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Abstract We argue that extensions of the SM with a warped
extra dimension, together with a new Z2-odd scalar sin-
glet, provide a natural explanation not only for the hierarchy
problem but also for the nature of fermion bulk masses and
the observed dark matter relic abundance. In particular, the
Kaluza-Klein excitations of the new scalar particle, which
is required to naturally obtain fermion bulk masses through
Yukawa-like interactions, can be the leading portal to any
fermion propagating into the bulk of the extra dimension and
playing the role of dark matter. Moreover, such scalar exci-
tations will necessarily mix with the Higgs boson, leading to
modifications of the Higgs couplings and branching ratios,
and allowing the Higgs to mediate the coannihilation of the
fermionic dark matter. We study these effects and explore the
viability of fermionic dark matter in the presence of these new
heavy scalar mediators both in the usual freeze-out scenario
and in the case where the freeze-out happens during an early
period of matter domination.

1 Introduction

The discovery of the Higgs boson at the LHC represented
the last step towards establishing the Standard Model (SM)
as a solid theory describing the constituents of matter and
their interactions down to very short distances. However,
there are still some questions which do not have an answer
within the SM. One of the most significant examples is the so-
called hierarchy problem, the question why the Higgs boson
is much lighter than the characteristic scale of gravity. One
could argue that this problem is merely a by-product of our
theoretical prejudices and that nature did not ask for a dynam-
ical explanation for this difference of scales. Still, even in this
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case, we know for a fact that the SM cannot accommodate
some other observed phenomena. One of the most striking
examples is the existence of dark matter (DM). We know that
there is no viable DM candidate in the SM, so already this fact
asks for the presence of new physics. Extensions of the SM
with a warped extra dimension (WED) compactified on an
S1/Z2 orbifold contain the necessary features for address-
ing simultaneously both of these issues, the absence of a
viable DM candidate and the hierarchy problem. Moreover,
they can also explain the large hierarchy existing between
the different fermions masses, providing a calculable ver-
sion of partial compositeness [1–7], which makes them very
attractive extensions of the SM.

Fermion masses in WED compactified on a S1/Z2 orb-
ifold need to have a dynamical origin, since the five-
dimensional (5D) bulk masses must be Z2-odd functions on
the orbifold [8,9]. Indeed, one can easily see that the 5D
Dirac fermion bilinear �̄i�i is odd under the orbifold sym-
metry, excluding the presence of a constant mass term. The
most natural solution to this problem is to dynamically gener-
ate these masses with the help of a Z2-odd bulk scalar field.
Indeed, if such scalar field develops a vacuum expectation
value (VEV) with a non-trivial profile along the extra dimen-
sion, fermion bulk masses can arise dynamically through
Yukawa-like interactions. We have explored this possibility
in detail in [10], studying in particular its phenomenologi-
cal consequences. In particular, one finds that the VEV has
a kink-like profile, approaching the traditional sign function
for large values of the odd scalar mass, whenever the WED
is significantly larger than its inverse curvature.

A natural question which arises in scenarios addressing
the origin of the fermion bulk masses concerns the possible
interplay with a bulk Higgs boson. In [10] we have con-
sidered a brane-localized Higgs field, which does not mix
at tree-level with the Z2-odd scalar field. However, in the
more general case of a Higgs boson in the bulk of the extra
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dimension [11–17], such a mixing is unavoidable and needs
to be taken into account. Studying the effect of this mixing
is one of the main goals of this work. On the other hand,
since the odd scalar field is responsible for all fermion bulk
masses, it represents a unique window into any femionic dark
sector propagating into the bulk of the WED. Models with
WEDs already feature an irreducible mediator between visi-
ble and dark sectors, since gravity couples to matter through
the energy-momentum tensor. However, as we will see, when
the DM candidates are fermionic weakly interacting parti-
cles (WIMPs) with masses of O(TeV), the resonances aris-
ing from the 5D Z2-odd scalar field can provide the most
important mediators for the DM coannihilation cross sec-
tion. Moreover, due to the mixing with the bulk Higgs field,
these fermionic dark sectors are mostly Higgs-mediated for
DM masses below the TeV scale. We examine thoroughly the
resulting model of scalar-mediated fermionic DM for a large
range of DM masses. We focus on the case where the DM
particle is a vector-like (VL) fermion, the first Kaluza–Klein
(KK) excitation of a 5D dark fermion. However, most of our
results also hold in the case where the DM candidate gets an
external mass, which can be chiral, VL or even of Majorana
type.

