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Development of a data-driven model for spatial
and temporal shallow landslide probability
of occurrence at catchment scale

Abstract A combined method was developed to forecast the spatial
and the temporal probability of occurrence of rainfall-induced shal-
low landslides over large areas. The method also allowed to estimate
the dynamic change of this probability during a rainfall event. The
model, developed through a data-driven approach basing on Multi-
variate Adaptive Regression Splines technique, was based on a joint
probability between the spatial probability of occurrence
(susceptibility) and the temporal one. The former was estimated on
the basis of geological, geomorphological, and hydrological predic-
tors. The latter was assessed considering short-term cumulative
rainfall, antecedent rainfall, soil hydrological conditions, expressed
as soil saturation degree, and bedrock geology. The predictive capa-
bility of the methodology was tested for past triggering events of
shallow landslides occurred in representative catchments of Oltrepò
Pavese, in northern Italian Apennines. The method provided excel-
lently to outstanding performance for both the really unstable
hillslopes (area under ROC curve until 0.92, true positives until
98.8%, true negatives higher than 80%) and the identification of
the triggering time (area under ROC curve of 0.98, true positives of
96.2%, true negatives of 94.6%). The developed methodology
allowed us to obtain feasible results using satellite-based rainfall
products and data acquired by field rain gauges. Advantages and
weak points of the method, in comparison also with traditional
approaches for the forecast of shallow landslides, were also provided.
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Introduction
Rainfall-induced shallow landslides are slope instabilities of a mass
of soil and/or debris, which involve the most superficial layers until
around 2.0 m from ground level. Although they involve small vol-
umes (101–105 m3) of soil, they can be densely distributed across
small catchments, contributing a lot of sediments to the river net-
work, developing into devastating debris flows, provoking significant
damages to cultivations and infrastructures, and, sometimes, causing
the loss of human lives (Lacasse et al. 2010). Hence, there is a pressing
need for developing and implementing actions of riskmitigation and
early-warning system strategies to reduce the negative effects of the
occurrence of these slope instabilities at local and regional scales
(Segoni et al. 2018a).

A preliminary and fundamental step is represented by the recon-
struction of a reliable model of assessment of the spatial and tem-
poral probability of occurrence of these slope instabilities (Van
Westen et al. 2006; Guzzetti et al. 2020). The spatial component
determines the most prone areas according to a set of predisposing
factors. The temporal component defines the moment or how fre-
quently the slope instability occurs according to particular triggering
factors (Corominas et al. 2014).

The spatio-temporal prediction of rainfall-induced shallow
landslides is usually performed by the reconstruction of rainfall
thresholds that represent the rainfall conditions that caused the
triggering of shallow landslides in a particular geological, geomor-
phological, and environmental setting (Guzzetti et al. 2008; Segoni
et al. 2018a; Piciullo et al. 2020). This method can be easily imple-
mented over large areas, where significant amounts of rainfall and
landslide data are available, and allows to reconstruct a robust
statistical model able to define the rainfall scenarios that are
representative of the real triggering conditions of shallow land-
slides (Guzzetti et al. 2008; Bogaard and Greco 2018; Melillo et al.
2018). Soil features and geomorphological and hydrological pre-
disposing factors are generally not considered (Chang et al. 2008;
Corominas et al. 2014; Wicki et al. 2020). Furthermore, these
models are highly dependent on the availability and quality of
rainfall and landslide time-series of data across the analyzed study
area (Nikolopoulos et al. 2014).

A second approach concerns the use of a physically basedmethod
that combines a hydrological and a slope stability model to estimate
the response of the hillslope soils towards an input rainfall event
(Montgomery and Dietrich 1994; Iverson 2000; Lu and Godt 2013;
Montrasio et al. 2014; Canli et al. 2018; Kang et al. 2020). These
models are dynamic, allowing to analyze the change in unstable
zones across a test-site during a particular rainfall event (Schilirò
et al. 2015; Zhuang et al. 2017). They require several soil geotechnical
and hydrological input data that are not easy to be measured over
large areas (Gorsevski et al. 2006). Furthermore, the hydrological
boundary conditions in soil and bedrock materials are sometimes
assumed as steady in wide areas (Corominas et al. 2014).

Few attempts have been performed to exploit the possibility of
using data-driven techniques which integrate static predisposing
and dynamic triggering factors (Wang and Sassa 2006; Lee et al.
2020; Lombardo et al. 2014, 2020). These approaches aimed to fill
the intrinsic gaps of rainfall thresholds and physically based
models, especially to: (i) take into account both predisposing
geomorphological, geological, and hydrological features and rain-
fall triggering factors; (ii) be effective at local and regional scales;
and (iii) represent the variation of unstable areas in time during a
particular rainfall event.

Most of these approaches insert parameters of a rainfall event,
collected through rain gauges or radar instruments, within the set of
predictors of a data-driven algorithm to model the probability of
occurrence of the triggered slope instabilities (Dai and Lee 2003;
Ayalew and Yamagishi 2005; Wang and Sassa 2006; Chang et al.
2008; Chang and Chiang 2009; Capecchi et al. 2015; Lee et al. 2020).
The defined algorithms were not tested further with triggering or
not-triggering events different from that one used to build up the
model, limiting the assessment of the predictive capability of the
method and its possible application to any type of rainfall scenario. A
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second type of approach consists in the definition of a matrix to get
information on the spatial and temporal probability of occurrence
towards shallow landslides at local or regional scale (Hong and Adler
2008; Kirschbaum et al. 2012; Segoni et al. 2018b; Wei et al. 2018;
Monsieurs et al. 2019; Pradhan et al. 2019). In these methods, spatial
probability of shallow landslide occurrence is quantified bymeans of
data-driven susceptibility models, while the temporal occurrence is
assessed through rainfall thresholds. Instead, the definition of the
rainfall thresholds implemented in these models was made with
typical empirical-statistical approaches (Brunetti et al. 2010;
Piciullo et al. 2020) that did not investigate in details that rainfall
attributes were the most influencing for the triggering of shallow
slope failures in a particular context. Furthermore, they do not
analyze the effects of physical and hydrological soil characteristics
on the rainfall amount required to trigger shallow landslides.

Vasu et al. (2016) and Park et al. (2019) developed a data-driven
model able to assess the spatio-temporal probability of occurrence
of rainfall-induced shallow failures in Gangwon Province (South-
ern Korea). This method combined statistically a susceptibility
model and another data-driven method of the temporal probabil-
ity of occurrence of these phenomena based on cumulative rainfall
amount of the event, 20-days antecedent rainfalls, and physical-
hydrological soil features. This method demonstrated a good ef-
fectiveness, but it neglected the soil moisture conditions for
modeling the temporal occurrence of shallow landslides. Observed
soil moisture conditions at the beginning of a rainfall event do not
correspond often to antecedent rainfall indexes (Brocca et al.
2008), due to the complex subsurface hydrological processes
which lead to landslide triggering (Lu and Godt 2013; Bordoni
et al. 2015; Thomas et al. 2018; Picarelli et al. 2020). This also
may cause a significant amount of false positives and/or false
negatives limiting the reliability of these models (Mirus et al. 2018).

To overcome this gap, soil moisture data acquired over large
areas could be inserted in a similar framework. Recent research
efforts (Ray and Jacobs 2007; Ray et al. 2010; Brocca et al. 2012,
2016; Krogli et al. 2018; Dahigamuwa et al. 2018; Marino et al. 2020)
demonstrated how the use of remotely sensed soil moisture could
allow to extract useful information regarding the relationship
between soil moisture in steep terrains and the triggering mo-
ments. Moreover, it is also fundamental testing the feasibility of
implementing remote sensing observations of rainfall data in this
type of models, in order to exploit the advantages and the limits of
these products (Ray and Jacobs 2007; Kirschbaum et al. 2012;
Brunetti et al. 2018).

