maximum and average output within a rectangular

neighborhood, respectively.

• Classifier: Usually a normal NN (often called full connections or fully connected

layers) or logistic regression. It performs the final classification using the features

extracted from the signal using the other two operations.

Fig. 1.5 shows an example of the architecture of an image classification CNN where each

one of the previously mentioned types of layers is present. The CNNs are trained like

normal NNs, using back-propagation [81] and Stochastic Gradient Descent (SGD) on

mini-batches of samples to minimize a loss function. By using a mini-batch size greater

than one, the training can be easily accelerated by taking advantage of the massive

parallel computation units like a Graphic Processing Unit (GPU) or a Tensor Processing

Unit (TPU). Finding a good minimum using SGD is not a trivial task, requiring tuning of

the hyper-parameters, of which the learning-rate is the most relevant. Recently, several

methods have been proposed to ease this task by automatically the learning-rate for each

layer in the model [82, 83, 84]. These methods, in conjecture with better initialization

schemes [85, 1], have significantly eased the training of CNNs. However, hyper-parameter

tuning is still necessary to properly train these models.
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Figure 1.5: Architecture of CNN LeNet-5 [34]. This image has been taken from the same
publication.

The first proposed model in 1998, LeNet[34], was pretty close to current CNNs.

However, two major issues kept them from reaching today’s wide-spread usage: First,

the computing power in the early 2000s was not enough to train models more complex

than LeNet[34]. Second, these networks’ depth was seriously limited by the vanishing

gradient problem [86]. In recent years, these issues have been solved with the use of

massive parallel computation units (GPUs and TPUs) and the substitution of Sigmoid

and Tanh activations with ReLU [80] and its variants [1, 87]. Specialized architectures

have been develop using task-specific knowledge, adapting these networks to different

problems like object detection [26], segmentation [88, 25], text and speech classification

[89, 90] or image processing [28, 46, 31]. Most relevant works in recent years have

proposed architectures compose of computing blocks. These blocks are an aggregation

of layers that perform specific computations [24, 91]. One of the most important of these

blocks is the residual blocks [24]. Each of them calculates a residue added to the block’s

input, forcing the network to transform the input progressively. As a result of these

constraints, deeper networks can be trained without the overfitting or the appearance of

the vanishing gradient problem. These networks have become the backbone of several

detections and image restoration approaches [92, 26, 93, 43, 32]. In these approaches,

the network’s basic structure is retained and used to perform specific parts of the whole

calculation. It is important to notice that state-of-art [92, 26, 93] detection methods

cannot be directly applied to the detection problems studied in this thesis. In the case

of mitosis detection, the images are too big to be processed by the model. Although

PMMWIs are small enough to be processed by these models, they lack the texture

information needed by these models [94] and, at the same time, the models are too big

to be trained using the small datasets available.

CNNs are discriminate models that learn decision boundaries from observed data. In

contrast, a generative model is capable of learning the distribution of the data. In recent

years, several generative models have been proposed adapting the technology of deep

NNs and CNNs [95, 96]. Of these, GANs [96] are the most widely used. They consist of

two modules, generator and discriminator, each one defined by a network. Given a data
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distribution, their objective is to train the generator network to produce samples with

the same statistics as those from the distribution. To do this, the generator is trained to

fool the discriminator, whose task is to distinguish between real and generated samples,

that is,

min
G

max
D

Ex∼Pdata
[ logD(x)] + Ez∼noise[ log(1−D(G(z)))] , (1.2)

where G is the generator, D is the discriminator, x is a sample from the data distribution

Pdata and z is a sample from a noise distribution. Research in GANs has been quite

active, being applied successfully to different image and video tasks [43, 97, 98, 99, 100,

44, 101] and with new GAN models being proposed to solve some of GANs main issues:

their instability and mode collapse [102, 103, 104].

From previous works in CNNs and CNN-based GANs, it can be derived that one

of the critical factors that determine the performance of a CNN is the architecture.

Indeed, as shown in [105, 106], CNN architectures introduce deep priors, which for many

applications, explain a large portion of the model performance. However, some image

and video problems present more challenging scenarios where the prior imposed by the

architecture prior is not enough to obtain satisfactory results. For instance, this is the

case when datasets are too small to regularize the model or the surface of the solution

shows many local minima. In those cases, using knowledge of the problem to introduce

further regularization or constraints in the function space can significantly increase the

model’s performance and reduce overfitting. Some mechanisms that have been used to

this end are the introduction of a Gaussian prior in the weight space using Dropout [107],

increasing the invariance of the network to geometric transformations [108], specializing

parts of the network [109] or combining the DL method with other approaches [110].

Following these works, when applying DL-based models in this dissertation, we will focus

on using our knowledge of the problem to develop and apply specialized architectures,

regularizations and restrictions to increase the performance.

In this sense, we have analyzed previous DL-based models proposed for image and

video SR, BID and mitosis detection, identifying some issues that we think can be

addressed with the introduction of domain knowledge using some of the previously men-

tioned approaches:

• In image and video SR: First, most SR models are trained to invert only one

downsampling operator (usually bicubic downsampling) and do not generalize well

to new ones. This hurts their real-world application. Second, most models use the

Mean Squared Error (MSE) as the loss function: L(x̂, x) =
∑

i

∑
j(x̂i,j − xi,j)2,

which is an empirical risk minimization approach. As a result, the estimated

images and videos are blurred. The use of GANs and losses more correlated with

the human vision has been proposed [43] to increase the estimations’ sharpness.

However, current approaches tend to introduce easily detectable high-frequency

artifacts or do not apply to scaling factors bigger than two [44]. Finally, Video
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Super-Resolution (VSR) models do not exploit long term information effectively,

ignoring the recent developments in RNN.

• In BID, current DL approaches do not generalize well to unseen blurs during train-

ing. To solve this issue, hybrid models combining analytical and DL approaches are

very effective, outperforming other approaches and generalizing to new degrada-

tions. However, because this combination is carried on introducing the DL model

in an iterative optimization process, they are very time-consuming.

• Current DL-based approaches for mitosis detection [7, 76, 77, 78, 79] suffer from

a high computational cost because of the size of the images and the fact that they

exploit the multiple-scale structure of a WSI. Furthermore, they cannot generalize

to new tissue types, requiring full training of the model with a new database [111].

Finally, current approaches have not explored the possibility of using other staining

methods in conjecture with H&E. More specifically, the immunohistochemistry

Phospho-Histone H3 (PHH3) [112] is a staining method used for mitosis detection

with less false negatives than H&E for many types of cancer [113, 114].

Having presented the problems addressed and the tools used in this dissertation, we

now introduce the objectives.

1.5 Objectives and Outline of the Thesis

This work’s main goal is to develop new DL-based models and study their appli-

cation to image and video processing and classification. In other words, we develop

new DL-based models to solve the problems described in Sections 1.1-1.3. Because of

this, our main objective can be broken down into sub-objectives grouped in four blocks:

video super-resolution, image restoration and super-resolution, threat detection in pas-

sive millimeter-wave images and mitosis detection in whole-slide images. We now specify

the sub-objectives of each block:

1. Video super-resolution:

• To introduce new DL-based methods for VSR robust to multiple degradations.

• To enhance the perceptual quality of the frames produced by DL-based models

for VSR.

• To improve current DL-based approximations for VSR by improving infor-

mation propagation through different time steps.

2. Image restoration and super-resolution:

• To develop a new fast and accurate DL-based algorithm for BID that is able

to generalize to unseen blurs during training.
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• To implement a new fast and accurate DL-based approximation that can

restore an image degraded by noise, blur and downsampled.

3. Threat detection in passive millimeter-wave images:

• To construct a new database of PMMWIs with significantly more instances,

people and objects than the ones available. This database must be large

enough to train and evaluate ML-based approaches.

• To implement an initial ML-based approximation to threat detection on

PMMWIs using shallow models. This approximation will be used as a base-

line.

• To develop a DL-based model for threat detection in PMMWIs and compare

it to ML-based approaches.

4. Mitosis detection in whole-slide images:

• To implement a fast DL-based model for mitosis detection in H&E stained

WSIs of basocelular cancer tissue that is able to generalize to other tissue

types.

• To study the combined use of H&E and PHH3 stained tissue WSIs for mitosis

detection using CNNs.

This dissertation is presented in the modality of “compendium”. The specific pub-

lications that compose it are structured in four blocks (video super-resolution, image

restoration and super-resolution, threat detection in passive millimeter-wave images and

mitosis detection in whole-slide images), following the same organization as the objec-

tives. The main contributions are highlighted before each publication and the conclusions

are presented together in Chapter 6. The structure of the remainder of this dissertation

is as follows:

• Chapter 2: Presents our contributions on the topic of VSR [115, 116, 117, 118].

In Section 2.3, we present relevant works in the field where the Ph.D. candidate

was not the main author but had a significant role.

• Chapter 3: Contributions on image restoration [119] and SR [120] are presented

in this chapter.

• Chapter 4: This chapter presents our work on threat detection in PMMWIs

[121, 122].

• Chapter 5: Our contributions on mitosis detection on WSIs [123, 124] are intro-

duced in this chapter.

• Chapter 6: Conclusions and future work.



Chapter 2

Video Super-Resolution

2.1 A Single Video Super-Resolution GAN for Multiple
Downsampling Operators based on Pseudo-Inverse Im-
age Formation Models

2.1.1 Publication details

Authors: Santiago López-Tapia, Alice Lucas, Rafael Molina, and Aggelos K. Katsagge-

los.

Title: A Single Video Super-Resolution GAN for Multiple Downsampling Operators

based on Pseudo-Inverse Image Formation Models.

Publication: Digital Signal Processing, vol. 104, 102801, 2020.

Status: Published.

Quality indices:

• Impact Factor (JCR 2019): 2.871

• Rank: 102/266 (Q2) in Engineering, Electrical and Electronic

2.1.2 Main Contributions

• First, we introduce a new VSR architecture that adapts the approximation in-

troduced in [44] to the multiple degradation VSR problem. This model uses the

pseudo-inverse of the degradation to regularize the recovery of the HR frames and

as an input to the network. As shown by our experiments, this enables our model

to be significantly more robust to multiple degradations than current approaches.

• Second, to further increase the sharpness of the super-resolved frames, we intro-

duce a new loss function that combines adversarial GAN loss and feature loss with

a spatial smoothness constraint. This constraint forces the model to avoid intro-

ducing high-frequency artifacts in low-activity areas of the image, which are easily

spotted by the human eye. This new loss enforces smoothness only in areas of the

image with low activity.

13
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• Third, we create a new training dataset for VSR, created from a subset of videos

from the YouTube-8M dataset [125]. Compared to most used training datasets in

VSR, like Myanmar [126], it has more diverse scenes and motions.

• Finally, we perform an extensive experimental study and compare with current

state-of-art methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural

Similarity Index Measure (SSIM), Perceptual Distance[127] and number of opera-

tions.

Preliminary results of this work were presented in two conference papers: The first

one is [115] (GGS Rating: A-, GGS Class: 2, CORE: B). It introduces a different

architecture not adapted to multiple degradations and an initial version of the proposed

smoothness constraint imposed on the whole image. [116] (GGS Rating: B, GGS Class:

3, CORE: B) is the second publication. It extends the architecture proposed in [115] to

multiple degradations. In [117], the architecture is improved and extended to multiple

scaling factors.
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Abstract

The popularity of high and ultra-high definition displays has led to the need for meth-

ods to improve the quality of videos already obtained at much lower resolutions. A large

amount of current CNN-based Video Super-Resolution methods are designed and trained to

handle a specific degradation operator (e.g., bicubic downsampling) and are not robust to

mismatch between training and testing degradation models. This causes their performance

to deteriorate in real-life applications. Furthermore, many of them use the Mean-Squared-

Error as the only loss during learning, causing the resulting images to be too smooth. In

this work we propose a new Convolutional Neural Network for video super resolution which

is robust to multiple degradation models. During training, which is performed on a large

dataset of scenes with slow and fast motions, it uses the pseudo-inverse image formation

model as part of the network architecture in conjunction with perceptual losses and a

smoothness constraint that eliminates the artifacts originating from these perceptual losses.

The experimental validation shows that our approach outperforms current state-of-the-art

methods and is robust to multiple degradations.

Index Terms

Video, Super-resolution, Convolutional Neuronal Networks, Generative Adversarial Net-

works, Perceptual Loss Functions

I. INTRODUCTION

The task of Super-Resolution (SR) consists of obtaining High-Resolution (HR) images from

the corresponding Low-Resolution (LR) ones. This task has become one of the main problems

in image and video processing because of the increasing demand for such methods from the
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industry. Due to the growing popularity of high-definition display devices, such as High-

definition television (HDTV) and Ultra-high-definition television (UHDTV), there is an avid

demand for HR videos. However, most of the content (especially, older videos) has been

obtained at much lower resolution. Therefore, there is a high demand for methods able to

transfer LR videos into HR ones so that they can be displayed on HR TV screens, void of

artifacts and noise.

In the problem of image Super-Resolution (SR), the high-to-low image formation model

can be written as:

y = D(x ⊗k)+ε, (1)

where y is the LR image, x is the HR image, ε is the noise, x ⊗k represents the convolution

of x with the blur kernel k and D is a downsampling operator (usually chosen to be bicubic

downsampling). In the case of Video Super-Resolution (VSR), y , x, and ε are indexed by a time

index t and additionally yt is used to refer to the 2l +1 LR frames in a time window around

the HR center frame xt , that is, yt = {yt−l , . . . , yt , . . . , yt+l }. Due to the strongly ill-posed nature

of the SR problem, the recovery of the original HR image or video sequence is a difficult

task.

Current SR methods can be divided into two broad categories: model-based and learning-

based approaches. Model-based approaches explicitly define and use the degradation process

described by Eq. 1 by which LR image is obtained from the HR image or video sequence, see

the reviews [1], [2]. With this explicit modeling, an inverse problem is solved to obtain an

estimate of the reconstructed HR frame. These methods rely on careful regularization to deal

with the ill-posedness of the problem. To enforce image-specific features into the estimated

HR, signal priors are used, such as those controlling the smoothness or the total variation

of the reconstructed image. In the case of the work presented in [3] a new multichannel

image prior model is used in conjunction with a state-of-the art image prior and observation

models to produce the SR image using a MAP algorithm. In [4], an SR image is obtained

from the LR observations through the simultaneous estimation of the SR and the motion

between the LR observations using the Bayesian framework.

On the other hand, learning-based approaches do not explicitly make use of the image

formation model and use instead a large training database of HR and LR image/sequence

pairs to learn the solution to the SR problem, i.e. they learn a mapping between the LR

observations and the HR estimation [5], [6]. Classic learning-based models mainly focused

on how to build a dictionary or manifold space to relate LR and HR images and determine

what representation schemes could be used in such spaces [5], [7], [8], [9]. Recently, methods

based on Convolutional Neural Networks (CNNs) have been proposed for image SR and VSR,

typically outperforming classic learning-based and model-based methods. These methods

try to find a function f(·) such that x = f(y) (or x = f(y) for VSR), which solves the mapping

from LR images (or video sequences) to HR ones. The first use of these models for image

SR was proposed in [6], where a three layered CNN was used to recover an HR image from

its bicubically upsampled LR observation. Following works improved the architecture of the

network by introducing layers that allow the network to learn the upsample operator [10] or
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increase the depth of the network through the use of residual blocks [11].

Although CNN-based models typically outperform model-based methods, most of them are

not as flexible as model-based methods, in the sense that they are trained for a specific type

of degradation operator. More specifically, an artificially synthesized dataset with LR and HR

pairs is generated using only one degradation operator A (usually bicubic downsampling) for

training. In addition, the LR sequences used for testing are assumed to have been subjected

to the same degradation. This limits the trained model to only one type of degradation and its

performance greatly deteriorates when a mismatch between training and testing degradation

models occurs (see [12], [13]). This significantly limits their practical application. Recently,

some works have proposed SR models that address this issue [12], [13] (see Section II).

An additional problem with most CNN-based approaches to SR and VSR problems is that

they are trained using the Mean-Squared-Error (MSE) cost function between the estimated

and original HR frames. Numerous works in the literature (e.g., [14], [11], [15], [16]) have

shown that while the MSE-based approach provides reasonable SR solutions, its conservative

nature does not fully exploit the potential of Deep Neural Networks (DNNs) and produces

blurry images. As an alternative to the MSE cost function, recent CNN-based SR methods use

(during training) features learned by pre-trained discriminative networks and compute the

MSE between estimated and ground truth HR features. Using such feature-based and pixel-

based losses has proven to boost the quality of the super-resolved images [17]. Unfortunately,

this approach tends to introduce high-frequency artifacts, as was shown in [17].

The use of Generative Adversarial Networks (GANs) [18] was also proposed as a mechanism

to increase the perceptual quality of the estimated images trying to avoid again the smoothing

introduced by the MSE loss (e.g., [19], [11], [20]). GANs consist of two networks: a generator

network that produces the SR image and a discriminator one that distinguishes between

generated images and real ones. These networks can therefore constraint the generated HR

images to satisfy the distribution of the real HR images. The produced images are sharper

because blurry images do not belong to the distribution of HR images. In the case of SR

and VSR, these models are trained incorporating additional terms to the loss function of the

generator network (see [11], [15], [16], [17]).

In this work, we propose a new GAN model that adapts the approximation proposed in [21]

to Multiple-Degradation Video Super-Resolution (MDVSR). It uses the pseudo-inverse image

formation model not only in the image formation model (as proposed in [21]), but also as

an input to the network. Our experiments show that this model trained with the MSE loss

significantly outperforms current state-of-the-art methods for bicubic degradation in terms

of PSNR and SSIM metrics and it is significantly more robust to multiple degradations than

current approaches. To further increase the sharpness of the resulting frames, we propose the

use of a new loss function that combines adversarial GAN loss and feature loss with a spatial

smoothness constraint. This new loss allows for a significant increase in the perceptual quality

of the estimated frames without producing the high-frequency artifacts typically observed

with the use of GANs.

For all described models, the use of an appropriate dataset is of paramount importance.

While many of the current VSR learning-based models are trained using the Myanmar dataset,
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this dataset has limited variation of both scene types and motions. In this work we show that

GAN-based VSR models significantly benefit from training with a dataset with more diverse

scenes and motions. We obtain a significant increase in perceptual quality by training our

best performing model on a dataset created from a subset of videos from the YouTube-8M

dataset [22].

The rest of the paper is organized as follows. We provide a brief review of the current

literature for learning-based VSR in Section II. In Section III, we present our baseline VSR

model. In this section we detail the architecture used for our model. By additionally intro-

ducing our new spatial smoothness loss we obtain our proposed model trained to maximized

perceptual quality. The training procedure, the new dataset, and experiments are described in

detail in Section IV. In this section we also evaluate the performance of the proposed models

by comparing them with current state-of-the-art VSR approaches for scale factors 2, 3, 4, 8

and different degradations. Our quantitative and qualitative results show that our proposed

perceptual model sharpens the frames to a much greater extent than current VSR state-of-

the-art DNNs without the introduction of artifacts. In addition, we show in this section that

our resulting model is more robust to variations in the degradation model compared with

the current state-of-the-art model. Finally, conclusions are drawn in Section V.

II. RELATED WORK

In recent years, different VSR CNN-based models have been proposed in the literature. Liao

et al. [23] utilize a two-step procedure where an ensemble of SR solutions is first obtained

through the use of an analytic approach. This ensemble then becomes the input to a CNN

that calculates the final SR solution. Kappeler et al. [24] use a three layer CNN to learn a

direct mapping between the bicubically interpolated and motion compensated LR frames in

yt and the corresponding HR central frame xt . Other works have applied Recurrent Neural

Networks (RNNs) to VSR. For example, in [25] the authors use a bidirectional RNN to learn

from past and future frames in the input LR sequence. Although RNNs have the advantage of

exploiting more effectively the temporal dependencies between frames, the challenges and

difficulties associated with their training has led to CNN being the favored DNN for VSR.

Li and Wang [26] exploit the benefits of residual learning with CNNs in VSR by predicting

only the residuals between the high-frequency and low-frequency frame. Caballero et al. [27]

jointly train a spatial transformer network and a CNN to warp video frames, so that they

benefit from sub-pixel information and they avoid the use of motion compensation (MC).

Similarly, Makansi et al. [28] and Tao et al. [29] found that jointly performing upsampling

and MC increases the performance of the VSR model.

All these previous methods use the MSE loss as the cost function during the training phase.

This is the most common practice in the literature for CNN-based models. However, the use

of this loss during training causes the estimated frames to be blurred. In an attempt to solve

this problem, recent works have used feature-based losses as additional cost functions, see

[14]. This approach has significantly improved the sharpness and the perceptual quality of the

estimations. Ledig et al. [11] proposed a combination of a GAN and feature loss for training,

leading to the generation of images with superior photorealistic quality. In [17], Lucas et al.
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proposed an adaptation of this approach to VSR. They introduced a new loss based on a

combination of perceptual features and the use of the GAN formulation. The model has led

to a new state-of-the-art VSR approach in terms of perceptual quality. To improve the quality

of the predicted images, Wang et al. [15] train a GAN for image SR conditioning the output

of the network using semantic information extracted by a segmentation CNN. In [16] the

authors propose the Residual-in-Residual Dense Block and use it to construct a very deep

network that is trained for image SR using perceptual losses. More recently, Zareapoor et al.

[30] proposed a dual generator and dual discriminator GAN. Each generator is specialized

in different data distributions and the first discriminator distinguishes between real and fake

data while the second one assigns examples to the correct generator to be re-synthesized in

case of an initial mismatch (see [30] for a complete definition of the used terminology). In

[31], Shamsolmoali et al. propose to control the model parameters and mitigate the training

difficulties by using a densely connected residual network that is trained using a gradual

learning process, from small upsampling factors to larger ones.

As previously stated in Section I, SR and VSR methods can be classified into two groups:

model based and learning based. Recently new methods that blend the two approaches have

emerged. Zhang et al. [32] use the Alternating Direction Method of Multipliers (ADMM) for

image recovering problems with known linear degradation models, such as image deconvolu-

tion, blind image deconvolution, and SR. ADMM methods split the recovery problem into two

subproblems: a regularized recovery one (subproblem A) and a denoising one (subproblem B).

The authors of [32] propose to combine learning and analytical approaches by using a CNN

for the denoising problem. This allows them to use the same network for multiple ill posed

inverse imaging problems. At the same time, some works have been proposed to increase

the performance and the flexibility of SR learning-based models by taking into account the

image formation model when training their CNNs. More specifically, Sonderby et al. [21]

proposed a new approach which estimates and explicitly uses the image formation model

to learn the solution modeled by the network. The blurring and downsampling process to

obtain LR frames from HR ones is estimated and the Maximum a Posteriori (MAP) HR image

estimation procedure is approximated with the use of a GAN. We improve over this approach

by generalizing it to multiple degradation operators for the VSR problem. Although we do not

make use of more complex GAN training techniques such as the ones using dual generators

and discriminators [30] and gradual learning [31], our method achieves state-of-art results due

to the use of the LR image formation model in conjunction with our proposed smoothness

constraint. To enforce robustness to multiple degradations in the case of single image SR,

Zhang et al. [13] propose to input to their CNN not only the LR image but also the Principal

Component Analysis (PCA) representation of the blur kernel used in the degradation process.

We adopt a similar approach in our framework, as detailed in the next section. Preliminary

results of our approach can be found in [33] for bicubic downsampling. In this work we

extend it to multiple degradations and improve the loss function and the architecture used

in [33].
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III. MODEL DESCRIPTION

In this section, we first introduce the problem of VSR with multiple degradations and

explain how we can adapt the Amortised MAP approximation in [21] to solve it (see Sec-

tion III-A). The loss used to train our GAN model is then introduced in Section III-B. Finally, in

Section III-C we describe our proposed new architecture based on the VSRResNet architecture

originally introduced in [17].

As previously stated in Section I, we use x to denote a HR frame in a video sequence and

y its corresponding observed LR frame. Furthermore, we use y to refer to the LR frames in

a time window around the HR center frame x, y contains 2l +1 frames (we use l = 2 in the

experiments).

In the problem of VSR, the process of obtaining a LR image from the HR one is usually

modeled using Eq. 1. In this paper, we assume that the image formation noise is negligible

(ε= 0) and that it has been absorbed by the downsampling process. Also, following previous

works in the literature, e.g. [13], we assume that D represents bicubic downsampling and the

blur k is known and has the form of an isotropic Gaussian kernel. Although more complex

blurs, like motion blur, can also be considered, our downsampling and Gaussian blur model

is frequently assumed to be a good representation of the high to low resolution degradation

process [13].

We also assume that all the frames in the time window are degraded with the same operator.

Since this operator depends mostly on the camera used, it is reasonable to assume that

these conditions will not change drastically from one frame to another. However, we are not

assuming that all cameras produce the same deterioration.

In summary, we assume that D (bicubic downsampling) and k (Gaussian blur) in Eq. 1 are

known (or previously estimated) and that they are constant for all frames in y. Notice that

assuming that the Gaussian blur is known is not the same as assuming that it is the same

for all video sequences. The use of this image forward model leads to a more challenging

VSR problem than when only bicubic downsampling is considered, which is the modelling

used in most previous works on VSR, see [17], [23], [26], [28], [29], [34], [24].

A. Robust VSR through the use of Amortised MAP

Let us now examine how we can approach the multiple degradations VSR problem. Most

current VSR methods solve the problem by learning a function fθ(.), which maps a low

resolution image to the high resolution space, using training data pairs x and y and optimizing

the parameters θ using gradient descent over a Mean Square Error function. This model

embeds the estimation of the downsampling process in the function fθ(y). We argue here

that to obtain an SR network capable of dealing with multiple degradations, separating the

learning of the HR video sequence from the learning of the degradation makes the whole

process more manageable and increases the performance of the network, as shown by the

experiments in Section IV. To achieve this, given D and k, we define A = Dk and following

[21] consider the function

gθ(y) = (I − A+A)fθ(y)+ A+y, (2)
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where A+ denotes the Moore-Penrose pseudoinverse of the degradation A. Since A A+A = A

and A+A A+ = A+, and because the rows of A are independent A A+ = I , we have that

Agθ(y) = A(I − A+A)fθ(y)+ A A+y = y (3)

The resulting gθ(y) is an HR image which satisfies Eq. 1 with ε= 0. With this formulation, the

learning of the network is made easier by learning a residual only (A+y can be considered as

an initial approximation of the HR frame x and fθ(·) is part of the added correction according

to Eq. 2). This has been exploited in other works of SR where the networks learn to predict

a residual over an initial estimation, usually chosen to be the bicubic interpolation [35].

However, these other approaches are not well suited for the Multiple Degrations setting, since

the quality of the initial prediction may vary significantly from one degradation to another,

showing different kind of artifacts. Figure 1 illustrates this problem for bicubic interpolation.

Notice that in order to use our approach, the estimation of the A+ operator prior to

training is required. In [21], this operator is modeled using a convolution operation followed

by a subpixel shuffle layer [10]. The unknown parameters w are estimated by minimizing,

via stochastic gradient descent, a loss function, that is,

ω̂=argmin
ω

Ex‖Ax − A A+
ω(Ax)‖2

2

+Ey‖A+
ω(y)− A+

ω(A A+
ω(y))‖2

2, (4)

where A+
ω denotes the pseudo-inverse with ω network parameters.

An obvious disadvantage of this approach is that one needs to learn a specific A+
ŵ for each

A. In order to have a single network robust to multiple A operators, we have implemented a

network that, for any given A, it predicts the corresponding ω̂ of its pseudoinverse. We choose

this network to be composed of three hidden layers with 512, 1024 and 512 hidden units.

The input to this network is the PCA representation of the kernel k. The network is trained

to predict the unknown ω̂ which solves Eq. 4 for a given A. Our experiments demonstrated

that the performance obtained by this efficient approach was equivalent to calculating ω̂ for

each A by individually solving for each operator according to Eq. 4.

Let us now see how gθ(y) is obtained using an enhanced formulation of a GAN model with

increased perceptual quality.

B. A GAN model with increased perceptual quality

Taking into account that the transformation gθ(y) defines (from the distribution on y) a

probability distribution function qθ(.) on the set of HR images, the Kullback-Leibler divergence

between qθ(.) and the distribution of real images pX (.), given by

KL(qθ||pX ) =
∫

qθ(x) log
qθ(x)

pX (x)
d x, (5)

is minimized using a GAN approach. This model has a maximum a posteriori approximation

interpretation (see [21] for the details).

Together with the generative network, gθ(y), we learn a discriminative one, dφ(x), using

the following two functions on θ and φ.
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(a) HR (b) Bicubic (c) σ= 2.0 (d) σ= 3.0

Fig. 1: Example of artifacts introduced by the bicubic downsampling for a scaling factor of 3. (a) original image,
(b) bicubically downsampled image in (a), (c) and (d) bicubically downsampled images which have previously
been blurred with σ= 2 and σ= 3 Gaussian kernels respectively. The downsampled images have been enlarged
to the size of the original one using bicubic upsampling.

Ld(φ;θ) =−Ex∼X
[
logdφ(x)

]−Ey∼Y
[
log(1−dφ(gθ(y)))

]
(6)

Lg(θ;φ) =−Ey∼Y

[
log

dφ(gθ(y))

1−dφ(gθ(y))

]
, (7)

where X and Y are the distribution of the HR and LR images, respectively. Iteratively, the

algorithm updates φ by lowering Ld(φ;θ) while keeping θ fixed, and updates θ by lowering

Lg(θ;φ) while keeping φ fixed.

(a) HR (b) VSRResGAN factor 2 (c) VSRResAffGAN factor 2 (d) VSRResAffGAN factor 4

Fig. 2: Example of the artifacts produced when only the adversarial loss is used for our GAN model (VSRResAffGAN)
and VSRResGAN[17]. We can see how our model is able to recover the frame for factor 2 while VSRResGAN
produces a lot of artifacts and a blurred frame. This issue is addressed in our GAN model by the addition of
auxiliary losses to the standard GAN loss.

Notice that because the difference between H[qG, pX] (cross-entropy) and KL[qG|pX] is

H[qG], this approximation is expected to lead to solutions with higher entropy and thus

produce more diverse frames (see [21]). As can be seen in Fig. 2, this solution leads to a

good results for factor 2, however, this is not the case for larger scale factors such as 3 and 4,

where the GAN failed to converge. This is most likely caused by the discriminator’s ability to

easily distinguish between real and generated frames (furthermore, notice that the generator

has to produce 16 pixels in the HR frame for each pixel in the input LR frame, which is a

considerably more challenging task).

To address this issue, we regularize [36] the training of our GAN network following the

approach described in [17] and use the Charbonnier loss between two images u and v (in a
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given space) defined as

γ(u, v) =
∑
k

∑
i

∑
j

√
(uk,i , j − vk,i , j )2 +ε2. (8)

The Charbonnier loss is calculated in both pixel and feature spaces. We define our feature

space to correspond to the activations provided by a CNN trained for discriminative tasks. For

our model, we use the 3rd and 4th convolutional layers of VGG-16 [37] (denoted as VGG(.)).

The generator loss then becomes:

Lg combined(θ;φ) =α
∑

(x,y)∈T
γ(VGG(x),VGG(gθ(y)))

+βEy

[
log

1−dφ(gθ(y))

dφ(gθ(y))

]
+ (1−α−β)

∑
(x,y)∈T

γ(x,gθ(y)), (9)

where α,β > 0, α+β < 1 and T is the dataset formed by pairs of LR sequences y and HR

images x.

While the use of this loss successfully produces sharper frames, it also introduces high

frequency artifacts, especially in smooth areas of the image. They are easily detectable and

unpleasant to the human eye (see Fig. 3 for examples of such artifacts). While increasing

the weight of the pixel-content loss (
∑

(x,y)∈T γ(x,gθ(y))) significantly reduces these artifacts,

it also smoothes the frame.

Because these artifacts are more prominent in the smooth regions of the frame, we pro-

pose the substitution of the pixel-content loss (
∑

(x,y)∈T γ(x,gθ(y))) with a spatial smoothness

constraint. This spatial smoothness constraint is calculated with a weight matrix M(x) that

assigns a larger weight to the pixel-content loss in the smooth areas of the real HR frame x

during training. With the incorporation of this spatial smoothness constraint, the generator

is penalized heavier during training when generating unwanted “noise” in smooth regions of

the frame. We compute this weight matrix as M(x) = 1−S(x), where S(x) is the Sobel operator

applied to the image x. Therefore, the new proposed loss for the generator becomes:

Lg combined smooth(θ;φ) =α
∑

(x,y)∈T
γ(VGG(x),VGG(gθ(y)))

+β[Ey[log
1−dφ(gθ(y))

dφ(gθ(y))
]]+ (1−α−β)

∑
(x,y)∈T

M(x)¯γ(x,gθ(y)), (10)

where α,β> 0 and α+β< 1 and ¯ denotes element-wise multiplication. Lg combined smooth(θ;φ)

is the generator loss that we use to train our GAN model.

In the next section, we describe in detail the CNN architecture used to approximate fθ(·).

C. Architecture

To implement fθ(·), from which we will obtain gθ(y) using Eq. 2 which in turn will be

used in Eq. 10, we adapt the VSRResNet model introduced in [17]. The authors of [17] found

that the VSRResNet architecture results in state-of-the-art performance on the VideoSet4

dataset [38], the test dataset commonly used for evaluating VSR models. The VSRResNet

model corresponds to a deep residual CNN that consists of three 3×3 convolutional layers
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(a) HR (b) VSRResFeatGAN[17]

Fig. 3: Examples of artifacts produced by VSRResFeatGAN[17] for scale factor 3. Notice the high frequency artifacts
on smooth areas of the image. With the introduction in the loss function of the spatial smoothness constraint
term these artifacts are considerably reduced.

each followed by a ReLU activation, 15 Residuals Blocks with no batch normalization and a

final 3×3 convolutional layer. Padding is used at each convolution step in order to keep the

spatial extent of the feature maps fixed across the network.

We note here that using as input the bicubically upsampled frames as in [17] is not well

suited for the multiple degradation setting established in our work. Bicubic upsampling over-

smoothes the images and introduces artifacts, making the learning process more difficult.

Furthermore, as shown in Fig. 1, these artifacts are degradation operator dependent. Instead,

we decided to input the LR video sequence to the network and use the sub-pixel shuffle

layer introduced in [10] in the network architecture to learn the up-scaling operation. This

avoids the previously mentioned problem and increases training and inference speed.

Figure 4 shows the proposed architecture. Based on the VSRResNet[17], our model is a deep

residual CNN with three 3×3 convolutional layers each followed by a ReLU activation, 15

Residuals Blocks with no batch normalization and a final 3×3 convolutional layer. However,

instead of using a bicubically interpolated frame as an input, we upscale the feature maps

using the sub-pixel shuffle layer. As can be seen, we do not add the sub-pixel shuffle layer at

the end of the network as in [10], but rather we introduce it between the residual blocks of

the network. This allows our network to extract features in the LR and HR spaces, increasing

its performance. Furthermore, in the case of higher scaling factors like 4 and 8, we introduce

several of these layers to allow us to perform progressive upsampling. As shown in Section IV-B

the progressive upsampling results in a significant increase in performance. We use only one

sub-pixel shuffle layer before the 10th Residual Block for factors 2 and 3. For factor 4 we use

a sub-pixel shuffle layer with upscale factor 2 before the 5th and 10th residual blocks and

for factor 8 we use an additional one before the last convolutional layer (see Section IV-A for

details on model training).

The architecture defined above still suffers from a major problem: the parameters of the

network θ depend on the choice of A. Although we ease the training procedure by only

predicting the residual using (I − A+
ω̂

A) fθ(y), the network parameters are dependent on A+
ω̂

y .

In the MDVSR setting, it is necessary for the network parameters to be independent of A.

This will allow any input video sequence to be provided to the trained network at test time.

To this end, we modify the network architecture such that knowledge of A is provided. This
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Fig. 4: The MD-AVSR architecture based on VSRResNet[17]. The network consists of a series of convolution
operations with 64 kernels of size 3 × 3, applied to each input frame. The resulting feature maps are then
concatenated to obtain 320 feature maps. This is followed by two convolution operations and 15 residual blocks.
Each residual block consists of two convolutional operations with 64 kernels of size 3×3, each followed by a ReLU
layer. Following the definition of a residual block, the inputted feature maps are added to the output feature maps
to obtain the final output of the residual block. For scaling factors 2 and 3, before the 10th Residual block, we
up-scale the feature maps by a factor f using a sub-pixel shuffle layer [10]. In the case of factor 4, a sub-pixel
shuffle layer with upscale factor 2 is introduced before the 5th and 10th Residual Blocks and an additional one
is used before the last convolution for scale factor 8.

will allow the network parameters to be learned for all As and to adapt to any given A at

test time. More specifically, we encode A+
ω̂

y using a network eψ(·) (eψ in Fig. 4) and feed

this compressed representation of A+
ω̂

y to the CNN. This encoder network eψ(·) seeks to

extract the relevant and significant information from the degradation operator to guide the

SR process. Notice that other approaches, such as utilizing the Principal Components of k

(see [13]) may be considered. However, we argue that using an encoder network is more

appropriate as more useful information can be extracted than by using a PCA representation.