This work is organized as follows: In order to set up the
notation, we review the bulk Higgs case (disregarding the
portal coupling) in Sect. 2. In Sect. 3 we solve the coupled
system of field equations obtained after switching on the
portal coupling between both types of bulk scalar fields by
diagonalizing the resulting 4D mass matrix perturbatively. In
Sect. 4 we proceed to discuss the phenomenology assuming
a non-negligible portal coupling and the presence of Nχ dark
fermion bulk fields. First, we discuss the impact of the scalar
mixing on the SM Higgs couplings. We then continue by
examining the impact of the dark fermions on the Higgs invis-
ible decay width. Then, we discuss the predictions for the DM
coannihilation cross-section mediated by the Higgs field and
the first KK resonance of the Z2-odd scalar field, comparing
these contributions with the ones mediated by KK gravitons.
We compute the prediction for the DM relic abundance as
a function of the velocity-averaged coannihilation cross sec-
tion in the usual freeze-out scenario as well as in the case
of a matter-dominated universe [18–20]. Finally, we com-
pute the constraints arising from direct detection using data
from the Xenon1T experiment, showing that for aO(10 TeV)
fermionic WIMP we can reproduce the observed DM relic
abundance in the scenario of matter domination, without
conflicting with current data from Xenon1T. In the case of
radiation domination and DM masses of ∼ 15 TeV, these
scalar mediators can provide a non-negligible fraction of the
required coannihilation cross section, even though additional
mediators would be required.

2 A bulk Higgs in a WED

We consider a Randall–Sundrum (RS) model [21] with the
extra dimension compactified on an S1/Z2 orbifold with two
D3-branes localized at the fixed points, an ultraviolet (UV)
brane at tUV = ε and an infrared (IR) brane at tIR = 1,
where t is the coordinate describing the extra dimension.
This coordinate is defined in terms of the usual φ = y/π
coordinate by t = ε ekrφ , where ε = e−krπ ∼ O(10−16). In
this notation, the metric reads

ds2 = gMNdx
MdxN = ε2

t2

(
ημνdx

μdxν − dt2

M2
KK

)
, (1)

where MKK ≡ kε and ημν = diag(1,−1,−1,−1) is the
4D Minkowski metric. It is useful to define the quantity
L = krπ ∼ 30, which is a measure of the size of the extra
dimension in natural units. Here k and r are the AdS curvature
and the radius of the S1. Note that in RS models addressing
the hierarchy problem implies L � 1.

Let us start by reviewing the well-known case where the
Higgs field does not mix at tree-level with the odd bulk scalar
[17,22]. For simplicity, a quartic term is only introduced on
the IR brane in order to induce electroweak symmetry break-
ing (EWSB). The Higgs action reads

S =
∫

d5x
√
g

{
gMN (DMH)† DN H − V (H)

−
∑

k=UV,IR

√|ĝk |√
g

V̂ k(H) δ(t − tk)

}
,

(2)

where g = det(gMN ), ĝk = det(gμν |t=tk ), and we define the
Higgs doublet in the unitary gauge as

H(x, t) =
(

0,
t

ε
√

2r
[ϕH (t) + h(x, t)]

)T

. (3)

For the Higgs field and its VEV we follow the treatment of
[16]. The bulk and brane-localized potentials for the bulk
Higgs field are taken to be of the form

V (H) = μ2
H |H |2,

V̂UV = σUV|H |2,
V̂ IR = −σIR|H |2 + ρIR|H |4.

(4)

The equation of motion (EOM) for the Higgs VEV is[
t2∂2

t + t∂t − β2
] ϕH

t
= 0, β2 ≡ 4 + μ2

H/k2, (5)

along with boundary conditions (BC) on the UV and IR
branes, which read

∂t [t ϕH (t)]t=ε+ = mUV ϕH (ε),

∂t [t ϕH (t)]t=1− = mIR ϕH (1) − 2λIR

M2
KK

ϕH (1)3.
(6)
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The notation ε+ and 1− refers to the orbifold fixed points,
approached from the appropriate side. Above we have
defined

mUV = σUV

2k
, mIR = σIR

2k
, λIR = ρIRk

4r
. (7)

This set of EOM and BCs leads to the well-known solution

ϕH (t) = Nv

[
t1+β − rvt

1−β
]
, (8)

where

rv = ε2β 2 + β − mUV

2 − β − mUV
,

N 2
v = M2

KK

2λIR

(mIR − 2 − β) + rv (mIR − 2 + β)

(1 − rv)3 .

