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Mechanisms underlying barite precipitation in seawater and the precise depths of barite
precipitation in the water column have been debated for decades. Here we present a
detailed study of water column barite distribution in the mesopelagic zone at diverse
stations in the open ocean by analyzing samples collected using multiple unit large volume
in-situ filtration systems in the Pacific, Atlantic and Indian oceans. Our results demonstrate
that barite is an organo-mineral particularly abundant at intermediate depths throughout
the world’s ocean regardless of saturation state with respect to barite. This is confirming
the notion of precipitation at depths of intense organic matter mineralization. Our
observations further support the link between barite formation and microbial activity,
demonstrated by the association of barite particles with organic matter aggregates and
with extracellular polymeric substances. Evidence for microbial mediation is consistent
with previous experimental work showing that in bacterial biofilms Ba binds to phosphate
groups on cell surfaces and within extracellular polymeric substances. This organo-
accumulation promotes high concentrations of Ba leading to saturated
microenvironments and nucleation sites favoring precipitation. The distribution of Ba
isotopes in the water column and in particulate matter is also consistent with the
proposed precipitation mechanism.

Keywords: pelagic barite, organo-mineralization, barite saturation state, extracellular polymeric substances,
bioaccumulation

INTRODUCTION

Barium and barite are routinely used for reconstructing past export production in the ocean yet the
processes linking barite formation to export production are still elusive. Since the early work of Chow
and Goldberg (1960) who reported high Ba concentrations in marine sediments underlying regions
of high biological productivity, a link between organic matter fluxes and Ba abundance has been
broadly demonstrated (e.g., Dehairs et al., 1980; Dymond et al., 1992; Francois et al., 1995; Paytan
et al., 1996; Paytan and Griffith 2007; Griffith and Paytan, 2012; Carter et al., 2020 and references
therein). Studies using sediment traps have provided further evidence on the association of
particulate Ba and particulate organic carbon (POC). It has been proposed that barite
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precipitates in close association with aggregates of organic matter
and sinking biological debris (e.g., Bishop, 1988; Dehairs et al.,
1991). Different algorithms have been suggested to correlate
export production and excess Ba (total Ba concentration
corrected for the lithogenic phase) or barite accumulation
(e.g., Dymond et al., 1992; Francois et al., 1995; Paytan et al.,
1996; Eagle et al., 2003), allowing the reconstruction of past ocean
productivity (e.g., Dymond et al., 1992; Gingele and Dahmke,
1994; Nürnberg et al., 1997; Eagle et al., 2003; Ma et al., 2015).
Nevertheless, quantification of export production from Ba
proxies is still hindered by poor understanding of the
mechanisms and processes leading to barite (the main phase
carrying excess Ba) formation in the oceanic water column.
Moreover, barite distribution in the oceanic water column is
variable in space, time, and depth and such variability is not yet
fully understood (e.g., Hernandez-Sanchez et al., 2011; Bates
et al., 2017).

Over decades of research, several hypotheses have been
proposed to explain barite precipitation in the oceanic water
column given that most of the world’s ocean mesopelagic zone
(200–1,000 m depth, Sutton et al., 2017) is undersaturated with
respect to barite (Monnin et al., 1999; Rushdi et al., 2000).
Hypotheses included precipitation in microenvironments
formed within sinking biogenic particulate matter (e.g.,
Dehairs et al., 1980; Bishop, 1988), precipitation as a result of
celestine (SrSO4) dissolution from Acantharian tests (e.g.,
Bernstein et al., 1992; Bernstein et al., 1998) and by way of
microbially mediated precipitation processes (Gonzalez-Muñoz
et al., 2003; Gonzalez-Muñoz et al., 2012; Torres-Crespo et al.,
2015). Specifically, Gonzalez-Muñoz et al. (2003) demonstrated
in laboratory culture experiments the ability of soil bacteria to
induce precipitation of barite, and later also highlighted the
potential role of bacteria in barite precipitation in the ocean
by using diverse marine strains in culture experiments (Gonzalez-
Muñoz et al., 2012; Torres-Crespo et al., 2015). Bacterially
mediated precipitation of barite is consistent with studies
demonstrating the positive correlation between mesopelagic
particulate Ba abundance and enhanced bacterial production
in the North Pacific and the Southern Ocean as well as the
relation between particulate Ba abundance and microbial oxygen
consumption (Dehairs et al., 2008; Jacquet et al., 2011; Planchon
et al., 2013). Moreover, mesocosm experiments inducing the
decay of various phytoplankton species in the dark
demonstrated that Ba is released during the decomposition of
the phytoplankton, leading to barite precipitation (Ganeshram
et al., 2003). Overall, several lines of evidence have supported the
suggestion that the nutrient-like behavior of Ba is due to
biological processes mediating barite precipitation. In
particular, analyses of Ba isotopes of both water column and
particulate matter at various sites in the ocean (e.g., Horner et al.,
2015; Bates et al., 2017; Bridgestock et al., 2018) are also
consistent with the formation of barite which preferentially
incorporates the light Ba isotope at mesopelagic depths.

Additional experimental work (Martinez-Ruiz et al., 2018)
demonstrated that bacterial biofilms, specifically, extracellular
polymeric substances (EPS) may play a major role in barite
precipitation by providing nucleation sites to locally enhance

Ba concentration leading to barite precipitation. This work also
showed that an amorphous P-rich phase is formed at the initial
stages of Ba bioaccumulation eventually being replaced by sulfate
and leading to the formation of barite crystals. The capacity of
EPS to bind metal ions to negatively charged functional groups
has been broadly demonstrated (e.g., Braissant et al., 2007;
Tourney and Ngwenya, 2014) and the role of phospholipids
acting as nucleation sites to incorporate diverse cations has
been demonstrated for diverse metals such as U (e.g., Morcillo
et al., 2014). Moreover, P-rich precursors have been described in
the precipitation of several minerals such as aragonite apatite and
iron oxides, both under experimental conditions (Rivadeneyra
et al., 2010), and in the geological record (e.g., Sanchez-Navas and
Martin-Algarra, 2001; Miot et al., 2009). In general, microbial
precipitation through an amorphous precursor is a widespread
process in natural environments (e.g., Weiner et al., 2005; Enyedi
et al., 2020). Such crystallization path through an amorphous
precursor phase is also associated with the inorganic precipitation
of barite. For example, a metastable amorphous Ba sulfate phase
that precedes barite formation has been recognized during the
early stages of barium sulfate crystallization from aqueous
solutions (Ruiz-Agudo et al., 2020), however, the binding of
Ba to EPS in the open ocean has not been thoroughly investigated.

Mineralogical and crystallographic analyses of marine barite
collected using multiple unit large volume in-situ filtration
systems (MUL-VFS) at two stations in the North Atlantic and
the Atlantic sector of the Southern Ocean demonstrated that
barite formation in the open ocean also involves an amorphous
precursor (Martinez-Ruiz et al., 2019). This initial amorphous
precursor is a phosphorus-rich phase that evolves into barite
when phosphate groups are substituted by sulfate. These
crystallization pathways are similar to those reported to form
within biofilms in laboratory based experiments (Martinez-Ruiz
et al., 2018). These findings support the role of EPS in the
precipitation of barite in the oceanic water column and the
correlation between bacterial production and the abundance of
Ba-rich particles. As our previous study (Martinez-Ruiz et al.,
2019) focused only on two stations, from the North Atlantic and
the Atlantic Sector of the Southern Ocean, the present work aims
at providing new insights into the mechanisms of barite
formation in the ocean water column by analyzing barite, also
collected by MUL-VFS, at new stations representing additional
ocean sectors with diverse barite saturation conditions. Stations
within each sector were selected in high productivity settings.
Barite crystallography, mineralogy and abundance in the water
column have been investigated at different depths within the
mesopelagic zone at the locations and sites described below.

SAMPLES AND METHODS

Oceanographic Setting
Locations for this study have been selected to represent four
different ocean sectors (Figure 1; Table 1) where productivity is
relatively high and hence barite is abundant in the upper water
column however these sites represent different saturation states
within the mesopelagic zone.

Frontiers in Earth Science | www.frontiersin.org October 2020 | Volume 8 | Article 5677142

Martinez-Ruiz et al. Barite Precipitation on Suspended Organic Matter

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


North Pacific: OC1608A, C-SNOW cruise, California current
system, coastal North Pacific Station 1 (1,929 mwater depth), and
OC1608A, C-SNOW cruise, California current system, Santa
Barbara basin, Station 2 (4,880 m water depth). These stations
are at the edge of the North Pacific oligotrophic gyre. The North
Pacific Subtropical Gyre harbors one of the largest biomas on
Earth, it is a relatively stable oligotrophic environment, with low
surface concentrations of nitrogen and phosphorus. Nutrients
derived from advective transport from depth into the surface
ocean stimulates primary production in this region (Karl and
Church, 2017; Robidart et al., 2019). The two stations in the Santa
Barbara basin are on the edge of this gyre and are characterized by
relatively high productivity and high phytoplankton biomass that
supports a productive pelagic ecosystem (Letelier, et al., 2019).
The productivity is fueled by intensive coastal upwelling induced
by northerly winds along the California margin (e.g., Brzezinski
and Washburn, 2011; Abella-Gutiérrez and Herguera, 2016).

Atlantic:MV1101, Great Calcite Belt (GCB) 1, South Atlantic,
Station 117 (Rosengard et al., 2015; Balch et al., 2016). During the
GCB1 cruise the R/V Melville crossed the Atlantic sector from
Punta Arenas, Chile, to Cape Town, South Africa, sampling
between 39° S and 59° S. Station 92 from this cruise has been
previously analyzed for marine barite (Martinez-Ruiz et al., 2018)
and station 117 has been selected for this study (5,048 m water
depth). Station GCB1-117 is located in the subtropical region of
the South Atlantic Ocean and is dominated by seasonal
coccolithophores and diatoms blooms (Smith et al., 2017).

Indian ocean: RR1202, Great Calcite Belt (GCB) 2, South
Indian Ocean, Station 63 (Rosengard et al., 2015; Balch et al., 2016;
Smith et al., 2017). During the GCB2 cruise, the R/V Revelle crossed
the Indian sector from Durban, South Africa, to Perth, Australia,
sampling between 37° S and 60° S. Station 63 has been selected for this
study (1,310m water depth). The region is characterized by elevated

surface reflectance that is thought to result from high seasonal
concentrations of coccolithophores. Data for multiple parameters
sampled during the GCB cruises including chlorophyll, particulate
inorganic carbon (PIC), POC, biogenic silica (BSi), coccolithophore
concentration, calcification, photosynthesis, dissolved inorganic carbon
(DIC), total alkalinity, iron limitation of phytoplankton and 234Th-
based vertical flux rates are available for these stations (Rosengard et al.,
2015; Balch et al., 2016). Shipboard scientists reported dense
coccolithophore populations that exported small, highly degraded,
and compact particles out of the euphotic zone. Coccolithophore
blooms are considered very efficient in transferring POC to the
base of the mesopelagic zone, although the magnitude of exported
POC is not as high as in diatom-rich regions (e.g., Henson et al., 2012).