For these reasons, this work aims to develop a method able to
integrate the spatial and the temporal probability of occurrence of
shallow landslides at a small scale. This method, built-up on a
data-driven approach, has to be able to incorporate also remotely
sensed data of soil moisture and rainfall, in order to assess the
feasibility of these products for the estimation of spatio-temporal
probability of occurrence.

Material and methods

Test-sites
The models were developed and tested in two representative
sectors of the Oltrepò Pavese hilly area, corresponding to the
northern termination of the Italian Apennines (Fig. 1). Oltrepò
Pavese is composed by a complex set of tectonic units, structured

as follows (Meisina et al. 2006; Bosino et al. 2019): (i) Internal
Ligurian Units in the southern sector, characterized by cretaceous
interstratified and massive limestones; (ii) External Ligurian Units
in the central part of the area, composed by cretaceous and
eocenic flyshes and claystones; (iii) Epiligurian Units, in strati-
graphic and unconformable contact with the Ligurian Units in
central and northern part of Oltrepò Pavese, formed by melanges
with a block-in-matrix texture, marls, and interstratified rocks and
sandstones; and (iv) Messinian and post-Messinian deposits in the
northern part of the study area, composed by a succession of
gypsum, marls, and poorly cemented sandstones and conglomer-
ates. In this area, bedrock formations have typically a medium and
high susceptibility to be affected by widespread slope instabilities,
involving colluvial covers above bedrock or bedrock materials
themselves (Bertolini et al. 2002).

The representative test-sites of Oltrepò Pavese corresponded to
to the catchments of Scuropasso and Versa (83 km2 wide), in
north-eastern Oltrepò Pavese and to the Ardivestra catchment
(47 km2 wide) in central Oltrepò Pavese.

In Scuropasso and Versa catchments, a bedrock succession
composed by poorly cemented sandstones and conglomerates
overlying marls and evaporitic deposits is present in the northern
part. Superficial soils, derived from bedrock weathering, are most-
ly clayey or clayey–sandy silts, with thickness between few tens of
centimeters and 2 m as measured in trenches, micro-boreholes,
and landslide source areas. Hillslopes are steep, with an average
slope angle between 15 and 35°. The central and southern parts are
characterized by marly and calcareous flyshes, alternated with
sandstones and marls. In this area, due to the different lithology
of the bedrock and for the presence of slow-moving landslide
deposits, colluvial soils have thicknesses ranging between 1 m
and more than 4 m, and hillslopes have steepness typically ranging
between 8 and 20°. About 40% of the area is covered by vineyards,
with a significant presence (> 20%) of woodlands and shrub lands
developed in hillslopes where agricultural activities were
abandoned.

In Ardivestra catchment, alternated sandstones and marls and
claystones represent the bedrock lithology and determine the
development of thick soil covers, as in central and southern part
of Versa-Scuropasso. Hillslopes have medium steepness, especially
between 8 and 15°, and are covered mostly by sowed fields (>
50%), pastures, and shrub lands.

In both the study areas, slope altitude ranges between 60 and
600 m a.s.l.

According to Koppen’s classification, the climatic regime of
these catchments is temperate/mesothermal, with a mean yearly
temperature of 11–12 °C and an average yearly rainfall amount
between 669 (Ardivestra catchment) and 684 mm (Versa and
Scuropasso catchments), according to rainfall data collected from
rain-gauge stations of ARPA Lombardy monitoring network in the
period 2004-2019.

The area is significantly prone to shallow landslides (Bordoni
et al. 2015, 2019). In the last 20 years, more than 2500 shallow
landslides (Fig. 1) occurred as a consequence of 143 rainfall trig-
gering events (Bordoni et al. 2019). According to Cruden and
Varnes’ (1996) classification, most of the shallow landslides are
classified as complex phenomena (Fig. 2), starting as roto-
translational slides and evolving into flows, with ratio between
length and width of 1.0–7.1 (length between 10 and 500 m, width
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between 10 and 70 m). These slope instabilities have sliding sur-
faces generally located at 1 m in depth (Bordoni et al. 2015).

Assessment of the spatio-temporal probability of occurrence of shallow
landslides

Data-driven method for the assessment of the spatial probability of occurrence
Figure 3 shows the flowchart of the methodological approach
adopted for the assessment of the spatio-temporal probability of
occurrence of rainfall-induced shallow landslides exploiting also
satellite-derived soil moisture and rainfall.

The susceptibility (SUSC) map of a study area was calculated
through a data-driven model that considered 11 predictors, accord-
ing to their capacity to outline destabilizing factors of shallow
landslides (Table 1). Nine morphological and hydrological predic-
tors were extracted by a digital elevation model (DEM). These
variables corresponded to: slope angle (SL), slope aspect (ASP),
planform curvature (PLA), profile curvature (PRO), catchment
area (CA), catchment slope (CS), topographic wetness index
(TWI), topographic position index (TPI), and terrain ruggedness
index (TRI). Also, land use (LU) and bedrock geology (GEO) were
considered in SUSC model as categorical predictors.

Multicollinear analysis based on variance inflation factor was
performed on the numerical predictors. As stated in different data-
driven models for landslide susceptibility assessment (Bui et al.
2016), if this factor is equal or higher than 10, collinear variables
were identified and, then, excluded from the data-driven model.
Instead, all the considered variables were not collinear in the study
areas and could be included in the model for the assessment of
susceptibility.

A multi-temporal inventory of the shallow landslides occurred
in each of the test-sites was considered a response variable. They
consisted of polygons which bound the whole landslide perimeter.
A semi-automatic method (Galve et al. 2015) was implemented to
extract each landslide source area, which corresponded to 25% of
the pixels with the highest elevation in each landslide.

A data matrix grouping predictors and response variables were
prepared for each study area for the application of the suscepti-
bility data-driven model that was based on Multivariate Adaptive
Regression Splines (MARS) technique (Friedman 1991).

MARS fits complex and linear/non-linear relationships between
the response variable and predictors. Despite other multivariate
statistical methods, MARS divides the range of each predictor into
regions and fitting a regression equation to each of them. Each
region defines into the predictor variable axis a hinge function
delimited by knots. MARS can also create more complex func-
tions, defined by two or more predictors, in order to improve the
comprehension of the real situation and to solve complex prob-
lems more easily than other multivariate techniques. The general
structure of MARS algorithm can be written as (Eq. 1):

y ¼ αþ ∑N
n¼1βnhn xð Þ ðEq:1Þ

where y is the dependent variable, α is a constant, N is the
number of terms, each formed by a coefficient βn and hn(x) is an
n-th single basis function or a product of two or more basic
functions of the independent variable x. Each basis function has
the form max (0, x–k) or max (0, k–x), where x is a predictor and k
is a knot.

Fig. 1 Location of the test-sites (a); map of bedrock geology (b); map of the bedrock
lithology (c); main geomorphological features and multi-temporal shallow landslides
distribution (d)
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MARS was applied in few data-driven models for landslide sus-
ceptibility assessment (Vorpahl et al. 2012; Felicísimo et al. 2013;
Conoscenti et al. 2016; Pourghasemi and Rahmati 2018; Rotigliano
et al. 2019; Vargas-Cuervo et al. 2019; Pourghasemi et al. 2020).

The susceptibility model of each study area was built through
the following steps. First, a database, consisting of all shallow
landslide pixels and the same number of randomly selected non-
shallow landslide pixels, was subdivided into 2 subsets. The

Fig. 2 Examples of typical shallow landslides in the test-sites

Fig. 3 Methodological scheme for the assessment of the spatio-temporal probability of occurrence of shallow landslides
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training set, representing 2/3 of this dataset, was used to build the
MARS model, while the test set, including the remaining 1/3 of the
dataset, was used to estimate the model accuracy.