(9)

Note that, unless β is very small or mUV is extremely fine-
tuned to the value 2 − β, it is safe to set rv ∝ ε2β → 0.
Then, the Higgs VEV will be peaked towards the IR brane
and expression (8) simplifies to

ϕH (t) � Nvt
1+β = ϕH (1) t1+β, (10)

with

Nv ≡ ϕH (1) � MKK

√
mIR − 2 − β

2λIR
. (11)

Demanding the normalization for the VEV to be such that
one correctly reproduces the SM mass relations for the W
and Z bosons leads to

v2
4 = 2π

L

∫ 1

ε

dt

t
ϕ2
H (t) = π

L

ϕ2
H (1)

1 + β
+ O(ε), (12)

where we have used the fact that the zero-mode profiles of
the gauge bosons are flat, up to corrections of O(v2

4/M2
KK),

[16]. We can then write the VEV of the Higgs field as

ϕH (t) ≈ v4

√
L

π
(1 + β) t1+β, (13)

where v4 agrees with the SM parameter vSM at leading order
in x4 ≡ v4/MKK.

3 Bulk Higgs and odd scalar mixing

We are now interested in the case where the two bulk scalar
fields – the Higgs and the new Z2-odd scalar – mix with each
other. In this case the action reads

S =
∫

d5x
√
g

⎧⎨
⎩gMN

∑
i=1,2

(DM�i )
† DN�i − V (�1,�2)

−
∑

k=UV,IR

√|ĝk |√
g

V̂ k(�1,�2) δ(t − tk)

⎫⎬
⎭ ,

(14)

with �1 = H and �2 = (1/
√

2)� denoting the Higgs dou-
blet and the (real) odd scalar field, which is a gauge singlet.
We consider mixed BCs for the Higgs field, while the odd
scalar field satisfies Dirichlet BCs. Such BCs for the bulk
Higgs are a consequence of the brane-localized potentials,
which are forbidden for the odd scalar, since it vanishes on
the two branes. In our model, both bulk scalar fields develop
a VEV. We can express the 5D odd scalar in terms of its back-
ground configuration ϕS(t) and its 5D excitation S(x, t) as

�(x, t) = ϕS(t) + t

ε
√
r
S(x, t). (15)

The bulk potential reads

V (H, �) = μ2
H |H |2 − μ2

S

2
�2 + λS

4
�4 + λHS|H |2�2,

(16)

where μH , μS are the mass parameters and λS , λHS the
quartic couplings. The brane-localized potentials for the bulk
Higgs field are the same as those shown in (4).

3.1 Background solutions

First, we determine the profiles of the two VEVs. From (16),
the EOMs are

[
t2∂2

t − 3t∂t + μ2
S

k2

(
1 − v2

S − λ̄
k4

μ4
S

λS

r
t2

ϕ2
H

M2
KK

)]
vS(t) = 0,

[
t2∂2

t + t∂t − β2 − λ̄v2
S

] ϕH (t)

t
= 0,

(17)

where we have defined the dimensionless coupling

λ̄ ≡ μ2
S

k2

λHS

λS
(18)

and redefined the VEV of the odd field as in [10], i.e.

ϕS(t) = μS√
λS

vS(t). (19)

In order to obtain an inverted one-dimensional Mexican-hat
potential for vS and guarantee the existence of non-trivial
solutions, we impose an upper bound on λ̄λS/r . In practice,
we demand that

λ̄
k4

μ4
S

λS

r
t2 ϕ2

H (t)

M2
KK

∣∣∣∣
t=1

≤ 1. (20)

Since the Higgs VEV is monotonic in t (at least at leading
order in λ̄), once this condition is fulfilled it will also hold
for t < 1. Plugging in the solution for the Higgs VEV for
λ̄ = 0 (i.e. for vanishing portal coupling λHS), this constraint
translates into

λ̄
λS

r
� x−2

4

10(1 + β)

(μS

k

)4
, (21)

where x4 = v4/MKK.
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Fig. 1 Effective potential Ṽ (vS) computed using the leading-order
solution ϕH,0(t), for different values of t and MKK = 5 TeV, k/mPl =
1/8 and λ̄λS/r = 100, for β = 2 (blue) and β = 8 (red)

We can solve the coupled system of equations iteratively.
The starting point are the solutions we already know for the
decoupled equations – vS,0(t) and ϕH,0(t). We thus insert
the solution from the previous iteration for each VEV in the
EOM corresponding to the other one in (17). This method is
convenient, since the potential for the odd VEV and the strat-
egy to solve its EOM is well understood (see [10]). Indeed,
as we can see from Fig. 1, the potential does not differ much
from the potential obtained in the decoupled case (zero por-
tal coupling). We have checked numerically that the solution
obtained for vS(t) fits the one obtained for the decoupled
case with high accuracy.