South Pacific: NBP1101, Seafarers cruise, Ross Sea, Station
14. This station is located off the Ross Sea Shelf in the Pacific
(1,887 m). Samples were collected between January 17, and
February 13, 2011 aboard the R/V Nathaniel B (Hatta et al.,
2017). The Ross Sea continental shelf is one of the most
productive areas in the Southern Ocean (e.g., Smith, Jr. et al.,
2014). Here a significant supply of dissolved Fe to surface waters
is required to sustain high productivity (Sedwick et al., 2011;
Hatta et al., 2017), and include dust, sea-ice, icebergs and
upwelling of deeper waters as some of the main inputs (e.g.,
Measures et al., 2012; Marsay et al., 2014).

Particulate Ba Sampling, Particulate
Organic Carbon Analyses, and Barite
Saturation State (Ωbarite)
Size-fractionated particulate material has been collected using
multiple MUL-VFS (Bishop et al., 1985) and battery-operated
McLane in-situ pumps (LV-WTS) (Rosengard et al., 2015).
Analyzed samples and corresponding depths are indicated in
Table 1. Particulate Ba concentrations (pBa) have been

FIGURE 1 | Location map showing the analyzed stations (orange color), and two previously analyzed sites (yellow color) in the North Atlantic and in the Atlantic
sector of the Southern Ocean (Martinez-Ruiz et al., 2019). Black triangles indicate the location of the stations with available Ba concentration depth profiles used for
Ωbarite calculations. Base map modified from NASA/Goddard Space Flight Center, The SeaWiFS Project and GeoEye maps, https://svs.gsfc.nasa.gov/30801).
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determined at the South Atlantic (Great Calcite Belt) and South
Pacific Ocean (Antarctic sector) stations, but these data are not
available at other stations. In situ deployed filters were processed
using the protocol described in Bishop andWood (2008). Samples
for pBa were collected on PES filters to ensure low blank and Ba
concentrations in the particulate leachate was analyzed using an
iCAP RQ inductively-coupled plasma mass spectrometer.
Quantification was achieved via comparison of blank- and
indium-normalized ion beam intensities in samples against
those measured in a serially diluted multi-element standard that
was prepared in house. Precision is generally better than ±3%
relative standard deviation. POC samples were collected on pre-
combusted QMA filters and concentrations were measured using a
CHN elemental analyzer immediately on the ship during the
cruises as described in Rosengard et al. (2015). Sampling details
and complication associated with particles collected by MUL-VFS

as well as retention efficiency are discussed in detail in Bishop et al.
(2012). In the South Indian ocean station, both large (>51 μm) and
small (1–51 μm) size particulates were analyzed. For the rest of
stations, only filters retaining the 1–51 μm fraction were analyzed.
The MUL-VFS sampling was found to be highly suitable for barite
particles retention and QMA filters were ideal for barite
microscopic detection and observation.

To place the p[Ba] data in context, we calculated the barite
saturation state of seawater with respect to barite (Ωbarite) at the
depths of sample collection Ωbarite is the ratio between the
barium and sulfate ion activity product and the barite
solubility product. Values of Ω <1, �1, and >1 indicate
under-, perfect-, and super-saturation, respectively. For
consistency with the literature, we consider water samples
with Ω between 0.9 and 1.1 as being in saturation
equilibrium (e.g., Monnin et al., 1999). Since co-located

TABLE 1 | Analyzed samples for this study.

Ocean (bottom
depth)

Coordinates Sample Depth (m) p[Ba] (pM) POC (μM)

Latitude Longitude

East Pacific (C-SNOW cruise)
St 1—Santa Barbara basin (1,929 m) 33.75150 −119.4969 CS 1 30

CS 2 107
CS 3 160
CS 4 267
CS 5 535

(1,927 m) 33.7500 −119.5001 CS 7 50
CS 8 70
CS 9 99
CS 10 149
CS 11 248

St 2—edge of North Pacific oligotrophic gyre (4,880 m) 34.4167 −127.1667 CS 13 55
CS 14 101
CS 15 151
CS 16 251
CS 17 503

(4,880 m) 34.4168 −127.1666 CS 19 25
CS 20 151
CS 21 251
CS 22 402
CS 23 603

South Atlantic (Great calcite belt 1, MV1101) (5,048 m) −38.9651 9.4866 GCM120 25 — —

GCM121 62 75 3.12
GCM122 112 247 0.66
GCM123 162 266 0.46
GCM124 300 362 0.47
GCM125 500 276 0.21
GCM126 750 — —

GCM127 1,000 276 0.11
South Indian Ocean (great calcite belt 2, RR1202) (1,310 m) −54.3995 74.5562 GCM 199 20

GCM 198 90
GCM 197 125
GCM 196 160
GCM 195 200
GCM 194 300
GCM 193 500
GCM 192 800

South Pacific Ocean (Antarctic sector, SEAFARERS) (1,887 m) −72.5835 178.5005 NBP 1016 50 26 3.66
NBP 1017 100 99 0.61
NBP 1018 150 197 0.29
NBP 1019 250 279 0.18
NBP 1020 400 256 0.13
NBP 1021 600 291 0.10
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TABLE 2 | Dissolved Ba, temperature, and calculated profiles of dissolved Ωbarite

across depth in nearby stations to those analyzed in this work (co-located
dissolved samples were generally not available for our study).

East Pacific (close to C-SNOW St. 1)

Cruise GEOSECS Test
Station Test
Location 28.483°N, 121.633°W
Collected September 1969
Citation Wolgemuth and Broecker, 1970

doi:10.1029/JC075i036p07686

Depth (m) [Ba] (nM) Temperature (°C) Ωbarite

1 50 18.07 0.29
30 43 17.85 0.25
150 50 11.66 0.39
255 57 8.71 0.50
400 67 6.9 0.65
700 85 5.07 0.89
1,000 93 4.01 1.02

Northeast Pacific (close to C-SNOW St. 2)

Cruise KN195-08
Station SAFe
Location 30°N, 140°W
Collected May 2009
Citation Geyman et al., 2019

doi:10.1016/j.epsl.2019.115751

Depth (m) [Ba] (nM) Temperature (°C) Ωbarite

25 35.0 19.01 0.20
75 37.8 18.20 0.22
110 35.0 18.18 0.20
150 35.3 16.76 0.22
200 37.1 12.81 0.27
250 37.5 11.23 0.30
300 39.4 9.92 0.33
350 43.5 8.85 0.38
400 48.9 7.95 0.45
500 59.4 6.32 0.59
600 68.3 5.19 0.71
700 77.9 4.64 0.83
850 89.4 4.08 0.98
1,000 98.1 3.72 1.10

South Atlantic (close to MV1101 St. 117)

Cruise D357 (GA10E)
Station 3
Location 36°27.6′S, 13°23.4′E
Collected October 2010
Citation Bates et al., 2017

doi:10.1016/j.gca.2017.01.043

Depth (m) [Ba] (nM) Temperature (°C) Ωbarite

5 43.0 12.08 0.32
23 42.4 12.07 0.32
47 42.6 12.06 0.32
97 44.5 11.19 0.36
196 43.3 10.8 0.34
395 48.0 8.17 0.44
594 56.1 5.22 0.59
989 70.6 3.64 0.79

(Continued in next column)

TABLE 2 | (Continued) Dissolved Ba, temperature, and calculated profiles of
dissolvedΩbarite across depth in nearby stations to those analyzed in this work
(co-located dissolved samples were generally not available for our study).

South Indian Ocean (close to RR1202 St. 63)

Cruise INDIGO 1
Station 18
Location 45°09′S, 72°20′E
Collected March 1985
Citation Jeandel et al., 1996

doi:10.1016/0967-0637(95)00098-4

Depth (m) d[Ba] Temperature (°C) Ωbarite

99 52.7 8.84 0.47
124 53.3 7.78 0.49
152 54.1 7.24 0.51
197 55.9 6.32 0.55
295 54.9 6.12 0.55
397 58.5 5.00 0.62
792 65.8 3.07 0.76
1,039 68.6 2.58 0.81

South Indian Ocean (close to RR1202 St. 63)

Cruise INDIGO 3
Station 90
Location 55°01′S, 31°13′E
Collected June 1987
Citation Jeandel et al., 1996

doi:10.1016/0967-0637(95)00098-4

Depth (m) d[Ba] Temperature (°C) Ωbarite

52 76.6 2.06 0.93
76 76.1 1.44 0.96
100 77.7 1.22 0.98
151 77.6 0.95 0.98
198 77.6 1.10 0.98
303 80.8 1.91 0.98
400 82.2 1.70 1.00
496 81.6 1.93 1.00
745 88.1 1.82 1.12
891 87.2 1.79 1.07
1,289 91.0 1.45 1.15

Southern Ocean (close to NBP1101 St. 14)

Cruise GEOSECS
Station 287
Location −69.3°S, 186.5°E
Collected February 1974
Citation Ku et al., 1976

doi:10.1016/0012-821X(76)90064-9

Depth (m) d[Ba] Temperature (°C) Ωbarite

2 77.8 −1.07 1.10
21 77 −1.49 1.02
41 78.2 −1.40 1.12
81 78.1 −1.65 1.12
151 79.8 −0.31 1.07
201 83.1 0.87 1.07
272 84.7 1.43 1.05
352 85.7 1.43 1.07
449 92.6 1.37 1.15
598 89.8 1.27 1.12
797 92 1.12 1.18
996 94.5 0.97 1.20
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samples for analysis of dissolved Ba and sulfate were generally
not available for our study, we estimated Ωbarite from nearby
stations with reliable published Ba concentration depth profiles
(see Table 2 for details and Figure 1 for locations). Calculations
were performed using PHREEQC version 3 (Parkhurst and
Appelo, 2013). Values of Ωbarite were computed for each
sample based on input parameters of in situ temperature, d
[Ba], pressure (estimated from depth). Both pH and salinity
were prescribed in all calculations at 8.1 and 35, respectively.
The major ion composition of seawater in the calculations was

based on that reported by Kester et al. (1967). We believe that
using a fixed salinity in our calculations is a reasonable
assumption given the relatively minor effect this property has
on Ωbarite over the range of salinities encountered in open ocean
seawater.