In the case of a source area composed of at least two pixels,
these were extracted all together and assigned either to the training
set or to the test set. As regards the non-landslide pixels, the
random choice of these ones was consistent with the use of a
multi-temporal inventory of shallow landslides for each study
area, where most of the prone sectors to landsliding have been
already affected by real shallow failures.

The process of training and test selection was repeated in a 100-
fold bootstrap procedure. The 100 fitted bootstrap models were
used to extend the prediction to the whole area, to obtain a
distribution of shallow landslide spatial probability for each pixel.
The mean values of each bootstrap distribution of 100 probability
values were used to obtain the final shallow landslide susceptibility
map of a particular area. The confidence interval of the obtained
average probability was also calculated for each pixel, to consider
the uncertainty. The accuracy of the final susceptibility map was
evaluated through the receiver operating characteristic (ROC)
curve (Hosmer and Lemeshow 2000). In particular, the mean value
of the 100 area under the ROC curve (AUROC) samples obtained
from the 100-fold bootstrap procedure was calculated.

The probability values were then subdivided into four intervals
through Jenks’s (1967) natural break classification: (i) low (0 <
susceptibility ≤ 0.25); (ii) medium-low (0.25 < susceptibility ≤
0.50); (iii) medium-high (0.50 < susceptibility ≤ 0.75); and (iv)
high (0.75 ≤ susceptibility ≤ 1).

Moreover, a 2 × 2 a posteriori contingency table of the suscep-
tibility distribution was reconstructed considering 0.5 a threshold
to discriminate areas with a low probability of occurrence of
shallow landslides and high stability (susceptibility ≤ 0.5) from
the ones with a significant probability of occurrence of shallow
landslides and intrinsic high instability (susceptibility > 0.5). In
this way, the model could be considered a binary classifier. Its
performance could be, then, assessed through true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN)
(Galanti et al. 2018).

Data-driven method for the assessment of the temporal probability of
occurrence
Shallow landslides triggering occur in consequence of particular
rainfall patterns coupled with particular soil hydrological condi-
tions, related in particular to high degree of saturation in superfi-
cial soil levels (Lu and Godt 2013; Vasu et al. 2016; Bordoni et al.
2019). For these reasons, a data-driven model for evaluating the
temporal probability of occurrence of shallow landslides in the
test-sites (TEMP) was created coupling rainfall factors to soil
saturation degree at the beginning of a rainfall and to the soil
types, differentiated in terms of materials derived by different
bedrocks.

According to their influence to hydrological conditions leading
to shallow landslides (Table 2), the model considered: (i) the
rainfall of one day (1-day rainfall); (ii) the cumulative rainfall
amounts in different time periods (3, 5, 7, 10, 15, 30, 45, 60 days);
(iii) the soil saturation degree measured at 0:00 of a particular day

Table 1 Explanatory variables used in the data-driven model for the spatial probability of occurrence of shallow landslides and their influences on shallow landslide
occurrence

Predictor Data source Influence on shallow landslide occurrence

Slope angle (SL) 5 m-resolution DEM It strongly controls the shear forces acting on hillslopes and the water distribution (Catani et al.
2013)

Slope aspect (ASP) 5 m-resolution DEM It has influence on the local temperature and evaporation and, consequently, the soil moisture,
and the vegetation growth (Demir et al. 2013)

Planform curvature
(PLA)

5 m-resolution DEM It influences the water runoff concentration (Goetz et al. 2011)

Profile curvature
(PRO)

5 m-resolution DEM It influences near-surface acceleration or deceleration of flow, potential erosion, or deposition rate
(Goetz et al. 2011)

Catchment area (CA) 5 m-resolution DEM It is a proxy for soil water content and soil depth (Brenning et al. 2015)

Catchment slope
(CS)

5 m-resolution DEM It influences the intensity of the destabilizing forces upslope (Brenning et al. 2015)

Topographic
wetness index
(TWI)

5 m-resolution DEM It has effects on the soil moisture content and the groundwater conditions (Seibert et al. 2007)

Topographic
position index
(TPI)

5 m-resolution DEM It is a proxy on the effects of the location of a point on a landscape to the shallow landslide
occurrence (Persichillo et al. 2017)

Terrain ruggedness
index (TRI)

5 m-resolution DEM It represents the landscape heterogenities (Persichillo et al. 2017

Land use (LU) Land use map (scale
1:10000)

It represents the mechanical and hydrological effects of different vegetation types on slope
stability (Pereira et al. 2012)

Bedrock geology
(GEO)

Bedrock geology map
(scale 1:10000)

It conditions the resulting soils, their thickness, and their geotechnical and hydrological features
(Catani et al. 2013; Bicocchi et al. 2019; Bordoni et al. 2019)
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(SAT); and (iv) the bedrock geology (GEO). As regards the cumu-
lative rainfall parameters, the most adopted parameters consid-
ered in previous works (Aleotti 2004; Giannecchini et al. 2012; Tien
Bui et al. 2013; Vasu et al. 2016; Wei et al. 2018; Kim et al. 2020) to
build models of temporal assessment of the occurrence of shallow
failures were considered.

The response variable of this model was a database of the
period January 2007–December 2018 indicating the days when at
least one shallow landslide occurred or no phenomena were trig-
gered, in a circular buffer of 10 km of radius centered from each
rain gauge. It was chosen according to the morphology of the
study area and to the density of rain gauges around the three
study areas (Bordoni et al. 2019). The indications on landslides
triggering were, then, transformed in a binary response variable,
assigning 0 or 1 in case of landslide absence or presence, respec-
tively. This choice was consistent with the methodologies adopted
to reconstruct rainfall thresholds for shallow landslide occurrence
at the catchment or regional scale, which usually consider that at
least one shallow landslide occurs in a triggering day (Segoni et al.
2018a).

The predictors and the response variable were merged in a
matrix for the application of the data-driven methodology. Models
based on MARS algorithm were built, each considering a couple of
the rainfall predictors together with the saturation degree and the
bedrock geology. Each model was reconstructed through the same
statistical approach implemented for estimating the spatial prob-
ability of occurrence of shallow landslides. Thus, the models were
reconstructed since a database, consisting of all triggering days

and the same number of days without triggering, subdivided into 2
subsets, corresponding to the training (2/3 of this dataset) and the
test sets (the remaining 1/3 of the dataset).

The scenario with the highest AUROC was selected as the best
model that allowed to estimate the temporal probability of occur-
rence within the study areas. Furthermore, a 2 × 2 a posteriori
contingency table was reconstructed, considering 0.5 as a thresh-
old to discriminate days with limited possibility of shallow land-
slide occurrence (temporal probability of occurrence ≤ 0.5), from
the ones with a significant probability of shallow landslides trig-
gering (temporal probability of occurrence> 0.5). In this way, the
model could be considered a binary classifier, assessing its perfor-
mance through the same indexes used for the assessment of the
predictive capability of the spatial probability of occurrence (TP,
FP, TN, FN).