We display in Fig. 1 the one-dimensional effective poten-
tial Ṽ (vS) defined by

δṼ (vS)

δvS
=
(

1 − v2
S − λ̄

k4

μ4
S

λS

r
t2 ϕ2

H (t)

M2
KK

)
vS, (22)

which determines the EOM for vS once ϕH ≈ ϕH,0 is used,
see (17). We show this potential for λ̄λS/r = 100 and differ-
ent values of t , μS and β, in order to explore how its maxima
change with increasing t and different values of μS and β.
Note that in the figure we use the leading-order solution for
the Higgs profile. Here and below we choose MKK = 5 TeV,
which is motivated so as to avoid tensions with electroweak
precision data (see [10] for more details). Similarly, we take
k = mPl/8 wheremPl = 2.4·1018 GeV is the reduced Planck
mass. This value corresponds to kr ≈ 10.1, or equivalently
�π ≡ mPl e−krπ = 40 TeV. We observe that both maxima
decrease for increasing t . These two maxima would eventu-
ally collapse into the maximum of an inverted parabola, if
values of λ̄λS/r larger than the ones given by Eq. (21) were
considered. In that case, only the trivial solution would exist.
In practice, we will never reach such large values due to per-
turbativity constraints on the first KK excitation of S, since
the Yukawa couplings of this particle to the different fermions
scale with

√
λS/r , see below. On the other hand, reproduc-

ing a value of the DM coannihilation cross section required
to account for the observed relic abundance demands a large
portal coupling between the different fermion sectors. For
this reason, we consider λS/r � O(100) hereafter. In partic-
ular, in Fig. 1 we choose λ̄λS/r = 100 to saturate the bound
given by Eq. (21).

3.2 Scalar excitations

We now move on to the study of the scalar KK excitations.
The profiles of these resonances can be computed by inserting
the KK decompositions

h(x, t) =
∞∑
n=0

hn(x)χ
h
n (t),

S(x, t) =
∞∑
n=1

Sn(x)χ
S
n (t)

(23)

into the action (14) and keeping quadratic terms in the fields.
A possible way of determining the eigenmodes and eigen-

values of the mixed system is to diagonalize the 4D mass
matrix resulting after integrating the quadratic terms in the
action. Besides the KK scalar masses for the non-mixed case,
non-diagonal entries arise through the potential, once we
integrate the profiles over the fifth dimension, i.e.∫

d5x
√
g V (H, �) ⊃ λ̄

∫
d4x

∫ 1

ε

dt

t3

×
[
M2

KK

kr
v2
S(t) h(x, t)2 + kr

(μSr)2

λS

r
t2ϕ2

H (t)S(x, t)2

+ 4
MKK

μSr

√
λS

r
t ϕH (t)vS(t)h(x, t)S(x, t)

]
.

(24)

Inserting the KK decompositions for h(x, t) and S(x, t), and
using the profiles for the decoupled case, we can write down
the mass matrix to first order in λ̄, finding

M2 =

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
x2
h0

0 0 · · ·
0 x2

S1
0 · · ·

0 0 x2
h1

· · ·
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎟⎠+ λ̄

⎛
⎜⎜⎜⎜⎝

κ2
h0

κ2
h0S1

κ2
h0h1

· · ·
κ2
h0S1

κ2
S1

κ2
h1S1

· · ·
κ2
h0h1

κ2
h1S1

κ2
h1

· · ·
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦M2

KK.

(25)

Here, xhn and xSn correspond to the unperturbed mass eigen-
values in units of MKK of the decoupled system (for λ̄ = 0),
defined as x2

i = m2
i /M

2
KK. Note that only xh0 
 1 corre-

sponds to a light zero mode, because the odd scalar field has
no zero modes. With the mixing switched on, the mass of the
lightest scalar becomes

m2
h ≈

(
x2
h0

+ λ̄ κ2
h0

)
M2

KK . (26)
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In order to calculate the O(λ̄) terms we need the unperturbed
solutions for the profiles. For the Higgs KK modes they are
given by

χh
n (t) =

√
L

π

t Jβ(xhn t)√
J 2
β (xhn ) − Jβ+1(xhn )Jβ−1(xhn )

, (27)

where Jβ(x) is a Bessel function and the eigenvalues xhn
satisfy

xhn Jβ+1(xhn )

Jβ(xhn )
= 2 (mIR − 2 − β) ≡ 2δ. (28)

At zeroth order in λ̄ and for x2
h0


 1 the expression for the

zero-mode profile χh
0 (t) is approximately given by

χh
0 (t) �

√
L

π
(1 + β) t1+β, (29)

up to O(x2
h0

) corrections.