Electron Microscopy Observations
Quartz fiber filters (Whatman QMA) have been used for
scanning electron microscopy (SEM) observation and
analyses. Representative filter pieces were coated with

FIGURE 2 | SEMphotographs showing representative examples of barite from the Pacific sector. Samples are indicated in Table 1. Both secondary electron and in
backscattered electron (BSE) mode at 30 kV are shown in each sample. (A) CS4 (267 m), (B) CS9 (99 m), (C) CS10 (149 m), (D) CS20 (151 m), (E) CS 17 (503 m). (F)
(CS 23) and (G) (CS 5) correspond to the deepest filter samples obtained at this ocean sector, 603 and 535 m, respectively.
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carbon for observation under the SEM using an AURIGA FIB-
FESEM Carl Zeiss SMT microscope equipped with an energy
dispersive X-ray (EDX) detector system (Centre for Scientific
Instrumentation, University of Granada). Filter pieces were
grounded in an agate mortar and then dispersed in ethanol by
sonication for approximately 3 min. Particulate matter
released from the filter was deposited on carbon-film-coated
copper grids for high-resolution transmission electron
microscopy (HRTEM) observation by using a FEI TITAN
G2 60–300 microscope with a high brightness electron gun
(X-FEG) operated at 300 kV and equipped with a Cs image
corrector CEOS (Centre for Scientific Instrumentation,
University of Granada). For analytical electron microscopy
(AEM), a SUPER-X silicon-drift windowless EDX detector was
used. EDX maps and selected area electron diffraction (SAED)
patterns were also collected on barite particles for
crystallographic characterization and for determining major
constituents composition.

RESULTS

Barite particles were observed in all the analyzed samples from all
the locations and water depths (Figures 2–6). Figure 2 shows
representative examples of barite particles from the Coastal East
Pacific water column. Barite shows typical rounded to oval
morphologies ranging in size from nanometers to a few
microns, and it is always associated with organic material,
which in many cases has EPS-like morphology (Figures
2A,C,E). Aggregates of barite grains are commonly observed
with grains of different sizes ranging from less than 100 nm to a
few hundred nm (Figure 2B). Barite is also observed as individual
barite grains of micron size (Figure 2D) present at all depth
analyzed. Figures 2F,G show examples of the deepest samples
analyzed at 603 and 535 m water depth at these stations.

Figure 3 shows examples from the South Atlantic sector
demonstrating barite associated with organic aggregates, which
in some cases show EPS-like morphologies (Figure 2D). SEM

FIGURE 3 | SEM photographs showing representative examples of barite from the Atlantic sector analyzed in this study. Samples are indicated in Table 1. Both
secondary electron and in backscattered electron (BSE) mode at 30 kV are shown in each sample. (A)GCM 122 (112 m), (B)GCM 123 (162 m), (C)GCM 124 (300 m),
and (D) GCM 126 (750 m). (E) GCM 125 (500 m) shows the barite abundance at 500 m depth, and (F) GCM 127 (1,000 m) shows a detailed image of the square
indicated in photograph e, in which different sizes of barite grains are shown in organic aggregates. (G)GCM127 corresponds to the deepest filter sample obtained
at this ocean sector, 1,000 m, in which barite is not abundant but still present.
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observations confirm the abundance of barite throughout this
water column including the deepest sample at 1,000 m water
depth (Figure 3G) and demonstrate that barite is particularly
abundant in the intermediate mesopelagic zone (Figures 3E,F;
sample GCM 125, 500 m). In the Indian sector of the Southern
Ocean, a profile down to 800 m also shows higher barite
abundance at depths corresponding to the upper mesopelagic
zone (Figure 7). Crystals of different sizes are observed (Figure 4)
as well as barite in organic aggregates (Figures 4D,E) at all
depths. In the Antarctic sector of the South Pacific Ocean,
barite shows similar morphologies and organic association as
at the other sites (Figure 5). The particulate barite abundance at
this station is slightly lower than at the studied station in the
South Atlantic sector (Figure 7).

Electron microscopy observations demonstrate that
morphology and composition of the barite particles are
similar at all the studied ocean sectors and across depth in
each station. The composition of the analyzed barite grains is
similar to that previously reported inMartinez Ruiz et al. (2019),
hence the EDX spectra are not shown in this work. EDX
analyses show the expected barite composition, and in some

cases, some barite grains also contain appreciable amounts of Sr
and P. Although some variability among sites and depths in the
P and Sr content is seen, a clear quantitative pattern of vertical
or spatial variability in the content of P and Sr cannot be
established with the EDX available data. However,
qualitatively, at the South Atlantic and South Indian ocean
stations, the number of barite grains enriched in Sr and P
generally decreased with depth, suggesting that barite grains
are more enriched in these elements at shallow depths.
Acantharia shells have also been observed at the shallow
depths in several stations (South Atlantic and South Indian
oceans and East Pacific). It is important to note that the large Si
peaks in EDX analyses from the quartz filter substrate overlap
with the Sr L alfa (1.806 keV) peak, which may mask Sr when it
is not in high enough abundance. However, at high
concentrations Sr is easily detectable by the Sr K alfa 1
(14.165 keV) peak, and this has been carefully checked in
SEM and HRTEM EDX spectra. As reported by Martinez
Ruiz et al. (2019), Sr is clearly present in some of the
analyzed barite grains but in other cases it is not detectable
likely because of relatively low concentrations resulting in peaks

FIGURE 4 | SEM photographs showing representative examples of barite from the Indian sector of the Southern Ocean. Samples are indicated in Table 1. Both
secondary electron and in backscattered electron (BSE) mode at 30 kV are shown in each sample. (A) GCM 199 (20 m), (B) GCM 197 (125 m), (C) GCM 193 (500 m).
(D) and (E) GCM 194 (300 m) show a detail of the different size of barite grains formed within organic aggregates.
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obscured by the EDX Si spectra. HRTEM analyses also allow for
Sr detection and indeed it is observed in many of the analyzed
particles as shown in Figure 6. EDX maps also show that Sr
content is variable at the nanometer scale and may vary even
within the same particle (Martinez Ruiz et al., 2019).

Composition and crystallographic characteristics have been
obtained by HRTEM. Representative examples are included in
Figure 6. The analyses of organic aggregates indicate that barite
crystallization starts with nanometer-sized amorphous
precursors either P-rich (Martinez Ruiz et al., 2019) or with a
barite-like composition and that the composition is variable even
at this nano scale (Figures 6A–F). The amorphous nature of
some of these particles is supported by SAED images and
HRTEM diffraction data (Figure 6A). These analyses show
crystals in which d-spaces corresponding to barite are clearly
recognized (Figure 6G) as well as particles without a clear
crystalline organization. High Angle Annular Dark Field
(HAADF) STEM images and corresponding EDX map also
demonstrate the high concentration of P and Sr in some of
the barite grains (Figures 6C–E).

Particulate organic carbon (POC) and particulate Ba (pBa)
profiles from the South Atlantic (Great Calcite Belt) Station 117
and the South Pacific Ocean (Antarctic sector) are shown in
Figure 7. POC profiles are similar at both sites and show the
typical POC profile with export out of the euphotic zone. At the
Great Calcite Belt, Rosengard et al. (2015) argued that in this
ocean region diatom-rich communities produce large and labile
POC aggregates, which result in intense mineralization in the
mesopelagic zone. The pBa profiles also support a significant
increase in barite abundance at about 300 m, decreasing above
and below that depth. At the Antarctic sector, the pBa profile
show barite down to the deepest sample (600 m) analyzed at
this station. Samples recovered from the top 1,000 m at low
latitude sub/tropical locations exhibit undersaturation (Ωbarite <
1) in the epipelagic and upper mesopelagic zones (e.g., east
Pacific, southeast Atlantic). In contrast, water samples from the
high-latitude Southern Ocean are generally close to saturation
(Ωbarite � 1) or even slightly supersaturated (Ωbarite > 1),
consistent with previous studies (e.g., Monnin et al., 1999;
Rushdi et al., 2000).

FIGURE 5 | SEM photographs showing representative examples of barite from the Southern Ocean edge Ross Sea sector. Samples are indicated in Table 1. Both
secondary electron and in backscattered electron (BSE) mode at 30 kV are shown in each sample. (A)NBP 1017 (100 m), (B)NBP 1018 (150 m), (C)NBP 1019 (250 m)
and (D) NBP 1021 (600 m). In all analyzed filter samples barite is particularly abundant.
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FIGURE 6 | (A) High Angle Annular Dark Field (HAADF) STEM image and corresponding EDX maps showing the distribution of S, Ba and Ca in an organic
aggregate from sample GCM 195 (Indian sector of the Southern Ocean). In the upper left corner, a selected area electron diffraction (SAED) image obtained by HRTEM is
included to show the poor crystallinity of the nanometer-sized particles with barite composition; (B) representative spectrum (indicated in the HAADF image as square 2)
showing the barite composition of nanometer-sized particles; (C), (D), and (E) show HAADF-STEM images and corresponding EDX maps of P (D) and Sr, S, and
Ba (E) in a barite particle from NBP 1019 sample; (F) representative EDX spectrum from the barite particle shown in photograph c. Analyzed area corresponds to square
2 in that photograph, the Sr peak shows its enrichment in this grain; (G) shows a lattice-fringe image from sample GCM 124 in which d-spaces characteristic of barite are
indicated: 3.77 Å (201), 3.57 Å (002), 2.83 Å (112), and 2.72 Å (020). In upper left side, a HAADF-STEM image and corresponding EDX maps (S and Ba) of the analyzed
particle are included.
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DISCUSSION

Barite Distribution in the Open Ocean
To date, a large body of work from multiple oceanographic
expeditions and sampling location has provided ample datasets
of dBa and non-lithogenic pBa distribution in the ocean water
column. In general, the GEOTRACES-era datasets exhibit similar
depth-dependent patterns in pBa to those shown here; however,
this study also adds novel results regarding the mechanisms
behind these distributions. It has been demonstrated that
barite abundance shows significant spatial differences mostly
related to productivity. Also, significant differences are
recognized with depth in the water column since processes
involved in precipitation are occurring at certain depths and
the barite may dissolve deeper in the water column. Since pBa is
closely correlated with the flux of organic carbon, it is enriched in
the mesopelagic zone and typically shows a maximum abundance
at intermediate depths (200–600 m) (e.g., Dehairs et al., 1980;
Bishop, 1988; Dehairs et al., 1991; Dymond and Collier, 1996;
Dehairs et al., 1997; Dehairs et al., 2008; Stenberg et al., 2008;
Jacquet et al., 2011; Planchon et al., 2013; Lemaitre et al., 2018;
Conte et al., 2019). Overall, vertical pBa profiles are similar to
those of calculated oxygen consumption rates, which supports the
link between organic matter degradation and barite formation
(e.g., Dehairs et al., 1997). Importantly, pBa has been correlated
with rates of microbial degradation of organic matter, which
further support the link to oxygen consumption and carbon
respiration. Barium isotopes also support barite formation at
mesopelagic depths as demonstrated by enrichment in the
isotopically-heavy Ba in seawater (138Ba) and depletion of the

lighter Ba (134Ba) due to the preferential incorporation of the
lighter Ba isotopes in barite (Horner et al., 2015; Hsieh and
Henderson, 2017; Bates et al., 2017; Bridgestock et al., 2018).
Indeed a local maximum in δ138Ba at depths between 200 and
600 m in diverse ocean basins indicates that barite precipitation
mostly occurs at these depths (Horner et al., 2015; Bates et al.,
2017). Our pBa data from the two analyzed stations at the South
Atlantic (Great Calcite Belt) and South Pacific (Antarctic sector)
stations are also consistent with the idea of enhanced barite
formation at this depth the mesopelagic zone. Profiles show
higher pBa concentrations below 200 m and down to 600 m
with a maximum in at about 200–400 m. Though qualitative,
SEM observations from all the analyzed stations similarly show
higher barite abundance at these intermediate depths.