Our encoder eψ(A+
ω̂

y) consists of three convolutions of 3×3 and 32 filters with zero-padding,

followed by the ReLU activation. Our best results were obtained by incorporating eψ(A+
ω̂

y)

by concatenating the resulting feature maps before the first residual block of the VSRResNet

architecture, as shown in Fig. 4. To ensure that the spatial size matches that of y we use a

convolution stride equal to the scaling factor used for training. We jointly train the encoder

eψ(·) and the super-resolving fθ(·) network.

IV. EXPERIMENTAL RESULTS

In this section we detail the training process of the proposed model and show that our pro-

posed approach significantly outperforms current state-of-the-art models for bicubic degra-

dation in addition to being robust to variation on the Gaussian blur deviation.

A. Training hyper-parameters

We use two datasets to train our models: The training sequences from the Myammar

dataset and a second one extracted from a subset of the YouTube-8M dataset, which will be

used to refine our best performing model.

The Myammar training dataset is formed by 106 patches of size 48×48 pixels. Patches with

variance less than 0.0035 were determined to be uninformative and were hence removed

from the dataset. For each HR patch at time t , we obtain the corresponding LR sequence of
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patches at time t −2, t −1, t , t +1, and t +2. These LR patches are obtained following Eq.

1, i.e., by first blurring the HR frames with a Gaussian kernel and then downsampling the

images using bicubic downsampling.

We can distinguish two phases during training. During the first one, only the Myanmar

training sequences are used. This phase consists of training the Generator using only the MSE

loss (Ex,y[‖x−gθ(y)‖2]) for 100 epochs. We use the Adam optimizer [39] with the learning rate

set to 10−3 for the first 50 epochs and then divided by 10 at the 50th and 75th epochs. The

weight decay parameter was set to 10−5 for all our trained models.

Finally, the second phase uses the proposed GAN framework in Eq. 10. We fine-tuned

the model already trained with MSE during the first phase for 30 epochs. The learning rate

and weight decay for the discriminator are set to 10−4 and 10−3, respectively, while for the

generator they are both set to 10−4. The learning rate of both the generator and discriminator

are divided by 10 after 15 epochs. During this phase, the models are trained using 1,306,844

blocks of size 48×48 from 5 consecutive images extracted from a subset of YouTube-8M

dataset. This subset was constructed by randomly selecting a total of 4358 videos. We consider

all categories except those corresponding to video games and cartoons since these categories

do not provide an accurate representation of natural scenes we are interested in recovering.

The complete training process takes roughly three days using a Nvidia Titan X GPU with

12 GB of RAM.

B. Ablation study of the proposed modifications of the architecture

To determine the contribution of each proposed component of the new architecture,

we perform an ablation study by testing their effects adding one at a time. For ease of

comparison, in these experiments, we will use neither the GAN framework nor the perceptual

losses, i.e., we will focus on the first phase only (see Section IV-A). For training, we fix

the degradation operator to correspond to the bicubic downsampling (no Gaussian blur).

Because we only use one degradation for these experiments, we temporarily remove the use

of eψ(A+
ω̂

y)) from our architecture and instead use as input the LR y only.

We name the model that uses gθ(·), i.e., the model that utilizes an affine projection, Affine

VSR (AVSR) and the model that uses fθ(·) No Affine VSR (NoAVSR) (i.e., it minimizes Ex,y‖x−
fθ(y)‖2). Both models include the sub-pixel shuffle layer. To determine the contribution of

the sub-pixel shuffle layer in the affine network, we also train an architecture similar to AVSR

but using the bicubic up-scaled frames at the input instead of using the subpixel shuffle

layer to up-scale the frames. We name this model Bicubic-AVSR. Finally, to test the effects of

using the subpixel shuffle layer in a non-affine network, we compare NoAVSR to the a non-

affine architecture that uses the bicubic up-scaled frames at the input. We call this model

Bicubic-NoAVSR. Notice Bicubic-NoAVSR is equivalent to VSRResNet[17].

Table I contains a quantitative comparison of these models for multiple degradations and

up-scaling factors 2, 3 and 4 on the Myanmar video test sequences. We also include a study

of the time complexity of each method using the number of Multiplication and Additions

(MACs) as a metric. The smaller the number of MACs, the faster the algorithm is. From

this table, it is clear that the proposed affine networks (Bicubic-AVSR and AVSR) significantly
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outperform the other models with a slight increase in MACs. Moreover, AVSR outperforms

Bicubic-AVSR in all factors and degradations, showing that, in the case of affine networks,

the use of the subpixel shuffle layer is always better than using bicubic interpolation, not

only in terms of speed (as reflected by the significant reduction in MACs), but also in terms

of fidelity. This experiment shows that even the best performing model, AVSR, is not robust

to the use, during testing, of images which have been degraded with Gaussian blur when

trained only with bicubic downsampling.

Notice that we did not perform experiments analyzing key components of the underlying

residual architecture since it is based on VSRResNet and those elements were studied in [17].

TABLE I: Comparison of the proposed and state-of-the-art models on Myanmar video test sequences and factors
2, 3, and 4. The models were trained using only bicubic degradation. σ refers to the Gaussian blur deviation used
during testing. The time complexity of each method is indicated by the number of Multiplications and Additions
(MACs) performed for each frame (lower is better).

Factor
PSNR/SSIM

MACsBicubic σ= 1.3 σ= 2.6

Bicubic-NoAVSR
(VSRResNet[17])

×2 40.58/0.9807 31.97/0.9058 27.85/0.7930 6.73∗1011

×3 35.97/0.9481 31.77/0.8968 27.78/0.7918 6.73∗1011

×4 32.85/0.9075 30.73/0.8700 27.64/0.7868 6.73∗1011

NoAVSR
×2 40.52/0.9792 31.97/0.9051 27.85/0.7932 3.31∗1011

×3 35.92/0.9474 31.92/0.8965 27.79/0.7924 2.65∗1011

×4 33.31/0.9077 31.48/0.8720 27.69/0.7881 2.82∗1011

Bicubic-AVSR
×2 40.69/0.9811 32.59/0.9162 27.90/0.7935 6.73∗1011

×3 36.09/0.9487 32.35/0.9065 27.80/0.7925 6.73∗1011

×4 33.38/0.9077 31.95/0.8902 27.71/0.7883 6.73∗1011

AVSR
×2 41.23/0.9833 32.75/0.9261 28.34/0.8180 3.31∗1011

×3 36.38/0.9527 32.53/0.9070 27.93/0.8043 2.65∗1011

×4 33.89/0.9170 32.18/0.8927 27.77/0.7965 2.82∗1011

C. Experiments with Multiple Degradations

Let us now address the multiple degradations scenario. As mentioned in Section I, one of

the main factors that significantly lowers the robustness of CNN-based methods to different

degradation is the use of only bicubic downsampling during training. Therefore, we will now

train the following models with multiple degradations. The degradations considered here

are a combination of Gaussian blurs with different kernels k and bicubic downsampling.

We generated random Gaussian kernels with σ using a step of 0.1 in the range [0.2, 2.0]

for factor 2, [0.2, 3.0] for factor 3, and [0.2, 4.0] for factor 4. The HR video sequences are

blurred with these kernels and bicubic downsampling is applied to them to generate the

LR samples. We retrain AVSR using these degradations and call this model Blind-MD-AVSR.

As stated in Section III-C, we expect it to have a significant loss in performance compared

to the one degradation case, since the parameters of the network θ depend on not only y

but also A+y and this information is not provided to the network. This issue is resolved

with the introduction in the architecture of our encoding network eψ(A+
ω̂

y)), as explained in

Section III-C. We call this affine network (gθ(·)) that incorporates the encoded information

eψ(A+
ω̂

y)), MD-AVSR.
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We compare our model with current state-of-the-art (SOTA) methods for SR with multiple

degradations: IRCNN[32] and SRMDNF[13]. The authors of IRCNN[32] propose the use of

ADMM to split the SR problem into two subproblems: a regularized recovery one(subproblem

A) and a denoising one (subproblem B). To combine learning and analytical approaches they

propose the use of a CNN for the denoising subproblem. SRMDNF[13] consists of a CNN for

SR which takes as input the LR image and PCA(k) to provide the network information about

the degradation, making it robust to multiple degradations. Notice that all previous SOTA

methods are designed for Single Image Super-Resolution (SISR). As mentioned in Section I,

this work is the first one to propose a VSR CNN-based method for multiple degradations.

Therefore, to provide a fair comparison, we adapt SRMDNF[13] to VSR using our non-affine

network (fθ(·)). We have experimentally determined that the optimal place to add PCA(k) is

before the first residual block. We trained this network as we did with MD-AVSR. We call this

model VSRMDNF.

HR VSRResNet[17] SRMDNF[13] VSRMDNF MD-AVSR

Fig. 5: Qualitative results of our MD-AVSR model compared to current state-of-the-art methods for factor 3 using
bicubic downsampling (first row) and Gaussian blur with σ= 2.0 and bicubic downsampling (second row). Notice
how MD-AVSR recovers more details compared to the rest.

Table II shows an experimental comparison with current SOTA models for multiple degra-

dations and factors 2, 3, and 4 on the Myanmar video test sequences. Blind-MD-AVSR has

a similar performance across the different degradations, showing that training with multiple

degradations significantly increases robustness. However, we observe a sharp decrease in

performance for bicubic degradation compared to AVSR (see Table I). This is not the case for

the proposed MD-AVSR, which is able to outperform all the other models for all values of σ

considered, see also Table I. This indicates the need to incorporate the knowledge about the

degradation information if we intend to utilize the same network with multiple degradations

(adding them to the training phase is not enough). See also the good performance of the

other model which uses information of the degradation process (VSRMDNF). Notice also that

MD-AVSR outperforms VSRMDNF in a similar manner as AVSR outperforms NoAVSR and

VSRResNet. This indicates that the benefits of using the image formation model are carried

over to the multiple degradation setting. It is important to observe in Tables I and II that AVSR

and MD-AVSR are the best performing methods when compared to similar approaches. Fur-

thermore, for bicubic downsampling MD-AVSR slightly outperforms AVSR which is expected
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HR VSRResNet[17] SRMDNF[13] VSRMDNF MD-AVSR

Fig. 6: Qualitative results of our MD-AVSR model compared to current state-of-the-art methods for factor 3 using
bicubic downsampling (first row) and Gaussian blur with σ= 3.0 and bicubic downsampling (second row). The
pattern highlighted in the HR image is difficult to recover when only bicubic downsampling is used because the
lines either disappear or do not look straight (see Fig. 1). In this case, our MD-AVSR is able to almost fully recover
the correct structure while the rest struggle. Furthermore, it is able to fully recover the correct pattern when a
strong Gaussian blur of σ= 3.0 is used during acquisition, while the other methods fail to do so.

TABLE II: Comparison of the proposed and state-of-the-art models on Myanmar video test sequences and factors
2, 3, and 4. Models were trained using multiple degradations. σ refers to the Gaussian blur deviation used. The
time complexity of each method is indicated by the number of Multiplications and Additions (MACs) performed
for each frame (the lower the better).

Factor
PSNR/SSIM

MACsBicubic σ= 1.3 σ= 2.6

IRCNN[32]
×2 37.35/0.9589 35.98/0.9304 26.00/0.4927 2.94∗1012

×3 34.41/0.9240 34.38/0.9222 31.58/0.8304 2.94∗1012

×4 31.56/0.8820 31.57/0.8814 31.06/0.8639 2.94∗1012

SRMDNF[13]
×2 39.01/0.9697 38.63/0.9656 35.17/0.9268 1.96∗1011

×3 35.08/0.9299 35.12/0.9289 34.03/0.9082 8.81∗1010

×4 32.98/0.8952 33.01/0.8949 32.80/0.8889 5.03∗1010

Blind-MD-AVSR
×2 37.65/0.9523 37.31/0.9503 37.10/0.9458 3.31∗1011

×3 34.97/0.9330 34.59/0.9275 34.27/0.9200 2.65∗1011

×4 33.08/0.9002 32.96/0.8992 32.81/0.8972 2.82∗1011

VSRMDNF
×2 40.60/0.9809 39.78/0.9741 37.51/0.9596 3.33∗1011

×3 35.95/0.9471 35.67/0.9415 34.99/0.9318 2.65∗1011

×4 33.37/0.9077 33.05/0.9043 32.86/0.8992 2.82∗1011

MD-AVSR
×2 41.25/0.9834 40.11/0.9778 37.79/0.9626 3.44∗1011

×3 36.52/0.9525 36.17/0.9480 35.25/0.9355 2.76∗1011

×4 34.01/0.9185 33.86/0.9153 33.30/0.9025 2.93∗1011

to deal with this degradation only. Notice also that although the performance of MD-AVSR

slightly deteriorates when blur is introduced, it is more robust than its AVSR counterpart,

in other words, MD-AVSR can be safely implemented in systems that are expected to deal

with video sequences degraded by different acquisition models. However, this comes with an

increase in the number of MACs due to the inclusion of eψ(A+
ω̂

y)).

A qualitative comparison of VSRResNet, SRMDNF[13], VSRMDNF and MD-AVSR can be

seen in figures 5 and 6. This comparison reveals how our methods are more robust to the

multiple degradations and produce HR images of higher quality.
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D. Experiments using Perceptual losses

TABLE III: Comparison with state-of-the-art methods on the VideoSet4 [38] dataset on scale factors 2, 3, 4 and
8. The comparison is done in terms of PSNR, SSIM, Perceptual Distance as defined in [40] and the number
of Multiplications and Additions (MACs) required for each frame. A smaller Perceptual Distance implies better
perceptual quality. MACs indicates the time complexity of the method (lower is better).

Factor PSNR SSIM PercepDist MACs

VDSR[35]
×2 31.61 0.9335 0.0541 2.52∗1011

×3 26.65 0.8091 0.1355 2.52∗1011

×4 25.05 0.7292 0.1860 2.52∗1011

RCAN[41]

×2 32.58 0.9414 0.0519 1.45∗1012

×3 27.71 0.8404 0.1180 6.52∗1011

×4 25.44 0.7405 0.1695 3.77∗1011

×8 22.33 0.5053 0.3277 1.07∗1011

VESPCN[27]
×3 27.25 0.8253 0.1533 5.74∗109

×4 25.35 0.7309 0.2022 3.27∗109

SPMC-SR[29]
×2 30.92 0.9235 0.0899 4.97∗1010

×3 27.49 0.84 - 4.88∗1010

×4 25.63 0.7709 0.1908 4.85∗1010

TAN[34] ×4 25.53 0.7475 0.1798 -

VSRResNet[17]

×2 31.87 0.9426 0.0407 4.91∗1011

×3 27.80 0.8571 0.1209 4.91∗1011

×4 25.51 0.7530 0.1766 4.91∗1011

×8 22.35 0.5072 0.3286 4.91∗1011

VSRResFeatGAN[17]

×2 30.90 0.9241 0.0283 4.91∗1011

×3 26.53 0.8148 0.0668 4.91∗1011

×4 24.50 0.7023 0.1043 4.91∗1011

×8 22.12 0.5025 0.2773 4.91∗1011

ERSGAN[16] ×4 22.98 0.6336 0.0993 4.24∗1011

MD-AVSR

×2 33.00 0.9496 0.0292 2.51∗1011

×3 28.31 0.8751 0.1081 2.01∗1011

×4 26.17 0.7895 0.1655 2.13∗1011

×8 22.74 0.5126 0.3243 7.16∗1010

MD-AVSR-FG

×2 31.54 0.9309 0.0229 2.51∗1011

×3 26.73 0.8237 0.0588 2.01∗1011

×4 25.10 0.7414 0.0939 2.13∗1011

×8 22.28 0.5047 0.2715 7.16∗1010

MD-AVSR-P

×2 31.82 0.9345 0.0216 2.51∗1011

×3 27.20 0.8383 0.0586 2.01∗1011

×4 25.26 0.7501 0.0927 2.13∗1011

×8 22.36 0.5056 0.2708 7.16∗1010

MD-AVSR-PY8

×2 31.81 0.9391 0.0210 2.51∗1011

×3 27.09 0.8412 0.0571 2.01∗1011

×4 25.18 0.7555 0.0916 2.13∗1011

×8 22.31 0.5064 0.2699 7.16∗1010

Let us now test the GAN framework (see Eq. 10) and analyze the performance of the new

loss in comparison to the one proposed in [17] (see Eq. 9). This corresponds to the 2nd

phase of the training described in Section IV-A. We first use during this 2nd phase the loss

proposed in [17], to fine-tune the MD-AVSR model with α = 0.998 and β = 0.001 for the

hyper-parameters of the loss function. We call this model, which incorporates features loss

(F) and a GAN (G), MD-AVSR-FG. Then, we fine-tuned in the same fashion the MD-AVSR

model with the new proposed perceptual (P) loss (see Eq. 10) and call it MD-AVSR-P. The
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MD-AVSR MD-AVSR-FG MD-AVSR-P

Fig. 7: Qualitative comparison between MD-AVSR, MD-AVSR-FG and MD-AVSR-P for factor 4 with bicubic
downsampling. We can see that MD-AVSR-P does not produce artifacts like MD-AVSR-FG does and produces
frames that look much sharper than MD-AVSR.

VSRResFeatGAN[17] ERSGAN[16] MD-AVSR-P HR

Fig. 8: Comparison between VSRResFeatGAN[17], ERSGAN[16] and MD-AVSR-P for factor 4 with bicubic down-
sampling.

values of the loss hyper-parameters are: α = 0.049 and β = 0.001. Both models are trained

using the Myammar dataset, instead of the YouTube-8M dataset. Finally, to demonstrate the

influence of the diversity of the training dataset for GAN-based VSR models, we use the

YouTube-8M dataset and our new loss in Eq. 10 to fine-tune MD-AVSR and obtain our final

model MD-AVSR-PY8.
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MD-AVSR-P MD-AVSR-PY8

Fig. 9: Comparison between MD-AVSR-P and MD-AVSR-PY8 for factor 4 with bicubic downsampling.

Table III contains a comparison of these models with multiple state-of-the-art methods

in terms of PSNR, SSIM, Perceptual Distance [40] and the number MACs per frame for

the VideoSet4 video sequences [38] and factors 2, 3, 4 and 8. These include SISR methods

with Deep CNN like VDSR[35], RCAN[41] and ERSGAN[16]. VDSR[35] uses a very deep

convolutional neural network that predicts residuals between the upscaled low-resolution

image and the high-resolution image. RCAN[41] consists of a very deep residual CNN that

uses a new type of block that exploits channel attention to further increase the performance.

ERSGAN[16] proposes the use of new residual-in-residual block to construct a very deep

residual CNN and train it within a GAN framework to obtain photo-realistic SR images.

Both methods use an architecture several times deeper than the one proposed here. We

also include the following VSR methods: VESPCN[27], SPMC-SR[29], TAN[34] and VSRResNet

and VSRResFeatGAN from [17]. VESPCN[27] incorporates time information in the network by

using the motion compensated future and past frames in a time window and uses a sub-

pixel convolution to upscale the output. SPMC-SR[29] proposes a convolution-LSTM neural

network with efficient motion compensation learned jointly with the network. Lastly, TAN[34]

uses a Temporal Adaptive Network that consists of a network with multiple SR branches,

each responsible for super-resolving frames at a temporal scale. Then, a temporal modulation

branch fuses the multiple VSR solutions into a single one. Notice that all these methods work

only with bicubic downsampling, in contrast with SOTA methods in the previous section.

In Table III we observe how the proposed MD-AVSR-P outperforms all models trained

with perceptual losses (VSRResFeatGAN[17], ERSGAN[16] and MD-AVSR-FG) for all figures of

merits when trained on Myanmar training sequences. Furthermore, a close examination of

the generated frames and a comparison to the MD-AVSR-FG ones (see Fig. 7) shows that they

are almost artifact-free. The model also shows a noticeable increase in sharpness compared to

MD-AVSR. However, this increase in sharpness (reflected on the improvement on Perceptual

Distance) comes with a decrease in PSNR and SSIM. This decrease aligns with the one shown

in other models that use perceptual losses, like VSRResFeatGAN[17] or ERSGAN[16]. Figure 8

shows a qualitative comparison of VSRResFeatGAN[17] and ERSGAN[16] with MD-AVSR-P. We

can see that the proposed model MD-AVSR-P outperforms current state-of-the-art methods.

Notice that values for factors 2 and 3 for ERSGAN[16] could not be calculated since the

authors did provide weights for those. Notice also how the proposed model outperforms,
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in terms of picture quality, models much more complex (with two times more MACs) like

ERSGAN[16].

Table III also shows that MD-AVSR-PY8 outperforms MD-AVSR-P in terms of SSIM and

Perceptual Distance significantly, although it suffers from a minor decrease in PSNR. This

increase shows the importance of using a very diverse dataset during training for GAN models

in contrast to experiments carried out with the non GAN model MD-AVSR, where the training

with this new dataset did not produce results different enough to be significant for any factor.

These results show that GAN-based VSR models require more data that other CNN. Figure 9

shows a qualitative comparison between MD-AVSR-P and MD-AVSR-PY8. It can be seen that

MD-AVSR-PY8 is able to produce more detailed and realistic looking images.

V. CONCLUSIONS

In this work we have first introduced a multiple degradation Video Super-Resolution ap-

proach that explicitly utilizes the LR image formation model as an input to the network.

The model, named MD-AVSR, has been trained with MSE only. The experiments show that

MD-AVSR outperforms current state-of-the-art methods in terms of PSNR and SSIM for

both multiple degradation and bicubic degradation only settings. We have then proposed

a GAN-based approach that uses a new perceptual loss combining an adversarial loss, a

feature loss, and a spatial smoothness constraint (MD-AVSR-P). This method improves the

quality of the super resolved frames without the introduction of noticeable high frequency

artifacts. The results show that it outperforms current state-of-the-art methods in terms

of perceptual quality and in all metrics used by GAN methods trained without using the

proposed perceptual loss. Finally, we use a much more diverse dataset created from a subset

of the YouTube-8M dataset to train MD-AVSR-P and show that the new MD-AVSR-PY8 obtains

significantly better results in terms of perceptual quality.
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2.2 Gated Recurrent Networks for Video Super Resolution
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2.2.2 Main Contributions

• Inspired by the deformable convolutions introduced in [128], we develop a new

attention mechanism that we name deformable attention.

• We propose a new recurrent CNN for VSR. This model adapts the minimal Gated

Recurrent Unit [129] to VSR: current time step state is calculated by combining

features extracted using a deep residual CNN and last time step state. Deformable

attention is used to align the features and the previous state so that they can be

combined with a gated sum. By using this system, our model can more effectively

reuse information extracted from previous frames in the sequence.

• We perform experiments using standard VSR datasets and compare to the current

state-of-art in terms of PSNR, SSIM and temporal consistency (T-RRED[130]).
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Abstract

Despite the success of Recurrent Neural Networks in tasks involving temporal video

processing, few works in Video Super-Resolution (VSR) have employed them. In this work

we propose a new Gated Recurrent Convolutional Neural Network for VSR adapting some of

the key components of a Gated Recurrent Unit. Our model employs a deformable attention

module to align the features calculated at the previous time step with the ones in the

current step and then uses a gated operation to combine them. This allows our model

to effectively reuse previously calculated features and exploit longer temporal relationships

between frames without the need of explicit motion compensation. The experimental vali-

dation shows that our approach outperforms current VSR learning based models in terms

of perceptual quality and temporal consistency.

Index Terms

Video, Super-resolution, Convolutional Neuronal Networks, Recurrent Neural Networks

I. INTRODUCTION

z ∼N (0, 1)

Image Super-Resolution (SR) is one of the fundamental low-level vision problems. It consists

of recovering a High-Resolution (HR) image from a given set of Low-Resolution (LR) images.

In recent years, the introduction of high and ultra high definition displays has increased the

demand for methods to convert already existing LR videos into HR ones. This is known

as Video Super-Resolution (VSR), a special case of SR where the input and output are

This work was supported in part by the Sony 2016 Research Award Program Research Project. The work of SLT
and RM was supported by the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869-
C2-2-R and the Visiting Scholar program at the University of Granada. SLT received financial support through the
Spanish FPU program.
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sequences of LR and HR video frames, respectively. The formation of each LR image from

its corresponding HR image can be written as:

y =↓ (x ⊗k)+ε, (1)

where x is the HR image, y is the LR one, x⊗k represents the convolution of x with the blur

kernel k, ↓ is a downsampling operator (typically bicubic downsampling) and ε is the noise,

usually Additive White Gaussian Noise (AWGN).

We can divide current (V)SR methods into two categories: model-based and learning-

based. Model-based approaches explicitly define the LR image formation model (see Eq. 1)

and typically recover the HR image by optimizing an energy function built from the LR image

formation model [1], [2], [3]. In the case of learning-based algorithms, most of them do not

explicitly define or use the image formation model, instead they use a large training databases

of HR and LR image/sequence pairs to learn a mapping from the LR observations to the HR.

When learning from data, Convolutional Neural Networks (CNN) have become a popular

tool due to their high performance in other vision based tasks. In recent years, several VSR

CNN-based models have been proposed: Caballero et al. [4] jointly train a spatial transformer

network and an SR network to warp the video frames, the approach benefits from sub-pixel

information. Tao et al. [5] propose to increase the performance of [4] by jointly upsampling

and motion compensation (MC). Liu et al. [6] propose to train a neural network to learn

the temporal dependency between input frames increasing the quality of the HR prediction.

Kappeler et al. [7] propose to train a CNN which takes bicubically interpolated LR frames

as input and learn the direct mapping that reconstructs the central HR frame. Following [7],

Lucas et al. introduce in [8] a deep residual network trained using feature and adversarial

losses that increased the perceptual quality of the output. Finally, in [9] we introduce a

CNN GAN model that use the LR image formation model and a spatial-constraint to further

increase the perceptual quality without the introduction of visual artifacts.

Despite all the work carried out in VSR in recent years using CNN-based models, few

of them have used recurrent architectures. Recurrent Neural Networks (RNN) have been

applied with great success to speech recognition and other tasks which require processing

a time sequence, see [10], [11] for video related problems. One of the most frequently use

recurrent units is the Gated Recurrent Unit (GRU) [12], which efficiently exploits the existing

correlation within long sequences. However, in the case of VSR, these types of architectures

have been hardly used and all the proposed methods employ simpler recurrent units (the

result of processing the previous frame is used as input to the current one in contrast to

general GRUs which use gated operations to update an internal state). In [13], the authors

propose to use Recurrent Convolutional Layers to exploit the relations between frames more

effectively. The network is very shallow since it does not use residual blocks. More recently, a

very deep residual was proposed in [14]. The models use a Convolutional Recurrent Neural

Network (RCNN) that uses the super-resolved frame in the previous time step.

In this work, we propose a new RCNN that employs more effectively the previous time step

information. Our model, inspired by the deformable convolutions introduced in [15], defines

and utilizes fast deformable attention modules. These modules are used to align previously
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calculated features to the current time step ones. Then, our model combines them using a

gated sum. Experiments show that this new architecture outperforms current VSR state-of-art

methods in terms of PSNR and time consistency.

The rest of the paper is organized as follows: Section II-A presents our new recurrent model

for VSR. In section III, we describe and discuss our experiments with the proposed model and

comparison with state-of-art VSR algorithms. Finally, conclusions are presented in section IV.

II. MODEL DESCRIPTION

In this work we use yt to denote the LR frame at time t in a video sequence and xt its

corresponding HR. We model the process of obtaining a LR observation from a HR using

Eq. 1. Following the literature [4], [5], [6], [7], [8], we assume that the noise is negligible (ε= 0)

and that the downsampling process (↓ (x⊗k)) can be modeled using bicubic downsampling.

A. Architecture

Fig. 1: The proposed GR-VSR architecture. Each convolution operation uses 64 kernels of size
3×3, with the exception of the offset calculation, that uses 6×3×3×3 filters. Each residual
block consists of two convolutional operations with 64 kernels of size 3×3, each followed by
a ReLU layer. See text for details.

The architecture of our proposed model, Gated Recurrent Video Super Resolution (GR-

VSR), can be seen in Fig. 1. Our network is a recurrent network that uses the features ht−1

obtained at the previous time step from the convolution operation located right before the

last upsampling module (they constitute the hidden state of our network) together with the

features rt−2:t+2 calculated using yt−2:t+2. Using both, ht−1 and rt−2:t+2, and a deformable

attention module (see Section II-B) we calculate and align with yt the features ĥ2
t−1 and

r̂t−2:t+2. These features are then concatenated and transformed using 8 residual blocks to

produce ĥt . The hidden state ht is finally calculated as:

ht = zt ¯ ĥt + (1− zt )¯ ĥt−1, (2)
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where ¯ indicates element-wise multiplication and zt is a weight matrix with the same size

as ĥt−1 and ĥt which is calculated using a gate network. By using this update rule, our model

is able to decide how much information from the current state will be added to the hidden

state and how much of such information will be forgotten. Notice that this can be seen

as a long skip connection. It is used in conjunction with residual blocks to construct deep

CNNs[16]. It is important to mention that this connection is not used to increase the depth

of the model (see [16]) but to allow the feedback provided by future frames to reach previous

time steps during training. Furthermore, notice also that the use of this residual connection

is not effective without alignment. Without alignment, the movement of the objects in the

scene will cause the model to combine information from different locations in the scene,

this will damage the HR prediction on those locations.

As it can be seen, the proposed architecture propagates the features contained in ht instead

of the predicted pixel values of x̂t as done in [14]. Our approximation allows to propagate

more information through time, potentially encoding information from multiple time steps.

For each spatial location our model encodes and transmits to the next step a vector of

information, instead of just a value. This combined with the previous update rule (see Eq. 2)

allows our model to propagate thought time much more information and during more time

steps.

The use of a hidden state poses the problem that it has to be initialized. Though it can

be initialized by a 0 vector, like in RNN used for text processing, we have detected in our

experiments that this not only damages the prediction of the first couple of frames, but also,

and more importantly, it makes the training very unstable. Thus, for the first frame prediction

we propose the use of an auxiliary network gφ identical to the proposed one but without

the recurrent connection and related modules (deformable attention and gate network). Note

that, although the use of this method increases the processing time, this is negligible for long

video sequences since it is only needed for the first frame.

It is interesting to note that we can establish a parallelism between our proposed architec-

ture and one of the GRU modifications: minimal GRU (see [17]). This minimal GRU performs

the following operations:

ĥt =φ(Wh st +Uhht−1 +bh) (3)

zt =σ(Wz st +Uz ht−1 +bz )

ht = zt ¯ ĥt + (1− zt )¯ht−1,

where st is an input vector, W∗ and U∗ are learnable weight matrices, b∗ biases, σ is the

sigmoid activation and φ the tanH activation. As it can be seen, the first calculation depends

on the input and the previous state. This operation corresponds in our model to the 8 residual

blocks. Finally, the second and third calculation corresponds to our gated residual connection.

Notice that the GRU it is not appropriated for image processing due to the lack of depth (no

residual connections) and, in contrast to our model, it does not have a mechanism to align

features.
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B. Deformable attention

As we have already indicated in section II-A our model makes use of the deformable

attention to align the features. Our deformable attention module is a modification of the

deformable convolutions. Deformable convolutions were first proposed in [18] and enhanced

in [15] to handle with more deformations. They correspond to the use of the following

convolution operation

f l (m) =
N∑

n=1
wn am,n f l−1(m +n +∆mm,n), (4)

where f l (m) denotes the feature vector in layer l at location m, n is a position of the convo-

lutional kernel and ∆mm,n and am,n are learnable offsets and modulation scalar, respectively.

These offsets and modulation parameters are calculated using another convolution layer for

each m location in the image.

In our deformable attention module we impose to the model in Eq. 4 the following

constraints:
∑N

n am,n = 1 and weights wn = 1. By doing so we have an attention mechanism

similar to the one proposed in [19] but with the advantage of being able to use locations

outside the window around location m:

f l (m) =
N∑

n=1
am,n f l−1(m +n +∆mm,n). (5)

This attention mechanism, unlike other attention methods, can handle fast motion without

increasing the size of the window N and the computation time. Since no convolution trans-

formation is applied, we can use it to align ht−1 and r̂t−2:t+2 to yt much faster than other

techniques. Our approximation only adds two extra convolution layers, while optical-flow

calculation [14] requires an entire sub-network with several convolutions.

III. EXPERIMENTAL RESULTS

The training dataset was constructed by extracting 106 sequences of 6 patches of size

128×128 pixels from the Myanmar training sequences. For each HR patch sequence we obtain

its corresponding 10 LR patch sequence, so each HR patch at time t has the corresponding

LR sequence of patches at time t−2, t−1, t , t+1, and t+2. To remove uninformative patches

from our training dataset, patches with variance less than 0.0035 were not considered.

We train the network for 60 epochs using a batch size of 64 and sampling 10000 batches

per epoch. For our recurrent networks, we first pre-train the auxiliary network gφ for 10

epochs. The loss we use to train our network is, instead of the Mean Squared Error (MSE),

the Charbonnier loss:

γ(x̂, x) =
∑
k

∑
i

∑
j

√
(x̂k,i , j −xk,i , j )2 +ε2 , (6)

where x̂ and x are the estimated and the real high-res frames respectively and ε an hyper-

parameter, which in our experiments is set to 10−3. This loss is more robust to outliers and

more stable than MSE [21]. We use Adam optimizer [22] with the learning rate set to 10−3

for the first 20 epochs and then divided by 10 at the 20th and 40th epoch. The weight decay
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Fig. 2: Qualitative results of our GR-VSR model compared to current state-of-the-art methods
for factor 4. In this case, GR-VSR is able to recover more details of the original high-res
frame than the other non-recurrent methods. However, the results obtained by GR-VSR are
less noisy and closer to the original HR image.

parameter was set to 10−4. We focus on upscaling factor 4 for all the experiments shown in

this section.

To determine the contribution of each of the components of our proposed architecture

GR-VSR, we perform an ablation study. First, we train a non-recurrent model without de-

formable attention but with the same depth as our model. We call this model No-R-VSR.

This model is similar to VSRResNet but with half the number of residual blocks and two-step

upsampling using a subpixel shuffle layer [23]. To check the contribution of the recursion,

we add recursion to No-R-VSR creating a new model R-VSR. Notice that R-VSR uses neither

deformable attention nor a gate. The model R-VSR-Att incorporates deformable attention to

R-VSR. Finally, the model GR-VSR-No-Att calculates the ht using the gate network without

deformable attention.

The first part of Table I shows the results of this study. All models are compared in terms of

PSNR, SSIM and T-RRED[24]. The T-RRED metric is used to quantitatively measure temporal

consistency (the lower the better). The most significant increase in the spatial quality metrics
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comes from the inclusion of the recursion, since R-VSR outperforms No-R-VSR by 0.8 dB

with almost the same computational cost. As expected, the inclusion of deformable attention

in R-VSR-Att further boosts the performance of the network. However, this is not the case

when using only the gate network: we expected GR-VSR-No-Att to perform worse than R-

VSR, since without aligning moving objects in ht−1 and ĥt have different space locations.

Despite this, both GR-VSR-No-Att and R-VSR-Att have a similar performance. This indicates

that the gate network in GR-VSR-No-Att has learned to only use ht−1 information for objects

that did not change location in the next time step. Finally, the gate network when used

together with deformable attention can significantly increase both the quality of the frames

and the temporal consistency, as shown by the difference between our full model GR-VSR

and R-VSR-Att.

We now compare our GR-VSR model with the state-of-art. The second part of Table I

shows this comparison. Notice that, in the case of FRVSR[14], the results are not directly

comparable since the authors use a degradation different from bicubic downsampling. It

can be seen that our GR-VSR significantly outperforms for all figures of merit all the other

state-of-art methods for bicubic downsampling degradation, even AVSR[9] that uses a much

deeper network. This difference can be observed in the predicted frames, as shown in Fig. 2.

In the case of FRVSR[14], even though our proposed network performs far less operations

per time step (8 residual blocks with 64 filters each vs 10 residual blocks with 128 filters

each), we obtain comparable results. It is worth noticing that the degradation used in [14] is

less aggressive than bicubic downsampling, so we can expect that our model will still sightly

outperform FRVSR[14] when applied to the same degradation.