The contributions to the mass matrix at first order in λ̄ can
be read from

κ2
Sm = 2 kr

(μSr)2

λS

r

∫ 1

ε

dt

t

ϕ2
H (t)

M2
KK

[χ S
m(t)]2 ,

κ2
hn Sm = 4

μSr

√
λS

r

×
∫ 1

ε

dt

t2

ϕH (t)

MKK
vS(t)χ

h
n (t)χ S

m(t) ,

κ2
hnhm = 2

kr

×
∫ 1

ε

dt

t3 v2
S(t)χ

h
n (t)χh

m(t) ,

(30)

where κ2
hn

≡ κ2
hnhn

in (25). The different powers of t in the
denominator result from our particular normalization of the
VEV of the new scalar field in (15), which differs from the
normalization of the Higgs VEV in (3).

A priori, both xh0 and κh0 are naturally O(1) numbers, so
in order to obtain a 125 GeV Higgs boson one needs to tune

m2
h

M2
KK

≈ x2
h0

+ λ̄ κ2
h0

∼
(

0.125

5

)2

∼ 10−3. (31)

This is a well-known feature of bulk Higgs models in WEDs
[11–17]. We can achieve this in two different ways. For posi-
tive values of λ̄, both terms in the sum need to be small simul-
taneously. In the case of x2

h0
, this can be achieved by tuning

the parameters in the Higgs potential, as it is customary for a
bulk Higgs with no additional scalars (see e.g. [16,17]). For
λ̄ κ2

h0
the only possibility is to make λ̄ small enough, since κ2

h0
is an O(1) number unless very large values of β are chosen.
(The limit β → ∞ corresponds to a brane-localized Higgs

and will not be considered here.) Therefore, for positive val-
ues of λ̄

0 ≤ λ̄ κ2
h0

∼ λ̄ � 10−3. (32)

As a result, in this case values of λ̄ larger than 10−3 are not
allowed, regardless of the value for x2

h0
.

One could also entertain the possibility of considering
solutions in which both quantities x2

h0
and κ2

h0
are simul-

taneously O(1), but they cancel each other out leading to a
light Higgs mass. Since κ2

h0
> 0 by definition, one would

need to have either x2
h0

or λ̄ negative. The first possibility
corresponds to a tachyonic Higgs field (before turning on the
mixing with the odd scalar) and leads to the BC

xhn Iβ+1(xhn )

Iβ(xhn )
= −2 (mIR − 2 − β) ≡ −2δ (33)

on the IR brane, where In(x) are modified Bessel functions.
This condition is similar to that in (28), but with a relative
minus sign. However, such a path leads nowhere since, as can
be proven, this equation is incompatible with the presence of
a Higgs VEV [15,17]. Therefore, the only viable option is to
allow for negative values of λ̄. In that case, Eq. (26) becomes

m2
h ≈

(
x2
h0

− |λ̄| κ2
h0

)
M2

KK. (34)

and we can always reproduce the Higgs mass regardless of
the value of λ̄ < 0, by choosing the appropriate value of x2

h0
.

At any rate, the mixing between the even and odd bulk
scalars leads to

h0(x) = hphys(x) + sin θhS S(x) + sin θhHH(x), (35)

where H(x) = h1(x) +O(λ̄) and S(x) = S1(x) +O(λ̄) are
the profiles of the first KK modes in the limit where λ̄ = 0,
and

sin θhS = λ̄
κ2
h0S1

x2
S1

− x2
h0

≈ λ̄
κ2
h0S1

x2
S1

,

sin θhH = λ̄
κ2
h0h1

x2
h1

− x2
h0

≈ λ̄
κ2
h0h1

x2
h1

.