Combination between spatial and temporal probability of occurrence of
shallow landslides: Dynamic Landslide Probability Index
Spatio-temporal probability of occurrence is usually obtained
through a joint probability of the two components ensured by
independence assumption (Guzzetti et al. 2005; Vasu et al. 2016).
According to this, Dynamic Landslide Probability Index (DLPI)
was calculated from a joint probability of the estimated spatial and
temporal probability of occurrence of shallow landslides, carried
on multiplying these two probabilities (Cox and Donnelly 2011).
The independence assumption was warranted since the data-
driven model for the spatial occurrence of landslides did not
consider rainfall factors and soil hydrological conditions, while

Table 2 Explanatory variables used in the data-driven model for the temporal probability of occurrence of shallow landslides and their influences on shallow landslide
occurrence

Predictor Data source Influence on shallow landslide occurrence

Daily rainfall amount (1
day-rainfall)

Rain gauge networks,
hourly resolution

It is strongly related to the response of a soil to intense rainfall events at daily resolution
(Vasu et al. 2016; Wei et al. 2018; Guzzetti et al. 2020)

Cumulated rainfalls of 3
days (3 days-rainfall)

Rain gauge networks,
hourly resolution

Cumulated rainfalls of 5
days (5 days-rainfall)

Rain gauge networks,
hourly resolution

Cumulated rainfalls of 7
days (7 days-rainfall)

Rain gauge networks,
hourly resolution

Cumulated rainfalls of 10
days (10 days-rainfall)

Rain gauge networks,
hourly resolution

They represent the effects of antecedent rainfalls on the increase in soil saturation degree
and on the consequent decrease in soil shear strength, which coul lead to shallow
landslides triggering (Aleotti 2004; Giannecchini et al. 2012; Zezere et al. 2015;)

Cumulated rainfalls of 15
days (15 days-rainfall)

Rain gauge networks,
hourly resolution

Cumulated rainfalls of 30
days (30 days-rainfall)

Rain gauge networks,
hourly resolution

Cumulated rainfalls of 45
days (45 days-rainfall)

Rain gauge networks,
hourly resolution

Cumulated rainfalls of 60
days (60 days-rainfall)

Rain gauge networks,
hourly resolution

Soil saturation degree (SAT) 12.5 km-resolution
ASCAT data

It represents the differences in rainwater infiltration and in the other hydrological processes
that occur in soils with different moisture level, when similar rainfall events affect an area
(Lu and Godt 2013; Bordoni et al. 2019)

Bedrock geology (GEO) Bedrock geology map
(scale 1:10000)

It conditions the resulting soils, their hydrological features, and their response in terms of
rainwater infiltration (Catani et al. 2013; Bicocchi et al. 2019; Bordoni et al. 2019)
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the model for the temporal occurrence did not take into account
for the geomorphological and hydrological attributes used to de-
fine the susceptibility.

Evaluation of the predictive capability of DLPI to real case studies
The reliability of DLPI was tested for real events that triggered
shallow landslides in the analyzed catchments: (1) the days be-
tween 25 and 28 April 2009 in Versa and Scuropasso catchments;
(2) the days between 27 February and 1 March 2016 in Ardivestra
catchment. In Versa and Scuropasso catchments, shallow land-
slides triggered on 27 and 28 April 2009, while they occurred on
29 February 2016 in Ardivestra area. Furthermore, the evaluation
of the feasibility of incorporating satellite-measured rainfall data
for the correct prediction of the temporal occurrence of the shal-
low landslides could be performed for these events, comparing the
calculation of DLPI using rainfall data acquired through tradition-
al field rain gauges (blue circles in Fig. 1b) or through remote-
sensing techniques.

The reliability of the reconstructed DLPI maps was quantified
calculating the AUROC and the TP, FP, TN, and FN indexes for the
days when shallow landslides triggered (27–28 April 2009 in Versa
and Scuropasso, 29 February 2016 in Ardivestra). The last four
indexes were calculated since a 2 × 2 a posteriori contingency
table, considering 0.5 as probability threshold to discriminate
stable from unstable areas, as in the reconstructed data-driven
models. Moreover, the quantitative assessment of the degree of
agreement among the maps of a particular day obtained using
different input rainfall data was performed calculating the Cohen’s
Kappa index k (Cohen 1960) between each pair of obtained DLPI
maps.

Datasets
Maps based on pixel mapping unit of square cells were obtained
from the models. The resolution of the pixels had to be consistent
with the minimum landslide area detected in the study areas (6–7
m2). According to this, a 5-m resolution was chosen.

The geomorphological and hydrological predictors (SL, ASP,
PLA, PRO, CA, CS, TWI, TPI, TRI) were retrieved from a 5-m
resolution digital elevation model (DEM) realized through LiDAR
data acquired in 2008 and 2010 by the Italian Ministry for Envi-
ronment, Land, and Sea. LU map came from DUSAF of 2007 of
Lombardy Region, at the scale 1:10000. GEO map derived from the
bedrock lithological map at scale 1:10000 (Meisina et al. 2006;
Bosino et al. 2019). It is worth noting that the shallow landslides
of the test-sites did not affect significantly the geomorphological
attributes of the affected hillslopes, due to the limited area (tens or
few hundreds km2) and to the limited depth of the sliding surfaces
(about 1 m from the ground level).

Daily rainfall measurements, collected in the period from Jan-
uary 2007 to December 2018, by a network of 21 rain gauges (blue
circles in Fig. 1d), were considered predictors of the model for
temporal probability of occurrence. SAT data, in correspondence
of each considered rain gauge, were obtained through the Ad-
vanced SCATterometer (ASCAT) sensor onboard the Metop satel-
lites. ASCAT is a C-band (5.255 GHz) instrument that provides soil
moisture (SM) products characterized by a spatial sampling of
12.5 km and daily temporal resolution (Wagner et al. 2013). The
retrieval algorithm is based on a change detection technique and
allows to estimate the relative saturation in the first centimeters of

soil. The quality of the SM estimates is impacted by dense vegeta-
tion, high topographic complexity, and frozen soil. In this study,
the product provided within the EUMETSAT project H SAF
(http://hsaf.meteoam.it/) denoted as H115 has been used.

The response variables of both the models were represented by
multi-temporal shallow landslide inventories occurred in each of
the test-sites from January 2007 to December 2018. The use of a
multi-temporal database of the triggering areas occurred during
several years allows generally to reconstruct a more reliable data-
driven model and to identify better the geological and geomor-
phological features which could induce a bigger proneness to
shallow landsliding (Bordoni et al. 2020). Three hundred sixty-
five failures were detected in Ardivestra catchment (mean density
of 7.8 shallow landslides per km2), while 1101 failures were found in
Scuropasso-Versa catchments (mean density of 13.3 shallow land-
slides per km2). In the test-sites, 3% of the slopes were affected
twice by shallow landslides triggering during the analyzed time
span. These slope failures were detected by means of high resolu-
tion aerial photographs, satellite images, and field surveys
(Bordoni et al. 2019). The triggering days of these events were
obtained from reports of public administrations, newspapers,
and online chronicles (Bordoni et al. 2019). There were 212 days
where shallow landslides triggered. In this database, the first trig-
gering events occurred in 6–8 February 2009.

Different DLPI maps of the two considered events were recon-
structed considering different rainfall data. First, rainfall data
acquired by the rain gauges of the considered network in the area
of the analyzed catchments were exploited. Rainfall data were also
obtained through two different data sources: (1) the Global Pre-
cipitation Measurement (GPM) Mission and (2) soil moisture
(SM)-derived rainfall through the application of the SM2RAIN
algorithm.

The first one is based on the application of the Integrated
Multi-Satellite Retrievals for GPM (IMERG, Huffman et al. 2018)
algorithm, that provides rainfall data at 0.1° × 0.1° spatial and half-
hourly temporal resolutions in three modes, based on latency and
accuracy: “early” (IMERG-ER, latency of 4–6 h after observation),
“late” (IMERG-LR, 12–18 h), and “final” (IMERG-FR about 3
months). The early and the final runs differentiate in the calibra-
tion scheme and in the fact that IMERG-ER has a climatological
rain gauge adjustment, whereas the IMERG-FR uses a month-to-
month adjustment based on GPCC data. In this study, the
IMERG_ER product has been used, hereinafter GPM for the sake
of simplicity. The use of a product characterized by a very short
latency allows to test the feasibility of such an approach for near-
real time applications. This aspect is of paramount aspect and
deserves to be investigated, even though the “Late” and the “Final”
runs could be more reliable and accurate.