TABLE I: Results on the VidSet4 video sequences [25] for a scale factor of four in terms
of PSNR, SSIM and T-RRED[24]. The first part of the table shows the ablation study for the
proposed GR-VSR and the second part a comparison with current state-of-art methods. Notice
that RCAN[20] is a SR method. VESPCN[4], TAN[6] and FRVSR[14] results are the ones reported
in the original paper. FRVSR[14] uses a different degradation (not bicubic downsampling).

↑ PSNR ↑ SSIM ↓ T-RRED[24]
No-R-VSR 25.77 0.7679 1.42

R-VSR 26.61 0.8115 1.37
R-VSR-Att 26.68 0.8145 1.34

GR-VSR-No-Att 26.61 0.8123 1.36
GR-VSR 26.76 0.8158 1.27

RCAN[20] 25.44 0.7405 1.71
VESPCN[4]* 25.35 0.7309 -
SPMC-SR[5] 25.63 0.7709 1.74

TAN[6]* 25.53 0.7475 -
VSRResNet[8] 25.51 0.7530 1.47

FRVSR[14]* 26.69 0.822 -
AVSR[9] 26.17 0.7895 1.30
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IV. CONCLUSIONS

We have introduced a new RCNN VSR model that adapts the recurrent unit GRU. Our

model uses deformable attention to align the previous hidden state with the current one

and a gated operation to combine them. This allows our model to better reuse features

and exploit longer time relationships between the frames. The experimecnts show that our

model, GR-VSR, outperforms current state of the art methods in terms of PSNR, SSIM

and temporal consistency. Temporal consistency is naturally achieved, without the use of

losses that explicitly impose temporal consistency. In the future, perceptual losses will be

incorporated into the training of this model to further increase the perceptual quality of the

predicted frames.
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2.3 Collaborations

In this section, we present some works in which the Ph.D. candidate has had a rele-

vant role in their elaboration but is not the main author. Since they are not part of this

dissertation, they will only be mentioned with their relevant contributions.

2.3.1 Generative Adversarial Networks and Perceptual Losses for VSR

Publication: Alice Lucas, Santiago López-Tapia, Rafael Molina, and Aggelos K. Kat-

saggelos. Generative Adversarial Networks and Perceptual Losses for Video Super-

Resolution. IEEE Transactions on Image Processing 28 (7): 3312-3327, 2019 (Impact

Factor (JCR 2019): 9.340, Rank: 11/266 (Q1 and D1) in Engineering, Electrical and

Electronic). Preliminary results were presented in [131] (GGS Rating: A-, GGS Class:

2, CORE: B).

Contributions:

• A new CNN-based architecture is proposed for VSR. Compared to other CNN

models for VSR, this is the first one to incorporate the use of residual blocks [24]

to obtain a very deep architecture.

• To increase the perceptual quality of the produced frames, we introduce feature-

based losses and GANs to the VSR problem.

• We perform several experiments on standard VSR dataset Myanmar [126] with

different architecture configurations (number of layers, input frames, ...), hyper-

parameters and raw or motion-compensated frames. The results show that the use

of feature-based losses in a GAN framework greatly increases the perceptual quality

of the SR frames. However, the produced frames present some high-frequency noise

and artifacts that can be easy to spot in low activity places.

2.3.2 Self-supervised Fine-tuning for Correcting Super-Resolution Con-
volutional Neural Networks

Publication: Alice Lucas, Santiago López-Tapia, Rafael Molina, and Aggelos K. Kat-

saggelos. Self-supervised Fine-tuning for Correcting Super-Resolution Convolutional

Neural Networks. IEEE Transactions on Image Processing, 2020 (Submitted) (Impact

Factor (JCR 2019): 9.340, Rank: 11/266 (Q1 and D1) in Engineering, Electrical and

Electronic). Preliminary results were presented in [132] (GGS Rating: A-, GGS Class:

2, CORE: B).

Contributions:

• We introduce a new method that allows us to fine-tune a trained SR/VSR CNN

using a single LR image by optimizing a loss function based on the image formation
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model.

• This technique can be used to remove artifacts introduced by a GAN model and

to perform SR/VSR on samples degraded with a different degradation than the

one used to train the model.

• We perform an extensive experimental study on different scenarios using standard

SR and VSR test sets. These experiments show that our proposal is competitive

with current state-of-art methods.
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Image Restoration and
Super-Resolution

3.1 Combining Analytical and Deep Learning Methods in
Blind Image Deconvolution

3.1.1 Publication details

Authors: Santiago López-Tapia, Javier Mateos, Rafael Molina, and Aggelos K. Kat-

saggelos.

Title: Combining Analytical and Deep Learning Methods in Blind Image Deconvolu-

tion.

Publication: IEEE Transactions on Image Processing, 2020.

Status: Under review.

Quality indices:

• Impact Factor (JCR 2019): 9.340

• Rank: 11/266 (Q1 and D1) in Engineering, Electrical and Electronic

3.1.2 Main Contributions

• In this work, we propose a fast, accurate and robust blind image deconvolution

model that combines analytical and deep learning approaches. It uses a sequential

scheme; it first estimates the blur kernel using an analytical model and then it uses

a CNN to restore the image.

• We show that a Wiener filter reconstruction can approximate the Moore-Penrose

pseudo-inverse reconstruction of the original image. This image, together with the

observed image, constitutes the input to our CNN.

• Our model obtains the estimated image as a linear combination of the Wiener filter

reconstruction and a residual image, which is obtained as a linear transformation

49
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of the network output. Using this approximation, we translate the CNN task

from a deconvolution one into a denoising one where a CNN removes ringing and

other artifacts in the Wiener filtered image. This allows us to better separate the

image formation model from the network parameters’ learning, overcoming the

poor performance of deconvolution CNNs with blurs not seen during training.

• Finally, we remove artifacts in the restored image caused by inaccuracies in esti-

mating the blur and other image formation model discrepancies using the kernels

predicted by a Dynamic Filtering Network [133].

• We perform experiments on standard blind image deconvolution datasets and com-

pare them with current state-of-art in terms of PSNR, SSIM and computation time.
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Abstract

In this paper we propose a fast, accurate, and robust blind image deconvolution model.
The model is based on the combination of analytical and deep learning recovering approaches.
It employs a sequential scheme, first estimates the blur kernel using an analytical model and
then obtains the restored image using a robust deep learning one. The input to the network
is, together with the observed image, an approximation to the Moore-Penrose pseudo-inverse
reconstruction of the original image. This approximation is shown to correspond to a Wiener filter
reconstruction. The estimated image is a linear combination of the Wiener filter reconstruction
and a residual image which is obtained as a linear transformation of a network output. This allows
us to better separate the image formation model from the learning of the network parameters and
thus to allow the network to generalize to blurs not present in the training process. By using this
representation of the estimated image, we cast our problem into a denoising one where ringing
and other artifacts in the Wiener filtered image are removed by a Convolutional Neural Network.
To remove additional artifacts caused by inaccuracies in the blur estimation and other image
formation model discrepancies like saturated and underexposed areas, a further improvement of
the reconstructed image is obtained with the use of the kernels predicted by a Dynamic Filter
Network. The extensive experiments, carried out on several synthetic and real image datasets,
assert the performance and robustness of the proposed method and demonstrate the advantage
of the proposed method over existing ones.

Index Terms

Blind image deconvolution, deep learning, convolutional neural network, affine projection.

I. INTRODUCTION

Mathematically, Blind Image Deconvolution (BID) is the problem of restoring an image x

from its blurred and noisy version y when the blur H is unknown [1]. Generally, the image y is

This work was supported in part by the Spanish Ministerio de Economı́a y Competitividad under contract DPI2016-
77869-C2-2-R and the Visiting Scholar Program at the University of Granada. Santiago López-Tapia received financial
support through the Spanish FPU program.
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modeled as

y = Hx+ n , (1)

where n is the noise. Both y and x, as well as n, are N×1 vectors representing lexicographically
ordered corresponding images, and H represents an N ×N matrix. In this paper we assume that
H is a spatially invariant two-dimensional convolution operator of unknown point spread function
(PSF), h, of size M × 1.

Analytical techniques for solving BID problems have been studied for a long time. When
using an analytical approach, the forward model is explicitly described, the criteria for obtaining
a solution are decided, and an optimization procedure is chosen. At the high level, one can group
analytical techniques into deterministic and stochastic ones. Within the first class, an optimization
criterion is typically chosen, such as the minimization of the l2 error norm ‖ y −Hx ‖2. Then,
prior (or domain) knowledge is incorporated into the solution process through regularization. That
is, additional terms are included in the optimization functional imposing, for example, smoothness
or sparsity on the restored image as well as the blur estimate. With stochastic approaches, the
unknowns are treated as stochastic quantities and then a maximum likelihood, or a maximum a
posteriori (MAP) or a fully (hierarchical) Bayesian approach is followed (see [1] for a review).
In the latter case an estimate of the full posterior p(x,h|y) is obtained. This posterior is usually
approximated by the product of distributions q(x)q(h). Over the years, carefully designed image
priors were based on constraints on the image gradients while flat priors were used for the blur,
see however [2]. Some examples of such priors are hyper-Laplacian priors [3], [4], log-TV priors
[5], mixture of Gaussians (MoG) [6], Super Gaussian (SG) [7], Scale Mixture of Gaussian (SMG)
[8], and generalized `p/`q norm-based priors [9]. Approximations of the l0 function (see [10],
extended with the use of a dark channel prior [11] and an extreme channel prior [12]) have also
been successfully used. The previously described prior models are frequently used by analytical
methods to calculate the blur and latent image either in an alternate or a sequential fashion. The
first approach (see, for instance, [1], [5], [4]) alternates between the estimation of the blur and
the latent image in an iterative optimization process while the second one (see, for instance, [6],
[10], [2], [11], [7], [12], [9]), first estimates the blur using a filtered version of the image and
then uses this estimation with a non blind deconvolution algorithm to recover the image.

The above described methods assume that the model in (1) is accurate for all image pixels.
However, the convolution model can be violated locally by saturated pixels, underexposed areas
or salt and pepper noise and methods to handle this kind of outliers have been proposed (see, for
instance, [13], [14], [15] and references therein). Another source of outliers is kernel inaccuracy.
Blur estimation algorithms usually estimate an inaccurate kernel that can produce severe artifacts
such as ringing and distortions [16] even for small errors in the kernel. Kernel inaccuracy has
been modeled as zero-mean white noise added to the kernel [17]. In [18] a residual term is added
to (1) to model the errors produced by the kernel in the image. Then, a sparse prior is imposed
on this residual and estimates of both the original image and the residual are obtained. Although
artifacts are well suppressed by this method, details are usually over-smoothed.

Analytical techniques need to optimize an energy function for each new image and blur. This
provides them with high flexibility, allowing them to adapt to a wide variety of blurs, but at a
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high computational cost. Unfortunately, they are not amortized procedures. There is no general
fast procedure that given an observed image produces the corresponding original image and blur.
In recent years, the fields of machine and Deep Learning (DL) have gained a lot of momentum
in solving inverse problems [19]. Unlike analytical methods for which the problem is explicitly
defined and domain-knowledge carefully is engineered into the solution, Deep Neural Networks
(DNNs) do not benefit from such prior knowledge and instead make use of large data sets to learn
for each y the unknown solution to the inverse problem. Works on image denoising [20], inpainting
[21] and superresolution [22] have shown that these methods can outperform analytical ones, while
being significantly faster. For image recovering problems with known linear degradation models
like image denoising, non-blind image deconvolution, super resolution, and compressive sensing,
variable splitting techniques such as alternating direction method of multipliers (ADMM) [23] and
half-quadratic splitting (HQS) [24] offer a sound model to combine analytical and DL techniques.
Using these techniques, the recovery problem is split into two subproblems [25]: a regularized
recovery one (subproblem A) which uses as penalty the squared Euclidean distance to an image.
This image is estimated using an appropriate denoising technique (subproblem B). This splitting
has some advantages: subproblems A and B are easier to solve than the original one: for shift
invariant degradation, subproblem A can easily be solved using Discrete Fourier Transform (DFT),
while for subproblem B we can select any denoising algorithm. Instead of hand-engineering the
prior term, deep neural networks have been recently proposed to solve the denoising problem. In
[26] and [27] the proximal operator [28] associated to subproblem B is replaced by a denoising
neural network. In a similar way, [29] uses a residual network to estimate the noise in subproblem
B, which is, then, subtracted from the currently estimated image to obtain the restored one. In
[30] a combination of adversarial learning and a denoising autoencoder is chosen by combining a
denoiser with a Generative Adversarial Network (GAN) to project the images into the space of the
natural images as proximal operator. In [31] the authors opted for a denoising autoencoder network
inspired by the U-Net architecture. For non-blind image deconvolution, RGDN [32] integrates
both subproblems into a recurrent convolutional network, where the gradient of the image prior
unit is replaced by a common CNN block. The combination of analytical and DL methods using
this approach allows for high flexibility and efficiency. However, these methods do not provide a
fully amortized approach, since for each new degradation the solutions to subproblems B and A
(with the new degradation) must be found iteratively.

The use of DL models for blind image deconvolution took longer to take off since, together
with the image, the network must be able to estimate the blur as well. The first proposed models
deal with specific types of blur, like motion blur or Gaussian blur. The authors of [33] use a
Convolutional Neural Network (CNN) to predict a motion vector per pixel and, then, an analytical
method to estimate the underlying image. In [34], three parametric blur models are estimated using
a General Regression Neural Network (GRNN) together with an additional CNN which is used to
select one of the three model for a given observed image. More recent models are not constrained
to the type of blur. In [35] a CNN is used to learn features that improve the estimation of both
blurring kernel and image in the Fourier space. Following this approach, in [36] a CNN directly
predicts several deconvolution filters in the Fourier space. These filters are subsequently combined
to obtain the original image. In [37] a deep CNN is used to learn a discriminative regularizer.
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This regularizer provides an output in the interval [0, 1] which distinguishes between clear (0)
and blurred images (1). Two additional penalty terms are used for BID, the `0-pseudonorm of
the original image and the `2 norm of the blur. The image and blur which optimize the sum of
the fidelity to the observation term plus weighted versions of the three described regularizers are
found using ADMM [23]. The authors of [38] address the issue of catastrophic forgetting [39],
that is, the tendency of neural networks of completely and abruptly forgetting previously learned
information upon learning new one. They adopt a vanilla residual CNN to make an aggressive
propagation towards the optimum. Another approach consists replacing the prior model by a
deep CNN that generates the output image. Following this approach, [40] extends to image
deconvolution the deep image prior in [41]. In [42] a generalization of the traditional iterative
total-variation regularization method in the gradient domain is subsequently unrolled to construct
a neural network. Notice that, with the exception of [33], [34], all described models use an
alternate approach to estimate the blur and the latent image.

Recently, the authors of [43] have proposed a sequential approach to combine both analytical
and DL models which is robust to inaccuracies in the blur estimation. A CNN is fed with the
(inaccurate) blur, previously estimated by a blind image deconvolution algorithm, and several
estimates of the latent image obtained using the method in [3] with different prior strengths.
Those image estimates provide complementary information that the network combines into the
restored image.

In contrast to the large variety of BID methods combining analytical and DL approaches,
few papers apply only DL constrained to specific blur types, like motion blur, without explicitly
estimating the blur. In [44] a multi-scale residual CNN is used to eliminate non-uniform motion
blur from images. The use of a GAN is proposed in [45] and enhanced in [46]. For video, a
spatio-temporal recurrent architecture is presented in [47] (see also [48] where the authors use
a convolutional recurrent network to eliminate non-uniform motion blur in video sequences).
Although these models obtain state-of-art results in far less time than analytical and combined
models, they lack flexibly thus limiting their applicability to only specific cases.

In this paper we propose a fast, accurate, and robust blind image deconvolution model. It
employs a sequential scheme; it first estimates the blur kernel using an analytical model and then
it obtains the restored image using a robust deep learning one. In contrast to [43], in which DL is
used to fuse several noisy image estimates, the input to the network is, both the observed image and
an approximation to the Moore-Penrose pseudo-inverse reconstruction of the original image. This
approximation is shown to correspond to a Wiener filter reconstruction. The estimated image is a
linear combination of the Wiener filter reconstruction and a residual image which is obtained as
a linear transformation of a network output. This allows us to better separate the image formation
model from the learning of the network parameters and thus to allow the network to generalize
to blurs not present in the training process. By using this representation of the estimated image,
we cast our problem into a denoising one where ringing and other artifacts in the Wiener filtered
image are removed by a CNN. To remove artifacts caused by inaccuracies in the estimated blur
and other image formation model discrepancies like saturated and underexposed areas, we use
the kernels predicted by a Dynamic Filter Network (DFN) [49].

The rest of the paper is organized as follows: in section II, the used notation and the proposed
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DL approach is presented. This model depends on an estimation of the blur that is obtained by the
analytical method described in section III. Section IV describes the network training procedure and
an ablation experiment is performed in Sect. V to determine the contribution of each component
of the proposed CNN model. The performance of the proposed method is tested and compared
with other classical and state-of-the-art deconvolution methods in Sect. VI. Finally, Sect. VII
concludes the paper.

II. DEEP LEARNING MODEL

As previously stated, BID is a very challenging task for analytical and deep learning models
due to the variability of the degradations and the ill-posed nature of the problem. Even if the blur
is exactly known, noise in the data results in large perturbations in the solution. While analytical
BID methods estimate image and blur either sequentially or in an alternate manner and use the
image formation model as well as prior knowledge to solve the problem, the task of DL is more
daunting. DL methods which use the image formation model explicitly, see (1), become blur
dependent to poorly generalize to other blurs. To ease the problem, the image formation model
has to be separated from the learning of the network parameters.

In [50] the authors consider the image Super Resolution (SR) problem where the observed
downsampled image v is related to the high resolution one s by

v = As, (2)

where A is a downsampling operator and no noise is assumed to be present. The authors transform
a risk based approach into a Maximum A Posteriori (MAP) estimation by defining the SR solution
as

cω(v) = (I−A+A)bω(v) +A+v, (3)

where A+ is the Moore-Penrose pseudo-inverse [51] of A and bω(·) denotes a network whose
parameters ω are to be learned. The authors note that

Acω(v) = A(I−A+A)bω(v) +AA+v = 0+ v, (4)

since AA+A = A and A is a full row rank matrix, i.e. AA+ = I. Then they use (3) to define
a probability distribution on s which is learned with the use of a GAN. Notice that the input
to the generator is not noise but v. The authors call their approach amortized MAP because the
generator produces a MAP solution which, for a given A and v, provides a fast and amortized
procedure to obtain s. Unfortunately, changing A requires to reestimate the generator. However,
for methods formulated within the analytical context it is even worse: for each A and v a complex
estimation procedure for the corresponding s must be derived (no general -amortized- generator
of SR images is provided).

In [52], [53] we extended the above modelling to the Video Super Resolution (VSR) problem.
Noise was added to the image formation process in (2). We designed an amortized GAN model
for even varying A, that is, the network can be used on different As and vs. In (3), A+v can be
seen as an initial approximation of the high resolution image. Thus, the network only has to learn
a residual image. Since this residual depends on A+v, an amortized model for varying A can be
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obtained by modifying the input of the network to include A+v and using the proper architecture.
Notice that the MAP interpretation is lost due to the addition of noise to the modelling and the
inclusion of additional constraints to learn the generator. See [52], [53] for details.

Let us now examine, how to adapt the above ideas to BID. For the time being we assume that
we have access to H, its estimation is deferred to section III. Let us consider the image formation
model in (1) and let H+ be the Moore-Penrose pseudo-inverse of the blur H. Let us denote by
fθ : RL → RN a CNN with parameters θ, whose input z will be clearly specified later. We can
then define the model

gθ(z) = (I−H+H)fθ(z) +H+y. (5)

Note that, since HH+H = H, we have

Hgθ(z) = H(I−H+H)fθ(z) +HH+y = HH+y. (6)

Unfortunately, since H is not a full row rank matrix, unlike in SR and VSR, HH+ 6= I. It can
be shown [54] that

H+ = lim
δ→0+

(HTH+ δI)−1HT (7)

and so, for the i-th Discrete Fourier frequency, we have

FHH+y(i) =

{
Fy(i) if FH(i) 6= 0

0 if FH(i) = 0
(8)

Note also that H+y can be considered a rough approximation of the original image x. Hence,
using this formulation, by minimizing, for instance, ‖ x− gθ(z) ‖2 the network fθ(·) has to only
learn a residual that when added to H+y results in a sharp, artifacts-free image. Furthermore,
since

1

N
‖ y −Hgθ(z) ‖2 ≤

1

N
(‖ Hx−Hgθ(z) ‖2 + ‖ n ‖2)

≤ 1

N
(‖ H ‖2‖ x− gθ(z) ‖2 + ‖ n ‖2)

≤‖ x− gθ(z) ‖2 +
‖ n ‖2
N

, (9)

by reducing ‖ x − gθ(z) ‖2 we also reduce the data fidelity error. Notice that, since we have
separated the degradation from the learning of the network parameters, with the proper network
design, we can deal with different degradation models. Notice also that we are making an implicit
use of the observation model. This restoration approach constrains the functions that the network
learns to only those that produce images consistent with the observation y.

Unfortunately, for the deconvolution problem at hand, the presence of noise and the fact that
the blur is unknown hamper the use of the model in (5) as is (notice that we will have to use
an estimate of the blur, the process of which has not been described yet). Furthermore, from (8)
we observe that in H+y the information at those frequencies for which H is zero has been lost.
For those reasons, we define

H+
ε = (HTH+ εI)−1HT (10)
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(a) x (b) x (c) y (d) xw

Fig. 1. An illustration of the artifacts caused by the Wiener filter. Ringing artifacts in the red box are compatible with
natural images, being difficult to distinguish from real structures, unlike the ones in the blue box.

and
xw = H+

ε y, (11)

where ε > 0 is a regularization parameter. Then, we modify (5) to finally write

gθ(z) = (I−H+
ε H)fθ(z) +H+

ε y

= (I−H+
ε H)fθ(z) + xw. (12)

We now have an interpretation of the goal of the network. Taking into account that xw is
an approximation of the Wiener filter (ε represents an approximation of the ratio between the
power spectral density of the noise and the power spectral density of the image), it learns the
“missing” frequencies in xw and how to remove the noise and the artifacts introduced by the
Wiener filter approximation (for simplicity we use the term Wiener filter instead of Wiener filter
approximation through out the paper). These artifacts, although dependent on the image, blur,
and noise combination, are all very similar in nature, consisting mainly on amplified noise and
ringing. Focusing on detecting and filtering these artifacts is easier than removing blur and makes
the network able to better generalize for blurs unseen during training. Furthermore, note that xw,
although noisy, contains information on the high frequencies of the original image x which makes
the recovery task easier.

Let us now see what the input to the network is. The function fθ(·) (and consequently gθ(·))
takes as input both xw and y, in other words,

z = (xw,y). (13)

The use of the blurred image y is necessary since some artifacts that appear in the Wiener filter
solution, xw, are difficult to distinguish from real world-like structures, making them difficult to
remove. Figure 1 presents an example of these artifacts. Incorporating y as an input helps the
network distinguish between artifacts and real scene objects, thus removing structures not present
in y and preserving the consistency with the observation.

Since the image formation model in (1) is only approximate since it does not include, for
instance, saturated pixels or underexposed areas, the deconvolved image obtained by the operator
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Fig. 2. The proposed DDNet architecture. RDB indicates a Residual Dense Block (RDB) and Dynamic Filter refers
to the operation in (15). Each non-output convolution outside a RDB has 64× 3× 3 filters. With the exception of the
last one, that uses 64× 1× 1 filters, convolutions in RDBs have 32× 3× 3 filters. The size of the filters used during
the dynamic filtering is 5× 5. See text for details.

gθ(·) still exhibits some spatially variant artifacts. To remove them we propose to use a Dynamic
Filter Network (DFN) [49]. The DFN is composed by a filter generating network and a dynamic
filtering layer. The former dynamically generates filters which depend on the network input values
and pixel position. The latter then applies those filters to the input.

For a pixel (i, j), let d
ui,j

ψ be the filter of support (2L + 1) × (2M + 1) generated by the
filter generating network with parameters ψ from the input image u (notice that we are using
bidimensional notation and that the network generates the filter from a region centered around
u(i, j)). The set of all filters generated from image u is denoted as du

ψ. Then, the pixel at position
(i, j) of the filtered image r obtained by the dynamic filtering layer on the input image q with
the set of filters du

ψ (notice that u and q do not have to coincide) is defined as

r(i, j) =

L∑

l=−L

M∑

m=−M
d
ui,j

ψ (l + L,m+M)q(i+ l, j +m) (14)

Hence, the application of the dynamic filtering in (14) to gθ(·) is expected to be a sharp,
artifact-free restored image given by

x̂ = rθ,ψ(xw,y) = Dxw,y
ψ gθ(xw,y), (15)

where Dxw,y
ψ is the (spatially variant) convolution matrix associated with the set of kernels dxw,y

ψ .
Notice that a DFN is a perfect suit for this final refinement since it is able to produce spatially-
variant filters, while normal CNN filters are spatially-invariant, requiring far more parameters
to adapt to the spatially variant nature of these artifacts. The whole model used to deconvolve
blurred images, which corresponds to rθ,ψ(xw,y), will be denoted by DDNet.

The architecture of DDNet is shown in Figure 2. The blue box represents the model gθ(xw,y)

defined in (12). To reduce the number of computations, its main branch, eφ(·), is shared with
the filter generating network of the DNF, dψ(·). This main branch follows an encoder-decoder
structure. During the encoding phase we extract features from the image. At the same time,
we reduce its spatial resolution by a factor of 4 using two space-to-depth operations defined as
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S2 : [0, 1]
2H×2W×C → [0, 1]H×W×4C . In this projected space, the features are transformed using

10 Residual Dense Blocks (RDB) [55]. A RDB is a modified Residual Block (RB) with dense
connections between layers. These dense connections allow to reuse features and provide a better
performance. The features are finally up-scaled to the original image size using two sub-pixel
convolutions [56] of factor 2. Notice that the spatial size reduction not only allows the network to
process the image much faster but also to increase the receptive field without the need to increase
the depth of the CNN model. The features obtained by the main branch are used to calculate the
initial image estimation, gθ(xw,y), and the filters dψ(xw,y). The result of applying the filters,
calculated via the dynamic filter module, produces the final estimation x̂ in (15) of our proposed
rθ,ψ(xw,y) model.

All of the non-output convolutions outside an RDB block use 64×3×3 filters and are followed
by a Leaky ReLU with negative slope set to 0.2. Convolutions in each RDB only use 32× 3× 3

filters, with the exception of the last convolution that uses 64×1×1 filters, to control the increment
in the number of parameters due to the use of dense connections. The size of the filters predicted
by dψ(·) is 5× 5, M = L = 2.

III. ANALYTICAL METHOD FOR BLUR ESTIMATION

The proposed deep learning approach for blind image deconvolution needs an estimate of the
PSF. In the literature there are many methods to handle this estimation problem. In this paper we
use a variation of the Bayesian BID method in [7]. This is a fast and robust method that provides
an accurate estimation of the blur. It enforces sparsity on high pass filtered reconstructions, that
is, on the edges of the image, using a Huber Super Gaussian (HSG) prior. For the blur, no prior
knowledge other than non-negativity and that the blur coefficients should add to one is assumed.

The blur is estimated using a multiscale coarse-to-fine approach to avoid local minima. At each
scale, an EM approach, starting from the upsampled blur and sharp image estimated from the
previous scale, is used. Since the direct application of the EM inference to the joint probability
function is infeasible due to the form of the HSG prior model, a Gaussian-like lower bound
is obtained for the prior model which allows for the expectation of the joint distribution to be
calculated analytically. This leads to an iterative algorithm where first the blur and the model
parameters and then the real image are efficiently estimated [57].

In this paper, we modify the method in [7] by adding a kernel cleaning step at the end of each
scale [12]. This step removes small valued isolated noisy pixels from the kernel and contributes
to obtaining blur estimates comprised of connected pixels.

IV. MODEL TRAINING

To train the proposed model we generated an image dataset based on the COCO 2017 Dataset1.
It has been used for object segmentation and recognition and is comprised of a large number of
sharp natural images divided in a train set of 118287 images, a validation set of 5000 images
and a test set of 40670 images. To simulate the degraded images we proceeded as follows.
First, we generated 1024 PSFs using the method in [58] of size between 11 × 11 and 65 × 65

1http://cocodataset.org/
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pixels, with T = 0.8 and anxiety 10r/1000, where r is a random number from a uniform
[0, 1] distribution. Then, we used 736 kernels for training, 32 for validation and 256 for testing,
following approximately the same proportion of the images in each subset of COCO 2017. Each
image in the training and validation sets was blurred with exactly 3 PSFs on their own set, that is,
training images with training kernels and validation images with validation kernels, and Gaussian
noise of standard deviation σ = 0.01 was added to the blurred image. Images with size smaller
than 320 pixels in the shorter dimension were discarded to avoid boundary artifacts. Finally, the
256×256 central part of each image was cropped. This process generated a training set of 347436
images and a validation set of 14637 images. For testing, we created a reduced set of 512 images,
obtained by degrading two randomly chosen test images for each kernel in the test set and adding
Gaussian noise with σ = 0.01.

During training, data augmentation was performed by random vertically and horizontally flip
and rotating each instance by multiples of 90o. We trained our models for 35 epochs using Adam
optimizer [59] with weight decay set to 10−4. Each epoch of the training consisted of 5428

batches of 64 images. The learning rate was set to 5 × 10−4 for the first 5 epochs, to 10−4 for
the next 20 epochs, and to 10−5 for the last 10 epochs. During training, we set the regularization
parameter for the Wiener filter, ε, equal to to 0.01.

Finally, to train the DDNet we use the Charbonnier loss defined as

L(x̂,x) =
N∑

i=1

√
(x̂(i)− x(i))2 + ε2 , (16)

where x̂ and x are, respectively, the estimated and the real image and ε is a constant, which
in our experiments was set equal to 10−3. We use this loss instead of the Mean Squared Error
(MSE) since it is more robust to outliers [60]. Let us now describe how the blur is estimated.

V. ABLATION EXPERIMENTS

To determine the contribution of each component of the proposed DDNet to the final solution,
we performed an experimental ablation study where we added each main component one at a
time. We consider the following models:

1) fθ(y): The base model. We use our proposed CNN architecture using only the blurred image
as input without the Wiener filtered image, no affine projection approximation [50] and no
dynamic filtering.

2) fθ(xw,y): The base CNN architecture using both the Wiener filtered image and the blurred
one as inputs for the network.

3) fθ(xw,y) × 2: The base CNN architecture using both the Wiener filtered image and the
blurred one as inputs, but using 20 RDBlocks instead of 10.

4) gθ(xw,y): We test our proposed adaptation of the affine projection approximation [50] (see
(12)).

5) rθ,ψ(xw,y): Our complete DDNet.

The results of testing each model on the validation dataset are shown in Table I. From the
results in the table, it is clear that each one of the proposed components significantly increases
the performance of the model when added. The most remarkable performance increase is due to
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TABLE I
ABLATION STUDY OF COMPONENTS OF THE PROPOSED DDNET. THE COMPARISON IS DONE USING OUR

VALIDATION DATASET AND IN TERMS OF PSNR AND SSIM. BEST RESULT IS MARKED IN BOLD. SECOND BEST
RESULT IS UNDERLINED.

fθ(y) fθ(xw,y) fθ(xw,y)× 2 gθ(xw,y) rθ,ψ(xw,y)

PSNR 20.12 26.15 26.42 26.37 26.59
SSIM 0.6053 0.7267 0.7355 0.7341 0.7516

the addition of the Wiener filtered image, xw, to the model inputs. However, this behavior was
expected since fθ(y) solves a much harder problem than the rest. By using xw the problem is
reduced to a denoising one. Notice also that incorporating the affine projection approximation
allows gθ(xw,y) to obtain a performance similar to fθ(xw,y) × 2 with half the number of
learnable parameters and being almost twice as fast as fθ(xw,y) × 2. Finally, our complete
DDNet, rθ,ψ(xw,y), clearly outperforms all others models while keeping a complexity similar
to gθ(xw,y).

VI. EXPERIMENTAL RESULTS

To assess the performance and robustness of the proposed DDNet method, we have tested it
on several image datasets including synthetic datasets with spatially invariant and variant blurs
as well as real image datasets. More concretely, we have used the dataset proposed by Levin
et al. [61] composed of 4 grayscale images of size 255 × 255, blurred with 8 different kernels
from 13× 13 to 27× 27 pixels, and with additive Gaussian noise with standard deviation 0.01.
Also, we used a larger dataset, proposed by Sun et al. [62], with 80 grayscale images blurred
with the 8 different kernels from [61] and with additive Gaussian noise with standard deviation
0.01. Image size is 1024 on its larger side. We have also used the datasets proposed by Lai et
al. [63]. These include a set of 25 color images of sizes ranging from 350× 500 to 1024× 768

that fall in 5 different categories: man-made, natural, people, saturated and text. For the spatially
invariant degraded dataset, each image was blurred with 4 different kernels (from 31 × 31 to
75 × 75 pixels) and Gaussian noise with standard deviation 0.01 was added to obtain a set of
100 degraded images. The same 25 crisp images were blurred with 4 different trajectories and
Gaussian noise with standard deviation 0.01 was added to obtain 100 spatially variant degraded
images. We also used the GoPro [44] dataset where a set of 1111 blurred images was obtained
by averaging a number of consecutive frames, varying from 7 to 13, from 240fps videos captured
with a GOPRO4 Hero Black camera. The sharp latent image is defined as the mid-frame among
the sharp frames used to make the blurry image. A set of 2103 pairs of blurred/sharp images is
also provided for training but it was not used by our method. While those datasets are synthetically
generated, we also tested the proposed method on the real images dataset proposed in Lai et al.
[63], a set of 100 real images from multiple sources and different categories.

The proposed DDNet method was compared with classic and state-of-the-art deconvolution
methods. These include two analytical blind deconvolution methods, the Huber super Gaussian
prior (HSG) method in [7] and the extreme channel prior (ECP) method in [12], the combined
analytical and DL (Li) method in [37] and the GAN based (DeblurGAN-v2) method in [46]. As
a baseline method we used the Wiener [64] method on the kernels estimated by the HSG method
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(a) Original image (b) Degraded image (c) HSG [7] (d) HSG+Wiener [64] (e) HSG+Robust [18]
PSNR=29.395dB PSNR=25.557dB PSNR=29.710dB

SSIM=0.920 SSIM=0.760 SSIM=0.921

(f) ECP [12] (g) Li [37] (h) HSG+IRCNN [27] (i) DeblurGAN-v2 [46] (j) DDNet
PSNR=28.068dB PSNR=28.652dB PSNR=28.300dB PSNR=24.483dB PSNR=30.894dB

SSIM=0.884 SSIM=0.890 SSIM=0.913 SSIM=0.780 SSIM=0.936

Fig. 3. Visual comparison of the proposed DDNet and competing methods on an image of the Levin [61] dataset.

in [7], that we will refer to as HSG+Wiener. Using these same kernels, we also compared with
the non-blind deconvolution deconvolution method handling inaccurate kernels (HSG+Robust)
in [18] and the CNN based non-blind deconvolution (HSG+IRCNN) method in [27]. Since the
Robust method in [18] is designed to handle only grayscale images, the method is applied to each
one of the RGB channels independently. All methods were ran using the default parameters or the
parameters suggested by the authors in the corresponding paper. For DDNet, we used ε = 0.01

for all the datasets except for the Lai dataset were ε = 0.003 was used since images degraded
with large PSFs need a smaller regularization parameter. Note that, for large PSFs, the values of
H are smaller compared to ε.

For quantitative comparison, PNSR and SSIM [65] quality measures were used. To avoid
the inherent shifting ambiguity in blind deconvolution [66], we calculated both measures in the
central part of the deconvolved images, trimming 25 pixels from each side for the Levin and
Sun datasets and 37 pixels for the rest of the datasets. This trimmed image was shifted in a
window of size 25× 25 or 37× 37 to find the position returning the best PSNR with respect to
the original image. PSNR and SSIM results are reported for this position. The resulting figures
of merit are summarized in table II. From this table it is clear that the proposed DDNet method
outperforms all competing methods for spatially invariant degraded datasets and it is competitive
in spatially variant ones. We want to emphasize that the proposed method provides the second
best results in spatially variant degraded datasets in spite of not being trained on spatially variant
degradations (see Fig. 7 for an example). Also, note that DeblurGAN-v2 was trained to deal with
spatially variant degradations and, specifically, it was trained on a set of images that contained
the GOPRO dataset so it is not strange that it outperforms all other methods on this dataset. It
is worth mentioning that DDNet increases the PSNR up to 11.29 dB and the SSIM up to 0.242
with respect to the baseline method HSG+Wiener.