As discussed above, barite formation is linked to organic
carbon mineralization and export production, however a
notable spatial variability in the Ba:Corg ratio is found over
ocean regions. For instance, sediment trap samples from the
Western Atlantic have significantly lower Ba/Corg values than
samples from the Pacific (e.g., Dymond and Collier, 1996). The
causes for this spatial variability are still poorly understood.
Differences in the Ba:Corg ratio have been related to the
efficiency of mineralization of POC in the mesopelagic zone
relative to the exported amount (e.g., Francois et al., 1995).
Thus, using algorithms that relate Ba to carbon export may
not be appropriate in regions of highly variable carbon flux.
Moreover, barite formation may be affected by the rate at which
particles sink, given that particles that are quickly removed from
the water column by rapid sinking may reduce the likelihood for
precipitation of particulate Ba phases (McManus et al., 2002).

FIGURE 7 | Particulate Ba (pBa) concentration (1–51 μm size fraction) and POC profiles at the studied stations in the South Atlantic (Great Calcite Belt) (red dots)
and South Pacific (Antarctic sector) (blue triangles).
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This has also added uncertainty to sedimentary Ba interpretations
and paleoproductivity reconstructions, particularly to the use of
Ba content as a quantitative proxy for reconstructing
productivity. In general, the poor understanding of barite
distribution in the water column stems from our limited
knowledge of the processes leading to barite saturation. A
better knowledge of such processes may improve our ability to
assess changes in past productivity. Results from experimental
work and from the analyses of pBa phases in the water column
have recently shed light into potential mechanisms leading to
saturation and precipitation of barite in microenvironments
within sinking particulate matter in the mesopelagic zone
(Martinez-Ruiz et al., 2018; Martinez-Ruiz et al., 2019).
Collectively this work emphasizes the role of biofilms as Ba-
concentrating agents in a process that could be termed organo-
mineralization. According to the Encyclopedia of Geobiology,
organo-mineralization (Défarge, 2011) is a process of mineral
formation mediated by organic matter (OM), independent of the
living organisms which the OM derives from. The organic
compounds may be excretion products or detached parts of
living organisms, or relics and by-products of dead organisms
that have been released into waters or incorporated into soils,
sediments, or rocks. Our observations from suspended marine
particulate matter agree with this process and further support
previous findings. Our SEM and TEM observations at multiple
stations also demonstrate that barite forms through a P-rich
amorphous precursor phase, seen in the pBa composition,
ranging from Ba-phosphate to Ba-sulfate consistent with
previous studies from two Atlantic Ocean stations (Martinez-
Ruiz et al., 2019). The present study adds further evidence in
support of these findings. Moreover, although the Ωbarite (Table 2)
in the epipelagic and upper mesopelagic zone at the newly studied
ocean sectors differs from site to site, this does not seem to be a
major control in barite precipitation as no relation between Ωbarite

and pBa or barite abundance is evident. At all the studied stations,
barite crystals show similar characteristics in terms of
composition, size, distribution and association to organic
material, prominently showing association with EPS-like
morphologies, which further supports EPS production is a
major factor in promoting barite formation (Figures 2–5) as
well as organo-mineralization as a common process for barite
formation throughout the ocean. Considering that the relation of
pBa with export production depends on microbial processes
related to organic matter degradation, barite formation is
therefore linked to the suite of complex processes involved in
the ocean biological carbon pump. Specifically, the fraction of
primary production that leaves the upper ocean and is exported to
depth, defined as export production is the fraction that “fuels”
barite formation. Export production depends on diverse factors
such as phytoplankton and zooplankton community structures,
the formation of aggregates, sinking by ballasting, and bacterial
mineralization rates (e.g., Francois et al., 2002; Cavan et al., 2015;
Belcher et al., 2016; Le Moigne et al., 2016) and these factors
change in space and time. For example, Henson et al. (2019)
demonstrated that low primary production and high export
efficiency regimes tend to occur when macro-zooplankton and
bacterial abundances are low in the surface ocean. Thus, a large

fraction of primary production is exported, likely as intact cells or
phytoplankton-based aggregates. In contrast, when macro-
zooplankton and bacterial abundances in the surface ocean are
high, the export efficiency decreases. These results support that
the whole ecosystem structure, rather than just the phytoplankton
community, play a major role in export efficiency (Dehairs et al.,
1992). All these factors not only depend on seasonality but can
also be very different at regional and global scales. Hence,
appropriate knowledge of the processes involved in carbon
export fluxes, the formation of organic aggregates, and particle
sinking is required for assessing the relationship between
productivity and Ba proxies, and proper interpretative care
and caution are required for using Ba as a proxy for export
production. As the relation between export production and barite
largely depends on microbial processes and EPS production,
temperature, oxygen abundance, and the type of organisms
involved may impact this relationship. Although the reason
for Ba accumulation in bacteria and EPS or in other living
organisms is not yet well understood, it is known that
bioaccumulation of Ba occurs throughout the ocean. The
nucleation and crystallization of barite results in the formation
of a highly stable mineral that is hard to dissolve under
oxygenated conditions, consequently a relatively large fraction
of the particulate barite that forms reaches the sediments (Paytan
and Kastner, 1996). Barite accumulation in the sediment would
therefore represent a record of the combination of diverse
processes including export productivity, organic matter
degradation, bacterial activity, and EPS production. This
complexity should be considered when interpreting temporal
and spatial variability in the Ba:Corg ratios and in barite
accumulation in marine sediments.

Role of Extracellular Polymeric Substances
in Barite Precipitation
Understanding the microbial processes leading to the formation
of the mineral barite in the oceanic water column is crucial to
determining the utility of Ba proxies for paleo-productivity and
paleo-chemistry reconstructions. How and why Ba associates
with organic matter in microenvironments and how the rates
of organic matter decomposition affect barite production are key
questions that link primary productivity or export productivity to
barite abundance in marine sediments. The important role that
EPS andmicrobial cells may play in nucleation and crystallization
in the ocean is still far from being well understood at the
molecular scale. Even though the EPS in the ocean have been
widely investigated, their role in mediating mineral precipitation
remains mostly unknown, in particular as it pertains to barite
formation. In seawater, these secretions facilitate attachment to
surfaces leading to the formation of biofilms, organic colloids, and
larger aggregations of cells (marine snow). Though difficult to
measure accurately, EPS represent a significant portion of the
bioavailable carbon pool in the ocean. These substances occur in a
range of molecular sizes, with diverse physical and chemical
properties, and their composition includes polysaccharides,
proteins, lipids, and nucleic acids (Decho and Gutierrez,
2017). In general, the attachment of microbes to surfaces, or
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to each other, provides higher environmental stability than being
a free-living cell and may be favorable in the ocean (e.g.,
Flemming et al., 2016). The EPS matrix of biofilms provides a
three-dimensional architecture framework (Decho, 2000) that is
the building block of the aggregates suspended in the water
column. These organic aggregates are known to be very rich
in microbial communities with abundances up to two orders of
magnitude higher than in the surrounding seawater environment
(e.g., Alldredge et al., 1986; Herndl, 1988).

While both experimental work and observations in diverse
natural environments have demonstrated that functional groups
associated with EPS are able to bind different metal ions (e.g.,
Braissant et al., 2007; Tourney and Ngwenya, 2014), their precise
role for the binding, trapping and concentrating metals in the
open ocean has not been sufficiently investigated. For instance, in
bioremediation, it has been demonstrated that the polyanionic
nature of the EPS promotes the binding of heavy and toxic metal
ions, and EPS use for detoxification of heavy metals is well
known. Many examples have been described in the literature
such as in the remediation of Cd, Cr, Pb, Ni, Cu, Al, and U (e.g.,
Beech and Cheung, 1995; Iyer et al., 2005; Bhaskar and Bhosle,
2006; Gerber et al., 2018). However, as many of these studies had
commercial purposes, very few have addressed the ecological
implications of marine EPS in metal biogeochemical cycles. Loaec
et al. (1997, 1998) reported the heavy metal-binding capacity of
EPS produced by hydrothermal vent bacteria and suggested that
this could represent a survival strategy for the bacteria by
reducing their exposure to toxic metals released from the
hydrothermal vents. Major elements such as Na, Mg, Ca, K,
Sr, and Si, have also been shown to be adsorbed by marine
bacterial EPS (Gutierrez et al., 2008). Likewise, Fe uptake by EPS
in eukaryotic phytoplankton has been investigated (Hassler et al.,
2011; Gutierrez et al., 2012), and binding of Th to carboxylate,
phosphate and sulfate groups in marine EPS has also been shown
(Alvarado Quiroz et al., 2006). Nevertheless, the ecological
implications of these binding processes are not well
understood, and Ba has not been investigated yet in this
regard. Thus, our data open an unexplored field and support
the crucial role that EPS play not only for Ba bioaccumulation but
also for mineral precipitation in the ocean, with important
implications for paleo-oceanographic reconstructions.
Although further investigations are required to elucidate
precise nucleation and crystal growth processes, the available
data strongly support that biofilm matrix is crucial for metal
precipitation in the ocean. In this dynamic environment, with
abundant microbial cells, polysaccharides and water, together
with excreted cellular products (e.g., Sutherland, 2001),
functional groups including sulfate and phosphate would
contribute to the overall negative charge of the EPS, and these
functional groups would interact with metals promoting
precipitation.