The second one is based on the application of the SM2RAIN
algorithm (Brocca et al. 2014) that allows to estimate rainfall
starting from SM observation. The algorithm is based on the
inversion of the soil water balance equation and it is found to
provide reliable rainfall data at different spatial scales (Brocca
et al. 2014, 2019; Ciabatta et al. 2017, 2018, 2020; Massari et al.
2020). In this study, the rainfall data obtained through the appli-
cation of SM2RAIN to ASCAT SM product (https://doi.org/10.5281/
zenodo.3405563, SM2RAIN-ASCAT) have been used. More in de-
tail, the dataset has been created by applying the SM2RAIN algo-
rithm to the H115 SM dataset described above. The SM2RAIN
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parameters have been calibrated against ERA5 (Hersbach et al.
2020). In order to reduce the systematic errors in the retrieval of
SM that can impact the quality of derived rainfall, a bias correction
technique has been applied to SM2RAIN-derived estimates. For
further details, the readers are referred to Brocca et al. (2019).

The spatial resolutions of the considered rainfall data were
different, but it was coarse in all the cases. As regards the measures
of the rain gauge network, rainfall measures provided in the rain
gauges of each area and of the surrounding sectors were interpo-
lated through ordinary kriging. Instead, all the pixels of GPM or
SM2RAIN-ASCAT covering the study areas were considered, to
create continuous maps for these products for both the study
areas.

Rainfall and soil moisture maps had coarse resolution (~ 12
km) and were resampled at 5 m resolution, to make them homo-
geneous with the other predictors used in the models. The com-
bination between the susceptibility map and the temporal
probability of occurrence allowed to obtain dynamic maps of the
evolution of DLPI during the analyzed events at 5 m resolution.

Correlation between field and satellite measures of daily rainfall
was estimated in the two test-sites for 2013–2018 period.

Considered rain gauges were the ones with time-series similar to
those ones of GPM and SM2RAIN-ASCAT data (rain gauges 14 and
16 in Fig. 1d for Ardivestra and Versa-Scuropasso, respectively).
The correlation between field and satellite measures was good, as
testified by values of the correlation coefficient R higher than 0.60
(Fig. 4). SM2RAIN-ASCAT measures were more in agreement with
field measures for both the study areas than GPM measures, as
testified by values of R for SM2RAIN-ASCAT 0.04–0.05 bigger than
the ones for GPM. According to this, rainfall satellite data were
able to represent the rainy trends and most of the features of the
main events in the analyzed test-sites.

Results

Spatial probability of occurrence of shallow landslides
According to Hosmer and Lemeshow’ (2000) classification,
modeled susceptibility maps (Fig. 5) had an excellent (AUROC of
0.89 ± 0.01) and outstanding performance (AUROC of 0.90 ± 0.01)
for Versa-Scuropasso and Ardivestra, respectively (Table 3). For
Versa-Scuropasso area, MARS model improved significantly the
estimation of the susceptibility distribution than the data-driven

Fig. 4 Comparison between daily rainfall measured through rain gauges and satellite products in the two test-sites for 2013-2018 period: a comparison between rain
gauge and GPM data in Ardivestra area; b comparison between rain gauge and SM2RAIN-ASCAT data in Ardivestra area; c comparison between rain gauge and GPM data
in Versa-Scuropasso area; d comparison between rain gauge and SM2RAIN-ASCAT data in Versa-Scuropasso area

Fig. 5 Maps of the spatial probability of occurrence (susceptibility) of shallow landslides in Versa-Scuropasso catchments (a) and Ardivestra catchment (b)
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models reconstructed through Genetic Algorithm Method
(Persichillo et al. 2017), whose AUROCs were of 0.74-0.77.

The high predictive capabilities of the reconstructed models
were confirmed by high values of TP (88.7–90.8%) and TN
(80.6–82.0%) indexes (Table 3). The models failed the correct
estimation of only a percentage of 9.2–11.3% of past shallow land-
slides occurred in the test-sites (Table 3). Overestimation of un-
stable areas (FP indexes) was higher than 18.0% in both the study
areas (Table 3). Consequently, the percentage of area correctly
predicted by the model in each test-site was very high, equal to
84.7 and 86.4% in Ardivestra and Versa-Scuropasso, respectively.

Versa-Scuropasso catchments had higher amount of areas with
low or medium-low susceptibility class (81.1%) than Ardivestra
(78.5%). High susceptibility class occupied more than 9.6% of
the entire area in Ardivestra and Versa and 7.8% in Versa-
Scuropasso area.

In the test-sites, most of the hillslopes affected in past by
shallow landslides fell correctly in areas classified with medium-
high (41.4% in Ardivestra, 55.0% in Versa-Scuropasso) or high
(47.3% in Ardivestra, 35.8% in Versa-Scuropasso) susceptibility
(Table 4).

A further validation of the susceptibility models was carried on
considering another triggering event not considered in the previ-
ous multi-temporal inventory. In Ardivestra catchment, 22 source
areas of shallow landslides were detected by field surveys after
rainfall events occurred in November 2019, in correspondence of
sectors with high susceptibility (spatial probability of occurrence
higher than 0.77) not affected in past by shallow failures (Fig. 6).

Temporal probability of occurrence of shallow landslides
The best model for the temporal probability of occurrence was the
one that considered the cumulated rainfall amount of 3 (3-day
cumulated rainfall) and 30 days (30-day cumulated rainfall), to-
gether with soil saturation degree measured by ASCAT satellite
and bedrock geology features. This model was, in fact, character-
ized by an average AUROC of 0.98, representing an outstanding
performance that was not reached by models built considering
other rainfall attributes (Table 5).

Once defined the best model, TP, TN, FP, and FN indexes were
calculated to verify its predictive capability. The high predictive
capability of the temporal model on discriminating daily occur-
rence of shallow landslides triggering from days characterized by
stable conditions was confirmed by high values of TP (203 of 212
days, 96.2%) and TN (3598 of 3803 days, 94.6%). The model failed
the correct estimation of only 3.8% of days (9 of 212 days) when
shallow landslides triggered. Overestimation of the model was
5.4% (205 days of 3803 days). A correlation could be found with
saturation degree measured by ASCAT at the beginning of the day.
Sixty-six percent of the days without triggering of shallow failures,
but with modeled probability of occurrence higher than 0.5, was
characterized by saturation degree higher than 80%. Twenty-eight
percent of these days had a saturation degree between 50 and 80%,
while the remaining 6% had saturation degree lower than 50%.

In the two test-sites, the rainfall attributes and the initial soil
saturation degree of the triggering events were similar (Table 6),
confirming how a unique data-driven model for the estimation of
temporal probability of occurrence could be built for both the
catchments.
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A further validation of the model was performed by calculating
the temporal probability of occurrence of shallow landslides for
the period between 1 and 30 November 2019 for Ardivestra catch-
ment. Shallow landslides were triggered in this time span in cor-
respondence of significant rainy days, as testified by the source
areas present in Fig. 6. Three-day and 30-day cumulated rainfalls
were calculated from the representative rain gauge of this catch-
ment, corresponding to the one labeled as 14 (Fig. 1d). The trend of
saturation degree was measured in field through a dielectric sensor
installed at 0.2 m from a ground level close to this rain gauge
(Bordoni et al. 2013), at about 5 km from the hillslopes affected by
the landslides. Saturation degree was estimated for this soil layer
as the percentage of the ratio between the measured soil water
content θ and the saturated water content θs, corresponding to
0.49 m3/m3 for this soil.