Figure 3 shows the original, observed and restored images with the competing and the proposed
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TABLE II
NUMERICAL COMPARISON OF THE PROPOSED DDNET AND COMPETING METHODS ON DIFFERENT IMAGE

DATASETS. BEST RESULT IS MARKED IN BOLD. SECOND BEST RESULT IS UNDERLINED.

Dataset Method PSNR SSIM time

COCO2017

HSG [7] 23.291 0.692 24.146
HSG+Wiener [64] 22.220 0.557 23.228
HSG+Robust [18] 22.923 0.676 323.128
ECP [12] 22.141 0.678 124.903
Li [37] 21.621 0.660 1095.140
HSG+IRCNN [27] 22.936 0.711 23.456
DeblurGAN-v2 [46] 21.847 0.572 0.258
DDNet 24.097 0.739 23.138

Levin [61]

HSG [7] 29.148 0.900 11.229
HSG+Wiener [64] 25.467 0.724 10.008
HSG+Robust [18] 29.272 0.902 193.648
ECP [12] 29.164 0.893 99.984
Li [37] 27.930 0.857 149.063
HSG+IRCNN [27] 27.968 0.889 10.268
DeblurGAN-v2 [46] 24.034 0.737 0.187
DDNet 30.661 0.917 10.026

Sun [62]

HSG [7] 29.649 0.843 130.127
HSG+Wiener [64] 18.687 0.621 118.600
HSG+Robust [18] 29.484 0.832 1940.991
ECP [12] 27.730 0.820 1514.355
Li [37] 27.393 0.814 1250.911
HSG+IRCNN [27] 29.624 0.852 120.982
DeblurGAN-v2 [46] 26.023 0.680 0.420
DDNet 29.975 0.852 118.297
HSG [7] 19.958 0.658 169.206
HSG+Wiener [64] 18.844 0.523 157.716

Lai [63] HSG+Robust [18] 19.795 0.642 4235.478
spatially ECP [12] 19.324 0.625 1010.981
invariant Li [37] 19.607 0.642 980.802
blur HSG+IRCNN [27] 19.325 0.652 157.578

DeblurGAN-v2 [46] 16.862 0.470 0.374
DDNet 19.818 0.670 156.587
HSG [7] 17.063 0.527 184.929
HSG+Wiener [64] 16.153 0.372 175.485

Lai [63] HSG+Robust [18] 17.224 0.513 4256.082
spatially ECP [12] 16.801 0.530 1061.430
variant Li [37] 16.432 0.515 1222.643
blur HSG+IRCNN [27] 16.430 0.501 175.232

DeblurGAN-v2 [46] 18.747 0.571 0.403
DDNet 18.301 0.566 174.283

GOPRO [44]

HSG [7] 22.980 0.764 276.954
HSG+Wiener [64] 21.246 0.585 259.659
HSG+Robust [18] 23.004 0.758 8472.072
ECP [12] 22.290 0.747 1057.433
Li [37] 21.350 0.719 2175.334
HSG+IRCNN [27] 21.921 0.720 263.933
DeblurGAN-v2 [46] 27.669 0.877 0.448
DDNet 25.494 0.827 258.490

method on an image of the Levin dataset. The inset shows a detail of the area marked in
yellow. Although all compared methods produce good results on this image, most of them present
artifacts that reduce their quality. Those artifacts include ringing artifacts (see Fig. 3(d)), blurriness
(Fig. 3(i)), excessive smoothness (Fig. 3(c), (g)), phantoms (see the area of the elbow patch in
Fig. 3(f), (g)) or washed out details (see, for instance, the jumper in Fig. 3(e), (f), (g) and (h)).
The proposed method, however, is able to recover the small details removing all the ringing and

Chapter 3. Image Restoration and Super-Resolution 63



Original image Degraded image HSG [7] HSG+Wiener [64] HSG+Robust [18]
PSNR=25.592dB PSNR=23.998dB PSNR=25.362dB

SSIM=0.851 SSIM=0.648 SSIM=0.849

ECP [12] Li [37] HSG+IRCNN [27] DeblurGAN-v2 [46] DDNet
PSNR=27.225dB PSNR=26.950dB PSNR=24.435dB PSNR=23.938dB PSNR=26.012dB

SSIM=0.871 SSIM=0.867 SSIM=0.843 SSIM=0.772 SSIM=0.872

Fig. 4. Visual comparison of the proposed DDNet and competing methods on an image of the Lai [63] spatially
invariant degraded dataset.

other artifacts.
We also present results on an image of the Lai [63] spatially invariant degraded dataset. The

original image is shown in Fig. 4(a), the degraded image in Fig. 4(b), and Fig. 4(c)-(j) depict the
deconvolved images with the competing and DDNet method. From these images it is clear that
DDNet produces better visual results than the competing ones. The proposed method produces
a sharp, artifacts free image. The method is able to recover small details (see, for instance, the
books titles) without any of the artifacts of HSG+Wiener restoration. It is interesting to study
the methods behavior in this dataset. First, we study how the PSF support affects the restoration
quality. Figure 5(a) shows the SSIM of the proposed and competing methods for the different
PSFs. All methods result in a lower SSIM for the images degraded with the PSF number 4,
which has a much larger support than the other ones. However, the DDNet method, the HSG
and the HSG+Robust methods are more robust to this problem. In general, the DDNet method
outperformed the competing ones for kernel 1, performs slightly better for kernels 2 to 3 while
performed slightly worse for kernel 4. If the PSF support is large, as is the case in the Lai
spatially invariant dataset, the kernel is not always accurately estimated or solutions close to
H = I are produced. When trying to remove the artifacts, the proposed method further removes
some details in the image. An example of this behavior can be observed in Fig. 6. Note that most
of the competing methods also fail to recover this image or produce strong artifacts. Second, we
study how robust is the proposed method to different types of images. Figure 5(b) shows the
SSIM of the proposed DDNet and competing methods for the different categories of images. All
methods, except deblurGAN-v2 and HSG+Wiener, perform similarly for man-made, natural and
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(a) (b)

Fig. 5. Comparison of the proposed DDNet and competing methods on the Lai dataset in terms of mean SSIM. (a)
For different PSFs. (b) For different image categories.

Original Degraded HSG HSG+Wiener HSG+Robust
PSNR=15.17dB PSNR=14.27dB PSNR=15.38dB

SSIM=0.420 SSIM=0.370 SSIM=0.390

ECP Li HSG+IRCNN DeblurGAN-v2 DDNet
PSNR=16.15dB PSNR=17.82dB PSNR=13.41dB PSNR=13.37dB PSNR=14.92dB

SSIM=0.479 SSIM=0.564 SSIM=0.430 SSIM=0.181 SSIM=0.352

Fig. 6. Visual comparison of the proposed DDNet and competing methods on an image of the Lai [63] spatially
variant degraded dataset.

people images. The SSIM values of HSG, HSG+Robust and DDNet methods are consistently
high for those images, being the mean SSIM of the proposed method higher the one of HSG and
HSG+Robust for these categories. For saturated images, all methods produce lower SSIM results.
The proposed method produces better results than the competing methods based on HSG kernel
estimation and DeblurGAN-v2 method, despite the low quality of the Wiener reconstruction.
Finally, we want to note that the DDNet method produces also very good results for text images,
although it was not trained on this kind of images.

Figure 8 depicts three details of challenging real images as well as the deconvolutions with the
proposed and competing methods. The DDNet method provides artifact free images and, compared
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Original Degraded HSG HSG+Wiener HSG+Robust
PSNR=27.83dB PSNR=24.69dB PSNR=28.12dB

SSIM=0.916 SSIM=0.717 SSIM=0.912

ECP Li HSG+IRCNN DeblurGAN-v2 DDNet
PSNR=22.70dB PSNR=18.32dB PSNR=26.68dB PSNR=31.56dB PSNR=28.73dB

SSIM=0.824 SSIM=0.693 SSIM=0.892 SSIM=0.957 SSIM=0.924

Fig. 7. Visual comparison of the proposed DDNet and competing methods on the GOPRO [44] dataset.

with other methods, more consistent results. When compared to HSG+Wiener, it is clear that the
proposed method is able to remove all restoration artifacts while maintaining the details in the
image. The DDNet method produces sharper images than HSG, ECP, Li, and DeblurGan-v2
methods, fewer artifacts than HSG+Robust (see, the color artifacts in Picasso’s face and hair,
for instance) and, although not as crisp as HSG+IRCNN, it produces less noisy images (see the
roof over the restaurant sign), without artifacts in flat regions and more natural looking image
(see, Picasso’s cheek and T-shirt). In general, the proposed DDNet method is robust to different
categories of images and blurs, and provides good, natural looking, artifacts free images.

With respect to the computational cost, the DDNet method achieves the second lowest time,
behind DeblurGAN-v2 [46], but usually with a much higher restoration quality. Note that most
of the time is spent in the estimation of the blur kernel, which is carried out in the CPU, while
the CNN cost is of a few hundredths of a second. Compared with other combined analytical and
DL methods, the DDNet method is much faster than the Li [37] and HSG+IRCNN [27] methods.
Note that the Li [37] method does not use GPU computing. The proposed method only needs a
fraction of the computing time of the IRCNN time with better quality results.

VII. CONCLUSIONS

We have proposed a combination of an analytical and a DL method for blind image deconvolu-
tion. The proposed DL method adapts the affine projection [50] to estimate a solution to the BID
problem consistent with the degradation model. The adaptation includes the use of a (possible
inaccurate) estimation of the blur and the use of the Wiener filter as an approximation of the
pseudo-inverse of the blur convolution operator. The PSF estimation is carried out by an analytical
approach while image deconvolution is handled by a DL model that removes noise and ringing
artifacts. Spatially variant artifacts caused by an inexact PSF estimation or other degradation
model inconsistencies are corrected using the spatially-variant filters produced by a DNF. As
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Degraded image HSG [7] HSG+Wiener [64]

HSG+Robust [18] ECP [12] Li [37]

HSG+IRCNN [27] DeblurGAN-v2 [46] DDNet

Fig. 8. Visual comparison of the proposed DDNet and competing methods on real images.

shown by our ablation experiments, this approach is able to outperform similar CNN models
twice as deep. The proposed DDNet method outperforms the rest of the compared methods in
spatially invariant degraded images and is competing in spatially variant degraded ones, producing
better results than all the methods except DeblurGAN-v2. The proposed method has proved to
be robust, always providing one of the best results (on average) in different categories of images,
including challenging faces, saturated and text images. The DDNet method is faster than all other
analytical methods and the combined analytical and DL method. Most of the time is consumed
by the PSF estimation, that is carried out in the CPU. In the future, we will extend the proposed
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approach to perform PSF estimation also using a GPU.
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3.2.2 Main Contributions

• In this work we introduce a new fast, accurate, and robust CNN cascade-based ap-

proach for Single Image Super-Resolution (SISR). This model is able to deconvolve

and super-resolve the image at the same time.

• Our approximation uses a novel connection approach where each sub-module reuses

the features calculated by all previous sub-modules.

• We propose introducing a new module that extracts and matches multi-scale fea-

tures from the blurred LR image and a non-blurred but noisy Weiner filtered LR

image. The rest of the network will use these features.

• Making use of “Privileged Information” [134], we train the deblur sub-module to

approximate not the restored LR but one with a little of Gaussian blur that is

easier to super-resolve.

• We split the upsampling module into two: upsampling and one final refinement

module that corrects the cascade’s accumulated errors. This is done using the

approximation proposed in [44] to constrain the output of the upsampling to fulfill

the LR image formation model.

• We perform our experiments using standard SISR image datasets with blur ker-

nels simulating simple and complex camera movement. These experiments are

performed in both non-blind and blind settings. We compare our model to the

current state-of-art in terms of PSNR, SSIM and the number of operations.
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Abstract

Single Image Super-Resolution (SISR) is one of the low-level computer vision problems that
has received increased attention in the last few years. Current approaches are primarily based
on harnessing the power of deep learning models and optimization techniques to reverse the
degradation model. Owing to its hardness, isotropic blurring or Gaussians with small anisotropic
deformations have been mainly considered. Here, we widen this scenario by including large non-
Gaussian blurs that arise in real camera movements. Our approach leverages the degradation
model and proposes a new formulation of the Convolutional Neural Network (CNN) cascade
model, where each network sub-module is constrained to solve a specific degradation: deblurring
or upsampling. A new densely connected CNN-architecture is proposed where the output of each
sub-module is restricted using some external knowledge to focus it on its specific task. As far we
know this use of domain-knowledge to module-level is a novelty in SISR. To fit the finest model,
a final sub-module takes care of the residual errors propagated by the previous sub-modules. We
check our model with three state of the art (SOTA) datasets in SISR and compare the results
with the SOTA models. The results show that our model is the only one able to manage our
wider set of deformations. Furthermore, our model overcomes all current SOTA methods for a
standard set of deformations. In terms of computational load, our model also improves on the
two closest competitors in terms of efficiency. Although the approach is non-blind and requires
an estimation of the blur kernel, it shows robustness to blur kernel estimation errors, making it
a good alternative to blind models.

Index Terms

Single image super-resolution, super-resolution, multiple degradation deconvolution, convo-
lutional neural networks, cascade model.

I. INTRODUCTION

Single Image Super-Resolution (SISR) is a fundamental low-level computer vision that has
received considerable attention in recent years [1], [2], [3], [4], [5], [6], [7], [8]. It consists
of recovering a high-resolution (HR) image from a given low resolution (LR) image, assuming
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a degradation model connecting both images. Typically, the general image degradation model
assumed in the SISR literature is given by,

y = [x~ k] ↓s +n, (1)

where x is the HR image, y is the LR image, n is the noise, usually additive white Gaussian
noise (AWGN), ↓s is the downsampling operator for factor s and x~k represents the convolution
of x with the blur kernel k.

The current models used to estimate x from y are typically grouped into three categories
according to the assumed degradation model and the solver used: interpolation-based (IB), model-
based or energy-function optimization (MBO) and learning-based (LB). The IB approach assumes
the following simpler model as the degradation model,

y = x ↓s +n, (2)

and an interpolation technique is proposed as the solver. Clearly, Eq. (2) models the downsampling
operation including as part of the noise any other degradation present in the image. Although
these methods are the fastest, they are too simple to cope with real blur degradation effects [9],
[8], [10].

Traditional MBO approaches [11], [12], [13], [14], [15] define a regularized energy function
that is optimized to estimate x. The degradation model (1), together with smoothness or edge
preservation conditions in solution, are the most common elements that define the energy function
[15], [13]. In these models, an optimization is performed for each new LR image, which provides
them with high flexibility, under the LR imaging generation conditions, to manage any degrada-
tion type. However, closed-form solutions are not feasible and the use of iterative optimization
techniques makes MBO approaches computationally expensive. In addition, the hyperparameters
must be hand-picked for each degradation type [16].

In recent years, LB approaches have gained significant momentum thanks to the introduction of
deep learning (DL). Recently, variable splitting techniques such as half-quadratic splitting (HQS)
[17] and alternating direction method of multipliers (ADMM) [18] have been used to incorporate
DL in MBO to improve efficiency. In [6], [19], and [20], for instance, a denoising CNN was used
to estimate the final HR image. Furthermore, in [8], the authors expand on this approximation by
tasking the CNN with upsampling and denoising in a non-blind approach. Clearly, this introduces
a connection between MBO and CNN-based approaches because the MBO solution eventually
relies on learned modules. However, this connection assumes a new degradation model,

y = x ↓s ~kL + n, (3)

where blurring kL is applied on a downsampled image. Until now, no connection has been
provided between this new model and the one in Eq. (1).

In contrast to MBO approaches, most LB models do not explicitly use any image degradation
model to estimate x, assuming that the degradation model is well represented by Eq. (2). A large
database of pairs (LR, HR) is used to learn an end-to-end mapping f(·) such that x = f(y) [21],
[22], [23], [24]. The DL models based on Convolutional Neural Networks (CNNs) have shown the
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highest performance compared to any other approach [2], [4], [5], [7], [25]. The early success of
vanilla CNN models in SISR [2], [26] has stimulated the development of deeper designs that have
achieved the current state of the art (SOTA) in SISR. As a matter of fact, most of the proposals
from the first one, given in [2], have been driven by the incorporation of technical achievements
in the CNN-field as for instance, deeper models, and use of residual block to improve accuracy
metrics [27], [28], [29], [5], [7], [30], [31], [32]. To improve the performance and processing
time, upsampling moves to the last layer of the network [26], [33], [29]. In addition, SRGAN [29]
and EDSR [5] improved over those architectures and introduced residual blocks to increase the
network depth. DenseSR [30] used residual dense blocks to improve the networks by combining
features from different layers. In ESRGAN [32] and RCAN [31] specific blocks to improve
performance are proposed, reaching a new SOTA, but at the cost of a significant increase in
computing time. Although these models outperform traditional MBO in terms of performance,
they lack adaptation to new deformations at test time.

Very recently, CNN-based models (CNN-BMs) assuming Eq. (1) as a degradation model have
been proposed. In this scenario, Shocher et al. [34] proposed a technique for the “Zero-Shot” case
that exploits the internal recurrence of information inside a single image to train a DL model.
This shares the flexibility at test time, but also the high time consumption of MBO approaches.
Alternatively, recent works have proposed architectures that encode information about the blur
kernel k and introduce it into the network. Riegler et al. [35] used conditioned regression models
to encode a Gaussian family of kernels. In SRMD [9], a Principal Component Analysis (PCA)
representation of the blur kernel and a stretching strategy to concatenate it with the LR image
is proposed. In [10], the latter approach was expanded and improved, with the use of spatial
feature transform (SFT) layers [7], to introduce the PCA representation of the blur kernel into the
network. By doing so, they are able to implement a very deep residual network with a significant
increase in performance over [9]. However, PCA is not a suitable representation to encode families
of blurs with different degrees of freedom, in addition to having to be recalculated to cope with
new degradation types. Consequently, the CNN models used in [9] and [10] show shortcomings
when blur kernels from strong camera movement are present [9].

An alternative to the above CNN-BMs that attempt to solve the SISR problem using a single
CNN is to decompose the problem into sub-tasks and use a group of CNNs connected in a
cascade fashion to solve it. This “divide and conquer” approach simplifies the function that each
sub-module must learn, easing the learning process. If n = 0, Eq. (1) can be inverted using
an upsampling CNN followed by a deblurring CNN. However, in practice, this approximation
does not perform well because of the introduction of strong artifacts during upsampling and the
increasing difficulty of deconvolving in HR space [10]. The CNN-BMs based on cascades [10],
[8], [36] make the first denoise/deblur and later upsampling implicitly assuming that Eq. (1) can
be approximated by Eq. (3). In [36], an unsupervised network was trained to deblur and denoise
the LR image, before using an SR network to estimate the HR. However, as shown in [10] and
[8], these cascade approaches underperform compared with other SOTA models. Here, we argue
that cascade models can be significantly improved by modifying the connection between the sub-
modules and taking advantage of the fact that each sub-module can be specialized in a task by
constraining its output using domain knowledge.
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In this study, we propose a fast, accurate, and robust CNN cascade-based approach for multiple
degradations SISR, CAscade-Deblurring-Upsampling-Fusion (CADUF). Compared with previous
cascade-based approaches, our model shows new elements regarding deblur, upsampling, and
information processing. In deblurring, the LR image is complemented with the information
provided by a deblurred and noisy release of itself obtained from the Weiner filter. We take
advantage of the fact that artifacts and noise introduced by the Weiner filter are similar across all
possible combinations of blur and images. After extracting and matching features from the two
images, we use those features to filter out the noise and artifacts in the Weiner-filtered image.
In upsampling, we make use of domain knowledge in the form of “Privileged Information” [37]
and constrain the output of upsampling to fulfill an affine projection model. As a result, we
obtain an error range that can be reduced by a simple final sub-module. Finally, we improve
the communication between sub-modules by using a novel connection approach where each sub-
module re-uses the features calculated by all previous sub-modules. Our experiments for non-blind
SISR show that CADUF reaches SOTA results being competitive with MBO for unseen blurs
but much faster. Furthermore, experiments performed in the blind setting show that our method
is also robust to inaccuracies in the blur kernel estimation.

The remainder of the paper is organized as follows. In Section II, we describe the proposed
CADUF model and explain each one of its primary components. Section III presents the experi-
mental settings used in this study (dataset, degradations and training hyperparameters) as well as
an ablation study of each key component and a comparison with SOTA methods. Finally, Sect. IV
concludes the paper.

II. METHOD

In this section, we first introduce the SR problem settings and propose a new CNN architecture
that addresses it by combining multiple CNN sub-modules that solve specific sub-problems. Each
of these CNN sub-modules are presented in Sections II-A to II-D. Finally, in Section II-E, we
describe in detail the parameters of the proposed architecture.

As previously stated in Section I, we consider that the LR image y is produced from the high-
res image x in Eq. (1). Typically, in SISR, k is assumed to be an isotropic Gaussian kernel and
↓s bicubic interpolation [9], [10], but in real applications, different kernel types could arise. In
this study, we consider that kH can also be a more complex blurs, like motion blur. Fig. 1 shows
some examples of the complexity of the kernels used during our experiments.

Fig. 1. Examples of the blur kernels k considered in this work. They represent a blur combination of isotropic Gaussian
and motion.

We propose a CNN architecture composed of several CNN sub-modules, each of which focuses
on solving a portion of the degradation process that produces the LR image. Using this approach
has several advantages over using a current SR CNN:
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1) By breaking the SR task into sub-tasks each addressed by a sub-module, a strong regular-
ization is imposed over the function space that the model is able to explore. This makes
learning easier, leading to improved optima and generalization.

2) Task-specific constraints in each sub-module can be introduced, to further reduce the search
space (see Sections II-B and II-C).

3) Specialized architectural elements can be used for each task in each sub-module, improving
model performance and efficiency. (see Section II-A).

To do this, we design a cascade based on Eq (3) as an approximation to Eq (1). This allows us
to first perform denoising and deblurring before we upsample the LR image. Based on Eq. (3) and
assuming that kL is known, we propose the decomposition of the architecture in the following
specialized sub-modules:

1) Eθ: Extraction of motion-corrected features. See Section II-A.
2) Dφ: Deblur and Denoising of the LR image, Section II-B.
3) Uψ: Upsampling, to get an initial SR solution, Section II-C.
4) Fω: Refinement, improvement of the initial SR solution by cleaning the errors and artifacts

caused by the accumulated errors in the cascade. See Section II-D.

Fig. 2. Proposed architecture for solving the MDSR problem. Each sub-module is a CNN and is specialized in solving
a sub-task. Note that “CT” indicates concatenation of the feature maps.

The structure of the proposed architecture is shown in Fig.2. The architecture follows a cascade
approach where the features h and the result of each sub-task are needed for the next sub-module in
the cascade. Compared to other cascade approaches, our sub-modules use not only the previously
calculated image, but also the features calculated by all previous sub-modules, which allows the
propagation and reuse of more information through the cascade. For each spatial location, our
model encodes a vector of information, instead of just a value, better representing the distribution
of solutions. The architecture is trained in a end-to-end fashion, being its loss function

LCADUF = αLD + βLU + (1− α− β)LF (4)
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where α, β > 0, α+ β < 1 and LD, LU and LF are specific losses for sub-modules Dφ, Uψ and
Fω, respectively. These specific losses will be defined later.

Let us now describe in detail each of the proposed sub-modules of the architecture.

A. Extraction of motion-corrected features

Following Eq. (3), the first issue to be addressed is the deconvolution of y by the blur kernel
kL to obtain x ↓s. Because the deformations present in the image depend on the combination of
the blur kernel kL and the image, learning a single CNN that can cope with all these variations
is a challenging task. For this reason, we propose to start from an initial noisy solution that can
be calculated quickly using the Wiener filter:

yw = F−1(
F(kL)F(y)

F(kL)F(kL) + ε
), (5)

where F and F−1 denote the fast Fourier transform (FFT) and inverse FFT, respectively, and F
denotes the complex conjugate of F , and ε is the regularization term.

As seen in Section III-E, the use of yw as the starting point significantly outperforms using
only the blur image y. However, the Wiener filter increases the noise in the image and introduces
artifacts that are difficult to eliminate without the information of the blur image y, see Fig 3. To
correct the image with a CNN, at each spatial location, we use the features extracted from y and
yw. However, because of the blurring processes, y and yw are not aligned with each other. In this
case, we can consider yw as an anchor that indicates the correct position.

Sampled GT (x ↓s) Sampled GT LR (y) Wiener (yw)

Fig. 3. Illustration of the artifacts originating from using the Wiener filter. Some produced artifacts can be compatible
with natural images, being difficult to distinguish from real structures using only the filtered image.

To align the features extracted from both y and yw, we propose the use of deformable con-
volution. First proposed in [38] and enhanced in [39] to handle more deformations, deformable
convolutions are a modified convolution operation:

gl(m) =

O∑

o=1

woam,of
l−1(m+ o+ ∆mm,o), (6)
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where gl(m) denotes the feature vector in layer l at location m, o is the position of the convo-
lutional kernel w, and ∆mm,o and am,o are offsets and scalar modulation, respectively. These
parameters are calculated for each m location using another convolutional layer. Owing to this
operation, our model can align the features of y and yw at each spatial location, making further
downstream calculations much easier.

Fig. 4. Motion-corrected feature extraction sub-module. Conv is a convolution, and DConv is a deformable convolution.
Each convolution is followed by a leaky-ReLU activation with 0.2 of negative slope and has a 3× 3 kernel with the
exception of the first and last convolutions that use a 5 × 5 and 1 × 1, respectively. Convolutions for scale 1 use 64
features while convolutions on scales /2 and /4 use 32.

Nevertheless, the calculation of parameters a and ∆m is not an easy task: Movement of the
camera can be quite strong, thus matching locations between y and yw can be too far away. In
these cases, a large receptive field is required. To obtain this, we extract features at scales 1, /2,
and /4 using the architecture shown in Fig. 4. By doing so, we increase the receptive field to 37

pixels without the need to use a far deeper architecture.
This sub-module, Eθ, produces the features hE that will be used by the remaining network.

Although it could move the feature vectors anywhere, by propagating the loss of the next sub-
modules in the cascade, it would have to learn to put then in the correct place, producing motion-
corrected features.

B. LR-Anchor image estimation

According to Eq. (3), we start mapping the LR image y to an LR image y∗D without blur or
noise.

To define y∗D, one approach can be defining it as x ↓s. However, the difficulty of the SR task
primarily depends on the blur kernel used before downsampling. Those cases with both low and
high Gaussian blur led to significantly worse reconstruction. Large kernels in HR produce highly
blurry LR images while small kernels in HR do not have a smooth downsampling form in LR,
which introduces aliasing artifacts in the LR image. Aliased LR images can be very difficult to
super-resolve because artifacts must be distinguished from real high-frequency patterns in the
image.
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Following the above arguments, we define y∗D as the LR image obtained by downsampling x
with a downsampling operator ↓Ds that it is easier to invert by the upsampling network that we
use. That is:

y∗D = x ↓Ds = [x~ kD] ↓s, (7)

where ↓s is the bicubic downsampling of factor s, and kD is an isotropic Gaussian with σ 0.8

and 1.8 for scaling factors 2 and 4, respectively. These values have been found experimentally
from within the range [0.2, 4.0]. Notice that the selection of these values can be seen as a form of
“Privileged Information” [37]. The images {y∗D} represent additional information available only
during training and are used to estimate the optimal LR image. In this regard, y∗D acts as an
anchor that guides and regularizes the model training.

The features for the deblurring task are computed using a CNN-regression model that maps its
input {hE, yw}, the motion-corrected features, and the low-resolution Wiener deconvolved image,
into y∗D, the downsampled version of x. Let us denote by Dφ(hE, yw) the mapping defined by
the CNN model. Then, Dφ̂(hE, yw) : {yw} → {yD}, where φ̂ represents the weights learned after
training the model. The parameters can be optimized introducing the following loss LD

LD =
1

N

N∑

i=1

L(Dφ(hE, yw), y∗D), (8)

where L(·) is any loss function that estimates the differences between two images, like mean
squared error (MSE). It can be observed Dφ computes a deblurring and denoising mapping for
the degradation model defined in Eq. (3) because the low-resolution image y is mapped into an
image without blur or noise, yD, that is easier to super-resolve.

C. Initial high-res image estimation

After deconvolution, we are left with upsampling. This is equivalent to the problem defined
in Eq. 2 when n = 0 and ↓Ds =↓s. Let us define the minimization of the upsampling process as
follows:

ψ̂ = arg min
ψ

1

N

N∑

i=1

L(Pψ(z), x), (9)

where Pψ is a CNN with parameters ψ, and z is the input that will be defined later. It should
be noted that this approach is similar to the one used in other cascade methods [10], [8]. If
the error introduced by the previous steps in the cascade is low, it is expected that it will not
significantly affect this step. In this case, the simplest solution, therefore, would be to use as
an upsampling sub-module a classic CNN for SISR such as SRResNet [29] to minimize Eq. 9.
However, as shown by our experiments in Section III-E, this is not the best solution in practice.
By minimizing Eq. 9, it has to solve two distinctive tasks: Inversing the operator ↓Ds and removing
the approximation error. The learning of the parameters is more difficult: Small differences can
be due to approximation errors or different structures in the HR space. If not constrained, small
changes in the LR image can lead to very different SR images, leading to an ill-conditioned
model. This could result in the appearance of strong artifacts.
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To use Eq. 9 to learn only the inverse of ↓Ds , we constrained the predicted image xU to those
solutions that satisfy,

xU ↓Ds = yD, (10)

through the use of the projection introduced in [40]. Let us define A as a degradation operator such
that Ax = x ↓Ds and A+ as the Moore-Penrose pseudoinverse [41] of A (refer to Section III-B
to see the estimation of A+). In our case, A is an affine projection implemented as a stride
convolution, and A+ is implemented using a convolutional transpose layer. For a given Pψ(z), a
new transformation Uψ(z) can be defined as,

Uψ(z) = (I −A+A)Pψ(z) +A+yD, (11)

such that if no noise is present because AA+A = A and A is a full row rank matrix, that is,
AA+ = I , then,

AUψ(z) = A(I −A+A)Pψ(z) +AA+yD = 0 + yD. (12)

Therefore, if xU = Uψ(z), Eq. 10 is always satisfied.
Owing to the loss of information caused by approximation errors, the information of yD

contained in hD is not sufficient to properly invert ↓Ds . Our model needs information of the
original y, which could not be preserved in hD. We add this information by concatenating to hD
the motion-corrected features hE, obtaining hED. Note that this would not be possible without
motion-correction because the features hD will not align with features extracted from the blurred
image y. Therefore, we define the input as z = {hED, yD}. Using these inputs and the affine
projection, we obtain a specialized SR sub-module by replacing Pψ for Uψ and introduced the
following loss to optimized its parameters:

LU =
1

N

N∑

i=1

L(Uψ(hED, yD), x). (13)

D. High-res image refinement

Compared to previous SISR cascade models, ours adds an improvement in the form of a last
fusion block fed with the characteristics of all the blocks in the cascade (see Fig. 2) focused on
removing the accumulated error. This last block is the result of distinguishing two tasks in the
previous step: Inverting the downsampling operator ↓Ds , in addition to removing the accumulated
error e introduced by the previous cascade sub-modules,

x = xU + e. (14)

Note that e can be seen as being structured noise dependent not only on y, but also on previous
sub-modules Eθ, Dφ, and Uψ. Because Uψ is constrained, e will not introduce strong artifacts
when the error introduced by Dφ is small (as shown in Section III-E). Therefore, we argue that a
last refinement sub-module Fω, when fed with the features hEDU calculated by each one of the
specialized sub-modules, Eθ, Dφ, and Uψ, can learn to calculate a residual that, when added to
xU, compensates for the accumulated errors e in the cascade. We implemented Fω using a CNN
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regression model. The learning of the parameters is performed using the following loss function:

LF =
1

N

N∑

i=1

L(Fω(hEDU, xU), x). (15)

E. Dφ, Uψ and Fω architecture

The architecture that implements our sub-modules Dφ, Uψ, and Fω is shown in Fig. 5. As
seen, it is a modification of the residual architecture SRResNet proposed in [42]. We remove
the batch normalization layers as suggested in [5] and replace the ReLU activation with leaky
ReLU with 0.2 negative slope. To further increase the receptive field, the first convolution in each
residual block is a dilated convolution [43] with the dilatation parameter set to 2. The architecture
is fed with features h calculated by the previous sub-modules. The first two convolutional layers
transform the input features. Then, Nb residual blocks are used to produce the new set of features
ĥ. To calculate the output image ẑ, we use ĥ together with a dynamic filter network (DFN) [44].
The DFN predicts c, which is a collection of filters, one for each spatial location in the output
image. Using the approximation proposed in [45], ẑ is calculated as,

ẑi,j = ri,j +

p∑

l=−p

p∑

m=−p
ci,j,l,m ∗ zi+l,j+m, (16)

where z is the output image calculated by the previous sub-module, i, j is a spatial location, and
r is a residual image calculated by a CNN using ĥ. We use a value of p = 2. By using this
approximation, our model can filter spatially-variant artifacts present in the outputs of previous
sub-modules. Then, the filtered outputs can be used to perform residual learning [46], [47] more
effectively. These artifacts are caused by approximation errors in the image formation model and
the calculation. Notice that a normal CNN can also learn to remove these artifacts, but it would
require far more parameters because CNN filters are spatially-invariant.

In each convolution, except in the input convolutions of each sub-module and the two output
convolutions, kernels of size 3× 3 and 64 filters are used. The input convolutions use kernels of
size 1 × 1 to fuse the features of the previous sub-modules. In our experiments, the number of
residual blocks Nb was set to eight for Dφ, 16 for Uψ, and Fω uses only four. In the case of Uψ

and Fω, both c and r are upsampled by scaling factor s using sub-pixel convolutions [33]. The
sub-pixel convolution is located after the last convolution for c and before in the case of r. The
first two convolutions of Dφ are skipped because Eθ already provides a suitable set of features.

III. EXPERIMENTS

A. k∗L estimation

To train our models, for each k in Eq. (1), we need to have k∗L for Eq. (3) such as k∗L =

arg minkL ||[x ~ k] ↓s −x ↓s ~kL||2F ,, that is, k∗L minimizes the difference between both
degradation models. To calculate k∗L, we use a neural network with one hidden layer with 2048

neurons. This network Lζ with parameters ζ is trained by minimizing ||x~k] ↓s −x ↓s ~Lζ(k)||2F .
We use the Adam optimizer for 60 epochs with lr = 10−4 and weight decay set to 10−4.
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Fig. 5. Architecture used for sub-modules Dφ, Uψ , and Fω . Conv indicates a convolutional layer and D. Filter the
correlation of kernels c with an input image z. We use Nb residual blocks [42], each composed of two convolutions
after removing the batch normalization layers, as suggested in [5]. Each convolution uses a 3 × 3 kernel size, with
the exception of the first layer that uses 1× 1 kernels to fuse the previous sub-module features. With the exception of
the output convolutions, all are followed by a leaky ReLU activation with a negative slope of 0.2. We skip the first
two convolutions for Dφ because Eθ already provides a suitable set of features. In the case of Uψ and Fω , sub-pixel
convolutions [33] of scaling factor s are used to produce c and r with the correct output size (see the text for further
details).

TABLE I
KEY COMPONENT ANALYSIS OF THE PROPOSED MODEL FOR SCALE FACTOR 4 ON THE GAUSSIANSM TESTING

DATASET (IMAGES FROM BSD100 [48], URBAN100 [3] AND MANGA109 [49] DATASETS). BEST AND
SECOND-BEST RESULTS APPEAR IN BOLD AND UNDERLINED, RESPECTIVELY.

1 2 3 4 5 6 7 8 9 10
Model Pψ(y) Pψ(y,PCA(k)) Pψ(yw) PψDφ(yw)-no-PI PψDφ(yw) FωUψDφ(yw) FωUψDφ(y, yw) CNN-Cascade CADUF

PSNR/SSIM 26.63-0.773 27.06-0.780 27.09-0.785 27.24-0.789 27.37-0.792 27.51-0.795 27.53-0.796 27.25-0.788 27.90-0.806

B. A+ calculation

To use the affine projection proposed in Section II-C, we implement the A+ operator using a
CNN with two convolutional layers with 32 filters followed by leaky ReLU (α = 0.2) activation
and a final sub-pixel convolution. The sizes of the kernels are 7×7, 5×5, and 3×3, respectively.
Following the approach in [40], we train this network by minimizing the following loss function
with a stochastic gradient descent, that is,

µ̂ =arg min
µ

Ex‖Ax−AA+
µ (Ax)‖22

+ Ey‖A+
µ (y)−A+

µ (AA+
µ (y))‖22, (17)

where A is the degradation operator and A+
µ is a CNN of the parameters µ. We stop the

optimization when the loss value is less than 10−7. During the training of our main network,
we keep µ fixed.