The Microbial Pump and Future
Perspectives
The use of barite as a proxy to gain insights into past microbial
processes is a promising tool in paleoceanographic research. It is

broadly known that microbial communities play a major role in
biogeochemical cycles since they play a role both at the base of the
oceanic food web and as decomposers (e.g., Falkowski et al., 2008;
Robidart et al., 2019). Further knowledge of microbial
productivity and structure of communities is required for
predicting future marine ecosystem functions, and the impact
of increasing environmental effects on ocean ecosystems. This is
challenging at present because biogeochemical processes and
microbial communities are very complex, but it is far more
complex for the past because a record of microbial processes
is not usually well preserved in marine sediments beyond the
preservation of biomarkers and some minerals that form through
direct or indirect association with microorganisms. Accordingly,
although barite accumulation rates are closely correlated with
carbon export to the deep ocean (Carter et al., 2020 and references
therein), the occurrence of barite may also reflect Ba utilization in
the surface ocean through microbial processes, EPS production
and organic matter mineralization. Except in sulfate reducing
environments, barite is well preserved in marine sediments, thus
the presence of pelagic barite particles is an indication of past
bacterial respiration processes. In fact, barite has been proposed
as a good proxy reflecting average mineralization processes (e.g.,
Cardinal et al., 2005), which are in turn a major control in the
global carbon cycle and atmospheric carbon sequestration (e.g.,
Cavan et al., 2017). Our observations at diverse ocean sectors and
depths showing formation within organic aggregates commonly
rich in EPS, further support that mineralization due to microbial
respiration is responsible for barite formation and consequently
barite is a bioindicator for such processes.

The occurrence of barite in marine particles may have
additional effects that have so far not been thoroughly
investigated. For example, the potential role of barite
particles within marine snow in the ballasting and
mineralization controls of carbon sedimentation. It has been
demonstrated that particulate minerals, for instance eolian
dust, can be incorporated into organic aggregates and act as
ballast enhancing the marine carbon export hence the
significant increase in the sinking velocities of aggregates
(Van der Jagt et al., 2018). Although biological processes
affecting the fragmentation and mineralization of large
particles are the most important factors determining the
POC profiles (e.g., Lam and Bishop, 2007), barite is a high-
density mineral that could also affect export processes. Another
important aspect that still requires further investigation is the
distribution of barite at greater depths than the mesopelagic
zone. To date most of the studies on barite distribution have
focused on mesopelagic depths and little is known about
distribution and potential precipitation or dissolution with
depth since only very few data from deeper samples are
available (Conte et al., 2019). Furthermore, in the
bathypelagic ocean (depth >1,000 m), Archaea and Viruses
are particularly important in the microbial loop, but they
remain largely unexplored in deep waters, and interactions
between microbes and minerals beyond bacterial precipitation
is almost unknown, except some recent work on the role of
viruses in carbonate precipitation (e.g., Lan et al., 2020; White
III et al., 2020).
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CONCLUSIONS

Comparisons of suspended marine particulate matter obtained
from diverse ocean sectors indicate barite formation at
intermediate depths (200–600 m) in the mesopelagic zone
independent of barite saturation state. The formation of barite
within organic aggregates in close association with EPS is a
common process recognized in all the studied regions. Our
results further confirm that microbial processes are mediating
barite precipitation (organo-mineralization) within such
aggregates as previously supported by experimental work
showing that Ba binds to phosphate groups on cell surfaces and
EPS in bacterial biofilms. Mineralogical and crystallographic
characteristics of suspended barite particles in the ocean
support the same crystallization path, from an amorphous
P-rich phase to mineral barite. EPS play a crucial role in locally
concentrating Ba and providing nucleation sites leading to
saturation. The binding capacity of the functional groups
associated with EPS, including phosphate groups, has been
widely demonstrated in experimental conditions and diverse
natural environments, and the interactions between Ba and the
EPS is similarly occurring in the ocean leading to barite
precipitation. The distribution of particulate Ba and Ba isotopes
in the water column are consistent with this precipitation
mechanism. Many processes are involved in barite precipitation
including primary production, export production, organic matter
degradation, bacterial respiration, EPS formation, aggregation and
sinking, and all should be further investigated and taken into
account when interpreting temporal and spatial variability in the
Ba:Corg ratios and barite accumulation in sediments. In addition,
EPS production by organisms other than bacteria, such as
phytoplankton, may also play an important role in barite
production. However, the ecological implications of these
processes and interactions between diverse organisms have been
poorly investigated. The strong link between organo-
mineralization of pelagic barite and microbial processes could
be used to gain insights into past microbial processes and the
functioning of the microbial pump. This is of importance for
reconstructing mineralization and microbial respiration, and their
link to export production, which are key processes in the global
carbon cycle and the ocean carbon sink.
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Unidad Cientifíca de Excelencia UCE-PP2016-05 (University of
Granada) and grant OCE-1443577.

ACKNOWLEDGMENTS

We thank the Center for Scientific Instrumentation (CIC,
University of Granada) for electron microscopy analytical
facilities, all the cruises supporting the sample collection, and
laboratory assistance from C. W. Kinsley and H. V. Pryer for pBa
analyses. We greatly acknowledge Frank Dehairs and Christophe
Monnin whose constructive comments and suggestions helped
improve and clarify this manuscript.

REFERENCES

Abella-Gutiérrez, J., and Herguera, J. C. (2016). Sensitivity of carbon
paleoproductivity in the Southern California current system on different
time scales for the last 2 ka. Paleoceanogr. Paleoclimatol. 31, 953–970.
doi:10.1002/2015PA002872

Alldredge, A. L., Cole, J. J., and Caron, D. A. (1986). Production of
heterotrophic bacteria inhabiting macroscopic organic aggregates (marine
snow) from surface waters. Limnol. Oceanogr. 31, 68–78. doi:10.4319/lo.
1986.31.1.0068

Alvarado Quiroz, N. G., Hung, C.-C., and Santschi, P. H. (2006). Binding of
thorium(IV) to carboxylate, phosphate and sulfate functional groups from
marine exopolymeric substances (EPS).Mar. Chem. 100, 337–353. doi:10.1016/
j.marchem.2005.10.023

Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z., Bowler, B. C.,
et al. (2016). Factors regulating the great calcite belt in the Southern Ocean and

its biogeochemical significance. Global Biogeochem. Cycles. 30, 1124–1144.
doi:10.1002/2016GB005414

Bates, S. L., Hendry, K. R., Pryer, H. V., Kinsley, C. W., Pyle, K. M., Woodward, E.
M. S., et al. (2017). Barium isotopes reveal role of ocean circulation on barium
cycling in the Atlantic. Geochem. Cosmochim. Acta. 204, 286–299. doi:10.1016/
j.gca.2017.01.043

Beech, I. B., and Cheung, C. W. S. (1995). Interactions of exopolymers produced by
sulphate-reducing bacteria with metal ions. Int. Biodeterior. Biodegrad. 35,
59–72. doi:10.1016/0964-8305(95)00082-G

Belcher, A., Iversen, M., Giering, S., Riou, V., Henson, S. A., Berline, L., et al.
(2016). Depth-resolved particle-associated microbial respiration in the
northeast Atlantic. Biogeosciences. 13 (17), 4927–4943. doi:10.5194/bg-13-
4927-2016

Bernstein, R. E., Byrne, R. H., Betzer, P. R., and Greco, A. M. (1992). Morphologies
and transformations of celestite in seawater: the role of acantharians in
strontium and barium geochemistry. Geochem. Cosmochim. Acta. 56,
3273–3279. doi:10.1016/0016-7037(92)90304-2

Frontiers in Earth Science | www.frontiersin.org October 2020 | Volume 8 | Article 56771414

Martinez-Ruiz et al. Barite Precipitation on Suspended Organic Matter

https://doi.org/10.1002/2015PA002872
https://doi.org/10.4319/lo.1986.31.1.0068
https://doi.org/10.4319/lo.1986.31.1.0068
https://doi.org/10.1016/j.marchem.2005.10.023
https://doi.org/10.1016/j.marchem.2005.10.023
https://doi.org/10.1002/2016GB005414
https://doi.org/10.1016/j.gca.2017.01.043
https://doi.org/10.1016/j.gca.2017.01.043
https://doi.org/10.1016/0964-8305(95)00082-G
https://doi.org/10.5194/bg-13-4927-2016
https://doi.org/10.5194/bg-13-4927-2016
https://doi.org/10.1016/0016-7037(92)90304-2
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


Bernstein, R. E., Byrne, R. H., and Schijf, J. (1998). Acantharians: a missing link in
the oceanic biogeochemistry of barium. Deep Sea Res. Oceanogr. Res. Pap. 45,
491–505. doi:10.1016/S0967-0637(97)00095-2

Bhaskar, P. V., and Bhosle, N. B. (2006). Bacterial extracellular polymeric substance
(EPS): a carrier of heavy metals in the marine food-chain. Environ. Int. 32,
191–198. doi:10.1016/j.envint.2005.08.010

Bishop, J. K. B. (1988). The barite-opal-organic carbon association in oceanic
particulate matter. Nature. 332, 341. doi:10.1038/332341a0

Bishop, J. K. B., Lam, P. J., and Wood, T. J. (2012). Getting good particles: accurate
sampling of particles by large volume in-situ filtration. Limnol Oceanogr.
Methods. 10, 681–710. doi:10.4319/lom.2012.10.681

Bishop, J. K. B., Schupack, D., Sherrell, R. M., and Conte, M. (1985). “A multiple-
unit large-volume in situ filtration system for sampling oceanic particulate
matter in mesoscale environments,” in Mapping strategies in chemical
oceanography, Advances in chemistry. Washington, DC: American Chemical
Society, Vol. 9, 155–175.