The model assessed the real moments of shallow landslides
triggering for all of the 8 days when slope instabilities occurred
(Fig. 7c). Other 5 days, when no shallow failures occurred, were
characterized by probability of occurrence between 0.6 and 1.0,
representing false positives (Fig. 7c). MARS model estimated un-
stable conditions (temporal probability of occurrence higher than
0.5) when soil saturation degree at the beginning of the day was
higher than 80% and 3-day and 30-day cumulated amounts were
over 21.8 and 158.4 mm, respectively (Figs. 7a and 7b).

Trend of spatio-temporal probability of occurrence of shallow land-
slides for real events
Only rainfall data of rain gauges and SM2RAIN-ASCAT were
available for the 25–28 April 2009 event in Versa and Scuropasso
area. The temporal probability of occurrence of shallow landslides
increased in 27 April 2009, in consequence of an extreme daily
rainfall detected by both field and satellite-derived data (Figs. 8, 9,
and 10).

In 27 April 2009, 17.7% of the study area was classified with
medium-high or high probability of occurrence of shallow land-
slides considering rain gauge data, while 16.5% of the entire area
was classified in the same classes considering SM2RAIN-ASCAT
estimated rainfalls (Figs. 9, 10). 28 April 2009 was another
important rainy day that caused a further increase in cumulated
rainfalls, quantified similarly by both rain gauge and SM2RAIN-
ASCAT in about 28–33 mm (Fig. 8a, b). Saturation degree,
measured by ASCAT, identified completed saturated conditions
at the beginning of the day (100%), in consequence of the rain
fallen in the previous day. These conditions kept very high the
temporal probability of occurrence of shallow landslides, which
was equal to 1 considering both rain gauge or SM2RAIN-ASCAT
data (Fig. 8d). Thus, a similar amount of the test-sites was
classified by both the models in medium-high and high DLPI
classes (19.9%).

Table 4 Distribution of the shallow landslides of the multi-temporal inventories in the different classes of spatial probability of occurrence

Study area Spatial probability of occurrence – Susceptibility
Low (%) Medium-low (%) Medium-high (%) High (%)

Ardivestra 4.6 6.7 41.4 47.3

Versa-Scuropasso 5.2 4.0 55.0 35.8

Fig. 6 Validation of the maps of spatial probability of occurrence (susceptibility) through the comparison with shallow landslides not present in the multi-temporal
inventory used to build the models: shallow landslides occurred in November 2019 in Ardivestra catchment
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During this event, shallow landslides triggered mostly in 27
April 2009, with further enlargement of the phenomena during 28
April 2009. The performance of DLPI models quantified using
different rainfall inputs was the same and in the range of out-
standing performance. Mean AUROCs were of 0.89, with very
high TP and TN indexes (91.8 and 84.1%, respectively) and low
FP and FN indexes (15.9 and 8.2%, respectively).

DLPI maps, reconstructed for the days of this event using
different models with different input rainfalls, were in agreement
for each modeled day, as average k index ranged between 0.97 and
1 defining an almost perfect correspondence between the maps
created using different input rainfall data (Landis and Koch 1977).

For the modeled event in Ardivestra area (27 February–1
March 2016), the temporal probability of occurrence of shallow
landslides increased significantly in 28 February, as confirmed by
high daily rainfalls measured by rain gauge and SM2RAIN-ASCAT
(Fig. 11). GPM did not detect this change, since it measured only
2.1 and 5.0 mm of 3-day and 30-day cumulated rainfalls in 28
February, respectively. DLPI maps of rain gauge and SM2RAIN-
ASCAT showed a corresponding increase in medium-high and
high probability during this day (Figs. 12, 13).

In the following days, temporal probability of occurrence esti-
mated since field rain gauge and SM2RAIN-ASCAT kept close to 1,
while the one calculated since GPM increased until 0.98 since 29
February due to a higher amount of measured rainfalls (Fig. 11).

This had effects on the DLPI maps produced for these days
using different rainfall inputs (Figs. 12, 13). The maps of 28
February obtained by models that considered rain gauge and
SM2RAIN-ASCAT data were similar, with 17.8–21.5% of the terri-
tory classified in medium-high and high class, while the map
obtained using GPM rainfalls as input was similar to that one of
the previous day. Instead, all the three maps of 29 February
classified the territory in the same way, with the same amount
of areas in medium-high and high classes (21.5%).

In 1 March, rainfall fell again with lower intensity than the past
two days, but the temporal probability of occurrence kept close to
1 considering rainfall measures obtained with different sensors.
All the DLPI maps were similar to those ones of the previous day
(Figs. 12, 13).

During this event, shallow landslides triggered in 28 and 29
February 2016. All the models identified correctly only 29 Febru-
ary, while 28 February was not identified as unstable day by model
built using GPM data. For the inventory of the phenomena oc-
curred in these days, the performance of DLPI models quantified
using different rainfall inputs was the same and in the range of
outstanding performance. Mean AUROCs were of 0.92, with very
high TP and TN indexes (98.8 and 78.5%, respectively) and low FP
and FN indexes (21.5 and 1.2%, respectively).

Moreover, DLPI maps were in agreement for 27 and 29 Febru-
ary and for 1 March, as average k index was of 1 defining an
almost perfect correspondence between the maps created using
different input rainfall data (Landis and Koch 1977).

Instead, k index was lower for the pairs GPM/rain gauge and
GPM/SM2RAIN-ASCAT, in the range 0.43–0.47 (moderate
agreement, Landis and Koch 1977). The agreement was only in
the sectors where both the maps classified the hillslopes with low
probability of occurrence. k index of the pair rain gauge/
SM2RAIN-ASCAT was 0.97, indicating an almost perfect
agreement.Ta
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Discussions
The developed methodology integrated different approaches for
coupling the spatial and the temporal prediction of rainfall-
induced shallow landslide at daily resolution, exploiting also the
capability of satellite soil moisture and rainfall products.

The first model estimated the spatial probability of occurrence
(susceptibility) of shallow failures. The data-driven method was
effective in predicting unstable and substantially stable slopes in
different settings. The performance of the data-driven model was
excellent-outstanding, with more than 84% of area classified cor-
rectly by this model in both the test-sites. The resulting suscepti-
bility maps represented well the sectors where shallow landslides
were more probable during intense rainstorms. As demonstrated

by the validation of the maps with shallow landslides triggering
zones not included in the input multi-temporal inventory, the
susceptibility maps classified, in medium-high or high probability
of occurrence classes, areas where other triggering events could
determine unstable conditions not reached in past. The developed
data-driven technique was also very flexible in identifying the
predictors which had more influence in predisposing the prone-
ness of the hillslopes. Table 7 shows the number of models in 100-
fold bootstrap step that included each predictor. The higher was
the number of the models which considered a particular variable;
the higher was its significance in influencing the outcomes (Lay
et al. 2019). Slope angle and land use were selected by all the
models in each study area, resulting the parameters that had the

Table 6 Range of the rainfall features (3-day and 30-day cumulated rainfall) and of the soil saturation degree at the beginning of an event for the shallow landslides
triggering events occurred in Versa-Scuropasso and Ardivestra catchments in 2007–2018 time span

Test-site 3-day cumulated rainfall (mm) 30-day cumulated rainfall (mm) Soil saturation degree (%)

Versa-Scuropasso 19.8–155.3 80.0–332.8 45–100

Ardivestra 23.4–165.0 80.4–368.0 48–100

Fig. 7 Modeled temporal probability of occurrence of shallow landslides in the
period between 1 and 30 November 2019: a 3-day and 30-day cumulated rainfalls;
b saturation degree measured in field; c temporal probability of occurrence of
shallow landslides (TEMP)

Fig. 8 Temporal probability of occurrence between 25 and 28 April 2009 using
rain gauge and SM2RAIN-ASCAT mesaures: a trends of 3-day cumulated rainfall; b
trends of 30-day cumulated rainfall; c trends of saturation degree measured by
ASCAT; d trends of temporal probability of occurrence
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highest influence in controlling the proneness of the territory.
Each test-site presented other significant predictors, represented
in particular by aspect and topographic position index in Versa-
Scuropasso area, and by bedrock geology and catchment area in
Ardivestra catchment.