C. Datasets

The training dataset is formed by images from the DIV2K [50] and Flickr2K [51] datasets. The
ground-truth of our training consists of 3450 high-quality 2K images. During training, random
patches cropped from the images of the dataset were extracted. The size of each HR patch is
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s48× s48, where s is the scaling factor. The LR images were synthesized according to Eq. (1).
For testing, we used images from standard SR test image datasets BSD100 [48], Urban100 [3],
and Manga109 [49]. To ensure that a wide variety of degradations are present in the test, we
generated three LR images for each of the HR images.

The blur kernels used to generate the LR images cause a uniform blur and are a combination
of an isotropic Gaussian blur kernel and a motion blur kernel. We simulate two different motion
blur kernels representing simple and complex camera movements. In the simple case, only simple
linear movement is considered. Meanwhile, the motion blur kernels for the complex case simulate
more complex camera movements with curved trajectories. They are generated using the method
in [52] with T = 0.8 and anxiety 10R/1000, where R is a random number from a uniform [0, 1]

distribution. Furthermore, in this scenario, AWGN of standard deviation σ = 0.01 is added to
the LR image. The combination of Gaussian blur and the motion blur kernels of each scenario
produces two sets of blur kernels that we use in our experiments. Fig.1 in Columns (1,3,6) and
(2,4,5,7) show blur kernel examples of the simple and complex case respectively. We refer to
these two sets of kernels, GaussianSM and GaussianCM, respectively.

In the case of GaussianSM, the σ of the Gaussian blur is sampled randomly during training
from the range [0.2, 2.0] and [0.2, 4.0] for scaling factors 2 and 4, respectively. The motion blur
kernels of GaussianSM are sampled with angles in the [0, 180) range and length in the range [1, 9]

and [1, 15] for scaling factors 2 and 4, respectively. GaussianCM consists of 640 blur kernels with
sizes between 11× 11 and 45× 45 pixels that are combined with a Gaussian blur with σ in the
range [0.2, 1.0] and [0.2, 2.0] for factors 2 and 4, respectively. We used 540 of these kernels for
training and 100 for testing.

D. Model training

We train our models using the Adam optimizer with β1 = 0.9, β2 = 0.999, weight decay
of 10−4, and a batch size of 64. For each epoch, we sample 3000 batches. We define L as
the Charbonnier loss [53], as we found it to be more stable than MSE. The Charbonnier loss
between two images u and v is γ(u, v) =

∑
i

∑
j

√
(ui,j − vi,j)2 + ε2, where ε = 10−3. We apply

data augmentation by randomly performing horizontal and vertical flips, 90-degree rotations, and
random scaling with a factor between [0.5, 1.25]. The parameter of the Wiener filter is set as the
minimum between 0.001 and the estimated standard deviation of the noise in the images. All of
our models use the RGB images as input and do not require any additional preprocessing step.
The implementation was performed using Pytorch [54]1.

Our training method consists of two distinctive phases: A) An initialization phase where we
train our model using much higher α = 0.6 and β = 0.3, forcing the model to first converge to
good solutions for the intermediary problems of an optimal LR image and initial high-res image
estimation. Although it is possible to train the proposed model without this initial step, we have
found that this initialization helps stabilize the model and makes it converge earlier. We trained
for 20 epochs with lr = 10−4.

1The code and trained models shown in this work will be made available upon acceptance of the paper at
https://github.com/vipgugr/CADUF.
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B) Main training phase. We set α = 0.1 and β = 0.1 and train our model for 120 epochs. The
learning rate was set to 10−4 for the first 90 epochs and then set to 10−5 for the remaining 30
epochs.

E. Ablation study

In this section, we conducted experiments to determine the contribution of each component
of the proposed CADUF. All models have 28 residual blocks and are trained as described in
Section III-D. The experiments were conducted for scale factor 4 and using GaussianSM training
and testing sets (see Section III-C),with the difference that the blurs used were sampled with σ
in the range of [0.2, 3.0) and length of [1, 11]. This was done to ease the training on the simpler
models because using strong blurs makes it unstable. Table I contains the results for this study
in terms of the PSNR and SSIM.

The base model Pψ(y) is a single CNN model that uses the architecture described in Sec-
tion II-E (see Fig 5), where h is the features extracted from y with two convolutional layers
and z = y. This model shows the performance that can be expected from a classic SR CNN
model. We improve the model performance by progressively adding each main component of the
CADUF.

The first improvement of 0.46dB-0.12(SSIM) is achieved by introducing the kL blur information
into the network using the Weiner-filtered image yw instead of y (Pψ(yw)) (Columns 2 and 4 in
Table.I). Facilitating the blur information eases the network task because the blur no longer needs
to be identified. Alternatively, Zhang et al. [9] proposed using PCA to encode the information of
the blur kernel k and use it alongside the blur image y. We also test this approximation, making
the model Pψ(y,PCA(k)) (Column 3 in Table.I). Despite the noise and artifacts introduced by
the Weiner filter and the approximation error of using Eq. (3), Pψ(yw) slightly outperforms
Pψ(y,PCA(k)). Moreover, the use of PCA requires its training with the possible blurs k, which
harms the generalization capabilities of the model to unseen blurs.

The second improvement is the decomposition of Pψ(yw) into PψDφ(yw) (Columns 4 and
6 in Table.I). By specializing part of the model in the denoising and deconvolution of the LR
image, we can see an increase in performance of 0.28dB-0.007(SSIM) despite the use of the same
number of residual blocks (a total of 28 residual blocks, eight residual blocks for Dφ and 20 for
P). We also tested the contribution of using privileged information (PI) [37] during training. By
training Dφ to map the input to x ↓s instead of x ↓Ds , we obtain a new model that does not make
use of PI. We call this model PψDφ(yw)-no-PI. As seen in Columns 5 and 6 of Table I, the use
of PI is a key element of the proposed CADUF because omitting it significantly deteriorates the
performance (0.13dB-0.003(SSIM)).

Next, we use the approximation proposed in Section II-C to separate Pψ into FωUψ, obtaining
the model FωUψDφ(yw) (Column 7-Table I). Using the same number of residual blocks (28),
FωUψDφ(yw) outperforms PψDφ(yw) (Column 6-Table I) by 0.14dB-0.003(SSIM). This is in line
with our hypothesis that the decomposition of the task of Pψ into two sub-tasks, upsampling, and
error correction, simplifies the optimization and allows for better minima. It can also be observed
that, owing to the introduction of prior information and the use of constraints, the concatenation
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TABLE II
COMPARISON WITH NON-BLIND SOTA ON THE BSD100 [48], URBAN100 [3] AND MANGA109 [49] DATASETS

FOR THE BLUR KERNELS IN GAUSSIANSM AND GAUSSIANCM DATASETS. TO ENSURE FAIRNESS IN THE
COMPARISON, THE METHODS INDICATED WITH “*” WERE RETRAINED. THE AVERAGE NUMBER OF MACS PER

IMAGE OF EACH METHOD IS ALSO REPORTED. BEST AND SECOND-BEST RESULTS ARE BOLD AND UNDERLINED,
RESPECTIVELY.

Scale Model
PSNR-SSIM

MACsGaussianSM GaussianCM
BSD100 Urban100 Manga109 BSD100 Urban100 Manga109

×2

Bicubic 26.21-0.692 23.58-0.685 25.54-0.809 23.24-0.543 20.68-0.529 21.28-0.655 2.02 ∗ 107

ZSSR [34] 26.55-0.717 23.81-0.711 25.76-0.810 24.11-0.556 21.79/0.591 21.92-0.664 4.70 ∗ 1013

RCAN [56]* 30.85-0.874 29.22-0.882 34.27-0.956 25.13-0.640 22.61-0.639 24.40-0.775 2.46 ∗ 1012

IRCNN [6]+RCAN [56] 27.08-0.759 24.66-0.751 27.92-0.879 26.23-0.712 24.30-0.732 27.01-0.846 2.70 ∗ 1012

DeblurGAN+RCAN [56] 26.21-0.702 23.57-0.694 25.54-0.815 23.99-0.573 21.55-0.568 22.86-0.706 2.47 ∗ 1012

SRMDNF [9]* 30.83-0.873 29.42-0.884 34.94-0.957 25.99-0.695 24.01-0.712 26.36-0.825 2.60 ∗ 1011
SFTMD [10]* 31.57-0.889 30.62-0.907 36.79-0.969 27.26-0.742 25.66-0.774 28.97-0.880 9.71 ∗ 1011

DPSR [8] 28.37-0.793 27.11-0.815 33.19-0.925 27.23-0.740 25.89-0.790 30.11-0.895 4.86 ∗ 1012

CADUF 31.92-0.893 31.11-0.914 37.70-0.972 27.92-0.761 26.64-0.805 30.73-0.906 6.56 ∗ 1011

×4

Bicubic 24.19-0.582 21.51-0.564 22.52-0.698 23.05-0.533 20.40-0.511 20.99-0.642 1.68 ∗ 107

ZSSR [34] 24.76-0.589 21.83-0.573 22.88-0.709 23.32-0.545 20.90-0.520 21.45-0.652 2.14 ∗ 1013

RCAN [56]* 26.92-0.713 24.86-0.736 28.80-0.877 24.80-0.610 22.35-0.612 24.13-0.756 6.38 ∗ 1011

IRCNN [6]+RCAN [56] 24.71-0.596 22.18-0.587 23.60-0.714 24.19-0.567 21.87-0.565 23.21-0.691 6.98 ∗ 1012

DeblurGAN+RCAN [56] 23.48-0.550 21.34-0.538 22.31-0.663 22.11-0.498 20.59-0.494 21.35-0.618 6.40 ∗ 1011

SRMDNF [9]* 26.82-0.708 24.76-0.729 28.53-0.870 25.31-0.632 23.10-0.649 25.45-0.793 6.71 ∗ 1010
SFTMD [10]* 27.12-0.721 25.25-0.752 29.42-0.889 25.67-0.647 23.62-0.674 26.46-0.821 2.82 ∗ 1011

DPSR [8] 25.06-0.641 23.47-0.686 27.35-0.842 24.79-0.629 22.51-0.656 24.95-0.804 1.33 ∗ 1012

CADUF 27.41-0.729 25.64-0.768 30.05-0.900 25.73-0.652 23.82-0.689 26.78-0.835 2.03 ∗ 1011

of Dφ and Uψ does not output complex artifacts that are difficult to filter out by Fω. As shown
in [55], CNN architectures introduce deep priors, which in some applications explain a large
portion of the model efficiency. However, in our case, the ablation study shows that it is the
specific training, with the introduction of FωUψ and privileged information, that is the primary
factor responsible for the model efficiency.

We also tested the proposed mechanism to connect all the sub-modules of the CADUF. To
do that, we develop a new model by feeding each sub-module only with the image z calculated
by the previous one (not the features h) and omitting the reuse of z with dynamic filtering. By
doing this, we obtain a classic CNN-cascade model similar to those used in the literature [36],
[10], a concatenation of a deblur and upsampling CNN. This model, which we call CNN-Cascade
(Column 9 in Table.I), obtains results far worse than FωUψDφ(yw) and even PψDφ(yw) (0.26dB-
0.007(SSIM) and 0.12dB-0.004(SSIM), respectively). As we argue in Section II, the difference
in performance is because the use of the features of previous sub-modules allows for better
information propagation through the cascade.

Finally, we evaluate the contribution of our proposed motion-corrected feature extraction sub-
module, Eθ, appending the information extracted from y and yw together. Overall, it constitutes
the full CADUF model (Column 10 in Table.I). Compared to the concatenation of y and yw

(FωUψDφ(y, yw)) (Column 8 in Table.I), the use of Eθ significantly increases the performance
(0.37dB-0.010(SSIM)) with little overhead computation.

Chapter 3. Image Restoration and Super-Resolution 85



F. SOTA Comparison

In this section, we compare our CADUF model against the SOTA methods in SISR dealing
with multiple degradations. RCAN [56] is a very deep CNN developed for SISR that does not use
any information about the degradation but achieves a very high score. In contrast, SRMDNF [9]
and SFTMD [10] incorporate information of the kernel k into the network by encoding it using
PCA, but obtaining lower performance than RCAN [56]. We also show the results of combining
SOTA deconvolution methods with an SISR CNN in a cascade. Specifically, we compared two
combinations, both using deconvolution followed by upsampling: IRCNN [6]+RCAN [56] and
DeblurGAN+RCAN [56]. Finally, we also compare the MBO approaches ZSSR [34] and DPSR
[8].

“HighschoolKi-
mengumi vol01”

Bicubic IRCNN [6]+RCAN [56] RCAN [56] SRMDNF [9]

SFTMD [10] DPSR [8] CADUF HR

“img 049”

Bicubic IRCNN [6]+RCAN [56] RCAN [56] SRMDNF [9]

SFTMD [10] DPSR [8] CADUF HR

“58060”

Bicubic IRCNN [6]+RCAN [56] RCAN [56] SRMDNF [9]

SFTMD [10] DPSR [8] CADUF HR

Fig. 6. Comparison of IRCNN [6]+RCAN [56], RCAN [56], SRMDNF [9], SFTMD [10], DPSR [8] and CADUF
on GaussianSM dataset for factor 2 on image “HighschoolKimengumi vol01” from Managa109 [49] dataset, image
“img 049” from Urban100 [3] dataset and image “58060” from BSD100 [48] dataset.

We test all models using the test datasets GaussianSM and GaussianCM described in Sec-
tion III-C. To ensure fairness in the comparison, we not only train our model for each setting
using the appropriate training set, but also do the same for competing models that require it.
Therefore, we trained RCAN [56], SRMDNF [9], and SFTMD [10]. The training and evaluation
of the competing methods was performed using the code provided by the original authors.

Table II shows the results of our CADUF model and competing models in the non-blind
scenario for GaussianSM and GaussianCM kernels datasets and scaling factors 2 (x2) and 4 (x4).
We evaluate the performance of the methods using the PSNR and SSIM metrics. Furthermore,
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“PsychoStaff” HR Bicubic IRCNN [6]+RCAN [56] RCAN [56]

SRMDNF [9] SFTMD [10] DPSR [8] CADUF

“img 089” HR Bicubic IRCNN [6]+RCAN [56] RCAN [56]

SRMDNF [9] SFTMD [10] DPSR [8] CADUF

“img 096” HR Bicubic IRCNN [6]+RCAN [56] RCAN [56]

SRMDNF [9] SFTMD [10] DPSR [8] CADUF

Fig. 7. Visual comparison of IRCNN [6]+RCAN [56], RCAN [56], SRMDNF [9], SFTMD [10], DPSR [8] and CADUF
on GaussianCM dataset for factor 2 on image “PsychoStaff” from Managa109 [49] dataset and images “img 089” and
“img 096” from Urban100 [3] dataset.

we also include a study of the time complexity of each method using the average number of
multiplication and additions (MACs) per image as a metric. The smaller the number of MACs,
the faster the algorithm performance.

As seen in Table II, compared to other LB methods, CADUF performs significantly better
in all datasets and scenarios. In GaussianSM, CADUF obtains an average improvement on the
datasets of 2.13dB-0.02(SSIM) in x2 and 0.84dB-0.02(SSIM) in x4 over RCAN [56] and 0.58dB-
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TABLE III
COMPARISON WITH BLIND SOTA ON THE BSD100 [48], URBAN100 [3] AND MANGA109 [49] DATASETS FOR

THE BLUR KERNELS IN THE GAUSSIANCM DATASET. TO ENSURE FAIRNESS IN THE COMPARISON, THE METHODS
INDICATED WITH “*” WERE RETRAINED. BEST AND SECOND-BEST RESULTS ARE BOLD AND UNDERLINED,

RESPECTIVELY.

Scale Model
PSNR-SSIM

BSD100 Urban100 Manga109

×2

Bicubic 23.24-0.543 20.68-0.529 21.28-0.655
RCAN [56]* 25.13-0.640 22.61-0.639 24.40-0.775

DeblurGAN+RCAN [56] 23.99-0.573 21.55-0.568 22.86-0.706
IKC [10]+SFTMD [10]* 18.27-0.451 16.29-0.456 17.50/0.585

DPSR [8] 23.56-0.678 20.32-0.652 23.57-0.825
Our Model 25.65-0.698 23.27-0.674 25.06-0.847

0.01(SSIM) in x2 and 0.44dB-0.01(SSIM) in x4 over SFTMD [10], being significantly faster.
The performance difference increases for the GaussianCM dataset. In this case, the figures show
improvements of 4.38dB-0.14(SSIM) in x2 and 1.68dB-0.06(SSIM) in x4 over RCAN [56] and
1.14dB-0.03(SSIM) in x2 and 0.19dB-0.01(SSIM) in x4 over SFTMD [10].

The difference between CADUF and the other best performing methods in GaussianSM is more
apparent if we perform a closer inspection of the produced images in Fig. 6. As shown, when
uniform motion blur is present in the image, CADUF is able to recover fine details in the image
as well as the other best performing method, SFTMD [10], but without introducing ghosting and
other artifacts. Despite being a blind method, RCAN [9] is able to compete with the remaining
methods in GaussianSM, obtaining similar results to other non-blind methods such as SRMDNF
[9]. However, its performance drops significantly for the more complex blurs in GaussianCM,
showing that even a CNN as complex as RCAN [9] is not able to cope with the degradation
variance of a more complex realistic scenario without the introduction of specialized elements.
In this case, although SRMDNF [9] and SFTMD [10] do not suffer as much as RCAN [9], they
show a more significant drop in performance than CADUF and DPSR [8]. We believe that this is
because both rely on PCA to encode blur information. Since the variability of the blur is much
higher, it is more difficult to accurately depict new blur kernels at test time. Furthermore, both
models rely on standard convolutional layers that are not well suited for recovering blurs caused by
strong camera motions. In contrast, the use of the motion-corrected feature extraction sub-module
and the Wiener filter allows our model to not only adapt to blur introduced by more complex
camera motions but also to better generalize and be more robust to blurs not seen in training.
These features are not shared by the other two cascade models IRCNN [6]+RCAN [56] and
DeblurGAN+RCAN [56]. Both produce worse results than RCAN [56] and cannot compete with
the remaining CNN methods in terms of performance and time consumption. The accumulated
errors in the cascade and the strong artifacts that appear due to it are the source of this poor
performance.

Compared to MBO methods (ZSSR [34] and DPSR [8]), we can see that CADUF requires
orders of magnitude fewer MACs because it does not need to solve an expensive optimization
problem for each new test image. Although our model’s ability to resolve unseen blurs is lower,
it generalizes well to new degradations close to those observed in training, that is, a similar
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type of noise and blur (motion, defocus, downsampling). We can see that our model significantly
outperforms both ZSSR [34] and DPSR [8], with the latter being the closest in terms of perfor-
mance of the other two. Fig. 72 shows a visual comparison of SOTA methods and CADUF for
testing images of the GaussianCM dataset. As seen, compared to the other two best-performing
models, SFTMD [10] and DPSR [8], CADUF produces significantly better images, closer to the
HR image and with far fewer artifacts. Especially remarkable is the case of image “img096”
of the Urban100 [3] dataset, where CADUF is able to reconstruct the building windows on the
center of the image far better than the other methods. Despite the good performance shown by
CADUF, when very strong blurs are present, it would fail to properly recover the HR image.
One example of these cases is shown in Fig. 8. The CADUF method is unable to recover the
face of the soldier and produces some easily seen artifacts in the background wall and the soldier
helmet. However, CADUF still produces better results than the other SOTA methods, introducing
significantly fewer artifacts and better recovering the hands of the soldier and more details of the
face. When making a comparative visual study of our model against the SOTA, we found that
it produces competing results when the blur does not include too much motion and outperforms
other models when strong motion is present.

“376043” HR Bicubic IRCNN [6]+RCAN [56] RCAN [56]

SRMDNF [9] SFTMD [10] DPSR [8] CADUF

Fig. 8. Failure case of CADUF for factor 2 on image “376043” from the BSD100 [48] dataset with degradation from
the GaussianCM dataset.

Finally, in Table III, we compare our method against competing methods in the blind setting in
the GaussianCM dataset. We estimate the LR blur kernel k∗L for algorithms that require it (DPSR
[8] and ours) using the method in [57]. In our model case, we fine-tuned it for 100 epochs with
lr=10−5. We report results for factor 2 because the loss of information coupled with errors during
the degradation estimation makes it difficult to analyze the differences between the methods for
factor 4. As seen, the proposed model has a significantly less drop in performance compared
to DPSR [8] when an approximation of k∗L is used. In this case, our model benefits of the

2More examples can be downloaded at https://github.com/vipgugr/CADUF.
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possibility to fine-tune and adapt to the errors in the blur kernel estimation. Thanks to this fact,
it still significantly outperforms all other methods (2.18dB-0.02(SSIM) and 0.61dB-0.06(SSIM)
over DPSR [8] and RCAN [56], respectively).

IV. CONCLUSIONS

In this study, a new cascade CNN model for SISR capable of dealing with multiple degradations,
has been proposed. The model exhibits a new approach for searching for a solution with several
differentiating keys. First, cascade sub-modules are explicitly specialized in specific tasks: motion-
corrected feature extraction, deblur, and upsampling. Second, a new way of regularizing the
deblur and upsampling sub-modules is introduced from domain knowledge. As a consequence
of the upsampling restriction using affine projection [40], a final sub-module that corrects the
accumulated cascade error can be introduced to further increase the model performance. As far
we know, the use of domain knowledge to constrain the training of modules in a cascade represents
a novelty in SISR. Finally, the model uses an improved method of connecting the sub-modules in
the cascade where each sub-module re-uses the features calculated by all previous sub-modules.
As a result, our model is fast, robust, and accurate. The experiments were performed using two
new SISR datasets, containing degradations with simple and complex camera movement. These
experiments show that CADUF significantly outperforms CNN-BMs with architectures of the
same depth. Furthermore, CADUF outperforms the remaining compared SOTA methods for non-
blind and blind SISR while being significantly faster. Although CADUF is a CNN-BM, it can be
generalized to unseen blurs during training, competing in this regard with MBO models.
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different sets of features and ML models for PMMWI threat detection. As a result

of this study, we propose a new ML-based approach for PMMWI threat detection.

• Finally, we introduce a new and comprehensive database of PMMWIs. This

database contains 3309 images (463 without threat, 2144 with one threat and 702

with two threats) obtained from 33 people of different complexion and 12 different

hidden objects simulating threats. To the best of our knowledge, this database is

the largest and possesses the greatest variety of object types and sizes ever used

for threat detection in PMMWIs.
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Abstract

The detection and location of objects concealed under clothing is a very challenging task that
has crucial applications in security. In this domain, passive millimeter-wave images (PMMWIs)
can be used. However, the quality of the acquired images, and the unknown position, shape, and
size of hidden objects render this task difficult. In this paper, we propose a machine learning-based
solution to this detection/localization problem. Our method outperforms currently used approaches.
The effect of non–stationary noise on different classification algorithms is analyzed and discussed,
and a detailed experimental comparative study of classification techniques is presented using a
new and comprehensive PMMWI database. The low computational testing cost of this solution
allows for its use in real-time applications.

Index Terms

Threat detection, machine learning, passive millimeter-wave imaging.

I. INTRODUCTION

(a) (b) (c) (d) (e) (f)

Fig. 1: Examples of PMMWI. Hidden objects correspond to whiter areas within the body.
Unfortunately, not all whiter areas correspond to hidden objects.

Millimeter and submillimeter waves are very high-frequency electromagnetic radiations with
wavelengths in the ranges 30–300 GHz and 0.3–3 THz, respectively. Images in both ranges can
be obtained by employing wave scanners. Depending on wavelength, two types of scanners can
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be distinguished: active, which direct waves from 350 GHz to 800 GHz to a subject, and collect
and interpret the reflected energy; and passive scanners, which create images using background
radiation and that emitted by human bodies or objects in the range 30–350 GHz.

Active scanners provide images with higher signal-to-noise ratios (SNR), but problems related to
privacy intrusion have prevented their use in many applications. PMMWIs (see Figure 1)acquired
using passive scanners are currently being used in anti-theft and threat detection systems ([1]) in
places like airports and warehouses. Unfortunately, passive millimeter sensors (and consequently,
their images) suffer from the following problems: low SNR, low resolution, and space-variant
signal intensity. These factors degrade the performance of detection systems as they tend to
produce a very large number of false positive detections and miss real threats. Detection systems
based on passive scanners must deal with the unknown position, shape, size, and transmission
properties of the hidden objects.

In this paper, we use artificial intelligence techniques to propose a new detection approach
capable of dealing with the poor quality of PMMWIs. Our approach is based on feature extraction
and classification algorithms, in contrast to current methods that only aim to enhance the SNR of
images and apply simple detection algorithms.

Despite their enormous potential for security applications, the artificial intelligence community
has so far shown little interest in PMMWIs. This is likely because of the absence of large databases
of PMMWIs to work with. For this work, we took pictures of people of different complexions
wearing 12 objects on 10 parts of the body: forearm, chest, stomach, thigh, ankle (front), waist
(side), armpit (side), arm, ankle (lateral) thigh (lateral), and two images without any object. Images
of people wearing two objects in different locations were also taken. Real hidden threats were
simulated using objects of different sizes with millimeter wave responses similar to real threats. A
cutter, gel, a clay bar, a simulated gun, sugar, frozen peas, cologne, a bag with metal pieces, flour,
a bottle of water, and a hydrogen peroxide bottle were used. The dataset consisted of 463 pictures
of people with no objects, 2,144 pictures containing one object, and 702 pictures containing two
objects. More details are provided in Appendix. The passive scanner used in this work provided
125× 195-pixel images. The sizes of the hidden objects of interest ranged from 35 × 39 to 10 ×
10 pixels, corresponding to roughly 2752.39cm2 to 201.64cm2 object areas, respectively1. In the
section detailing the experiments, a discussion of how the size, location, and composition of the
threat influence the detection is provided.

This paper contains two major contributions. First, it provides a new real time solution to the
detection/location of hidden objects in PMMWIs using a machine learning approach. Second,
it introduces a new and comprehensive database of PMMWIs that encourages research on this
challenging problem. In the remainder of the paper, the terms hidden object and threat are used
interchangeably.

The rest of the paper is organized as follows: In section II, the current literature on PMMWI
acquisition and threat detection is reviewed. Section III describes the image enhancement technique
we propose to improve the quality of acquired images. Section IV describes the image patches
extracted from the images in the dataset. Section V discusses meaningful features extracted

1 The image database used in this paper can be downloaded at http://decsai.ugr.es/pi/pmmwi/testdata.html
upon acceptance of the paper.
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from each patch to solve the threat detection problem, and these features are compared in the
experimental section. Once features have been extracted from each patch, a formal definition of
our solution using a patch detection function and an image classification function is presented in
section VI. These two functions are described in detail in section VII. An exhaustive experimental
validation of the proposed classifiers is presented in section VIII. Conclusions are drawn in
section IX. Appendix contains a complete description of the created dataset.

II. RELATED WORK

The seminar work [2] described the phenomenology that defines the performance of PMMW
imaging systems, explained the technological advances that have made these systems a reality,
and presented some of the applications for which these sensors can be used (see also [3]). [4]
examined trends in millimeter wave imaging technologies, focusing mainly on applications and
technical parameter variations for security surveillance and non-destructive inspections.

As we have indicated, the use of very high frequencies in active sensors compromises the privacy
of the people being scanned. Furthermore, due to their very narrow frequency range detection,
passive terahertz sensors (0.3-0.35 THz) must be calibrated to detect specific materials making
them blind to others. This favors the interest in and the wide range application of PMMW sensors.
However, these sensors require the use of robust and efficient algorithms to detect concealed
objects.

Image processing techniques have been utilized on PMMWIs. Denoising, deconvolution, and
enhancement techniques have been applied to these images, (see [5], [6], [7], [8], [9], [10]). In
this paper, we develop an image denoising technique tailored to the sensors used during the
acquisition process. Note that the use of compressive sensing and super–resolution techniques on
these images has also been explored (see [11], [12]).

Few studies have been devoted to the development of robust algorithms for the automatic
detection of hidden objects when this type of image is used. In [13], an MMW imager which
employed a 1D scanned focal-plane array operating at 0.35 THz and produced a real-time head-to-
toe video output is utilized. K-means was used to segment MMWIs into three regions: background,
body, and threats. However, the method may not detect a threat when its associated region is
not connected to the body. To solve this problem, the authors used Active Shape Models (ASM)
inside the body. However, this approach does not guarantee adequate body segmentation. In [14],
Gaussian mixture models were used to characterize background, body, and threat regions and
segment the images. Although the reported results were better than those in [13], this method
also produces an unconnected body segmentation. In [15], the method was extended to detect and
track metallic objects in a sequence of MMWIs.

In [16], for a passive terahertz imaging system, noise was first removed from the image using
anisotropic diffusion. Following this, the boundaries of the concealed objects were detected. To
model the distribution of the temperature inside the image a mixture of Gaussian densities was
used. Curves were then evolved along the isocontours of the image to identify the concealed
objects. In [17], the authors applied noise elimination and then image segmentation using local
binary fitting (LBF). Two noise removal algorithms were used: non–local means (NLM) and
iterative steering kernel regression (ISKR). Although this method’s detection rate was around 90%,
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its computing time made it impractical for real-time applications. Furthermore, its performance
significantly decreased when used on noisy or low quality images. In [18], a graph-cut algorithm
was proposed to segment threats, but its evaluation was inaccurate. In [19], a method to detect
and recognize threats in outdoor PMMWIs is proposed. The threat detection was carried out
through global and local segmentation: at each level (global and local), a Gaussian mixture model
whose parameters were initialized using vector quantization (for a different initialization approach
see [20])and optimized through expectation maximization was used. This method was able to
detect threats, but was only tested on a small set of images and 2 types of threats. In [21], the
same segmentation process as in [19] was used, with the difference being the initialization of the
Gaussian mixture model using k-means clustering. Shape features from the detected object were
extracted and compared with the true features with reasonable accuracy. In [22], a mean-standard
deviation-based segmentation technique was used and to detect and classify simple shape objects in
MMWI images, and a probability density function for this classification was proposed. Furthermore,
to improve the quality of the images the authors proposed the use of a neuronal network. In [23],
a highly time efficient two-step algorithm, based on denoising and mathematical morphology, was
proposed. On noisy or low contrast images, it achieved an acceptable detection rate but at the cost
of a high false positive detection rate. In [24], singular value decomposition and discrete wavelet
transform was used to ease the detection in MMWIs when thresholding was utilized. After this, a
neuronal network was used for target identification. In [25], the authors used principal component
analysis and a two-layer classification algorithm to distinguish between threats and normal objects.

Most of the reviewed techniques were oriented to obtain good quality images which were then
used in tandem with simple methods to detect threats. In some cases, the methods were oriented
to detect only particular threat types evaluated on small datasets. The approach we follow here
is completely different, as it is entirely based on machine learning from the spatial statistical
information of the gray level of the image and does not requires of geometric segmentation
techniques. We base our approach on image patch classification aiming for the best accuracy/false
positive trade-off. The approach is highly efficient; it can achieve a 100% true detection rate
with a relatively small false positive detection rate. It can also be used to dissuade, for instance,
robbery either by customers or workers. In this case a 100% true detection rate may not be
achieved if good customers or workers are not to be disturbed. However, a trade-off between
accuracy and false positive detection can always be achieved by tuning the model parameters.
The proposed approach achieved very good detection scores for medium-low signal-to-noise ratio
images. Preliminary results were presented at [26], here we provide a formal definition of the
problem, new material on image pre-processing techniques, additional experiments, and a deeper
discussion.

III. IMAGE ENHANCEMENT

A natural question to consider is whether image filtering (smoothing, contrast enhancement, etc.)
helps the detection process. Figures 2(c-d) show the result of applying mean, median, figs. 2(e-f),
and bilateral, figs. 2(g-h), filters to observed passive images, figs. 2(a-b).

We observed that to assign to each pixel an estimation of the most frequent value in its
neighborhood was a better smoothing criterion. That is, for each pixel i, let yB

i denote a block
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2: Results of applying different image filtering techniques to (a) and (b). See text for details.

around yi in the observed image y and zi(1), . . . , zi(K) denote K independent samples with
replacement from yB

i . We then define:

qi =

∑K
k=1 zi(k)

K
, (1)

assign y = q and repeat the process L times. The final processed image is:

xi = median(yBi ) (2)

We found that B = 5× 5 and L = 5 produced satisfactorily processed images (see Figure 2(i-j)).
Note that additional contrast improvement can be observed in these images. In the experimental
section, we analyze how image processing improved the performance of the classifier.

IV. PATCH EXTRACTION

As mentioned in the Introduction, passive scanners provide very low-resolution images (in our
case, 125× 195 pixel images). Because of the small size of the threat regions and the possibility
of having several threats in the same image, threat detection was carried out using image patches.
A patch is a rectangular image piece centered on a pixel.

Due to the variability of the threat sizes described above, we used patches at three scales on
each pixel. These corresponded to patch sizes of 39× 39, 19× 19, and 9× 9 pixels, respectively.
Only pixels whose three patches were fully contained in the image (active pixels) were considered.
We used xPj to denote the 39× 39 patch centered on pixel j.

Let PI be a mapping that selects from an image Ii in the image dataset D = {Ii, i = 1, · · · , NI}
a subset of 39× 39 patches P iI , specifically, PI(Ii) = P iI . From each image, we extracted one
39×39 patch every 2×2 pixels, obtaining a total of 3476 patches per image. From the full dataset,

Chapter 4. Threat Detection in Passive Millimeter-Wave Images 99



we obtained 11, 502, 084 patches (see Appendix). Patches that fully covered a threat were labeled
“positive”(+1); all others were labeled “negative.” (−1). Patches that partially overlapped a threat
were excluded from the training dataset. We acquired 392, 494 positive instances and 9, 026, 123

negative instances. As the number of negatives was much higher (approximately 23 times), and
considering that most of the negative patches were very similar, we used a subset of these for
training. We kept one negative sample from every 2× 2 image block, meaning that we retained
1/4 of the negative patches we acquired. The final number of negative samples (2, 256, 530) was
approximately five times the number of positive ones. These patches constituted the patch dataset
T = ∪NI

i=1P iI , associated with the image dataset D. Feature vectors were then extracted from each
patch.

V. FEATURE EXTRACTION

All classifiers to be used in this work needed to be fed with feature vectors. The pixel values in
our 39x39 patches can be seen as a high-dimensional feature vector where local spatial information
is hidden in the correlation between subsets of elements. In order to obtain an adequate vector of
more useful characteristics for each patch, where: a) spatial information is explicitly represented;
and b) individual characteristics are as uncorrelated as possible, two multi-resolution feature
extraction techniques were utilized. Although the literature on feature extraction is extensive, (for
example, [27]), we focused on features expected to have good threat detection capabilities.

We used Haar filters ([28]) and local binary patterns (LBP) codes ([29]) to create the feature
vectors. The corresponding feature vectors are denoted by xFj , with F = LBP and F = Haar,
respectively. It is well-known that both filter banks extract good neighboring features from an
image; both features can be computed very efficiently.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k)

Fig. 3: Examples of Haar filters (a)-(j) and invariant to rotation LBP patterns for an 8 point
neighborhood (k).

A. Haar filters

Haar filters ([28]) compute correlations of different binary patterns with an image region. The
pixel image values in a white pattern are added and the difference between these values and the
sum of pixel image values in the corresponding black pattern is calculated (see Figures 3(a-j)).
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These patterns are expected to obtain very positive values at patches containing a threat as body
regions have lower pixel values than threat regions. However, their responses will be close to zero
on pure background or body regions. Notice, for instance, that the filter shown in Figure 3(a)
shares the pattern of the hidden object in the row 1, column 2 image in Figure 9. Similarly,
the filters in figs. 3(b-c) are similar to the hidden object areas in the row 1, column 1 and row
1, column 3 images in Figure 9, respectively. Although the gray levels of hidden objects and
background are similar, hidden objects can be recognized as they are attached to the body, a
darker region. We have used 115 filters on each patch resulting in a 3× 115 feature vector per
active pixel, which will be denoted by xHaarj .