Bishop, J. K. B., andWood, T. J. (2008). Particulate matter chemistry and dynamics
in the twilight zone at VERTIGOALOHA and K2 sites.Deep Sea Res. Oceanogr.
Res. Pap. 55, 1684–1706. doi:10.1016/j.dsr.2008.07.012

Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., and Visscher,
P. T. (2007). Exopolymeric substances of sulfate-reducing bacteria:
interactions with calcium at alkaline pH and implication for formation of
carbonate minerals. Geobiology. 5, 401–411. doi:10.1111/j.1472-4669.2007.
00117.x

Bridgestock, L., Hsieh, Y.-T., Porcelli, D., Homoky, W. B., Bryan, A., and
Henderson, G. M. (2018). Controls on the barium isotope compositions of
marine sediments. Earth Planet Sci. Lett. 481, 101–110. doi:10.1016/j.epsl.2017.
10.019

Brzezinski, M. A., and Washburn, L. (2011). Phytoplankton primary productivity
in the santa barbara channel: effects of wind-driven upwelling and mesoscale
eddies. J. Geophys. Res. 116, C12013. doi:10.1029/2011JC007397

Cardinal, D., Savoye, N., Trull, T. W., André, L., Kopczynska, E. E., and Dehairs, F.
(2005). Variations of carbon remineralisation in the Southern Ocean illustrated
by the Baxs proxy.Deep Sea Res. Oceanogr. Res. Pap. 52, 355–370. doi:10.1016/j.
dsr.2004.10.002

Carter, S. C., Paytan, A., and Griffith, E. M. (2020). Toward an improved
understanding of the marine barium cycle and the application of marine
barite as a paleoproductivity proxy. Minerals. 10, 421. doi:10.3390/
min10050421

Cavan, E. L., LeMoigne, F. A. C., Poulton, A. J., Tarling, G. A., Ward, P., Daniels, C.
J., et al. (2015). Attenuation of particulate organic carbon flux in the Scotia Sea,
Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett.
42, 821–830. doi:10.1002/2014GL062744

Cavan, E. L., Trimmer, M., Shelley, F., and Sanders, R. (2017). Remineralization of
particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun.
8, 14847. doi:10.1038/ncomms14847

Chow, T. J., and Goldberg, E. D. (1960). On the marine geochemistry of barium.
Geochem. Cosmochim. Acta. 20, 192–198. doi:10.1016/0016-7037(60)90073-95

Conte, M. H., Carter, A. M., Koweek, D. A., Huang, S., andWeber, J. C. (2019). The
elemental composition of the deep particle flux in the Sargasso Sea. Chem. Geol.
511, 279–313. doi:10.1016/j. chemgeo.2018.11.001

Decho, A. W. (2000). “Exopolymer microdomains as a structuring agent for
heterogeneity with microbial biofilms,” in Microbial sediments. Editors
R. E. Riding and S. M. Awramik (Berlin, Germany: Springer-Verlag Press),
9–15.

Decho, A. W., and Gutierrez, T. (2017). Microbial extracellular polymeric
substances (EPSs) in Ocean systems. Front. Microbiol. 8, 922. doi:10.3389/
fmicb.2017.00922

Défarge, C. (2011). “Organomineralization,” in Encyclopedia of Geobiology. Editors
J. Reitner and V. Thiel (Dordrecht, Netherlands: Springer).

Dehairs, F., Baeyens, W., and Goeyens, L. (1992). Accumulation of suspended
barite at mesopelagic depths and export production in the Southern Ocean.
Science. 258, 1332–1335. doi:10.1126/science.258.5086.1332

Dehairs, F., Chesselet, R., and Jedwab, J. (1980). Discrete suspended particles of
barite and the barium cycle in the open ocean. Earth Planet Sci. Lett. 49,
528–550. doi:10.1016/0012-821X(80)90094-1

Dehairs, F., Jacquet, S., Savoye, N., Van Mooy, B. A. S., Buesseler, K. O., Bishop,
J. K. B., et al. (2008). Barium in twilight zone suspended matter as a potential

proxy for particulate organic carbon remineralization: results for the North
Pacific.Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 1673–1683. doi:10.1016/j.
dsr2.2008.04.020

Dehairs, F., Shopova, D., Ober, S., Veth, C., and Goeyens, L. (1997). Particulate
barium stocks and oxygen consumption in the Southern Ocean mesopelagic
water column during spring and early summer: relationship with export
production. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 497–516. doi:10.
1016/S0967-0645(96)00072-0

Dehairs, F., Stroobants, N., and Goeyens, L. (1991). Suspended barite as a tracer of
biological activity in the Southern Ocean.Mar. Chem. 35, 399–410. doi:10.1016/
S0304-4203(09)90032-9

Dymond, J., and Collier, R. (1996). Particulate barium fluxes and their relationships
to biological productivity. Deep Sea Res. Part II Top. Stud. Oceanogr. 43,
1283–1308. doi:10.1016/0967-0645(96)00011-2

Dymond, J., Suess, E., and Lyle, M. (1992). Barium in deep-sea sediment: a
geochemical proxy for paleoproductivity. Paleoceanogr. Paleoclimatol. 7,
163–181. doi:10.1029/92PA00181

Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., and Murray, R. W. (2003). A
comparison between excess barium and barite as indicators of carbon export.
Paleoceanogr. Paleoclimatol. 18, 1021. doi:10.1029/2002PA000793

Enyedi, N. T., Makk, J., Kótai, L., Berényi, B., Klébert, S., Sebestyén, Z., et al. (2020).
Cave bacteria-induced amorphous calcium carbonate formation. Sci. Rep. 10,
8696. doi:10.1038/s41598-020-65667-w

Falkowski, P. G., Fenchel, T., and DeLong, E. F. (2008). The microbial engines that
drive Earth’s biogeochemical cycles. Science. 320, 1034–1039. doi:10.1126/
science.1153213

Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., and
Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nat. Rev.
Microbiol. 14, 563–575. doi:10.1038/nrmicro.2016.94

Franco̧is, R., Honjo, S., Krishfield, R., andManganini, S. (2002). Factors controlling
the flux of organic carbon to the bathypelagic zone of the ocean. Global
Biogeochem. Cycles. 16 (4), 1087. doi:10.1029/2001GB001722

François, R., Honjo, S., Manganini, S. J., and Ravizza, G. E. (1995). Biogenic barium
fluxes to the deep sea: implications for paleoproductivity reconstruction. Global
Biogeochem. Cycles. 9, 289–303. doi:10.1029/95GB00021

Ganeshram, R. S., François, R., Commeau, J., and Brown-Leger, S. L. (2003). An
experimental investigation of barite formation in seawater. Geochem.
Cosmochim. Acta. 67, 2599–2605. doi:10.1016/S0016-7037(03)00164-9

Gerber, U., Hübner, R., Rossberg, A., Krawczyk-Bärsch, E., and Merroun, M. L.
(2018). Metabolism-dependent bioaccumulation of uranium by
Rhodosporidium toruloides isolated from the flooding water of a former
uranium mine. PLoS One. 13, e0201903. doi:10.1371/journal.pone.0201903

Geyman, B. M., Ptacek, J. L., LaVigne, M., andHorner, T. J. (2019). Barium in deep-
sea bamboo corals: phase associations, barium stable isotopes, and prospects for
paleoceanography. Earth Planet Sci. Lett. 525, 115751. doi:10.1016/j.epsl.2019.
115751

Gingele, F., and Dahmke, A. (1994). Discrete barite particles and barium as tracers
of paleoproductivity in South Atlantic sediments. Paleoceanogr. Paleoclimatol.
9, 151–168. doi:10.1029/93PA02559

González-Muñoz, M. T., Fernández-Luque, B., Martínez-Ruiz, F., Ben Chekroun,
K., Arias, J. M., Rodríguez-Gallego, M., et al. (2003). Precipitation of barite by
Myxococcus xanthus: possible implications for the biogeochemical cycle of
barium. Appl. Environ. Microbiol. 69, 5722–5725. doi:10.1128/AEM.69.9.5722-
5725.2003

Gonzalez-Muñoz, M. T., Martinez-Ruiz, F., Morcillo, F., Martin-Ramos, J. D., and
Paytan, A. (2012). Precipitation of barite by marine bacteria: a possible mechanism
for marine barite formation. Geology. 40, 675. doi:10.1130/G33006.1

Griffith, E. M., and Paytan, A. (2012). Barite in the ocean - occurrence,
geochemistry and palaeoceanographic applications. Sedimentology. 59,
1817–1835. doi:10.1111/j.1365-3091.2012.01327.x

Gutierrez, T., Biller, D. V., Shimmield, T., and Green, D. H. (2012). Metal binding
properties of the EPS produced by Halomonas sp. TG39 and its potential in
enhancing trace element bioavailability to eukaryotic phytoplankton.
Biometals. 25, 1185–1194. doi:10.1007/s10534-012-9581-3

Gutierrez, T., Shimmield, T., Haidon, C., Black, K., and Green, D. H. (2008).
Emulsifying and metal ion binding activity of a glycoprotein exopolymer
produced by Pseudoalteromonas sp. strain TG12. Appl. Enivorn. Microbiol.
74, 4867–4876. doi:10.1128/AEM.00316-08

Frontiers in Earth Science | www.frontiersin.org October 2020 | Volume 8 | Article 56771415

Martinez-Ruiz et al. Barite Precipitation on Suspended Organic Matter

https://doi.org/10.1016/S0967-0637(97)00095-2
https://doi.org/10.1016/j.envint.2005.08.010
https://doi.org/10.1038/332341a0
https://doi.org/10.4319/lom.2012.10.681
https://doi.org/10.1016/j.dsr.2008.07.012
https://doi.org/10.1111/j.1472-4669.2007. 00117.x
https://doi.org/10.1111/j.1472-4669.2007. 00117.x
https://doi.org/10.1016/j.epsl.2017.10.019
https://doi.org/10.1016/j.epsl.2017.10.019
https://doi.org/10.1029/2011JC007397
https://doi.org/10.1016/j.dsr.2004.10.002
https://doi.org/10.1016/j.dsr.2004.10.002
https://doi.org/10.3390/min10050421
https://doi.org/10.3390/min10050421
https://doi.org/10.1002/2014GL062744
https://doi.org/10.1038/ncomms14847
https://doi.org/10.1016/0016-7037(60)90073-95
https://doi.org/10.1016/j. chemgeo.2018.11.001
https://doi.org/10.3389/fmicb.2017.00922
https://doi.org/10.3389/fmicb.2017.00922
https://doi.org/10.1126/science.258.5086.1332
https://doi.org/10.1016/0012-821X(80)90094-1
https://doi.org/10.1016/j.dsr2.2008.04.020
https://doi.org/10.1016/j.dsr2.2008.04.020
https://doi.org/10.1016/S0967-0645(96)00072-0
https://doi.org/10.1016/S0967-0645(96)00072-0
https://doi.org/10.1016/S0304-4203(09)90032-9
https://doi.org/10.1016/S0304-4203(09)90032-9
https://doi.org/10.1016/0967-0645(96)00011-2
https://doi.org/10.1029/92PA00181
https://doi.org/10.1029/2002PA000793
https://doi.org/10.1038/s41598-020-65667-w
https://doi.org/10.1126/science.1153213
https://doi.org/10.1126/science.1153213
https://doi.org/10.1038/nrmicro.2016.94
https://doi.org/10.1029/2001GB001722
https://doi.org/10.1029/95GB00021
https://doi.org/10.1016/S0016-7037(03)00164-9
https://doi.org/10.1371/journal.pone.0201903
https://doi.org/10.1016/j.epsl.2019.115751
https://doi.org/10.1016/j.epsl.2019.115751
https://doi.org/10.1029/93PA02559
https://doi.org/10.1128/AEM.69.9.5722-5725.2003
https://doi.org/10.1128/AEM.69.9.5722-5725.2003
https://doi.org/10.1130/G33006.1
https://doi.org/10.1111/j.1365-3091.2012.01327.x
https://doi.org/10.1007/s10534-012-9581-3
https://doi.org/10.1128/AEM.00316-08
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