The importance of slope angle and land use in predicting
correctly the susceptibility level of a particular area was confirmed
also by the significant reduction of the predictive capability of
models which did not consider these parameters in the set of the
predictors. A model without slope angle was characterized by a
reduction of 0.15–0.22 of AUROC, of 13.8–23.7% of TP and TN, and
of 8.9–15.3% of FP and FN. A model without land use was charac-
terized by a reduction of 0.10–0.15 of AUROC, of 7.9–12.5% of TP
and TN, and of 5.2–10.1% of FP and FN. For Versa and Scuropasso,
a model without slope aspect or without topographic position
index resulted in a decrease of 0.05–0.10 of AUROC, of 5.2–9.8%
of TP and TN, and of 3.6–9.2% of FP and FN. For Ardivestra, a
model without catchment area or without bedrock geology was
characterized by an AUROC lower of 0.05–0.15, TP and TN lower
than 2.5–15.6%, and FP and FN lower than 3.6–9.8%.

For Versa-Scuropasso, susceptibility was medium-high and high
where slope angle was higher than 18°, the slopes faced to east or
south-west/west direction, and the land cover corresponded to
vineyards and shrub lands. Also, steep hillslopes (slope angle ranging
between 27 and 35°) covered by woods were characterized by sus-
ceptibility values close to 1. In Ardivestra, the most prone hillslopes
were those ones characterized by slope angle higher than 10°, with

upslope contributing area lower than 1000 m2 and covered by sowed
fields or shrublands. Slopes were more unstable where bedrock
geology was formed by marly and clayey deposits.

The effectiveness of the model could be explained by the ability
of MARS to detect complex and, sometimes, non-linear relation-
ships between terrain attributes and proneness to shallow land-
slides (Conoscenti et al. 2016).

The same advantages of MARS algorithm influence the reliable
performance of the data-driven model reconstructed for the esti-
mation of the temporal probability of occurrence of shallow land-
slides. The developed methodology identified the rainfall
parameters (3-day and 30-day cumulated rainfalls) which allowed
to predict the days with high probability of occurrence of shallow
landslides triggering, together with the soil saturation degree at the
beginning of the day measured through ASCAT satellite and the
bedrock geology features. The predictive capability of this model
was in the range of the outstanding performance, with a further
validation of its goodness with recent (November 2019) data not
included in the multi-temporal inventory used to reconstruct the
model.

Instead, false positives were still present, as typically observed
in other models of temporal probability of occurrence of slope
instabilities as rainfall thresholds. False positives could indicate
rainy conditions which effectively caused the triggering of shal-
low failures in areas far from urbanized areas which could not be
detected or reported (Carrara et al. 2003; Giannecchini et al.
2012).

Fig. 9 Daily DLPI maps for the period between 25 and 28 April 2009 in Versa and Scuropasso catchments
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Soil moisture data (ASCAT) used in this model referred to the
first centimeters of the soil profile, while shallow landslides occur
generally at 1 m from ground level. At that depth, conditions of
complete saturation, which lead to shallow landslides triggering in
the study area, are reached less frequently than in superficial layers
(Bordoni et al. 2015; Mirus et al. 2018). Considering saturation
degree at 1 m from ground level could limit the number of false
positives identified by the model.

As for the model reconstructed for the estimation of the spatial
probability of occurrence, the higher was the number of the models
which considered a particular predictor in the 100-fold bootstrap
step; the higher was its significance in influencing the outcomes. The
predictors of this model were selected for more than 95% of the
simulation, with a 100% of selection for 3-day cumulated rainfall and
saturation degree. Thus, all these predictors represented well the
hydro-meteorological conditions which could lead to shallow land-
slides triggering in the study area. Three-day cumulated rainfall
considered the short-term temporal effect of intense rainfalls and
of their infiltration in soil. Thirty-day cumulated rainfall took into
account for the effects of antecedent rainfall in increasing the soil
water content and in decreasing the soil shear strength of the soil
layers. Soil saturation degree and bedrock geology allowed to repre-
sent the hydrological response of the soil towards intense rainfalls
according to different initial soil water status. These triggering con-
ditions were in agreement with the results in Bordoni et al. (2019),
who highlighted the combined effect of intense rainfall events with
high soil water contents in promoting the triggering of shallow
failures in hilly Oltrepò Pavese.

The two data-driven models were combined to obtain a joint
probability index which allowed to assess dynamically the evolu-
tion of spatio-temporal probability of occurrence during an event.
The reconstruction of trends of this dynamic index during past
triggering events demonstrated the reliability of the procedure in
identifying both the days of triggering and the areas affected by
slope instabilities. In the triggering days, excellent-outstanding
performance was obtained, with an estimation of real unstable
areas over 90%.

Since the goodness of the results obtained for the two analyzed
rainfall events, DLPI was calculated for each pixel of the study
areas, along the period between January 2007 and December 2018.
Rainfall measures acquired by field rain-gauges network were
considered rainfall parameter for the estimation of the temporal
probability of occurrence, since they had a continuous time-series
of rainfall data for the entire period. DLPI of each pixel for each
day of the analyzed period was compared with the triggering or
not-triggering of shallow failures in correspondence of that pixel.
A value of 0.5 was considered threshold to discriminate days with
limited possibility of shallow landslide occurrence in each pixel
(DLPI ≤ 0.5), from the ones with significant probability of shallow
landslide occurrence triggering (DLPI > 0.5). In this way, the
model could be considered a binary classifier and its performance
could be assessed also through the same indexes used for the
assessment of the predictive capability of the spatial and of the
temporal probability of occurrence (TP, FP, TN, FN).

Figure 14 shows the maps of distribution of TP, FP, TN, and FN
indexes in the test-sites for the 11-year time span. The effectiveness

Fig. 10 Distribution of DLPI classes for the period between 25 and 28 April 2009 in Versa and Scuropasso catchments
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of DLPI was confirmed by high values of TP and TN along the
analyzed period in both the study areas. Only 7.3% of the study
areas presented TP and TN lower than 95%. For the same reasons,
the other two indexes were very low, since FP and FN were higher
than 5% only in 15.3 and 1.6% of the study areas, respectively.
These results were in agreement with DLPI values calculated for
the two analyzed events. The length of the analyzed time-span
confirmed the reliability of the developed methodology in
assessing the possible moments when shallow failures could occur,
with an effective estimation of the most unstable areas.

The reliability of the predictions did not change significantly
considering rainfall measured by rain gauges or through remote-
sensing techniques. Even if satellite daily rainfalls tended to be
underestimated respect to field measures (Brunetti et al. 2018),
rainfall parameters obtained through satellite products were effec-
tive to model correctly the trend of the temporal probability of
occurrence during an event, in terms of both identification of
jumps in temporal probability and in real triggering moments.
Despite the huge resampling of the rainfall data used to model
the spatio-temporal distribution of the probability of occurrence,
the implementation in the modeling scheme of different rainfall
measures, collected with different spatial resolution, guarantees a

similar and good predictive capability. However, the use of rainfall
data with higher spatial resolution (e.g., radar measures) could
overcome the limitations of other measures, allowing to reduce
further the number of false positives or false negatives.