B. Local Binary Patterns

Local binary patterns (LBP) ([29]) capture image local structures by detecting gray level changes
around each pixel. For every pixel in a patch, a binary vector is computed by checking if its value
is greater than the value of a fixed number n of pixels located at a given radius r around it. This
binary vector is coded as an integer number. The LBP feature vector of a patch is then calculated
as the histogram of these numbers obtained for all pixels in the patch. Different radii can be used
and the resulting feature vectors can be concatenated resulting in a larger number of features.
Regions with an inside strong contrast due to the presence of boundaries between a hidden object
and body or background are highlighted. In this experiment, we used the invariant-to-rotation
LBP extension proposed in [30](see Figure 3(k)). For each of the three patches described in the
previous section and centered on an active pixel, the histogram of all LBP configurations was
obtained using a radius r ∈ {1, .., 4}, and several points n = r ∗ 8 were built. The feature vector
on each patch was obtained by concatenating the histograms of its three associated regions. In
this case, there are 261 components and the feature vector will be denoted by xLBPj .

In the following section we formally define the statistical learning framework we used to detect
threats in PMMWIs. Its basic building blocks will be the image patches and the features extracted
from them.

VI. MODEL

Given our image dataset D (see section IV), our goal was to learn a labeling function fD : D →
{0, 1}s, where s is the image size, with the lowest generalization error. This function assigns to
each image pixel a binary value {0, 1} indicating whether the pixel is part of a threat (1) or not
(0). Thus, our problem was defined as an object localization problem using machine learning.
We defined the function fD in two steps. First, we detected potential threat regions (patches).
Second, we determined which pixels were considered to belong to real threats. The full image
dataset D was used to learn the function fD, and its generalization error was estimated using
cross validation.

We used the patch dataset T defined in section IV to learn a patch detection function fP : T →
[0, 1]. We assumed, without loss of generality, that the range of this function was the interval
[0, 1] (note that normalization can always be used). A binary classifier was built by splitting the
range of fP using a threshold to be learned.
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Since the patch dataset T (see section IV) has five times more negative than positive patches,
the set of negative patches used to learn an ensemble of classifiers was partitioned. Let TP , TN
define the subsets of positive and negative labeled patches respectively T = TP ∪ TN . Let us
denote by nP and nN their cardinals, where nP << nN and nC = nN/nP . Let TN = ∪nC

i=1T iN be
a random decomposition of the set TN in nC disjointed subsets. We solved nC learning problems
fkP , k = 1, · · · , nC , associated to the training sets defined by {T kN ∪TP } respectively. We repeated
the same procedure t times, obtaining an ensemble of t×nC functions fkP , which use the positive
and subsets of the negative patches. Following this, the patch detection function was defined as
fP(xP ) = 1

t×nC

∑
k f

k
P(x

P ).
We associated to the patch detection function fP a detection threshold, thr ∈ [0, 1]. We set

fP(xP ) = 0 if fP(xP ) < thr and initially did not change fP(xP ) if fP(xP ) ≥ thr. To calibrate
the threshold value, we used the ROC curve obtained from fP when used as a binary classifier.
Although fP(xP ) ≥ thr declares xP a potential threat patch (not all with the same detection
function value), some of these potential threat patches are false positives that appear in the
neighborhood of a true threat due to the contamination of the highest patch detection value to
surrounding patches. We eliminated these contaminated patches using non-maximum suppression
on overlapping patches. On each image, we rejected a detected patch xPj (fP(xPj ) ≥ thr) if it had
an intersection-over-union overlap larger than a learned threshold with a higher scoring patch xPl .
That is, if fP(xPl ) > fP(xPj ) ≥ thr, we set fP(xPj ) = 0. This process is depicted in Figure 4.

Due to the strong no-stationary noise presence in the image, this approach can produce a high
rate of false positive patches even when the thr value is properly tuned. Our solution to this
problem is given in section VIII, where a calibration curve, to estimate the best rate between
accuracy and false detection rates, is proposed.

After running the non-maximum suppression algorithm, we assigned to each image pixel, k,
the maximum of all fP(xP ), for k ∈ xP . After this final processing, we acquired an image size
vector of values in the interval [0,1]. This vector represents our estimation of the labelling function
fD on each image.

(a) (b) (c) (d) (e) (f)

Fig. 4: Detection process: (a) observed image; (b) shows, using green intensities, the initial pixel
probabilities (only at patch central pixels) assigned by the patch detection function together with
the red bounding box surrounding the threat; (c) shows the active pixels after thresholding by
thr; (d) shows the final estimation of the threat center; (e) shows the corresponding patch after
non-maximum suppression on (c); (f) shows the details of the non-maximum suppression process.
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VII. LEARNING THE PATCH DETECTION FUNCTION fP AND THE IMAGE CLASSIFICATION

FUNCTION fD

We considered six patch detection functions fP . These functions represent different strategies to
measure the presence of a threat in a patch: logistic regression (LR), quadratic logistic regression
(QLR), support vector machine (SVM), random forest (RF), extreme random trees (ERT), and
adaboost (ADA). LR and QLR were the linear approaches used as our baseline in the comparative
study, and SVM was the kernel-based approach. These three methods search for the best function
from a fixed set of possible functions. ADA, RF, and ERT build a classifier from an ensemble of
simpler classifiers. RF and ERT use different subsets of the training dataset for each member of
the ensemble, and ADA weights the training dataset with different sets of values. In all cases, the
patch detection function range is normalized to [0, 1].

For each classifier M∈ {LR, QLR, SVM, RF, ERT}, the corresponding image classification
function fMD was estimated and the corresponding training and error estimations were calculated
using five-fold cross-validation. This cross–validation partition was performed on the images
and on every fold. Each fold contained approximately 600 images, all of which had the same
proportion of images with no threat, one threat, and two threats. For adaboost, we used asymmetric
boosting ([31]) instead of a committee of classifiers.

TABLE I: Hyperparameter grid for the classifiers; see text for details.

Classifier Parameter Range

LR CLR [0, 5]

QLR CQLR [0, 5]

RF
NT [100, 300]

MNF [8, 30]

MEL [1, 50]

Classifier Parameter Range

SVM
CSVM [10−1, 105]

γRBF [10−5, 10]

ERF
NT [100, 300]

MNF [8, 30]

MEL [1, 50]

Hyperparameter estimation was carried out using five-fold cross-validation on every training
fold. To reduce the time required to estimate each the hyperparameters of each model, a smaller
subset of patches was selected. A uniform sample of patches, using an additional factor reduction
of 3, was used. This required selecting one location for every 6 × 6 image block. Finally, for
each threat in an image, we added at least one patch that contained it to the training dataset. This
guaranteed the inclusion of all the threats in the database. The hyperparameter ranges for each
patch detection function are shown in Table I. They are the regularization strength parameters
CLR, CQLR, and CSVM for LR, QLR, and SVM, with RBF kernel with gamma parameter γRBF,
respectively. The estimated hyperparameters of the tree-based models RF y ERT are the number
of trees (NT), the maximum number of features (MNF) to consider for splitting, and minimum
number of examples per leaf (MEL).

The LR the regularization parameter (CLR)for quadratic penalty (weight-decay) was determined
using an adaptive search. QLR uses linear and quadratic functions on the features, hence, the
LASSO penalty function was utilized to select the relevant features which were then used to learn
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an LR model with a quadratic penalty. For SVM, RF, and ERT, a grid search was used to estimate
the hyperparameters, and feature vectors were normalized by mean and variance before training.

To remove the possible bias introduced by the reduced number of patches used to learn the
hyperparameters, we selected the three best sets of hyperparameters using the area value under
the ROC curve for each classifier. These three sets were then compared to the complete set of
training patches and the one with the largest AUC value was selected.

VIII. EXPERIMENTAL VALIDATION

For a given image, let us denote by HS(h) and PS(xP) the support regions (sets of pixels)
associated with a hidden object h and patch xP , respectively. Given an existing real hidden threat
h in an image, we considered in the experiments that a patch xP was correctly classified as
containing a hidden threat when fP(xP ) > thr and HS(h) ∩ PS(xP ) > 0.5 ∗ size(HS(h)). A
hidden object in the image was said to be correctly detected when there was at least one patch
satisfying both conditions. Finally, an image was correctly classified as positive (containing a
hidden threat) when, at least, a hidden object was detected.

We analyze two scenarios: preprocessed images and raw images. Our preprocessing technique
was described in section III, and Tables II and III contain a summary of the results for both
scenarios. The AUC column represents the area under the ROC curve for the test images when
classified as with or without a hidden object. The third column (TP) shows the true positive
percentage of detected hidden objects computed by five-fold cross-validation; fold mean and
standard deviation are included. The fourth column shows the average number of false positive
(FP) patches per image and their standard deviations. Note the high FP deviation values, which are
due to the non–uniform quality of the images. The fifth and sixth columns contain the threshold
and overlap parameters used for non-maximum suppression.

TABLE II: For the preprocessed images using the preprocessing method presented in III, this
table shows a summary of the performance (AUC) of the classifiers when Haar and LBP features
were used. Threshold (Thr) and Overlapping values (Ovl) are also included. See text for details.

Haar features (preprocessed)
Class AUC TP×102 FP Thr. Ovl.

LR 0.51 84±1.8 10.5±10.7 0.6 0.5

QLR 0.57 91±1.1 8.7±9.1 0.7 0.5

SVM 0.52 92±3.0 6.5±6.6 0.75 0.3

RF 0.75 94±0.9 4.0±3.8 0.7 0.3
ERT 0.74 94±0.6 5.0±5.0 0.7 0.5

ADA 0.57 93±1.1 6.4±6.2 0.5 0.3

LBP features (preprocessed)
AUC TP×102 FP Thr. Ovl.

0.57 92±0.8 10.2±10.5 0.70 0.5

0.57 92±1.0 10.2±10.5 0.70 0.5

0.55 93±1.4 8.8±8.9 0.60 0.4

0.61 92±0.5 6.6±6.5 0.55 0.3

0.63 90±1.2 6.1±6.0 0.55 0.3

0.59 92±1.2 10.0±10.2 0.50 0.5

As Table II indicates, the best results are obtained by RF with Haar features extracted from
the preprocessed images using the algorithm proposed in Section III. Note that we also ran
experiments with mean, median, and bilateral smoothing algorithms but obtained lower scores.
Almost all classifiers obtained similar TP values, RF and ERT were the best ones when used with
Haar features.
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TABLE III: For raw images, this table shows a summary of the performance (AUC) of the
classifiers when Haar and LBP features were used. Threshold (Thr) and Overlapping values (Ovl)
are also included. See text for details.

Haar features (raw)
Class. AUC TP×102 FP Thr. Ovl.

LR 0.51 82±1.5 10.2±10.4 0.6 0.5

QLR 0.55 90±1.0 8.2± 8.7 0.73 0.5

SVM 0.50 94±1.0 6.7±6.6 0.75 0.3

RF 0.72 94±1.0 4.0±3.7 0.7 0.3

ERT 0.73 94±1.0 4.0±3.8 0.68 0.3

ADA 0.63 94±0.6 5.8±5.7 0.50 0.3

LBP features (raw)
AUC TP×102 FP Thr. Ovl.

0.54 88±1.0 10.4±10.8 0.68 0.5

0.56 89±1.0 10.6±10.9 0.7 0.5

0.52 93±6.0 11.5±12.1 0.7 0.4

0.60 86±2.0 6.1±6.1 0.58 0.3

0.59 84±1.0 6.0±6.0 0.57 0.3

0.55 90±1.0 10.3±10.5 0.50 0.5

Table III shows the scores for the raw image scenario. In this case, RF and ERT again obtained
the best results for Haar and LBP features. The AUC values were lower, and the best value was
obtained by the ERT classifier. However, in terms of TP and FP values, the average results were
similar for both scenarios. That is, the proposed preprocessing method only slightly helped the
detection process, which shows that our machine learning-based classification approach can deal
with poor-quality images.

In Table II it can also be observed that TP values for Haar and LBP features are very similar.
However, when considering FP values, Haar features clearly outperform LBP features. As we
have indicated in the Introduction, the average FP per image is a key figure to minimize. When
analyzed in percentage terms, all models performed reasonably well. This means that FP values
were always below 10% when the threshold was fixed to obtain a 100% TP detection rate (0%
FN). However, a 10% FP value means that a very large number of patches were incorrectly
considered to contain a threat, which means that the model became useless. Consequently, a better
compromise between TP and FP scores must be reached by selecting a higher thrM value which,
however, will reduce the TP percentage. Figure 5a shows the ROC curve for the best model
combination, RF+Haar features on the preprocessed images. Figure 5b shows the true positive and
true negative rate curves for image classification. Their intersection point is slightly above 68%
and defines the accuracy of the system to classify new images when FP = 1 − TP, i.e., both
false errors are equal. Although this score might be considered low, it is important to note that
the high slope of both curves (positive rates, negatives rates) at the intersection point indicates
that it is possible to improve the true positive rate with a small threshold increment, but only if
the increase in FPs is affordable. Figure 6 shows the lack of contrast in some FN images and,
therefore, the difficulty in detecting some hidden objects without increasing the FP rate.

The success of tree-based methods can be explained by the fact that both RF and ERT minimized
mean square error using ensemble voting, which is an effective approach to reduce noise in images.
Regarding LBP, the figures in both tables show a high influence of noise on the quality of this
feature type. Although LBP features yielded better detection results than Haar features when
used with parametric classifiers (LR, QLR, SVM), their FP scores were too high to make them
competitive. These results clearly demonstrate the influence of noise on the behavior of classifiers
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(a) (b)

Fig. 5: (a) Shows the ROC when classifying new images. (b) The curves show the accuracy of
the model on new images for a range of detection probability thresholds. The cross point is at the
68% of accuracy for both classes.

Fig. 6: Examples of hidden objects that RF could not detect when the classifier was calibrated for
the same FP and FN rates. Red arrows indicate object locations.

and the importance of preprocessing when LBP features are used.
Figure 7 shows the analysis of the behavior of our winning combination, Haar+RF. In Figure 7a,

the histogram of the average number of FPs per image is shown. We observed that the mode of
the average of FPs per image was 4. Figure 7b shows the histogram of the first TP position on
each image in the list of detected locations, ordered by decreasing probability. This histogram
indicates that the clear majority of TPs were among the first two detected positive patches on
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(a) (b) (c)

Fig. 7: Performance histograms of the best model, Haar+RF. See text for details.

each image, which validates the use of a high threshold for object detection. Figure 7c shows the
histogram of the mean value of the four highest probability values per image, and the correct
behavior of the classifier assigning the highest probabilities to regions that overlapped with hidden
objects.

Tables IV(a-b) show how Haar+RF performed depending on threat location and type. Variations
in TP and FP were highly dependent on the position of the object. When objects were in the
body area (chest, stomach, waist, armpit) detection was simpler. However, when they were mainly
surrounded by the background (arm, thigh, ankle), they were more difficult to detect. Table IV(b)
shows a clear ranking of the objects depending on their PMMW responses. While the FP values
were similar, the TP scores showed a large variation. Objects with higher densities (such as
metallic objects) were easier to detect.

We also investigated whether models tailored to body regions improve the quality of the image
classification function. For this, we used our best fP function (RF+Haar) to fit four new models,
one for each of the following body regions: arms, legs, chest, and ankles. Thus, only patches
from one of these regions were used by each model. For test samples, the image localization of
the patch determined the model to be used, and a partition of the image in the four body parts
was prefixed. In terms of AUC, values there was no significant improvement. However, a 5%
improvement on average FP was observed.

In the experiments, we used an Intel Xeon E5-2630 v3 at 2.40 GHz with 8 cores and 128 GB of
RAM. Computation times during testing are shown in Table V. We observed that for both feature
types, the methods performed approximately in real time. However, when using Haar features the
classifiers performed faster. Finally, for RF and ERT, we used parallel implementations running
on 16 threads.

The approach presented in this paper cannot be fairly compared with the methods described in
section II. The methods reported in section II were tested on small sets of higher quality images,
with a reduced number of threat locations, and with reduced variability on the threat characteristics.
Nonetheless, we compared our best method, RF+Haar, against the methods described in [14] and
[23] using datasets of different sizes. The best performing method was [14], which, for a dataset
of 200 images, obtained a 13% TP and 1.92 mean FP. Our worst result was 47% TP and 1.5
mean FP, and was obtained with 30 raw images. We believe that our method performed better
because it is more generally applicable and less adapted to the quality of the acquired images.
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TABLE IV: The results of the best method (RF with Haar features). (a): Based on the threat
location (front (F) and lateral (L)). (b) Based on object type (see Appendix). See text for details.

(a)

Loc. AUC TP×102 FP

Forearm 0.73 97±11.2 4.4±4.1

Chest 0.82 95±11.6 4.4±4.1

Stomach 0.86 96±11.6 4.3±4.1

Thigh 0.53 85±14.0 4.7±4.5

Ankle-F 0.65 88±8.3 4.4±4.2

Thigh-L 0.75 97±9.2 3.1±2.9

Waist-L 0.85 95±8.3 3.0±2.8

Armpit-L 0.86 99±12.0 3.0±2.7

Arm 0.55 85±14.4 5.3±4.9

Ankle-L 0.65 92±16.5 3.8±3.5

(b)

Threat AUC TP×102 FP

1 0.72 94±7.8 4.5±4.3

2 0.83 95±10.6 4.5±4.3

3 0.68 90±9.3 4.5±4.3

4 0.72 94±10.7 4.5±4.2

5 0.72 93±7.6 4.5±4.3

6 0.81 96±8.7 4.5±4.3

7 0.81 96±2.9 4.5±4.3

8 0.82 95±8.0 4.5±4.3

9 0.79 95±16.4 4.5±4.3

10 0.64 90±10.8 4.5±4.3

11 0.79 94±8.1 4.5±4.3

12 0.83 96±12.7 4.5±4.3

TABLE V: Testing Total (all the images) and per image (P.I.) times in seconds for each method.

Haar LBP

Classifier Total P.I. Total P.I.

LR 302 0.09 4939 1.49

QLR 341 0.1 4939 1.49

SVM 1277 0.38 6907 1.87

Haar LBP

Classifier Total P.I. Total P.I.

RF 740 0.22 5497 1.66
ERT 1202 0.36 5507 1.66

ADA 1965 0.59 7006 2.11

IX. CONCLUSIONS

This paper was devoted to the study of hidden object detection in PMMWIs. The main difficulty
in this task arises from the low SNR and non-stationary noise that populates an image. Simple
thresholding methods can be used but are most effective with high-quality images. In this study, a
machine learning approach to the detection task was developed. This approach deals with the poor
quality of passive images and outperforms state-of-the-art threat detection methods for PMMWIs.

Given the lack of publicly available PMMWI datasets, we created one that, to the best of our
knowledge, is the largest, and possesses the greatest variety of object types and sizes ever used
for this purpose problem1.

Our proposed method is based on a committee of classifiers defined on two highly unbalanced
classes of image patches, and performed well on all experiments. We compared different approaches
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to estimate image classification functions, and found using tree sets to be the most effective,
reaching an average 94% TP score with a distribution of the number of false positives in the
range of one to seven. The influence of the image quality and the extracted features were also
analyzed. Our filtering method slightly helps the detection process; Haar filter banks, very well
adapted to our task, performed very well for all classifiers.

The results indicate that large objects with reduced or zero emissions are simpler to detect. The
easiest threat locations to detect were those where objects were exposed to the camera in larger
areas. Threats in ankles, arms, and thighs were more difficult to detect.

Finally, a comparison between our detection model and other approaches in the literature
indicated that our method is less reliant on the quality of the observed images. Furthermore, when
a large image training set is available, our method performs very well, which makes a prediction
of excellent performance for a wide range of millimeter-based detection systems realistic.

APPENDIX

A comprehensive dataset of PMMWIs was created. It consisted of 3,309 125× 195 images of
33 people of different complexions. The hidden objects were in the range 35 × 39 to 10 × 10

pixels which, in our images, corresponded roughly to 2752.39cm2 and 201.64cm2, respectively.
Smaller hidden objects were not considered relevant.

Threats were simulated by bags containing substances with different millimeter wave responses
(see Figure 8). Note that objects of different sizes were used. We took pictures of each person
wearing 12 objects on 10 parts of the body: forearm, chest, stomach, thigh, ankle (front), waist
(side), armpit (side), arm, ankle (lateral) thigh (lateral), and 20 images without any object. Images
of people wearing two objects in different locations were also taken. Some images were eliminated
because of poor quality. The final dataset consisted of 463 pictures of people with no objects,
2,144 containing people wearing one object, and 702 containing two objects.

Figure 9 shows PMMWIs of subjects with simulated threats on different parts of the body
and the corresponding color images taken by a camera located on the scanner. Although objects
are visible and not hidden under the clothing, this was irrelevant for the PMMW sensors. Color
images were taken at the same time. Threats are marked on the color images by the smallest
bounding boxes containing them. To transfer object-bounding boxes from colored to PMMW
images, a homography was estimated using a planar calibration pattern. Colored and PMMW
images were then registered. The bounding boxes were used to assess the performance of the
image classification functions.
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Fig. 8: Simulated threats in the dataset: a cutter (1), 325g of gel (2), a 200g clay bar (3), a
simulated gun (4), 200g of sugar (5), 200g of frozen peas (6), 150ml of cologne (7), 160g of
gel (8) , a bag with metal pieces (9), 200g of flour (10), a 50cl water bottle (11), and a 250ml
hydrogen peroxide bottle (12).
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Fig. 9: First row: Examples of PMMWIs. Red boxes indicate the locations of hidden objects. Second
row: Corresponding visual images of the PMMWIs’ examples. (Best viewed on a high-resolution
color screen).
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[23] I. Gómez, N. Pérez de la Blanca, R. Molina, and A. Katsaggelos, “Fast millimetre wave threat detection algorithm,”
in 23rd European Signal Processing Conference, pp. 599–603, Aug 2015.

[24] B. Kumar, P. Sharma, R. Upadhyay, D. Singh, and K. P. Singh, “Optimization of image processing techniques to
detect and reconstruct the image of concealed blade for mmw imaging system,” in IEEE International Geoscience
and Remote Sensing Symposium, pp. 76–79, July 2016.

[25] H. Mohammadzade, B. Ghojogh, S. Faezi, and M. Shabany, “Critical object recognition in millimeter-wave images
with robustness to rotation and scale,” Journal of the Optical Society of America A, vol. 34, pp. 846–855, Jun
2017.
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4.2.2 Main Contributions

• We perform a comprehensive experimental study using the database introduced

in Section 4.1 and analyze the application of DL based models to PMMWI threat

detection using two approaches: Detection using a Local Approach (DLA) and

Segmentation using a Global Approach (SGA). As a result of this study, we propose

a new DL-based SGA for fast an accurate threat detection on PMMWIs.

• We perform experiments and show that DL-based models can deal with the non-

stationary noise in PMMWIs and, in contrast to other ML models, do not benefit

from preprocessing the images.
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Abstract

Passive Millimeter Wave Images (PMMWIs) can be used to detect and localize objects
concealed under clothing. Unfortunately, the quality of the acquired images and the unknown
position, shape, and size of the hidden objects render these tasks challenging. In this paper we
discuss a deep learning approach to this detection/localization problem. The effect of the non
stationary acquisition noise on different architectures is analyzed and discussed. A comparison
with shallow architectures is also presented. The achieved detection accuracy defines a new state
of the art in object detection on PMMWIs. The low computational training and testing costs of
the solution allow its use in real time applications.

Index Terms

Millimeter wave imaging, deep learning, object detection, security, classification.

I. INTRODUCTION

Millimeter images are obtained by sensors capturing electromagnetic radiation in the 0.001-0.01
m wavelength range. Two types of sensors can be distinguished: active, which direct the waves to
the subject and then collect and interpret the reflected energy; and passive, which create images
using the radiation emitted by objects, in general, and human bodies in particular.

In contrast to alternatives like backscatter X-ray, passive millimeter systems are safe, see
the interesting discussion in [1]. Furthermore, they fully respect the privacy of their users.
Unfortunately, millimeter sensors, and consequently their images, suffer from, among others, the
following problems: low signal to noise ratio, low resolution, which can be increased by increasing
the sampling rate but at the cost of decreasing the signal to noise ratio, and in-homogeneous
signal intensity.

PMMWIs (see Fig. 1) are currently being utilized as theft and threat detection systems [2] in
places like airports and warehouses. Since April 2009, many PMMWI systems have been installed
in large USA and European airports. These detection systems have to deal with the unknown
position, shape, size and transmission properties of the hidden objects. Unfortunately, their false

Research funded by the Spanish Ministry of Economy and Competitiveness (MINECO) under projects TIN2013-
43880-R and DPI2016-77869-C2-2-R, FEDER Funds, and project TIC-1692 (Junta de Andalucı́a). Santiago López-Tapia
received financial support through the Spanish FPU program. We would like to acknowledge the use of the real
PMMWIs provided by Wavecamm (http://wavecamm.com).
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Fig. 1: PMMWI examples. Hidden objects correspond to whiter areas within the body. Unfortunately,
not all whiter areas correspond to hidden objects.

positive ratios are very high. Systems based on PMMWIs should be able to detect concealed
objects, incur in a very low number of false positive detections, and work in real time. It is worth
mentioning here that the scientific community has, so far, shown little interest on the challenging
tasks involved in threat detection using PMMWIs. This is likely because of the absence of large
databases of PMMWIs to work with.

Sensor modelling and image processing techniques have been used on PMMWIs. In [3], the
main concepts related to millimeter images are introduced, see also [4]. In [5], trends in millimeter
wave imaging technologies are examined, focusing mainly on applications and technical parameter
variations for security surveillance and nondestructive inspections. Image processing techniques
have also been utilized on PMMWIs. The use of compressive sensing and superresolution techniques
on these images is explored in [6], [7]. Denoising, deconvolution, and enhancement techniques
have also been applied to this kind of images, see for instance [8]–[11]. In this paper, we develop
an image classification approach to detect and localize objects in a context where the image noise
is non stationary and very high.

II. RELATED WORKS

K-means is used in [12] to segment PMMWIs into three regions: background, body and threats.
Unfortunately, the method detects unconnected areas. To solve this problem, the authors use Active
Shape Models (ASM) inside the body. However, this approach does not guarantee an adequate
segmentation. In [13], Gaussian mixture models are used to characterize background, body, and
threat regions and segment the image. Although the reported results are better than those in [12],
this method also produces an unconnected body segmentation. In [14], the authors apply noise
elimination and then image segmentation using Local Binary Fitting (LBF). The authors use two
algorithms for noise removal: Non Local Means (NLM) and Iterative Steering Kernel Regression
(ISKR). Although its detection rate is around 90%, its computing time makes it impractical for
real-time applications. Furthermore, its performance decreases significantly when used on noisy
or low quality images. In [15], a fast two-step algorithm, based on denoising and mathematical
morphology, was proposed. On noisy or low contrast images it achieves an acceptable detection
rate but at the cost of a high false positive detection rate. In [16], a method to detect and recognize
threats in outdoor PMMWIs is proposed. The threat detection is carried out through global and
local segmentation: at each level (global and local), a Gaussian mixture model, whose parameters
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are initialized using vector quantization, is used and optimized through expectation maximization.
For a different initialization approach see [17]. Finally, a Bayesian decision rule decides which
cluster each pixel belongs to. The recognition process of the threat type consists of upscaling,
principal component analysis (PCA), size normalization, extraction of a geometric-based feature
vector composed of shape descriptors, and a decision rule, where the class is decided by minimum
Euclidean distance between normalized feature vectors. The method was able to detect threats,
but it was tested exclusively on a small set of images and with only two types of threats. In
[18], the same segmentation process as in [16] was used, the difference being the initialization of
the Gaussian mixture model using k-means clustering. Shape features from the detected object
(area, perimeter, major and minor axes of the basic rectangle, rectangularity, compactness, and
eccentricity) are extracted and compared to the true features. The method shows good accuracy.
Notice that all the above approaches aim at segmenting the concealed objects, furthermore they
were evaluated on a small set of images. In [19], [20], we introduced the UGR-PM2WI database
described in appendix B, a new and comprehensive dataset of PMMWIs. A comparative study
of the performance of different shallow classifiers on this database was presented. Although the
proposed classifiers, and in particular Random Forest, outperform previous approaches, it was
shown that the image noise (see Fig. 1) has a strong influence on this kind of classifiers, making
very difficult to do better than a 68% average detection score.

All the above approaches can be grouped according to the spatial context used in the feature
extraction process: a) local spatial context, used in object detection/localization tasks and b) full
image context, mainly used in image segmentation tasks. In what follows, these approaches will
be denoted Detection using a Local Approach (DLA) and Segmentation using a Global Approach
(SGA), respectively.

In the Deep Learning (DL) methodology we are going to propose, deep SGA and DLA approaches
will be analyzed and compared. Both approaches will be cast under the same framework, the one
provided by Convolutional Neural Network (CNN) architectures used for supervised classification
problems. The difference between both approaches will be characterized by the class of functions
computed by the deep CNN architectures.

The rest of the paper is organized as follows. Section III provides a short introduction to the
used CNN architectures. In section IV, we describe how the threat detection problem can be
tackled using deep classifiers. The detection and training procedures are also discussed in this
section. In section V, we describe the experimental set-up and show the obtained results. Also, a
comparison with the best shallow architectures is also presented here. In section VI, we analyze the
performance of the different learning architectures, identifying the most relevant factors providing
high detection score. Conclusions are drawn in section VII. Appendix A contains a description of
the denoising technique applied to the observed image, the importance of its use is described in
section VI. Appendix B contains a complete description of the dataset used in the experiments. 1.

III. DEEP ARCHITECTURES

Nowadays, Feature Learning Models (FLM) compete with advantage against the standard
classification methodology where a feature extraction process is carried out to obtain the information

1The dataset is available at http://decsai.ugr.es/pi/pmmwi/
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to feed a classifier. FLMs learn the best set of features by minimizing the training error. Deep CNN
models have shown the importance of using deep architectures as a mechanism to disentangle
independent features coded in the data through a very complex non-linear mapping of the sample
data. CNNs are currently the most successful DL models for high level image related tasks like
classification, segmentation, detection, parsing, etc. CNNs define the state of the art performance
in many of them [21]–[27].

Although our threat detection problem could be naively approached by the direct application
of well-known image processing techniques, the problem is much more challenging. As shown
in this paper, the presence of non-stationary noise in the images renders extremely difficult the
detection task. The use of function classes as complex as those defined by DL architectures is
required.

Fig. 2: Example of a CNN architecture.

A. Used architectures

The LeNeT architecture introduced by Lecun [28] can be considered as the base model from
which more sophisticated CNN architectures have been designed. A CNN model is a feedforward
neural net defined as a deep composition of functions or layers, where each layer computes a
transformation from an accepted list of transformations: convolution, pooling, non-linear activation,
full connection, regularization and normalization. The design of a specific model consists of
two phases. Firstly, we have to fix the architecture, that is, to define the number, the order, and
the characteristics of the layers. Secondly, we must learn the free parameters associated to the
convolution and fully connected layers. In the last layer, a final vector is obtained which is used
to feed a classifier. We use a softmax classifier, as it provides a posterior probability estimation
for each class. A simple CNN architecture is shown in Fig. 2.
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For our problem, we have analyzed five different CNN architectures. Three of them, with
increasing level of complexity, for the DLA approach and two for the SGA approach. The learning
protocols for DLA and SGA are different. DLA models are fed with image patches while SGA
ones utilize full images.

Let us start by describing the three architectures which utilize image patches. The simplest
model is an adaptation of the LeNeT [29] architecture. We use the same type and number of
layers as the original, 2 convolutional layers, 2 pooling layers and 2 fully connected layers, but
the number of filters in the first and second convolutional layers has been changed from {20,50}
to {32,64} filters, respectively. Also the original non-linear sigmoidal function is changed to
a ReLU [30] activation function, f(x) = max(0, x). Batch normalization [31] has also been
introduced before each ReLU transformation to decorrelate the outputs of the convolutional layers
and, finally, regularization with dropout [32] has been added to the last fully connected layers. All
these changes adjust the original architecture [29] to our threat detection problem and produce
better classification figures. Fig. 3 shows a summary of the this low deep CNN architecture
(LD-CNN). This model has 12 layers and 1,621,598 free parameters. The central column of the
figure describes the order and functionality of each layer (top-down).

Fig. 3: Description of the LD-CNN architecture. The total number of parameters is 1,621,598. By
Dropout x% we mean that a x% of the pre-activation units are assigned to zero.

A very recent architecture named All-CNN-C [33] implements pooling and fully connected
layers with convolutional layers. This architecture allows us to train models similar to LD-CNNs
but with larger number of layers. The main advantage of this architecture is that it only depends
on convolution operations which are very well adapted to GPU hardware. A max-pooling layer
can be seen as a convolution with kernel size equal to the kernel size of the pooling followed by a
non-linear transformation and a downsampling operation. This means that each max-pooling layer
can be replaced by three convolution layers. In addition, as a bonus, the pooling parameters can be
included as parameters to optimize. A fully connected layer can also be replaced by convolutional
layers with a 1× 1 kernel and the same number of kernels as output units has the fully connected
layer. Therefore, all fully connected layers are replaced by convolution layers.
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We adopt this All-CNN-C [33] architecture to design our medium deep CNN model (MD-CNN)
shown in Fig. 4. Now we have an architecture with almost twice the number of layers the
LD-CNN has, but in terms of effective transformations it is only slightly deeper than LD-CNN.
Two convolutional layers implement transformations equivalent to max-pooling and the layers
in block 5 implement transformations equivalent to a fully connected layer. The total number of
free parameters is 1,371,458. Notice that, although MD-CNN is more complex and powerful than
LD-CNN, the number of parameters to be estimated is lower.

Fig. 4: Description of the MD-CNN architecture. The total number of parameters is 1,371,458.
See dropout x% meaning in Fig. 3. In this model a convolution layer with stride 2 is equivalent
to a pooling and sub-sampling stage.

Training very deep networks is usually difficult since the optimization procedure frequently
gets trapped in very poor local minima. The Residual Network approach [34] overcomes this
problem by fitting on each new layer a residual function f of the form out = f(input) + input

instead of using the standard function defined by out = f(input). Fig. 5 shows a standard residual
unit as described in [34]. In order to perform the sum operation (f(input) + input) when input
and output do not have the same size, we project the input into the output space using another
convolutional layer (the one in green in Fig. 5) before the element-wise sum, X is the number of
output feature maps and Y the number of input feature maps of the unit. Adapting the architecture
proposed in [34], a very deep architecture with 20 layers, most of them residual, has been created
(DR-CNN). Fig. 6 shows the proposed architecture. The three final layers are fully connected. In
this case, a more adequate activation function PReLU [35] (f(x) = max(−εx, x), 0 < ε << 1),
which allows activation for negative values, is used. The main effect of the PReLU function is
to improve the behaviour of the gradient estimation in the bottom layers. The number of free
parameters is 2,847,138.

Once we have described the three CNN architectures used for the DLA approach, we study
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Fig. 5: Residual unit used in Deep-Residual-CNN. The input is transformed throughout two
convolutional layers with PReLUs to learn the residual. See in text how the sum operation is
performed.

Fig. 6: Description of the Deep-Residual-CNN (DR-CNN) architecture. The residual units
correspond to the standard residual unit described in [34], see Fig. 5. The total number of
parameters is 2,847,138. See dropout x% meaning in Fig. 3.

now the two SGA methods. Our problem can be considered a segmentation task where the regions
of interest are defined by the grouping of high-level gray pixels using context conditions. When
the main goal is to learn features encoding the location of regions of interest, the use of CNNs
has proven to be a successful approach [36]. A typical segmentation architecture is shown in
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Fig. 7: Segnet architecture as described in [36].

Fig. 7. The feature learning process takes place on the left side of the architecture (decreasing in
size layers). The smallest layer on the left represents the learned features which encode threat
locations. Since the loss function used to learn the architecture must be evaluated on all image
pixels, the layers on the right side (increasing in size layers) decode the estimated label, in our
case, a probability of containing a threat from the learned features. In summary, the SGA approach
uses architectures that take as input the whole image I and output for each pixel a probability
distribution P on the label set.

This approach has been used recently in image segmentation tasks [36] on natural images. The
original model, Segnet, has 29,458,886 parameters where the encoding layers are designed by the
combination of convolution, ReLU and max-pooling layers. In the decoding part (right side of
Fig. 7), the model carries out the spatial propagation of the high level features using an inverse
process named max-unpooling. The combination of convolutional, max-unpooling, and ReLU
layers defines the spatial propagation of the high level features found by the encoder until the
size of the input image has been matched. The max-unpooling mapping only assigns values to
the units whose indexes were local maxima in the corresponding max-pooling operation of the
encoding part.

The Segnet architecture was designed to solve a much more complex (in terms of class number)
problem than ours. We adapt this approach to our task by designing two new architectures but
keeping the encoder-decoder approach. The first model, shown in Fig. 8, has 193,827 parameters.
We refer to it as SCNN. The probability distribution for each pixel is obtained using a sigmoidal
activation on the output of the last convolutional layer to map the values to the [0, 1] interval.