Hassler, C. S., Schoemann, V., Nichols, C. M., Butler, E. C. V., and Boyd, P. W.
(2011). Saccharides enhance iron bioavailability to Southern Ocean
phytoplankton. Proc. Natl. Acad. Sci. U.S.A. 108, 1076–1081. doi:10.1073/
pnas.1010963108

Hatta, M., Measures, C. I., Lam, P. J., Ohnemus, D. C., Auro, M. E., Grand, M. M.,
et al. (2017). The relative roles of modified circumpolar deep water and benthic
sources in supplying iron to the recurrent phytoplankton blooms above Pennell
andMawson banks, Ross sea, Antarctica. J. Mar. Syst. 166, 61–72. doi:10.1016/j.
jmarsys.2016.07.009

Henson, S., Le Moigne, F., and Giering, S. (2019). Drivers of carbon export
efficiency in the global ocean. Global Biogeochem. Cycles. 33, 891–903.
doi:10.1029/2018GB006158

Henson, S. A., Sanders, R., and Madsen, E. (2012). Global patterns in efficiency of
particulate organic carbon export and transfer to the deep ocean. Global
Biogeochem. Cycles. 26, a. doi:10.1029/2011GB004099

Hernandez-Sanchez, M. T., Mills, R. A., Planquette, H., Pancost, R. D., Hepburn,
L., Salter, I., and FitzGeorge-Balfour, T. (2011). Quantifying export production
in the Southern Ocean:implications for the Baxs proxy. Paleoceanogr.
Paleoclimatol. 26, PA4222. doi:10.1029/2010PA002111

Herndl, G. (1988). Ecology of amorphous aggregations (marine snow) in the
Northern Adriatic Sea. II. Microbial density and activity in marine snow and its
implication to overall pelagic processes. Mar. Ecol. Prog. Ser. 48, 265–275.
doi:10.3354/meps048265

Horner, T. J., Kinsley, C. W., and Nielsen, S. G. (2015). Barium-isotopic
fractionation in seawater mediated by barite cycling and oceanic circulation.
Earth Planet Sci. Lett. 430, 511–522. doi:10.1016/j.epsl.2015.07.027

Hsieh, Y.-T., and Henderson, G. M. (2017). Barium stable isotopes in the global
ocean: tracer of Ba inputs and utilization. Earth Planet Sci. Lett. 473, 269–278.
doi:10.1016/j.epsl.2017.06.024

Iyer, A., Mody, K., and Jha, B. (2005). Biosorption of heavy metals by a marine
bacterium.Mar. Pollut. Bull. 50, 340–343. doi:10.1016/j.marpolbul.2004.11.012

Jacquet, S. H. M., Dehairs, F., Dumont, I., Becquevort, S., Cavagna, A.-J., and
Cardinal, D. (2011). Twilight zone organic carbon remineralization in the polar
front zone and subantarctic zone south of tasmania. Deep Sea Res. Part II Top.
Stud. Oceanogr. 58, 2222–2234. doi:10.1016/j.dsr2.2011.05.029

Jeandel, C., Dupré, B., Lebaron, G., Monnin, C., and Minster, J.-F. (1996).
Longitudinal distributions of dissolved barium, silica and alkalinity in the
western and southern Indian Ocean.Deep Sea Res. Oceanogr. Res. Pap. 43, 1–31.
doi:10.1016/0967-0637(95)00098-4

Karl, D. M., and Church, M. J. (2017). Ecosystem structure and dynamics in the
North pacific subtropical gyre: new views of an old ocean. Ecosystems. 20,
433–457. doi:10.1007/s10021-017-0117-0

Kester, D. R., Duedall, I. W., Connors, D. N., and Pytkowicz, R. M. (1967).
Preparation of artificial Seawater. Limnol. Oceanogr. 12, 176–179. doi:10.4319/
lo.1967.12.1.0176

Ku, T.-L., and Lin, M.-C. (1976). 226Ra distribution in the antarctic ocean. Earth
Planet Sci. Lett. 32, 236–248. doi:10.1016/0012-821X(76)90064-9

Lam, P. J., and Bishop, J. K. B. (2007). High biomass, low export regimes in the
Southern Ocean.Deep Sea Res. Part II Top. Stud. Oceanogr. 54, 601–638. doi:10.
1016/j.dsr2.2007.01.013

Lan, Z., Zhang, S., Tucker, M., Li, Z., and Zhao, Z. (2020). Evidence for microbes in
early Neoproterozoic stromatolites. Sediment. Geol. 398, 105589. doi:10.1016/j.
sedgeo.2020.105589

Le Moigne, F. A. C., Henson, S. A., Cavan, E., Georges, C., Pabortsava, K.,
Achterberg, E. P., et al. (2016). What causes the inverse relationship
between primary production and export efficiency in the Southern Ocean?
Geophys. Res. Lett. 43, 4457–4466. doi:10.1002/2016GL068480

Lemaitre, N., Planquette, H., Planchon, F., Sarthou, G., Jacquet, S., García-Ibáñez,
M. I., et al. (2018). Particulate barium tracing of significant mesopelagic carbon
remineralisation in the North Atlantic. Biogeosciences. 15, 2289–2307. doi:10.
5194/bg-15-2289-2018

Letelier, R. M., Björkman, K. M., Church, M. J., Hamilton, D. S., Mahowald, N. M.,
Scanza, R. A., et al. (2019). Climate-driven oscillation of phosphorus and iron
limitation in the North Pacific subtropical gyre. Proc. Natl. Acad. Sci. U.S.A. 116
12720–12728. doi:10.1073/pnas.1900789116

Loaëc, M., Olier, R., and Guezennec, J. (1997). Uptake of lead, cadmium and zinc
by a novel bacterial exopolysaccharide.Water Res. 31, 1171–1179. doi:10.1016/
S0043-1354(96)00375-2

Loaëc, M., Olier, R., and Guezennec, J. (1998). Chelating properties of bacterial
exopolysaccharides from deep-sea hydrothermal vents. Carbohydr. Polym. 35,
65–70. doi:10.1016/S0144-8617(97)00109-4

Ma, Z., Ravelo, A. C., Liu, Z., Zhou, L., and Paytan, A. (2015). Export production
fluctuations in the eastern equatorial Pacific during the Pliocene-Pleistocene:
reconstruction using barite accumulation rates. Paleoceanogr Paleoclimatol. 30,
1455. doi:10.1002/2015PA002860

Marsay, C. M., Sedwick, P. N., Dinniman, M. S., Barrett, P. M., Mack, S. L., and
McGillicuddy, D. J. (2014). Estimating the benthic efflux of dissolved iron on
the Ross Sea continental shelf. Geophys. Res. Lett. 41, 7576–7583. doi:10.1002/
2014gl061684

Martinez-Ruiz, F., Jroundi, F., Paytan, A., Guerra-Tschuschke, I., Abad, M. M., and
González-Muñoz, M. T. (2018). Barium bioaccumulation by bacterial biofilms
and implications for Ba cycling and use of Ba proxies. Nat. Commun. 9, 1619.
doi:10.1038/s41467-018-04069-z

Martinez-Ruiz, F., Paytan, A., Gonzalez-Muñoz, M. T., Jroundi, F., Abad, M. M.,
Lam, P. J., et al. (2019). Barite formation in the ocean: origin of amorphous and
crystalline precipitates. Chem. Geol. 511, 441–451. doi:10.1016/j.chemgeo.2018.
09.011

McManus, J., Dymond, J., Dymond, J., Dunbar, R. B., and Collier, R. W. (2002).
Particulate barium fluxes in the Ross Sea. Mar. Geol. 184, 1–15. doi:10.1016/
S0025-3227(01)00300-0

Measures, C., Hatta, M., and Grand, M. (2012). Bioactive trace metal distributions
and biogeochemical controls in the Southern Ocean. Oceanography. 25,
122–133. doi:10.5670/oceanog.2012.85#sthash.KE78XEDj.dpuf

Miot, J., Benzerara, K., Morin, G., Kappler, A., Bernard, S., Obst, M., et al. (2009).
Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria.
Geochem. Cosmochim. Acta. 73 (3), 696–711. doi:10.1016/j.gca.2008.10.033

Monnin, C., Jeandel, C., Cattaldo, T., and Dehairs, F. (1999). The marine barite
saturation state of the world’s oceans. Mar. Chem. 65, 253–261. doi:10.1016/
S0304-4203(99)00016-X

Morcillo, F., González-Muñoz, M. T., Reitz, T., Romero-González, M. E., Arias,
J. M., and Merroun, M. L. (2014). Biosorption and biomineralization of U(VI)
by the marine bacterium Idiomarina loihiensis MAH1: effect of background
electrolyte and pH. PLoS One. 9, e91305. doi:10.1371/journal.pone.0091305

Nürnberg, C. C., Bohrmann, G., Schlüter, M., and Frank, M. (1997). Barium
accumulation in the atlantic sector of the Southern Ocean: results from
190,000-year records. Paleoceanogr Paleoclimatol. 12, 594–603. doi:10.1029/
97PA01130

Parkhurst, D. L., and Appelo, C. A. J. (2013). Description of input and examples for
PHREEQC version 3—a computer program for speciation, batch-reaction, one-
dimensional transport, and inverse geochemical calculations. Reston, CA:
United States Geological Survey, 6-A43, 497.