The developed methodology helped in filling several gaps of the
other techniques, namely rainfall thresholds and physically based
models.

The method guaranteed an estimation of both the temporal
occurrence and of the most prone hillslopes where shallow failures
could develop, according to meteorological pattern and soil hy-
drological conditions (Guzzetti et al. 2020). The proposed meth-
odology overcome, also, the intrinsic limitations of physically
based methodology, such as their feasible applications over large
areas of tens of km2 due to computational burden, availability of a
reliable dataset of soil geotechnical and hydrological features and
correct reconstruction of geological-hydrological boundary condi-
tions in different settings (Corominas et al. 2015). Moreover, this
method represented an improvement respect to previous integrat-
ed data-driven approaches developed for similar aims, guarantee-
ing an index of temporal probability related not only to rainfall
patterns but also to the soil hydrological conditions during the
rainfall event (Mirus et al. 2018; Thomas et al. 2018).

The developed methodology allowed to obtain feasible results
using rainfall and soil moisture data acquired through different
devices. In particular, it allowed to identify triggering days using
satellite-based rainfall products. For these reasons, the method is
strongly flexible and could allow to obtain accurate landslide
prediction also in areas with scarce field rainfall measures (e.g.,
developing countries).

However, for a comprehensive evaluation of the developed
methodology and for its possible application in other contexts, it
is necessary to highlight some limits that have to be taken into
account.

It is necessary to compile a detailed and reliable multi-temporal
inventory of past shallow landslide events, which indicates the
triggering zones and, at least, the days of occurrence (Guzzetti
et al. 2012; Corominas et al. 2015).

Furthermore, even if the methodology can be implemented
using saturation degree and rainfall data provided by different
tools, maps at a higher resolution of these parameters should be
used for the estimation of the temporal probability of occurrence.
This is required especially in those areas characterized by oro-
graphic effects on rainfall amount due to big variations in altitude
and by strong variations in soil saturation due to the presence of
very different land use covers (Dahigamuwa et al. 2018). The use of
rainfall radar products and of remotely sensed soil moisture and
rainfall data with higher resolution (e.g., Bauer-Marschallinger
et al. 2018) or downscaling procedures (Wang et al. 2016;
Dahigamuwa et al. 2018) may estimate better the rainfall and soil
hydrological conditions over large and heterogeneous areas.

Soil moisture measured by satellites corresponds to the water
content of the most superficial (less than 5 cm from the ground
level) soil horizons (McCabe et al. 2005). Soil moisture informa-
tion of this layer may not represent truly the entire soil moisture
profile until bedrock (Lu and Godt 2013). The developed data-
driven model for the estimation of temporal probability can de-
scribe the relations between superficial soil moisture, rainfall
amounts, and antecedent events, trying to fill this gap. Instead,
the model should be improved by adding, as predictor variable, a

Fig. 11 Temporal probability of occurrence between 27 February and 1
March 2016 using rain gauge, SM2RAIN-ASCAT, and GPM mesaures: a trends of
3-day cumulated rainfall; b trends of 30-day cumulated rainfall; c trends of
saturation degree measured by ASCAT; d trends of temporal probability of
occurrence
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value of soil moisture/saturation degree representative of deeper
soil levels, where the hydro-mechanical processes leading to shal-
low failures occur. This parameter could be obtained through
physically based methods able to link the soil moisture patterns
on the surface with the sub-surface water content (Brocca et al.
2016).

Generally, as other spatially distributed modeling approaches,
false positives are identified for all the simulations carried on at
local or regional scales. The implementation of this method for
hazard assessment has to consider the possible overestimation of
areas with high hazard level and could be integrated with other
modeling approaches at site-specific scale, such as physically
based analyses in areas identified as unstable by the models but
where shallow landslides have never occurred (Wang and Sassa
2006).

Conclusions
A method combining a susceptibility model and a temporal com-
ponent was developed and tested to provide spatial and temporal
probability of occurrence of shallow landslides at a large scale. The
variations of this probability dynamically were evaluated during
particular rainfall events triggering shallow landslides, exploiting
also the capability of satellite products of soil moisture and

rainfall. The methodology overcomes several limitations of the
most traditional approaches used for shallow landslides forecast,
regarding in particular the use of rainfall thresholds without indi-
cations on spatial distribution of where phenomena could occur
and the limited-in-space application of physically based method-
ology for time computation and input data availability.

The models identified the geological, geomorphological, and
hydrological parameters influencing the proneness of a particular
area, while it reconstructed the statistical relations between rainfall
attributes and soil hydrological conditions leading to determine
different temporal probability of occurrence of shallow failures.
The method was tested on different past events, demonstrating a
strong predictive capability of both stable/unstable areas and
triggering/not triggering days. The developed methodology
allowed to obtain feasible results using traditional rainfall data
acquired by field rain gauges or using satellite-based rainfall
products.

Considering its reliability, main advantages, and weak points,
this method could allow to reconstruct hazard maps, according to
rainfall scenarios and soil hydrological conditions at different
return time. In this way, it could assist land use planners in making
planning decisions for the community development of the study
area and for implementing tools and strategies of risk reduction.

Fig. 12 Daily DLPI maps for the period between 27 February and 1 March 2016 in Ardivestra catchment
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The developed methodology can be applied using rainfall data
acquired since different sources and tools (e.g., rain gauges, satellite
sensors, modeling approaches). Also, predicted rainfall amounts and
maps could be implemented in this model, allowing to its possible
implementation in a territorial early-warning system. Spatio-
temporal probability of occurrence higher than 0.5, estimated by
DLPI, could provide daily forecasts of shallow landslide occurrence,
helping main stakeholders (e.g., civil protection agencies, local ad-
ministrations) to act properly in order to reduce the negative con-
sequences for people, infrastructures, and economic activities. For
these aims, this model could be coupled with other spatially distrib-
uted approaches for the assessment of shallow landslides triggering
(e.g., physically based methods at site-specific scale), to improve the
prediction in uncertain areas and increase the predictive capability of
the forecasting chain. In the frame of a potential use of themethod as
tool for early warning system strategies, it is required also to

discriminate the hillslopes which were affected in past by multiple
triggering events, since they could represent areas where higher
warning levels and mitigation strategies should be implemented
more necessarily (Piciullo et al. 2018). For the same aims, warning
levels should be differentiated in terms of landslide intensity,
expressed as number of predicted triggered phenomena in an area
during a particular day. Moreover, the definition of different proba-
bility levels of landslide occurrence and of warning levels could take
the effect of landslide path spatial and temporal dependency into
account, since the possible occurrence of a shallow failure could be
raised in and around already affected hillslopes for few years (Samia
et al. 2020).

Its flexibility and feasibility make the method potentially appli-
cable to different geological and geomorphological settings. In
particular, thanks to the optimal integration with satellite rainfall
and soil moisture products, it could be implemented in areas with

Fig. 13 Distribution of DLPI classes for the period between 27 February and 1 March 2016 in Ardivestra catchment

Table 7 Frequency of selection of the predictors in 100-fold bootstrap models used to reconstruct the suceptibility in each study area: SL, slope angle; ASP, slope aspect;
PLA, planform curvature; PRO, profile curvature; CA, catchement area; CS, catchment slope; TWI, topographic wetness index; TPI, topographic position index; TRI, terrain
ruggedness index; LU, land use; GEO, bedrock geology

Test-site SL ASP PLA PRO CA CS TWI TPI TRI LU GEO

Ardivestra 100 32 12 25 95 2 75 85 13 100 100

Versa-Scuropasso 100 100 12 65 23 1 60 84 2 100 70
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scarce field data, operating as a fundamental tool for increasing
the management of hazard and the resilience of those territories.
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