It is important to note here that autoencoders and, more recently, Generative Adversarial
Networks are generative deep networks architectures also using an encoding-decoding approach
[37]. The main goal of these architectures is to learn features and parameters to represent the
generative distribution of the samples. Although this learning problem is clearly much more
difficult and complex than ours, the use of deep generative models on our data is an area worth
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to explore.
The second model makes use of multiscale information. Multiscale architectures have been

used to improve the performance of CNNs [38]. The use of multiscale features for PMMWI
classification with shallow classifiers [19], [20] has also provided better classification results. This
insight has led us to modify the SCNN in order to incorporate information at three different
scales (s, s/2 and s/4). We process each scale to produce k feature maps using an SCNN on
each scale. We then combine the 3 ∗ k feature maps with 2 convolutional layers after resizing the
output of the lower scales. Finally, for each pixel the probabilities are computed from regularized
convolutional layer and a sigmoidal activation. To eliminate possible redundancies between scales,
we apply spatial dropout (instead of dropping a single unit, we drop an entire feature map) before
the scale combination. We call this model SCNN-MS, it has 355,515 parameters. Its architecture
can be seen in Fig. 9.

Fig. 8: Description of the SCNN architecture. The total number of parameters is 193,827. The
max-unpooling layer is the same used in the segnet architecture [36].

IV. THE APPROACH

Given an image, the goal is to classify it as Class +1 (positive) when it contains at least one
concealed object or Class 0 (negative) otherwise. We also need to localize where the concealed
object is on the human body.

Let D = {Ii, i = 1, · · · , NI} be the image dataset. Our goal is to learn from D a function
fD(Ii) = Xi, with the lowest generalization error. This function assigns to each image the set
of pixels, Xi, where threats are located or an empty set if no threat is present. This problem, as
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Fig. 9: Description of the SCNN-MS architecture. The total number of parameters is 355,515.
The red area contains pixels with high probability of being threat.

we have already indicated, can be cast as either an object detection/localization problem using
local image patches or a segmentation one when the whole image is used, both are approached
here using machine learning techniques. We define the function fD as the composition of two
functions; one detecting potential threat regions and the other deciding which of the regions
should be considered a real threat. The full dataset D is used to learn the function, fD, and its
generalization error is estimated by cross validation.

A. The training set T
We start by splitting the set of images D in five folds to estimate the generalization error of

fP by five fold cross-validation. Four folds are used for training and one for validation. Each
fold has the same number of images with one, two o more threats. Due to the small size of the
threat regions and the possibility of having several threats in the same image, a possible approach
to learn the detection function is to use image patches. A patch is a rectangular image piece
centered on a pixel. By xPj we denote the patch xP centered on pixel j. Let PI be a mapping
which selects a subset of patches P iI from the image Ii, that is PI(Ii) = P iI . Each one of the
patches is binary labelled, (+1) or (−1), depending on whether it contains a threat or not. The
patch dataset associated to each image fold is defined by Tj = ∪NI

k=1PkI j = 1, · · · , 5. On each
cross-validation iteration, the union of four of the patch datasets is used to learn the corresponding
detection function fPj

: Tj → [0, 1] and the other is used for validation. A binary classifier is
built by splitting the fPj

range using a calibrated threshold.
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Taking into account the object sizes described in appendix B, three different patch scales can
be identified as representatives of the object sizes: 39× 39, 19× 19, and 9× 9 pixels, respectively.
From each image we only extract the 39×39 patches that are fully included inside the image. The
use of the largest size patches forces the model to learn threats in different spatial contexts. Later
on we show that the joint use of the three scales is relevant when the whole image is considered
as input.

The full set of training patches extracted from four image folds is huge (see appendix B). Then,
to reduce the computational cost of the training process, we extract per image one patch every
2× 2 pixels, obtaining a total of 3, 476 patches per image. In total we have 11, 502, 084 patches
of size 39 × 39. We have found no loss in classification performance by this training dataset
reduction. The 39 × 39 patches covering a full object are positively labelled (1), the rest are
negatively labelled (-1). Patches that partially overlap an object are not included in the training
dataset. We have 372, 494 positive instances and 9, 351, 130 negative ones. Since the number of
negatives is around 25 times the number of positives and taking into account that most of the
negative patches are very similar, we have used for training a subset of them. Specifically, we
keep only one negative sample every 2× 2 block, so we retain 1/4 of the negative patches we
have. The final number of negative samples, 2, 337, 782, is then around six times the number of
positive ones.

When the complete image is considered as input, the learning process is simply a standard five
fold cross-validation.

B. Learning fPj

To label the 39× 39 image patches as threat or non-threat, we train the [LD,MD,HD]-CNN
architectures. To deal with the imbalanced training set, a sampling strategy is used. We partition the
set of negative patches and learn an ensemble of classifiers. Let TP , TN be the subsets of positive
and negative labelled patches, respectively, and T = TP ∪ TN . Let us denote by nP and nN their
cardinality, being nP << nN with nC = nN/nP . Let TN = ∪nC

k=1T kN be a random decomposition
of TN in nC disjoint subsets. We solve nC learning problems, fkP , k = 1, · · · , nC , associated
to the training sets defined by {T kN ∪ TP }, respectively. We repeat the same procedure t times
obtaining an ensemble of t× nC functions fkP which use the positive and subsets of the negative
patches. Then, the patch classifier is defined using a threshold on the range of the weighted
average of the fkP , this is fP =

∑
k wkf

k
P with weights wk > 0 and

∑
k wk = 1, alternatively as

a weighted majority voting on the set of classifier provided by {fkP}. In our experiments we have
used the majority voting rule to decide whether a patch is a potential threat, and its detection
score is measured by 1

t×nC

∑
k f

k
P(xP ). In the experiments we use nC = 6 and t = 1. This means

that the TN subset is split in six random partitions and each partition together with the TP subset
is used to fit a new model.

The segmentation approaches represented by SCNN and SCNN-MS architectures use full images
as input. In these cases, the label is defined by a binary matrix of the same size as the input one,
with ones in pixels covered by the threats and zeros in the rest.
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C. Initialization and loss function

In all cases, the initialization of the weights of the layers is done by random sampling from
a Gaussian distribution with mean = 0 and std =

√
2

#input unit [35] , where #input unit

represents the number of input units to each layer.
The fitting loss function used by all our models is the negative log likelihood given by

L(x,y; θ) = −
∑

j

yj logp(cj |x), (1)

where y represents the target distribution and p(cj |x) denotes, for all the models, the probability
of class j defined by the softmax function of the output layer.

D. Hyperparameters

The LD-CNN, MD-CNN and DR-CNN models were trained using Stochastic Gradient Descend
(SGD) with minibatches of size 64, variable learning rate, and 0.9 momentum. The variable learning
rate policy follows a triangular scheme [39] that consists of varying the learning rate between a
minimum and a maximum value following a triangular pattern with the training iterations. The
triangular learning rate parameters range from 0.01 to 0.04 for the LD-CNN and MD-CNN models
and from 0.01 to 0.03 for the DR-CNN model. All these models have been trained using a total
of 4 epochs, two of them increasing uniformly the learning rate value with the iterations from the
minimum until reaching the maximum and two more going back, that is, we decrease the learning
rate similarly from the maximum to the minimum value. We apply batch normalization before
each nonlinear transformation. Also we perform local brightness and contrast normalization on
each image [40], that is, we remove the mean and divide by the standard deviation of its elements.

SCNN and SCNN-MS were also trained using SGD and 0.9 momentum, additionally we had to
use the Nadam [41] learning rate estimation for the method to converge. In these cases, minibatches
of size 16 were used. We fix Nadam hyper-parameters to the standard values except the learning
rate, which was set to 0.02. In SCNN-MS the learning rate was set to 0.002 after the first 16
epochs. SCNN was trained for 16 epochs, while SCNN-MS used 20 epochs. In all cases, batch
normalization before each nonlinear transformation and before the first layer was also applied.

E. Regularization

All the models were regularized during training using weight decay with a 0.005 fixed value.
Dropout regularization was also applied to the LD-CNN, MD-CNN and DR-CNN models. For the
LD-CNN model a 50% dropout layer before every full connected layer was used. As suggested
in [33], for the MD-CNN model a 20% dropout layer on the input data and 50% after every
subsampling phase was introduced (see Fig. 4). In the DR-CNN models we only apply a 20%
dropout to the output of the layers 15 and 18 (see Fig. 6).

To improve the convergence of the fitting process for our SCNN and SCNN-MS models, we
corrupt the input image with random Gaussian noise of 0 mean and 0.05 standard deviation. Also
random Gaussian noise of 0 mean and 0.0005 standard deviation was applied to the output of
each layer (except for the last one). Spatial dropout with 50% intensity was applied to SCNN-MS
after concatenating the three scales feature maps.
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F. Detection and validation

The ROC curve associated to each trained model is used to calibrate its detection threshold,
thrM ∈ [0, 1]. PrM(S) ≥ thrM, M∈ {LD-CNN, MD-CNN, DR-CNN, SCNN, SCNN-MS}, will
declare a potential threat in S. Here S represents a patch or the whole image.

The LD-CNN, MD-CNN, and DR-CNN models provide probabilities on overlapping patches.
To fuse this information a non-maximum suppression step is carried out. We reject a patch xPj if
it has an intersection-over-union overlap larger than a learned threshold with a higher scoring
patch xPi . That is, if PrM(xPi ) > PrM(xPj ) ≥ thrM, then the patch xPj is removed (see Fig. 10).

Fig. 10: The non-maxima suppression process. Blue rectangles indicate regions whose probabilities
are above the minimum probability threshold (darker regions correspond to higher probability).
Since these regions overlap more than the overlapping threshold, we only maintain the one with
highest probability (in the image, the darkest rectangle).

Let us denote by HS and PS the support region (set of pixels) in the image associated to
a hidden object and a patch respectively. In the experiments, we consider that a patch xP is
correctly classified as positive when fP(xP ) > thrM and HS ∩ PS(xP ) > 0.5 ∗ size(HS). A
hidden object in the image is correctly detected when there is at least one patch which satisfies
both conditions. Finally, an image is correctly classified as positive when, at least, a hidden object
has been detected.

For SGA methods, the above approach is applied to the full image. We consider in each image
the same patch structure used for patch classification.

V. EXPERIMENTAL SETUP

Our experimental setup has been designed to answer the following questions: a) what is the
influence of the image noise on the models?; b) how relevant is the depth to the detection?; c) is
it important to use multiscale information?; d) should deep learning models be used to solve this
task?.

We ran experiments with all the architectures in two scenarios, raw and filtered images (see
appendix A). This allows us to evaluate when smoothing the image helps the detection process.
AUC, TP, and FP figures of merit are calculated as the average of the five values obtained from
each cross-validation set. Means and standard deviations are included. AUC represents the area
under the ROC curve when the validation images are classified as containing or not containing
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hidden objects. TP indicates the percentage of detected hidden objects. FP represents the average
number of false positives per image. The threshold and overlap parameters used when non-maxima
suppression was applied are also reported (see subsection IV-F).

We performed all our experiments using Caffe [42] and Keras [43] with Theano [44]. We used
an Intel Xeon E5-2630 v3 at 2.40GHz with 8 cores and 256GB of Ram and 1 GPU Nvidia Titan
X (Pascal) with 12GB of Ram.

VI. DISCUSSION

Table I shows the obtained classification results with CNN architectures. It also shows how
the best shallow architecture: Random Forest concatenating three scales of Haar features (RF-
HAAR-MS) [19], [20] performs. We have also evaluated the role of regularization on the learning
process for the SCNN and SCNN-MS models (adding noise and spatial dropout). The obtained
results with no regularization, not included here, show an important decrease in their figures of
merit when regularization is not used.

A comparison among the different classifiers trained from image patches, [LD,MD,DR]-CNN
and RF-HAAR-MS, shows that an important improvement is obtained when very deep models are
used (DR-CNN). The LD-CNN model has a much lower score than the shallow RF-HAAR-MS.
This indicates that a simple architecture with a low number of layers is unable to deal with the
image noise to extract good features. The MD-CNN performs slightly better than RF-HAAR-MS
pointing out that increasing the number of layers introduces robustness against non-stationary
noise. The DR-CNN model obtains a better score, with an AUC value of almost 79%. This shows
that deep enough models are able to extract robust and informative features on noisy scenarios.
Architectures using preprocessed images are noted *-pre in Table I.

TABLE I: CNN results. These models are defined by a committee of classifiers using raw and
preprocesed (pre) images respectively. For some architectures we also show the result using
preprocessed images, only the best performing ones are shown. See the text for additional
explanation on the columns.

Model AUC ×102 TP×102 FP Thr Overlap
LD-CNN 55.3± 2.2 92± 3.7 7.1± 7.0 0.7 0.4

MD-CNN 70.9± 1.7 92± 1.9 6.3± 5.9 0.6 0.3

DR-CNN 78.8± 1.8 95± 2.2 4.2± 4.1 0.5 0.3

DR-CNN-pre 69.3± 2.1 95± 1.1 6.2± 6.0 0.65 0.3

SCNN 86.2± 1.4 100 0.02± 10−5 0.65 0.5

SCNN-pre 83.4± 2.7 100 0.03± 0.04 0.65 0.5

SCNN-MS 87.4± 0.5 100 0.006± 10−6 0.65 0.5

SCNN-MS-pre 82.1± 4.2 100 0.1± 0.12 0.65 0.5

RF-HAAR-MS 75.3± 1.6 94± 0.9 4.0± 3.8 0.7 0.3

The best performing CNN methods are the ones fed with full images instead of patches. They
can deal better with the spatial non-stationarity image noise and take advantage of analyzing
the whole image at once. SCNN performs very well, reaching a 86% AUC, a 100% rate of
positive detection and average of 0.02 false positives per image (FP). In comparison with the
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patch based architectures, these figures represent an enormous improvement. When multiscale
information is considered in SCNN-MS, an additional improvement is achieved, reaching 87.4%
AUC while at the same time decreasing significantly the FP rate by nearly one order of magnitude.
As it can be observed, the best score, in bold, shows an over 12 point improvement over the
score obtained by the best shallow architecture, RF-HAAR-MS, with the added benefit of having
eliminated the feature extraction process. In terms of detection errors (TP and FP), these deep
learning architectures also show an overwhelming improvement over the shallow ones. These
findings clearly point out the negative influence of the image noise on the shallow architectures
and their difficulty to remove the noise in the classification process. On the contrary, the deep
learning models show robustness to image noise when the number of layers increases. It is also
interesting to note that image processing does not help any CNN model. This could be explained
by noticing that any image preprocessing technique introduces new spatial dependencies on the
image values, making a much harder task for the model to extract uncorrelated features. In other
words, the preprocessing step masks the signal and makes more difficult for the models to extract
uncorrelated features. Although the reported figures correspond to applying one particular filter,
see Appendix A, we also tried other filters with similar results.

Figure 11 shows some examples of the most relevant activation maps of the SCNN-MS model
“last 2 Conv” layer (see Fig. 9). The first column contains the input images, columns Map [1-3]
show the most relevant activation maps contributing to the classification layer. This layer before
the sigmoidal function is applied is shown in the fifth column (see Before-σ column). The other
nine activation maps do not contain much internal structure. They do not contribute much to
the detection process. However, if they are removed the performance of the method decreases
slightly. The last column shows the input image with the detected threat in green. The first two
rows (True Positive) show examples where our approach detects a true threat. It can be seen that
the areas with high activation in the column Before-σ correlate with lack of activation in the
maps. In rows three and four (True Negative) the behavior is similar, but the intensity of the final
activation is smaller and after the sigmoidal transformation it is eliminated. The last two rows
(False Positive) show two examples where our model fails. In this case no threat is present but the
model identifies a false positive. The discussion above suggests that the filters look for areas of
high contrast in the images. Since our model detects all the threats in the database (see Table I),
no false negative examples are shown.

We finally report training and test times. Obviously, the training time depends on the number
of free parameters to be estimated and the number of convolutions to be carried out. Table II
depicts the training and test computing times for all the CNN architectures. It is interesting to
note the high influence of the architecture design on the training and test figures. Clearly those
models trained using image patches require higher training times due to a much larger training
set, additionally the layer design has a strong influence, see the [LD,MD,HD]-CNN models. The
MD-CNN model needs much more time than the other models due to the higher number of
convolutions associated to the higher number of filters. On the contrary, the SCNN model is much
faster in both training and test times. This property together with its high efficiency makes it a
very good candidate for real-time applications.
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TABLE II: CNN training and test times (h hours, m minutes and s seconds). We show the one
fold mean training time, the test time over all the images, and the mean time per image.

Model Training one fold Total test
Per

image test
LD-CNN 1h and 32m 47.42m 0.86s
MD-CNN 14h and 27m 746.82m 13.54s
DR-CNN 9h and 50m 73.90m 1.34s

SCNN 2m and 24s 48s 0.015s
SCNN-MS 5m and 52s 2m and 24s 0.044s

RF-HAAR-MS 19h and 12m 12m and 20s 0.22s

VII. CONCLUSIONS

In this paper we have analyzed the use of CNN-DL classifiers to detect and localize concealed
objects in PMMWIs approach. We have shown that to address the non-stationary noise present in
the images, deep architectures should be used. They show an overwhelming improvement over
the best performing shallow ones. We have also found that the two most important factors for
this improvement have been the depth of the architecture and feeding the models with the whole
image. The combined use of information from different scales improves the detection score and
also greatly reduces the classification errors. The regularization process applied to our model has
shown to be crucial in order to find a model with a high detection score (AUC, TP) and a low
error rate (FP).

The obtained results allow us to conclude that our DL-CNN architectures define a new state
of the art for the task of detecting and localizing concealed objects in PMMWIs. In addition,
we have found that deep architectures are a very good tool to deal with signals immersed in
non-stationary noise. Our experimental set-up uses the new UGR-PM2WI dataset, to the best of
our knowledge, the currently most comprehensive available dataset for this task.

APPENDIX

A. Image Enhancement

A natural question to consider is whether image filtering (smoothing, contrast enhancement,
etc.) helps the detection process. Fig. 12 shows examples of applying mean (b), median (c), and
bilateral (d) filters to the observed image, Fig. 12(a).

We observed that a better smoothing criterion is to assign to each pixel an estimation of the
most frequent value in its neighbourhood. That is, for each pixel i, let yB

i denote a block around
yi in the observed image y, zi(1), . . . , zi(K) denote K independent samples with replacement
from yB

i . We then redefine

qi =

∑K
k=1 zi(k)

K
, (2)

assign y = q and repeat the process L times. The final processed image is

xi = median(yBi ) (3)
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Fig. 11: Examples of the most relevant activation maps of the SCNN-MS “Last 2 Conv” layer.
The first column contains the input images. Columns 2-4 display the activations of the most
relevant filters. The fifth column shows the activations of the last convolutional layer just before
the sigmoidal (σ) activation. The last column shows in green the predicted probabilities for each
pixel over the input images (higher probabilities are associated to greener intensities). Notice
that low responses in the feature maps correspond to high responses before the sigmoidal and
the predicted highest probability zones (see text). Activation layers have been rescaled for better
visualization.

We have found experimentally that B = 5× 5 and L = 5 produce good processed images, see
Fig. 12(e). Notice that some contrast improvement can be observed. See the experimental section
to analyse how image processing influences the performance of the proposed classifiers.
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(a) (b) (c) (d) (e)

Fig. 12: Results of applying different image filtering (Best view in high resolution screen), see
text for details.

B. UGR-PM2WI Dataset

A comprehensive dataset of PMMWIs has been created. It consists of 3309, 125× 195 images
of 33 different people. Hidden objects are in the range of 35× 39 to 10× 10 pixels, which in our
images corresponds roughly to 2752.39cm2 and 201.64cm2, respectively. Smaller hidden objects
are not considered to be relevant.

We took pictures of different people (with different complexions and heights) wearing 12
different objects in 10 body locations: forearm, chest, stomach, thigh, ankle (front), waist (side),
armpit (side), arm, ankle (lateral), thigh (lateral), and 2 images without any objects. Images of
people wearing simultaneously two objects in different locations were also taken. In summary,
the dataset consists of 463 pictures of people with no object, 2144 containing one object and 702
containing 2 objects.

Threats were simulated by bags containing objects/substances with different millimeter wave
responses: a cutter, 325g of gel, a 200g clay bar, a simulated gun, 200g of sugar, 200g of frozen
peas, 150ml of cologne, 160g of gel, a bag with metal pieces, 200g of flour, a 50cl water bottle,
and a 250ml hydrogen peroxide bottle (see Fig. 13). Notice that different object sizes were used.

Fig. 14 shows PMMWIs of subjects with simulated threats on different locations. It is important
to note that although in the experiments objects are visible and not hidden under clothing, this is
irrelevant to PMMW sensors.

The visual images were taken at the same time as the millimeter ones. Objects are marked on
the visual images by the smallest bounding boxes containing them. To transfer object bounding
boxes from visible images to PMMWI ones, a homography, estimated from the visible image
plane to the PMMWI one using a calibration pattern, was applied. These bounding boxes will
later be used to assess the performance of the classifiers.
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Fig. 13: Simulated threats in the dataset: a cutter (1), 325g of gel (2), a 200g clay bar (3), a
simulated gun (4), 200g of sugar (5), 200g of frozen peas (6), 150ml of cologne (7), 160g of
gel (8) , a bag with metal pieces (9), 200g of flour (10), a 50cl water bottle (11), and a 250ml
hydrogen peroxide bottle (12).

Fig. 14: Examples of PMMWIs with (hidden) objects. Red boxes indicate object locations. Objects
to be detected correspond to whiter areas on the body.
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[14] O. Martı́nez, L. Ferraz, X. Binefa, I. Gómez, and C. Dorronsoro, “Concealed object detection
and segmentation over millimetric waves images,” in 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Workshops, pp. 31–37, June 2010.

[15] I. Gómez Maqueda, N. Pérez de la Blanca, R. Molina, and A. Katsaggelos, “Fast millimetre

Chapter 4. Threat Detection in Passive Millimeter-Wave Images 134



wave threat detection algorithm,” in European Signal Processing Conference (EUSIPCO
2015), pp. 599–603, Nice (France), September 2015.

[16] S. Yeom, D.-S. Lee, Y. Jang, M.-K. Lee, and S.-W. Jung, “Real-time concealed-object
detection and recognition with passive millimeter wave imaging,” Optics Express, vol. 20,
pp. 9371–9381, Apr 2012.

[17] W. Yu, X. Chen, and L. Wu, “Segmentation of concealed objects in passive millimeter-wave
images based on the gaussian mixture model,” Journal of Infrared, Millimeter, and Terahertz
Waves, vol. 36, no. 4, pp. 400–421, 2015.

[18] S. Yeom, D.-S. Lee, and J.-Y. Son, “Shape feature analysis of concealed objects with
passive millimeter wave imaging,” Progress in Electromagnetics Research Letters, vol. 57,
pp. 131–137, 2015.
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5.1.2 Main Contributions

• In this work, we introduce a fast DL based pyramidal mitosis detection algorithm

for WSIs. Our model propagates information between scales using the uncertainty

calculated by a cascade of Bayesian CNN [107] models. Moreover, this uncertainty

is also used to prune out false positives.

• We increase the performance of the system further by introducing geometric in-

variant features using Spatial Transforming Layers [108].

• We validate our proposal’s contributions using a new database of 22 WSIs of

melanoma skin cancer tissue with 8236 mitoses.

• Furthermore, we test whether our model can be used for knowledge transfer be-

tween tissues. The model is tested and compared to the state-of-art in mitosis

detection in breast cancer tissue.
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Abstract

Mitosis detection in Hematoxylin and Eosin images and its quantification for mm2 is cur-
rently one of the most valuable prognostic indicators for some types of cancer and specifically
for the breast cancer. In whole-slide images the main goal is to detect its presence on the full
image. This paper makes several contributions to the mitosis detection task in whole-slide in
order to improve the current state of the art and efficiency. A new coarse to fine pyramidal
model to detect mitosis is proposed. On each pyramid level a Bayesian convolutional neural
network is trained to compute class prediction and uncertainty on each pixel. This information
is propagated top-down on the pyramid as a constraining mechanism from the above layers. To
cope with local tissue and cell shape deformations geometric invariance is also introduced as
a part of the model. The model achieves an F1-score of 82.6% on the MITOS ICPR-2012 test
dataset when trained with samples from skin tissue. This is competitive with the current state
of the art. In average a whole-slide is analyzed in less than 20 seconds. A new dataset of 8236
mitoses from skin tissue has been created to train our models.

Index Terms

Mitosis detection, Pyramid, Bayesian model, Multiscale processing

I. INTRODUCTION

The quantification of mitotic cells in Hematoxylin and Eosin (H&E) images and more specif-
ically its density per square millimeter is one of the current most stronger markers in cancer
prognosis.

The advent of the high-resolution scanner technology to the computational pathology field has
allowed to obtain digital whole-slides images (WSI). Nevertheless, the huge size of the images
and the computing time of the current detection algorithms impose in practice a partial rather
than a fully image detection and counting.

This paper has been supported by the Spanish Ministry of Economy and Competitiveness and the European Regional
Development Fund (FEDER) under the grant DPI2016-77869-C2-2-R. Santiago López-Tapia received financial support
through the Spanish FPU program.
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Several difficulties can be identified as responsible of the current low detection rate on H&E
stained images. On one hand, the variability in RGB color map due to different stain intensities
and scanners technology [1], [2]. On the other hand, the presence of very hard false positives
due to Hematoxylin staining of non-cells tissue also makes harder the detection process. In
addition, the mitosis undergoes four different stages with different shapes and appearances. This
geometric variability and the low number of mitosis pixels per WSI also represent a new source of
false positive. These difficulties all together make the design of an efficient and accurate mitosis
detection algorithms a challenge task [3].

Different Challenges such as TUPAC-2016[4], MITOS-ATYPIA [5] and MITOS ICPR-2012
[6] have been organized in the last years to foster the detection algorithms. But the contributed
datasets from them all are too small and only from breast cancer tissue. Currently, there are
no other larger open access mitosis datasets. We have created a mitosis dataset from skin cancer
images to train our model. In this type of cancer mitosis detection is also a very relevant prognostic
indicator[7]. In order to compare our model with other results in the literature we have tested
with MITOS ICPR-2012.

II. RELATED WORKS

Many contributions to the use of CNN model for mitosis detection have been proposed since
the ICPR-2012 challenge MITOS ICPR-2012 [6] was available [8], [9], [10]. The best result
from all these approaches is an F1 score of 78.8%. In [11] an adaptation to the general object
detection framework from CNN, Faster R-CNN, is proposed. They focus on the use of very deep
architectures for mitosis detection achieving an F1-score of 83.2% in MITOS ICPR-2012. More
recently in [12] a new way of approaching the detection task is proposed. They stain twice each
slide using Phospho-histone H3 (PHH3) and H&E and leverage on the complementary properties
of these stains to improve the detection. They succeed in removing many of the false positives
but at the cost of a very complex processing. Our method addresses a similar goal but from a
pyramidal approach. All mentioned approaches exploit the depth increment in the architectures
as the main mechanism to generate good features. In [13] an approach inspired in Wide Residual
networks (WRN) [14] focus on the wide of the layer, instead of the number of layers. This
fact simplifies the architecture making it more efficient at test time and easier of training. They
reached an F1 score of 64.8% in the challenge TUPAC-2016 [4], which is a result competitive
with the state of the art for this dataset. Our architectures are inspired by this network.

The feature extraction stage of all above approaches either use the 40x scale or use a fine to
coarse feature pyramid starting in 40x. In both cases the highest resolution scale is the input
information. In contrast, here we propose a coarse to fine approach in a top-down pass through a
pyramid representing three scales of the image. We find benefits in both efficiency and accuracy.
The standard CNN models lack uncertainty measurements about the predictions as well as specific
layers to obtain invariance to geometric deformations. The use of a Bayesian approach to CNN
allows us to compute uncertainty in a natural way. On each internal pyramid level, prediction
and uncertainty from the above levels are used as input to improve the final model prediction.
We find that information from lower resolutions allow us to constraint the optimization process
at the highest resolution. In addition, and to cope with both the cell shape variability induced by
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the phases of the mitosis and the tissue local deformations, our model incorporate specific layers
to compute geometric invariant features [15].

In summary our contributions are: a) A new and fast pyramidal mitosis detection algorithm for
WSI achieving a F1-score competitive with the state of the art on MITOS ICPR-2012 dataset;
b) A new information propagation mechanism between scales from a cascade of Bayesian CNN
model; c) The use of uncertainty and geometric invariance to improve the detection score; d)
A model able of learning knowledge transfer between tissues; f) Mitosis detection time on WSI
faster than ever before.

The rest of the paper is as follows. Section.III we describes the model. Section.IV describes
the training and test stages. Section.V shows the experiment and Section.VI show the discussion
and conclusions.

III. MODEL DESCRIPTION

Our model is defined as a forward cascade of classifiers applied on a course-to-fine image pyra-
mid build from a WSI at three magnification scales 10x, 20x and 40x. We assume 40x represents
the sample image and the lowest pyramid level. Fig.1 shows a diagram of the architecture. On
each pyramid level a Bayesian CNN classifier inspired in the design of a Wide Residual Network
[14] is trained. The three classifiers in the cascade output a mask of detected mitosis, a feature
map, and the uncertainty per feature in terms of standard deviation as shown in Fig.1.

Fig. 1: Diagram showing the pyramidal model and the cascade of classifier to process the
pyramid. The top of the figure shows, in this order, the input image, the pyramid building and
the computation of the initial mask at 10x. The bottom shows how the first two pyramid levels
provide input information to the third pyramid level. The result is the output of a non-maxima
suppression process. See details in the text.
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These feature maps are used by the next detectors, top-down, as soft constraints to focus
the training on the most difficult negative samples (see Fig.1). We call this model PB-CNN.
Furthermore, to make the model resistant to local and shape deformations, appearing by both
the process of collecting and staining tissue and cells shape deformation, a Spatial Transforming
Layer[15] is applied before the residual blocks 4th and 7th in scale x40 (see Fig.2). We call
this model PB-CNN-STP. On the output of last classifier, we put to zero the predictions of those
pixels which uncertainty is higher than a threshold fixed in training. The experiments show that
these higher values are usually associated to WSI artifacts of low frequency in the training dataset.
Finally, a non-maximum suppression step is carried out to keep, in cluster of overlapping regions,
only the one with the highest probability. Our final output is a list of coordinates joint to their
corresponding probability and standard deviation. As it can be seen in Fig.2, we use a late fusion
criteria incorporating feature maps and uncertainty, of the above levels, at the end of network. We
have found in our experiments that this late fusion of features provides better results that doing
it earlier.

The architecture of our detector is shown in Fig.2. The architecture is a Wide Residual Network
[14] that uses three Wide Residual Units (WRU) (see right block). To reduce the spatial size of
processed patch, we use a stride of 2 at certain layers (indicated by ”/2” in the figure), in the case
of the WRU block, the stride is applied at the first convolutional layer. The same architecture
is used for PB-CNN-SPT adding a Spatial Transforming Layer[15] at the scale 40x as indicated
previously.

Fig. 2: Network architecture used for PB-CNN (see left figure). K ×K × N Conv indicates a
convolution layer with K ×K kernel and N filters. /2 idicates that the convolutution layer uses
a stride of 2. 2× 2 AVG-pooling indicates an average pooling layer of kernel 2× 2.

IV. TRAINING AND TEST

A. Dataset

The dataset is created from 22 WSI of melanoma skin cancer. The images were acquired using
a scanner Philips with a resolution of 0.25 micron per pixel. A senior pathologist of the Unit of
Computational Pathology of the University Hospital San Cecilio in Granada labeled the WSI at
40x by indicating the center of the mitosis. 8236 were annotated mitosis.
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B. Input mask at 10x

To detect initial relevant regions at 10x we apply a Laplacian of the Gaussian (LoG) filter
with σ = 9 over the Hematoxylin band obtained by color deconvolution [2]. Then a thresholding
for negative values that are less than −0.28 is applied. We select the windows centered at each
connected component as possible candidates to contain a mitosis. A window of size 24×24 pixels
is used.

C. Learning and testing

Let’s denote by GTL the pyramid ground-truth labeling defined by the coordinates of mitosis
centers in all scales. A strong labeling pyramid (MGTL) is generated, by labeling as 1 those
windows inside circles of fixed radius centered at the GTL’s mitosis centers. Radius of 96, 48
and 24 pixels are used for 40x, 20x and 10x scale respectively. The windows of label 0 on
each level are computed in runtime as the difference between the MGTL mask and the mask
obtained by thresholding and extrapolating the predicted probabilities from the above pyramid
level, let denote it as PR. The used threshold is fixed in training time in order to keep all GTL
windows within the class 1. The label 0 at each level represents hard false positive, since not
being mitosis were predicted as such with high probability by the above level. In the case of the
first level (10x), the mask computed in section IV-B is used as PR. At each pyramid level the
negative training samples are obtained by sampling of the mask of class 0. The positive samples
are patches centered at the coordinates indicated in GTL. The patch size used is 24×24, 48×48

and 96× 96 for scales 10x, 20x and 40x, respectively. Before extracting the patches for training,
we use the stain normalization algorithm proposed in [1] to reduce the variation in the training
dataset. This normalization is also used during testing before the WSI is processed.

Each classifier in the pyramid is trained for 90 epochs with the Adam optimizer [16] to
minimized the binary cross-entropy loss: BCE(y, p) = y log(p) + (1 − y) log(1 − p) where y

is the label and p the predicted probability of the sample being mitosis. The probability value of
the dropout used in all the models was 0.4 and the weight decay was set to 10−4. The learning
rate was set to 10−3 for PB-CNN and 5 · 10−4 for the scale 40x of PB-CNN-STP; in both cases
was divided by 10 each 30 epochs. Each batch was constructed by randomly sampling 32 positive
samples and 32 negative samples. Each epoch samples 106 batches.

Data augmentation has been applied from random rotations and mirroring. We also apply
random shifting up to 4, 8 and 16 pixels for scales 10x, 20x and 40x respectively, as well as
random scaling by a factor sampled in the range [0.75, 1.25]. Additive Gaussian noise with 0.05
of standard deviation was also added to the input. Finally, in order to introduce robustness to
color variation, we use the stain augmentation process proposed in [11] with α and β parameters
sampled in the ranges [0.995, 1.05] and [-0.05, 0.05] respectively.

We implement the Bayesian approach according to [17]. For it, we sample the dropout units
from a Bernoulli distribution with probability p = 0.4. Once trained, the prediction and uncertainty
of the network per each input image are computed as the average of the values of 10 new samples
of the dropout units after weight adaptation by the forward pass.

Finally, we have found necessary to apply a high Dropout rate to the feature maps of previous
levels at the beginning of the training process. This was done in order to force not to rely too

Chapter 5. Mitosis Detection in Whole-Slide Images 143



TABLE I: Two first rows show a comparison with state of the art methods on ICPR-2012 MITOSIS
test set [6]. Last three rows show a comparison on our test dataset of 5 WSI. Evolution of the
F1-score and processing time are shown by scales. Results for the times were calculated applying
sliding window on each pixel and using a Nvidia Titan X.

Method PBCNN-STP DeepDet[11] RR[18] CasNN[19]
F1 score 82.6% 83.2% 82.3% 78.8%
Method PBCNN10x PBCNN20x PBCNN PBCNN-STP WRCNN40x
F1-score 62.8% 72.5% 78.1% 81.3% 71.2%

Ave.Time WSI 27± 11 28± 10 29± 11 31± 11 56± 23

much in previous predictions and extract useful information from the current scale. We set this
dropout rate to 0.8 and linearly decrease it to 0 at epoch 40.

V. EXPERIMENTS

To demonstrate the benefits of our proposed PB-CNN, we first test it on our dataset conformed
by 22 WSIs. We separate the WSIs in training and test sets by randomly selecting 5 WSIs as the
test set and leaving the remaining 17 ones for training. We have 7133 mitoses for training and
1103 for testing. At the second row of Table I we show the F1-score and time increase of adding
each level of the pyramid, as well as using the Spatial Transforming Layer[15]. All models were
tested using the same framework and the same computer with a Nvidia Titan X with 12GB of
RAM. As the table shows, each level comes with a significant increase in performance at the
cost of a small increase in computational time. Adding the Spatial Transforming Layer [15] we
get an increase of 3.2% in F1-score at the cost of a slightly impact on the processing time. For
the sake of comparison, we train a Bayesian Wide Residual Network identical to the one used
on the 40x scale only, we call it WR-CNN-40x. The training process was the same as described
for our PB-CNN in Section. IV-C, although we change the dropout probability to 0.3 since we
find it gives better results. The results of this WR-CNN-40x are show in the two first rows of the
Table I. The propose PB-CNN is almost two times faster and gets a significant better F1-score
than this WR-CNN-40x, showing that the increase obtained is due to the pyramid architecture.