Paytan, A., and Griffith, E. M. (2007). Marine barite: recorder of variations in ocean
export productivity. Deep Sea Res. Part II Top. Stud. Oceanogr. 54, 687–705.
doi:10.1016/j.dsr2.2007.01.007

Paytan, A., and Kastner, M. (1996). Benthic Ba fluxes in the central Equatorial
Pacific, implications for the oceanic Ba cycle. Earth Planet Sci. Lett. 142,
439–450. doi:10.1016/0012-821x(96)00120-3

Paytan, A., Kastner, M., and Chavez, F. P. (1996). Glacial to interglacial fluctuations
in productivity in the equatorial pacific as indicated by marine barite. Science.
274, 1355–1357. doi:10.1126/science.274.5291.1355

Planchon, F., Cavagna, A.-J., Cardinal, D., André, L., and Dehairs, F. (2013). Late
summer particulate organic carbon export and twilight zone remineralisation in
the Atlantic sector of the Southern Ocean. Biogeosciences. 10, 803–820. doi:10.
5194/bg-10-803-2013

Rivadeneyra, M. A., Martín-Algarra, A., Sánchez-Román, M., Sánchez-Navas, A.,
and Martín-Ramos, J. D. (2010). Amorphous Ca-phosphate precursors for Ca-
carbonate biominerals mediated by Chromohalobacter marismortui. ISME J. 4,
922–932. doi:10.1038/ismej.2010.17

Robidart, J. C., Magasin, J. D., Shilova, I. N., Turk-Kubo, K. A., Wilson, S. T., Karl,
D. M., et al. (2019). Effects of nutrient enrichment on surface microbial
community gene expression in the oligotrophic North Pacific subtropical
gyre. ISME J. 13, 374–387. doi:10.1038/s41396-018-0280-0

Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and
Bowler, B. (2015). Carbon export and transfer to depth across the Southern
Ocean great calcite belt. Biogeosciences. 12, 3953–3971. doi:10.5194/bg-12-
3953-2015

Frontiers in Earth Science | www.frontiersin.org October 2020 | Volume 8 | Article 56771416

Martinez-Ruiz et al. Barite Precipitation on Suspended Organic Matter

https://doi.org/10.1073/pnas.1010963108
https://doi.org/10.1073/pnas.1010963108
https://doi.org/10.1016/j.jmarsys.2016.07.009
https://doi.org/10.1016/j.jmarsys.2016.07.009
https://doi.org/10.1029/2018GB006158
https://doi.org/10.1029/2011GB004099
https://doi.org/10.1029/2010PA002111
https://doi.org/10.3354/meps048265
https://doi.org/10.1016/j.epsl.2015.07.027
https://doi.org/10.1016/j.epsl.2017.06.024
https://doi.org/10.1016/j.marpolbul.2004.11.012
https://doi.org/10.1016/j.dsr2.2011.05.029
https://doi.org/10.1016/0967-0637(95)00098-4
https://doi.org/10.1007/s10021-017-0117-0
https://doi.org/10.4319/lo.1967.12.1.0176
https://doi.org/10.4319/lo.1967.12.1.0176
https://doi.org/10.1016/0012-821X(76)90064-9
https://doi.org/10.1016/j.dsr2.2007.01.013
https://doi.org/10.1016/j.dsr2.2007.01.013
https://doi.org/10.1016/j.sedgeo.2020.105589
https://doi.org/10.1016/j.sedgeo.2020.105589
https://doi.org/10.1002/2016GL068480
https://doi.org/10.5194/bg-15-2289-2018
https://doi.org/10.5194/bg-15-2289-2018
https://doi.org/10.1073/pnas.1900789116
https://doi.org/10.1016/S0043-1354(96)00375-2
https://doi.org/10.1016/S0043-1354(96)00375-2
https://doi.org/10.1016/S0144-8617(97)00109-4
https://doi.org/10.1002/2015PA002860
https://doi.org/10.1002/2014gl061684
https://doi.org/10.1002/2014gl061684
https://doi.org/10.1038/s41467-018-04069-z
https://doi.org/10.1016/j.chemgeo.2018.09.011
https://doi.org/10.1016/j.chemgeo.2018.09.011
https://doi.org/10.1016/S0025-3227(01)00300-0
https://doi.org/10.1016/S0025-3227(01)00300-0
https://doi.org/10.5670/oceanog.2012.85#sthash.KE78XEDj.dpuf
https://doi.org/10.1016/j.gca.2008.10.033
https://doi.org/10.1016/S0304-4203(99)00016-X
https://doi.org/10.1016/S0304-4203(99)00016-X
https://doi.org/10.1371/journal.pone.0091305
https://doi.org/10.1029/97PA01130
https://doi.org/10.1029/97PA01130
https://doi.org/10.1016/j.dsr2.2007.01.007
https://doi.org/10.1016/0012-821x(96)00120-3
https://doi.org/10.1126/science.274.5291.1355
https://doi.org/10.5194/bg-10-803-2013
https://doi.org/10.5194/bg-10-803-2013
https://doi.org/10.1038/ismej.2010.17
https://doi.org/10.1038/s41396-018-0280-0
https://doi.org/10.5194/bg-12-3953-2015
https://doi.org/10.5194/bg-12-3953-2015
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


Ruiz-Agudo, C., McDonogh, D., Avaro, J. T., Schuppa, D. J., and Gebauer, D.
(2020). Capturing an amorphous BaSO4 intermediate precursor to barite.
CrystEngComm. 22, 1310–1313. doi:10.1039/C9CE01555H

Rushdi, A. I., McManus, J., and Collier, R. W. (2000). Marine barite and celestite
saturation in seawater. Mar. Chem. 69, 19–31. doi:10.1016/S0304-4203(99)
00089-4

Sánchez-Navas, A., and Martín-Algarra, A. (2001). Genesis of apatite in phosphate
stromatolites. Eur. J. Mineral. 13 (2), 361–376. doi:10.1127/0935-1221/01/0013-0361

Sedwick, P. N., DiTullio, G. R., andMackey, D. J. (1997). Regulation of algal blooms
in Antarctic Shelf Waters by the release of iron from melting sea ice. Geophys.
Res. Lett. 24, 2515–2518. doi:10.1029/2000jc000256

Sedwick, P. N., Marsay, C. M., Sohst, B. M., Aguilar-Islas, A. M., Lohan, M. C.,
Long, M. C., et al. (2011). Early season depletion of dissolved iron in the Ross
Sea polynya: implications for iron dynamics on the Ant- arctic continental shelf.
J. Geophys. Res. 116, C12019. doi:10.1029/2010JC006553

Smith, H. E. K., Poulton, A. J., Garley, R., Hopkins, J., Lubelczyk, L. C., Drapeau, D.
T., et al. (2017). The influence of environmental variability on the biogeography
of coccolithophores and diatoms in the great calcite belt. Biogeosciences. 14,
4905–4925. doi:10.5194/bg-14-4905-2017

Smith, W. O., Jr., Ainley, D. G., Arrigo, K. R., and Dinniman, M. S. (2014). The
oceanography and ecology of the Ross Sea. Annu. Rev. Mar. Sci. 6, 469–487.
doi:10.1146/annurev-marine-010213-135114

Sternberg, E., Jeandel, C., Robin, E., and Souhaut, M. (2008). Seasonal cycle of
suspended barite in the Mediterranean Sea. Geochem. Cosmochim. Acta. 72,
4020–4034. doi:10.1016/j.gca.2008.05.043

Sutherland, I., (2001). The biofilm matrix—an immobilized but dynamic microbial
environment. Trends Microbiol. 9, 222–227. doi:10.1016/S0966-842X(01)
02012-1

Sutton, T. T., Clark, M. R., Dunn, D. C., Halpin, P. N., Rogers, A. D., Guinotte, J.,
et al. (2017). A global biogeographic classification of the mesopelagic zone.Deep
Sea Res. Oceanogr. Res. Pap. 126, 85–102. doi:10.1016/j.dsr.2017.05.006

Torres-Crespo, N., Martínez-Ruiz, F., González-Muñoz, M. T., Bedmar, E. J., De
Lange, G. J., and Jroundi, F. (2015). Role of bacteria in marine barite
precipitation: a case study using Mediterranean seawater. Sci. Total Environ.
512-513, 562–571. doi:10.1016/j.scitotenv.2015.01.044

Tourney, J., and Ngwenya, B. T. (2014). The role of bacterial extracellular
polymeric substances in geomicrobiology. Chem. Geol. 386, 115–132. doi:10.
1016/j.chemgeo.2014.08.011

Van der Jagt, H., Friese, C., Stuut, J.-B. W., Fischer, G., and Iversen, M. H. (2018).
The ballasting effect of Saharan dust deposition on aggregate dynamics and
carbon export: aggregation, settling, and scavenging potential of marine snow.
Limnol. Oceanogr. 63, 1386. doi:10.1002/lno.10779

Weiner, S., Sagi, I., and Addadi, L. (2005). Structural biology: choosing the
crystallization path less traveled. Science. 309, 1027–1028. doi:10.1126/
science.1114920

White, R. A., III, Visscher, P. T., and Burns, B. P. (Forthcoming, 2020). Between a
rock and a soft place: the role of viruses in lithification of modern microbial
mats. Trends Microbiol. doi:10.1016/j.tim.2020.06.004

Wolgemuth, K., and Broecker, W. S. (1970). Barium in sea water. Earth Planet Sci.
Lett. 8, 372–378. doi:10.1016/0012-821X(70)90110-X

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Martinez-Ruiz, Paytan, Gonzalez-Muñoz, Jroundi, Abad, Lam,
Horner and Kastner. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org October 2020 | Volume 8 | Article 56771417

Martinez-Ruiz et al. Barite Precipitation on Suspended Organic Matter

https://doi.org/10.1039/C9CE01555H
https://doi.org/10.1016/S0304-4203(99)00089-4
https://doi.org/10.1016/S0304-4203(99)00089-4
https://doi.org/10.1127/0935-1221/01/0013-0361
https://doi.org/10.1029/2000jc000256
https://doi.org/10.1029/2010JC006553
https://doi.org/10.5194/bg-14-4905-2017
https://doi.org/10.1146/annurev-marine-010213-135114
https://doi.org/10.1016/j.gca.2008.05.043
https://doi.org/10.1016/S0966-842X(01)02012-1
https://doi.org/10.1016/S0966-842X(01)02012-1
https://doi.org/10.1016/j.dsr.2017.05.006
https://doi.org/10.1016/j.scitotenv.2015.01.044
https://doi.org/10.1016/j.chemgeo.2014.08.011
https://doi.org/10.1016/j.chemgeo.2014.08.011
https://doi.org/10.1002/lno.10779
https://doi.org/10.1126/science.1114920
https://doi.org/10.1126/science.1114920
https://doi.org/10.1016/j.tim.2020.06.004
https://doi.org/10.1016/0012-821X(70)90110-X
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles

	Barite Precipitation on Suspended Organic Matter in the Mesopelagic Zone
	Introduction
	Samples and Methods
	Oceanographic Setting
	Particulate Ba Sampling, Particulate Organic Carbon Analyses, and Barite Saturation State (Ωbarite)
	Electron Microscopy Observations

	Results
	Discussion
	Barite Distribution in the Open Ocean
	Role of Extracellular Polymeric Substances in Barite Precipitation
	The Microbial Pump and Future Perspectives

	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