In order to compare our models with other in the literature, we train our best performing
model PB-CNN-STP with our 22 WSI and test it on MITOS-ICPR2012 test set containing images
produced by the Aperio XT scanner. Then, we extract the features provide by each scale before
the last classification layer and train a Random Forest classifier on the training dataset of the
Aperio XT scanner. Table I shows the results in comparison with other state of the art methods.
We can see that the best of our proposed method get a competitive result against current state of
the art in F1-score, despite being trained on WSI of a different tissue.

VI. DISCUSSION AND CONCLUSIONS

A new coarse to fine cascade of CNN Bayesian models for mitosis detection has been proposed.
The new mechanism of information propagation from top to bottom, using the uncertainty of the
prediction, allow to get results competitive with the state of the art on MITOS ICPR-2012 dataset.
To the best of our knowledge, this is the first time that a coarse to fine approach combined with
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uncertainty is used in mitosis detection. In our experiments, the Bayesian pyramid approach
reduces the computation time by a factor of two and increases by 7% the F1-score with respect
to the same CNN architecture applied only over the 40x scale. We have also shown the benefits of
using Spatial Transforming Layers to deal with local geometric deformations. On our dataset this
invariance increases the F1-score score by a 3.2%. It is also remarkable that our architecture is
trained with samples from a different tissue than breast cancer. This shows that our model is able of
learning useful mitosis features for the transfer of learning between tissues. Regarding efficiency,
the times measured on whole WSI make our method a good candidate for daily clinic. More
experiments on harder databases have to be carried out in order to assess the good properties
pointed out for the model. The addition of new input information from inmunohistochemistry
stains is also other relevant issue for future work.
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de la Blanca∗

∗Dept. of Computer Science and Artificial Intelligence, University of Granada, Granada,
Spain

Email: sltapia@decsai.ugr.es, cristoly94@gmail.com, nicolas@ugr.es
†Intercenter Unit of Pathological Anatomy, San Cecilio University Hospital,

Granada,Spain
Email: janeirosf@hotmail.com

Abstract

Mitosis detection in hematoxylin and eosin (H&E) images is prone to error due to the
unspecificity of the stain for this purpose. Alternatively, the inmunohistochemistry phospho-
histone H3 (PHH3) stain has improved the task with a significant reduction of the false negatives.
These facts point out on the interest in combining features from both stains to improve mitosis
detection. Here we propose an algorithm that, taking as input a pair of whole-slides images(WSI)
scanned from the same slide and stained with H&E and PHH3 respectively, find the matching
between the stains of the same object. This allows to use both stains in the detection stage.
Linear filtering in combination with local search based on a kd-tree structure is used to find
potential matches between objects. A Siamese convolutional neural network (SCNN) is trained
to detect the correct matches and a CNN model is trained for mitosis detection from matches.
At the best of our knowledge, this is the first time that mitosis detection in WSI is assessed
combining two stains. The experiments show a strong improvement of the detection F1-score
when H&E and PHH3 are used jointly compared to the single stain F1-scores.

Index Terms

Mitosis detection, WSI, PHH3 and HE, Siamese CNN

I. INTRODUCTION

The quantification of mitosis in histopathological tissues and specifically its ratio per square
millimeter is one of the most relevant factors in the prognosis of cancer. Unfortunately, the process
of mitosis detection on images stained with standard hematoxylin and eosin (H&E) is difficult and
prone to errors due to multiple factors consequence of its unspecificity [1]. H&E staining only
helps indirectly to mitosis identification, being the hyperchromaticity induced on the mitotic cell

This paper has been supported by the Spanish Ministry of Economy and Competitiveness and the European Regional
Development Fund (FEDER) under the grant DPI2016-77869-C2-2-R. Santiago López-Tapia received financial support
through the Spanish FPU program.
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nucleus one of the its most salient features. Unfortunately, many others tissue parts are stained
with a similar color too.

Phospho-histone H3 (PHH3) is a well-known immunomarker, specific for cells undergoing
mitoses [2]. This fact causes PHH3 to improve the inter-observer variability of the mitosis count
by a decrease in false negatives, but at the same time is prone to false positives as for instance in
inter-phase tumor cells with phosphorylated core protein H3. The staining with PHH3 has meant
an important improvement in mitosis detection for many type of cancers [3], [4].

The technology for the whole scanning of tissue slides (WSI) is able of digitizing a slide at
resolutions of 0.25 − 0.16 microns per pixel, which means image sizes of 1010 pixels. In this
setting, the task of mitosis detection can only be addressed using accurate and efficient algorithms.
The convolutional neuronal network (CNN) models have demonstrated, in recent years, a clear
superiority over traditional approaches in this task. [5], [6]. Here we focus on these kind of
models.

An issue that remains to be explored in some detail is the relevance of the combination of stains
in the mitosis detection process. Recently, in [7] an interesting approach taking advantage of the
properties of both stains, H&E and PHH3, to build a mitosis detector on H&E has been proposed.
This approach uses the PHH3 information to locate ground-truth mitosis on WSI but the goal is a
classifier on H&E. Although the approach means an important step in the detection of mitosis in
WSI, several issues still remain open. First, to design a simple training model taking advantage
of both stains simultaneously. Second, the labeling process should take into account both stains.
Fig.1 shows some cases of mitosis where the labeling from a single stain is misleading. Finally,
assessing the contribution of trained detectors with both stains is a relevant issue to improve
routine in daily practice.

In contrast to the above discussed approach, here we propose the simultaneous use of both
stains in the labeling and detection stages. To do that we stain twice each slide taking advantage
of the property of the antigenic recovering of the immunochemistry for destaining the H&E. This
strategy reports important benefits: (i) better labeling, (ii) training dataset with both stains, (iii)
improvement in detection score. The two most important challenges in our approach are a fast
search for potential correct matches and an assessment model for matches.

Our main contributions in this paper are: (i) a fast and efficient technique to generate matching
between both stains of the same object, (ii) the proposal of a SCNN model to validate the
matches; (iii) we show that training from both stains means a clear improvement in detection
score compared to use of only one. Finally, we emphasize that our searching algorithm makes
very easy the labeling of pairs.

The rest of the paper is as follows. Section.II defines the problem. Section.III discuss the
proposed approach. Section.IV shows the experimental results, and in Section.V the discussion
and conclusions are presented.

II. PROBLEM DEFINITION

To begin with we focus on the automatic object matching between stains of the same histological
tissue. The relevance of this task is due to the lack of consensus between pathologists when they
are asked to label a set of cells as mitosis or no-mitosis in H&E images. In the MYTHOS-ATYPIA
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Fig. 1: This figure shows by rows examples of two difficult scenarios regarding mitosis detection
in H&E or PHH3. The first row shows examples where the mitoses are very difficult to detect
in H&E but can be easily detected on PHH3. The second row shows examples where the PHH3
stain indicates positive mitosis but the H&E stain shows that it is not.

challenge[8], for instance, multi-labels had to be considered. Daily practice has shown that many
ambiguities can be solve when both stains are observed together. Fig.1 shows some examples.
This has motivated the interest to know how much a detector can improve when training with both
stains. The automatic identification of correct matches between stains it is not a straightforward
task. The manipulation of the slide in the double staining process, that is, staining with H&E
and scanning, destaining, and restaining again with PHH3 and new scanning, introduce small
local deformations on the tissue that makes impossible automatic matching of the images using
geometrical registering. In addition, the different response of the tissue to each one of the stains
also introduce strong differences in the shape and color of the surfaces of the cells as shows Fig.1.
To overcome all these deformations, we propose a search strategy to extract possible matches
and a similarity distance to find correct matches. For this latter task, we propose a Siamese CNN
(SCNN) [9], [10] since the CNN models have shown to be very efficient in extracting similar
features from images, that being visually different, are similar in a some semantic context. At
one last step, the correct matches are assessed, for mitosis presence, by a CNN classifier.

III. METHODOLOGY

A. Matches extraction

Let’s denote by p-WSI=(IPHH3, IHE) the two WSI images of the same slide with different
stain. We extract the objects present in each image applying standard cell detection functions,
[11], and eliminating all those objects with a size greater than a preset threshold. For this, we
use the hematoxiline and DAB bands of the H&E and PHH3 images respectively. The center of
mass of the remaining connected components (CC) is computed. A kd-tree data structure (KdT)
[12] is fed with the coordinates of the centers of the H&E image. The centers of the PHH3
image are saved as a list of points, LDAB . In order to reduce the number of pair to analyze
we take advantage of the specificity of the PHH3 stain to identify the potential mitosis presents
in the image. To this end, each vector of coordinates in the DAB list is used as query to the
KdT to retrieve matching candidates from the H&E image. Fig.2(a,b)) shows an example of how
unbalanced is the number of detections in both stains. In order to make easier the searching
process we register the bounding boxes of the tissue area in both images through an affine
transformation, A : IPHH3 → IHE, estimate from SURF points [12] detected from grey levels
after sub-sampling the image by a factor of ten. For each point x ∈ LDAB , its coordinates are
projected onto the axes of H&E by the affine transformation, y = Ax, and all points z ∈ KdT
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(a) (b) (c) (d)

Fig. 2: Images (a) and (b) show, inside circles, objects detected on PHH3 and H&E respectively.
Images (c) and (d) show, in circles of color, SURF points detected in PHH3 and H&E respectively.
(Best see it at higher magnification)

such that distance(y, z) < thr are extracted, where thr is a prefixed threshold. Let’s denote
by p-center the pair formed by the coordinates of the query-point, x, and the coordinates of
anyone of its matches. For each p-center, image-patches of size 80×80 pixels centered on them
are extracted from the images. Let’s denote them as p-patch. These p-patch are assessed by the
SCNN that output a similarity distance in terms of a probability. For each x the p-patch with
maximun probability is considered the true match. Let’s denote a correct p-patch as p-match. In
summary, our matching algorithms is as follows:

ALGORITHM: MS(H&E,PHH3, T,PHE,PPHH3)
Input:
- (H&E,PHH3): WSI of the same slide
- T : distance-threshold for searching
- PHE: list of coordinates of the object centers detected in H&E
- PPHH3: list of coordinates of the object centers detected in in PHH3
Preprocessing:
- Build a KdT from PHE.
- Compute SURF points: SURFHE, SURFPHH3

- Compute Global affine transformation: A : SURFPHH3 → SURFHE. .
Correspondences:
For each item p ∈ PPHH3

1.- Compute p̂ = Ap
2.- Compute PKdT(p) = {q|q ∈ KdT, distance(p̂, q) < T}
3.- Extract patches {oq} centered in q ∈ PKdT(p)

4.- Compute q̂ = argmaxq∈PKdT(p)SimilaritySCCN (op, oq)

5.- Output (oq̂, op)
where SimilaritySCCN denote the probability computed by the Siamese network.

B. Dataset and Labeling

Two datasets of p-match have been created. The first dataset, DS1, is defined by 57k (1k=1000)
p-match extracted after staining and scanning 48 slides, 30 of skin cancer (melanoma) and 18 of
breast cancer. The second dataset, DS2, is defined by 11k p-match of mitosis and 75k p-patch no
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(a) (b) (c)

Fig. 3: Siamese architecture: (a) shows the global network design composed of two parallel
branches to process each one of the images. After the feature extraction a function of the feature
vectors compute the similarity between the images. In (b) we show the three main blocks that
compose the model. CV correspond to Convolution and ReLU activation and FC to full connected
layer followed by ReLU. We use batch normalization before each ReLU. In (c) the architecture
of the CNN model used for mitosis detection is shown.

mitosis extracted from 17 slides of melanoma. The slides were scanned with a Philips Ultra-Fast
Scanner at a spatial resolution of 0.25 microns per pixel. All p-patch were labeled by a senior
pathologist of the Saint Cecilio Universitary Hospital in Granada, who annotated a percentage
of the correct matches on each p-WSI. An interactive software which iterates showing p-patches
and their surrounding areas was used for this task. A p-patch is tagged with a maximum of two
clicks: one click to decide correspondence vs. no correspondence and another click to decide
mitosis vs. non-mitosis. This is a very simple routine that allows to label many pairs in a short
period of time.

C. Training

Our specific SCNN model is shown in Fig.3(a-b). It can be observed that Block-PHH3 y Block-
H&E share the same architecture based on a standard Lenet model of CNN [13]. Block-Final
processes the features from the input blocks to learn the similarities. The network is trained
during 100 epochs using a batch size of 128 with Adam[14] optimizer and initial learning rate
of 0.0002. We reduce the learning rate by a factor of 10 each 10 epochs if the training loss has
not been reduced. The training stops if the loss keeps without reducing after another 20 epochs.
The networks outputs the probability of a p-patch, {he,phh3}, of being a p-match. We train the
network to minimize the binary cross entropy loss L(·, ·), defined for each sample as,

L(he,phh3) = −y(log(fθ(he,phh3) + (1− y) log(1− fθ(he,phh3))

where y ∈ {+1,−1} represents the image-pair’s label and fθ represents the function computed by
our SCNN. To regularize the model, we use L2-weight decay of strength 1.0 on the parameters
of the network and Dropout[15] with probability of 0.3 before the last full connected layer. The
CNN used for mitosis detection from p-match is shown in Fig. 3(c). We minimize the binary
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Fig. 4: This Fig. show some examples of the errors of the algorithm-MS. The first row shows
examples of false negative p-match. The second row shows examples of false positives p-match.
See the pair as (PHH3,HE)

cross-entropy loss function using the Adam[14] optimizer with learning rate set to 0.001 during
the first 50 epochs, then reduced to 0.0001 for 25 epochs and finally set to 0.00001 for another
25 epochs. We set the weight decay parameter to 0.0001 and use Dropout of 0.5 before each
non-linearity except before the Softmax layer. Also, we use data augmentation on the p-match
by rotating the input patches by 90◦, 180◦ and 270◦ and performing horizontal and vertical flips.
We also add Gaussian noise with σ = 0.0001 to the input.

IV. EXPERIMENTAL RESULTS

We assess the performance of our algorithm-MS by cross-validation. To do this, we define
five folds from the set of 48 p-WSI. On each fold 43 p-WSI are used for training and 5 for
testing. In total we use 25 different p-WSI in testing. On each fold the set of p-match, extracted
from each image, is used according to the role of the image in that fold. Table.I shows the
number of p-match used in training and testing for each fold. The items for the negative class
are generated by random combinations of the p-match items. We generate as many negative item
as there are p-match. The test with each fold begins by detecting and extracting the coordinates
of the centers of the objects in the p-WSI test. We use cell detection routines of the QuPath[11]
free software to extract the center of the object on each p-WSI. The kd-tree structure is build
using [12]. From them the set of p-patch is estimated. Eventually, the p-patch are assessed by
the SCNN. In this experiment what we measure is the accuracy of the p-match test elements (see
Table.I(top)). In order to evaluate the effect of the number of p-match in the testing matching
error, we design the folds to cover a broad range of values in testing. A value of thr=60 is used
as searching distance in the KdT. The average query time per image is about 3s. Third row in
Table.I shows the accuracy achieved on each fold. The estimated accuracy of the algorithm-MS
for matches is 99.6%±0.58. Fig..4 shows some examples of p-match errors from SCNN. We
assess the H&E+PHH3 improvement versus the single stains, on dataset labeled from both stains,
using the detector architecture shown in Fig. 3(c). We select this architecture for two reasons.
First, it represents an adaptation of Lenet model which is the most popular CNN used for mitosis
detection. Second, our dataset is filtered by the matching algorithm that removes much of the
false positives. This makes unnecessary a complex architecture for this task. In a first experiment
we train and test our detector using each one of the components, H&E and PHH3, of the p-WSI.
In the second experiment we use full p-WSI. In all cases the color of the images was normalized
using the algorithm given in [16]. From the dataset, DS2, we constructed 5 partitions of WSIs
and used them for cross-validation. Table.I in the bottom shows the detection F1-score achieved
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TABLE I: Top: results of the correspondence experiment. 1k=1000. The second row shows the
number of corresponding pairs used, in each fold, in training and validation respectively. The third
row shows the validation accuracy in each fold for patches of 80×80 pixels. Bottom: detection
F1-score using the different stains.

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
Train matches 56.6k 52.5k 47k 54k 45.6k
Valid. matches 721 4.8k 10.4k 3.4k 11.7k

Valid.Accuracy (80×80) 98.6% 99.9% 100% 99.9% 99.6%

Patches H&E PHH3 H&E+PHH3
Detection F1-score 73.3± 0.5% 77.6± 0.2% 80.7± 0.4%

by our detector using patches from H&E, PHH3 and H&E+PHH3 respectively. The result shows
that using together both stains greatly improve the F1 score with respect to only using one. To
evaluate the impact of the p-match errors in detection we test our CNN with the same image
dataset but computing the p-match using the algorithm-MS. In this case an F1 score of 80.1±0.4%
is achieved, which means a drop of only 0.6 points.

V. DISCUSSION AND CONCLUSIONS

The proposed approach shows that both stains H&E and PHH3 when used together make a
significant contribution to the detection of mitosis. In addition, our approach contributes with
a new technique for the labeling of mitosis using both stains simultaneously. The size of the
datasets makes our results preliminary but also reliable. It remains to be done a full evaluation
of the matching errors and the influence of the detector. The help of our algorithm-MS in the
complete labeling of p-WSI opens the door to create larger and more challenging training data
sets to evaluate new algorithms. This will be one goal for future work.
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Chapter 6

Conclusions and Future work

In this dissertation, we have addressed several challenging image and video processing

and classification problems using DL based models. We have shown that DL-based

models can be applied successfully to the tasks of image and video SR, image restoration,

threat detection in PMMWIs and mitosis detection in WSIs. In all previous problems,

the introduction of domain knowledge into the DL model is a critical factor, significantly

increasing the model’s performance and overcoming the limitations of other state-of-art

DL-based approaches. We have used several methods to introduce this information into

the model: through the architecture design, introducing specialized layers, modifying the

loss function, constraints or combining the model with other non-DL-based approaches.

In all the problems studied in this dissertation, the solutions proposed outperform current

state-of-art methods in critical scenarios.

This dissertation has been presented in the modality of “compendium” and struc-

tured in the following four blocks: video super-resolution, image restoration and super-

resolution, threat detection in passive millimeter-wave images and mitosis detection in

whole-slide images. The conclusions and vias of future work of each one of them are

detailed below:

6.1 Video Super-Resolution

Conclusions:

• First, we have introduced a new DL-based model for multiple degradations VSR.

Our model explicitly uses the LR image formation model as an input and to con-

strain the output of the network. It obtains better results and is more robust

to multiple degradations than current VSR state-of-art, outperforming the closest

competing model by 0.5dB-0.006(SSIM) on average.

• Second, we have proposed a new loss to train VSR models. This loss is a com-

bination of adversarial and feature losses and a spatial smoothness constraint.

Compared to other perceptual losses, this loss can improve the super-resolved

156



Chapter 6. Conclusions and Future work 157

frames’ quality without introducing noticeable high-frequency artifacts. Our ex-

periments have shown that the spatial smoothness constraint is the term respon-

sible for removing these artifacts, significantly improving PSNR and SSIM by

0.47dB-0.15(SSIM) without harming the perceptual quality that improves sightly

by 0.0002.

• Third, we have shown that the use of datasets with a diverse set of scenes and

motions significantly improves the performance of GAN-based VSR models, im-

proving the perceptual quality by 0.0015.

• Finally, we have proposed a new Recurrent CNN model for VSR that adapts

the minimal Gated Recurrent Unit [129] to VSR. This model outperforms current

state-of-art in terms of PSNR, SSIM and temporal consistency (0.6dB-0.026(SSIM)-

0.03(T-RRED[130]) compared to non-recurrent CNN AVSR[117]), while being sig-

nificantly faster (almost two times faster than AVSR[117]) thanks to the reuse of

features of previous frames.

• Experiments show that without deformable attention, the gated combination can-

not be performed properly. Thus, no significant improvement can be seen in the

results. The combination of deformable attention and the gated combination sig-

nificantly improve the results in terms of PSNR, SSIM and temporal consistency,

showing an improvement of 0.15dB-0.004(SSIM)-0.10(T-RRED[130]) over a nor-

mal recurrent CNN.

Future work:

• Our GAN-based model for multiple degradations VSR can be adapted to more

advanced GAN frameworks, like Wasserstein GANs [104], being able to benefit

from improvements in efficiency and stability.

• Our recurrent CNN model can be improved with the introduction of local recurrent

connections, enhancing the flow of information across time and feature reuse.

• The two models proposed for VSR can be combined to obtain a model for multiple

degradations VSR with the advantages of both.

6.2 Image Restoration and Super-Resolution

Conclusions:

• We have introduced two models, one for BID and the other for multiple degrada-

tions SR. Both models outperform current state-of-art for BID with uniform blur
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(0.62dB-0.02(SSIM) over the second-best) and multiple degradations SR (1.14dB-

0.03(SSIM) over the second-best for scaling factor 2 and complex blurs). Further-

more, both models are faster than most competing methods.

• Through our experiments, we have found that Wiener filtered images are an ef-

fective way of introducing blur kernel information in a CNN. This improves the

performance of the network and allows it to generalize to unseen blurs during

training. In the case of our cascade CNN model for multiple degradations SR,

motion-corrected features are obtained by combining multi-scale features from the

LR and the Wiener filtered image using deformable convolutions. This significantly

improves the performance of the model (0.37dB-0.010(SSIM)).

• Affine projection is an effective method to constrain the network’s function space,

improving the model’s performance by easing the learning and allowing for better

minima. Furthermore, the residual error introduced by the presence of noise and

blur kernel estimation errors is not too large, so it can be removed using a refine-

ment sub-module or the filters from a dynamic filter network [133]. We have used

affine projection for our BID approximation and found that it allows our model

to compete with similar networks that are twice as deep (less than 0.05dB of dif-

ference). We have also used the affine projection in our cascade CNN model to

separate the last sub-module into upsampling and image refinement sub-modules,

further improving the results by 0.14dB-0.003(SSIM).

• The filters from a dynamic filter network [133] can be used to remove artifacts in the

restored image caused by an inexact PSF estimation or other degradation model

inconsistencies. In BID, this improves the model’s performance significantly by

0.22dB-0.018(SSIM). In the case of multiple degradations SR, these filters can be

used to reuse partial results from previous sub-modules in the cascade. If combined

with connecting each sub-module using the previous sub-modules’ features, the

results improve by 0.26dB-0.007(SSIM).

• In the case of a cascade CNN for multiple degradation SR, “Privileged Information”

[134] can be used to guide the training of the deblur sub-module to produce images

that are easier to upsample. This increases the performance of the model by

0.28dB-0.007(SSIM).

Future work:

• The current implementation of the blur estimation is done in the CPU. If imple-

mented in the GPU, the speed of our BID approximation will increase significantly.

• The model proposed for multiple degradation SR is not blind, needing an esti-

mation of the blur kernel. Although we have shown that it could work with any
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kernel estimation method, for very high scaling factors LR images do not contain

enough information to make a good kernel approximation. However, if the image

is super-resolved progressively, following [137], the blur kernel estimation can be

done progressively. This will allow our model to be applied to increasing scaling

factors.

6.3 Threat Detection in Passive Millimeter-Wave Images

Conclusions:

• Based on our study, a new shallow ML approach to the detection task was devel-

oped using Haar features and Random Forest. This method detects 94% of all the

database threats but produces a high number of false positives. Nevertheless, it

can obtain a 0.75 AUC when detecting images containing a threat. Our approach

outperforms previous threat detection methods for PMMWIs, detecting 34% more

threats for a similar rate of false positives. This establishes a new state-of-art.

Previous methods can be used but are most effective with other types of images,

namely active millimeter-wave images.

• Our experiments show that this task’s main difficulty arises from the low signal to

noise ratio and non-stationary noise that populates an image. Because of this noise,

shallow ML models perform better if Haar features and noise-removal prepossessing

algorithms are used.

• Finally, we have performed a second study incorporating DL for threat detection.

Two DL approaches have been studied: DLA and SGA. To deal with the non-

stationary noise of PMMWIs, a DL method using the whole image (SGA) should

be used. This increases in 5% the number of true positives and reduces in 4 the

false positives per image, reaching almost zero.

• Multi-scale information and strong regularization are critical elements of our ap-

proximation. Thanks to these two elements, our model can detect all the database

threats while having almost no false positives.

• Surprisingly and in contrast to shallow ML models, DL models perform better

if noise-removal image processing techniques are not used. We have observed a

decrease in AUC of 0.095 for DLA and 0.028 for SGA.

Future work:

• Although the database of PMMWIs used in this dissertation is the one with the

largest number of instances, to the best of our knowledge, it is still too small for

DL-based methods (only 3309 images). Obtaining a larger number of samples with
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more variety of threats will allow us to increase the model’s complexity without

overfitting.

• Since one of the main difficulties in this task arises from the low quality of the

images, we believe that this problem is an excellent candidate to be solved using a

cascade architecture similar to the one proposed in Section 3.2. Moreover, active

millimeter-wave images can guide the part of the network responsible for enhancing

the images. This would be a form of “Privileged Information” [134].

6.4 Mitosis Detection in Whole-Slide Images

Conclusions:

• We have proposed a fast DL-based pyramidal mitosis detection algorithm and

shown that the uncertainty calculated using Bayesian dropout [107] can be used to

pass information through the scales and prune out false positives caused by artifacts

in the WSI. Experiments done using WSIs of melanoma skin cancer tissue have

shown that it can outperform DL models of similar complexity by 7% in F1 score

while being almost two times faster.

• Furthermore, the introduction of Spatial Transforming Layers [108] has been shown

to improve our model’s robustness to geometric deformations of the tissue, increas-

ing the performance in F1 score by 3%.

• Moreover, we have shown that our model can be used for knowledge transfer be-

tween tissues. State-of-art performance in breast mitosis detection is reached by

training a shallow classifier with the features of our model, which was trained on

melanoma skin cancer tissue.

• Finally, a novel model for detecting mitosis using information from H&E and

PHH3 stained tissue has been proposed. The method uses Surf[135] points and

a Siamese CNN [136] to find matches between images of both tissues and classify

those matches using a CNN. Our experiments show that using both stains signif-

icantly increases the performance of the model (7% increase in F1 score over a

model trained with H&E and 3% over only using PHH3), even when errors in the

matching algorithm are taken into account.

Future work:

• Self-supervised learning [138, 139] can be used to learn useful representations of

the image data that work across tissue types without the need for labeled data. A

classifier for each tissue type can then be learned using this representation and a

small amount of labeled data.
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• Current mitosis detection algorithm will benefit from an improvement in the quality

of available images. Because of the nature of the scanning process, a significant

percentage of the WSIs of some tissue types presents out-of-focus blur. Mitosis

detection is a very challenging problem that requires much detail; thus, detection

algorithms’ performance significantly drops in regions of the WSI that presents

blur.
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a compact image representation,” in 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2010, pp. 3304–3311.



Bibliography 164

[19] L. Deng and D. Yu, “Deep learning: Methods and applications,” Microsoft, Tech.

Rep. MSR-TR-2014-21, May 2014. [Online]. Available: https://www.microsoft.

com/en-us/research/publication/deep-learning-methods-and-applications/

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[21] A. Damianou and N. Lawrence, “Deep gaussian processes,” in Proceedings of Ma-

chine Learning Research (PMLR), C. M. Carvalho and P. Ravikumar, Eds., vol. 31,

Scottsdale, Arizona, USA, 29 Apr–01 May 2013, pp. 207–215.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-

tion with deep convolutional neural networks,” in Advances in Neu-

ral Information Processing Systems 25, F. Pereira, C. J. C. Burges,

L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,

2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[23] F. Liu, G. Lin, and C. Shen, “CRF learning with CNN features for image segmen-

tation,” Pattern Recognition, vol. 48, no. 10, pp. 2983–2992, Oct. 2015.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 770–778.

[25] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[26] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on Computer

Vision (ICCV), 2015, pp. 1440–1448.

[27] S. Valipour, M. Siam, M. Jagersand, and N. Ray, “Recurrent fully convolutional

networks for video segmentation,” in 2017 IEEE Winter Conference on Applica-

tions of Computer Vision (WACV), 2017, pp. 29–36.

[28] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep

convolutional networks,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 38, no. 2, pp. 295–307, Feb. 2016.

[29] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very

deep convolutional networks,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016, pp. 1646–1654.



Bibliography 165

[30] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video super-resolution with

convolutional neural networks,” IEEE Transactions on Computational Imaging,

vol. 2, no. 2, pp. 109–122, 2016.

[31] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser:

Residual learning of deep cnn for image denoising,” IEEE Transactions on Image

Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[32] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, “Deblurgan-v2: Deblurring (orders-

of-magnitude) faster and better,” in 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), 2019, pp. 8877–8886.

[33] Y. Bengio and Y. Lecun, Scaling Learning Algorithms towards AI. MIT Press,

2007.

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” in Proceedings of the IEEE, 1998, pp. 2278–2324.

[35] S. Ghosh, R. Shet, P. Amon, A. Hutter, and A. Kaup, “Robustness of deep con-

volutional neural networks for image degradations,” in 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 2916–

2920.

[36] Y. Pei, Y. Huang, Q. Zou, X. Zhang, and S. Wang, “Effects of image degradation

and degradation removal to cnn-based image classification,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[37] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equa-

tions. New Haven, CT: Yale University Press, 1923.

[38] D. Perrone, R. Diethelm, and P. Favaro, “Blind deconvolution via lower-bounded

logarithmic image priors,” in International Conference on Energy Minimization

Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2015.

[39] J. Pan, D. Sun, H. Pfister, and M. Yang, “Blind image deblurring using dark

channel prior,” in 2016 IEEE Conf. Comput. Vision and Pattern Recognition,

2016, pp. 1628–1636.

[40] B. Zhang, R. Liu, H. Li, Q. Yuan, X. Fan, and Z. Luo, “Blind Image Deblurring

Using Adaptive Priors,” in Internet Multimedia Computing and Service, ser. Com-

munications in Computer and Information Science. Springer, Singapore, Aug.

2017, pp. 13–22.
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[78] E. Zerhouni, D. Lányi, M. Viana, and M. Gabrani, “Wide residual networks for

mitosis detection,” in IEEE 14th International Symposium on Biomedical Imaging

(ISBI), 2017, pp. 924–928.

[79] C. Li, X. Wanga, W. Liua, and L. J. Latecki, “Deepmitosis: Mitosis detection via

deep detection, verification and segmentation networks,” Medical Image Analysis,

pp. 121–133, 2018.

[80] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”

in Proceedings of Machine Learning Research (PMLR), G. Gordon, D. Dunson,

and M. Dud́ık, Eds., vol. 15. Fort Lauderdale, FL, USA: JMLR Workshop and

Conference Proceedings, 11–13 Apr 2011, pp. 315–323.

[81] R. Rojas, The Backpropagation Algorithm. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1996, pp. 149–182.

[82] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for

online learning and stochastic optimization,” Journal of Machine Learning

Research, vol. 12, no. 61, pp. 2121–2159, 2011. [Online]. Available:

http://jmlr.org/papers/v12/duchi11a.html

[83] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” CoRR, vol.

abs/1212.5701, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/

corr/corr1212.html#abs-1212-5701

[84] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980



Bibliography 170

[85] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” ser. Proceedings of Machine Learning Research, vol. 9.

Chia Laguna Resort, Sardinia, Italy: JMLR Workshop and Conference Proceed-

ings, 13–15 May 2010, pp. 249–256.

[86] J. F. Kolen and S. C. Kremer, Gradient Flow in Recurrent Nets: The Difficulty of

Learning LongTerm Dependencies. Wiley-IEEE Press, 2001, pp. 237–243.

[87] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network

learning by exponential linear units (elus),” in 4th International Conference on

Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,

Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[88] O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in Medical Image Computing and

Computer-Assisted Intervention (MICCAI), ser. LNCS, vol. 9351. Springer,

2015, pp. 234–241, (available on arXiv:1505.04597 [cs.CV]). [Online]. Available:

http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a

[89] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct. 2014,

pp. 1746–1751. [Online]. Available: https://www.aclweb.org/anthology/D14-1181

[90] S. Abdoli, P. Cardinal, and A. Lameiras Koerich, “End-to-end environmental

sound classification using a 1d convolutional neural network,” Expert Systems

with Applications, vol. 136, pp. 252 – 263, 2019. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417419304403

[91] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,

pp. 1–9.

[92] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convo-

lutional networks for visual recognition,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[93] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016, pp. 779–788.

[94] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann,

and W. Brendel, “Imagenet-trained CNNs are biased towards texture;



Bibliography 171

increasing shape bias improves accuracy and robustness.” in International

Conference on Learning Representations, 2019. [Online]. Available: https:

//openreview.net/forum?id=Bygh9j09KX

[95] D. P. Kingma and M. Welling, “Auto-encoding variational bayes.” in 2014 The In-

ternational Conference on Learning Representations (ICLR), Y. Bengio and Y. Le-

Cun, Eds., 2014.

[96] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672–2680.

[97] X. Wang, K. Yu, C. Dong, and C. Change Loy, “Recovering realistic texture in

image super-resolution by deep spatial feature transform,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 606–615.

[98] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, Y. Qiao, and X. Tang,

“Esrgan: Enhanced super-resolution generative adversarial networks,” in ECCV

Workshops, 2018.

[99] M. Zareapoor, H. Zhou, and J. Yang, “Perceptual image quality using dual gener-

ative adversarial network,” Neural Computing and Applications, pp. 1–11, 2019.

[100] T. M. Quan, T. Nguyen-Duc, and W.-K. Jeong, “Compressed sensing mri re-

construction with cyclic loss in generative adversarial networks,” arXiv preprint

arXiv:1709.00753, 2017.

[101] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas, “Deblur-

gan: Blind motion deblurring using conditional adversarial networks,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018,

pp. 8183–8192.

[102] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative neural samplers

using variational divergence minimization,” in Advances in Neural Information

Processing Systems (NIPS), 2016.

[103] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li, “Mode regularized generative

adversarial networks,” in Proceedings of the International Conference on Learning

Representations (ICLR), 2017.

[104] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial net-

works,” in Proceedings of Machine Learning Research (PMLR), D. Precup and

Y. W. Teh, Eds., vol. 70, International Convention Centre, Sydney, Australia,

06–11 Aug 2017, pp. 214–223.



Bibliography 172

[105] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Deep image prior,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2018.

[106] X. Pan, X. Zhan, B. Dai, D. Lin, C. C. Loy, and P. Luo, “Exploiting deep generative

prior for versatile image restoration and manipulation,” European Conference on

Computer Vision (ECCV), 2020.

[107] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Represent-

ing model uncertainty in deep learning,” in Proceedings of the 33rd International

Conference on Machine Learning (ICML-16), 2016.

[108] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu, “Spatial trans-

former networks,” in Advances in Neural Information Processing Systems 28, 2015,

pp. 2017–2025.

[109] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and

J. Dean, “Outrageously large neural networks: The sparsely-gated mixture-of-

experts layer,” in Proceedings of the International Conference on Learning Repre-

sentations (ICLR), 2017.

[110] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser:

Residual learning of deep CNN for image denoising,” IEEE Transactions on Image

Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[111] F. Xing, Y. Xie, X. Shi, P. Chen, Z. Zhang, and L. Yang, “Towards pixel-to-pixel

deep nucleus detection in microscopy images,” BMC Bioinformatics, vol. 20, no. 1,

p. 472, Sep 2019. [Online]. Available: https://doi.org/10.1186/s12859-019-3037-5

[112] C. Tapia, H. Kutzner, T. Mentzel, S. Savic, D. Baumhoer, and K. Glatz, “Two

mitosis-specific antibodies, mpm-2 and phospho-histone h3 (ser28), allow rapid

and precise determination of mitotic activity,” Am J Surg Pathol, vol. 30(1), pp.

83–9, 2006.

[113] P. S. Nielsen, R. Riber-Hansen, T. O. Jensen, H. Schmidt, and T. Steiniche, “Pro-

liferation indices of phosphohistone h3 and ki67: strong prognostic markers in a

consecutive cohort with stage i/ii melanoma,” Modern Pathology, vol. 26, p. 404,

Nov. 2012.

[114] B. F. Dessauvagie, C. Thomas, C. Robinson, F. A. Frost, J. Harvey, and G. F.

Sterrett, “Validation of mitosis counting by automated phosphohistone h3 (phh3)

digital image analysis in a breast carcinoma tissue microarray,” Pathology, vol. 47,

no. 4, pp. 329–334, Jun. 2015.



Bibliography 173
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[119] S. López-Tapia, J. Mateos, R. Molina, and A. K. Katsaggelos, “Combining analyt-

ical and deep learning methods in blind image deconvolution (submitted),” IEEE

Transactions on Image Processing, 2020.
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