(36)

In general, the mixing of the lightest Higgs eigenmode with
the first odd excitation can be expressed as

sin θhS � 4λ̄

√
λS

r

x4

x2
S1

kr

μSr
(1 + β)

∫ 1

ε

dt t2βvS(t)χ
S
1 (t),

(37)

and a similar expression can be derived for sin θhH, i.e.,

sin θhH � 2λ̄

x2
h1

√
1 + β

kr

∫ 1

ε

dt tβ−2v2
S(t)χ

h
1 (t). (38)

As we can see, when λ̄ is positive the constraint set by the
physical Higgs mass does not allow for a large mixing. Its
upper bound is saturated when one assumes that the leading

123
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Fig. 2 Maximum allowed value for the parameter (sin θhS)max
describing the mixing between the lightest Higgs mode and the first
KK resonance of the Z2-odd scalar as a function of β, for fixed values
of MKK and k/mPl. In the left and middle plots, we show this depen-
dence for different values of μSr and positive λ̄. In the left plot, we

consider the maximum possible values of λ̄ > 0 and λS/r , whereas we
fix λS/r to 100 in the middle plot, with λ̄ still saturating the resulting
upper bound. Finally, in the right plot we fix both μSr and λS/r and
consider three different negative values of λ̄

contribution to the Higgs mass is given by the λ̄ κ2
h0

term in
(31). Then

λ̄max = x2
h

κ2
h0

= x2
h

2(β + 1)

[∫ 1

ε

dt t2β−1v2
S(t)

]−1

. (39)

In this case, plugging in the expression for κ2
h0S1

and x2
S1

, we
get

(sin θhS)max � 2
x2
h x4

x2
S1

k

μS

√
λS

r

∫ 1
ε
dt t2βvS(t)χ S

1 (t)∫ 1
ε
dt t2β−1v2

S(t)
, (40)

where λS/r in the above equation needs to saturate its upper
bound

λS

r
≤ μ4

S

k4

2

kr x2
4 x2

h

∫ 1

ε

dt t2β−1v2
S(t), (41)

which results after inserting (39) into Eq. (21). This leads to

(sin θhS)max � xh
x2
S1

23/2 μSr

(kr)3/2

∫ 1
ε
dt t2βvS(t)χ S

1 (t)(∫ 1
ε
dt t2β−1v2

S(t)
)1/2 , (42)

which only depends on β and μSr , given that kr ∼ O(10)

in order to solve the hierarchy problem and that the eigen-
values xi and the scalar profiles are determined once these
parameters have been fixed.

When λ̄ is negative, on the other hand, λS/r is uncon-
strained by relation (21). In this case, an upper bound on
λS/r arises if one wants to prevent the theory from becom-
ing strongly coupled, since the couplings of the KK scalar
fieldS to the different fermions are proportional to

√
λS/r , as

one can see from Eqs. (A7) and (A8) in the appendix. More-
over, in this case sizable values of |λ̄| ∼ O(1) are allowed.

For all these reasons, we find that sin θhS can be much larger
than in the case of a positive λ̄.

In Fig. 2, we show the different predictions for the max-
imum allowed value of the parameter (sin θhS)max, which
measures the mixing between the lightest Higgs scalar and
the first KK mode of the new Z2-odd scalar as a function
of β. In the left plot, we show this dependence for different
values of μSr after saturating the upper bounds on λS/r and
λ̄ > 0. In the middle plot, we display the maximum allowed
value of sin θhS for the same values of μSr and a fixed value
λS/r = 100, together with λ̄ = λ̄max > 0. Note that for
μSr = 25 and β ∼ 50, λS/r = 100 takes its maximum
value. This explains why, in this case, the line stops before
one can reach β = 100. Finally, in the right plot we show
(sin θhS)max for different values of λ̄ < 0 and fixed values
μSr = 25 and λS/r = 100. In all these plots we assume
MKK = 5 TeV and k = mPl/8. One can readily see that,
for a given value of λS/r , the maximum allowed value for
sin θhS is much more significant in the case λ̄ < 0, since
larger values of |λ̄| can be taken. In addition, when λ̄ is nega-
tive one could also consider bigger values of λS/r than in the
λ̄ > 0 case. All this results into larger mixing angles when λ̄

is negative compared to the λ̄ > 0 case.
For the Higgs mixing with its first KK mode, parametrized

by sin θhH, we found a monotonic behavior, with sin θhH
getting smaller for large values of β independently of the
μSr parameter. This can be seen in Fig. 3, where we show
(sin θhH)max as a function of β for MKK = 5 TeV and
k = mPl/8. In particular, we display on the left panel this
functional dependence for three different values of μSr ,
after saturating λ̄ to its upper bound. In the right panel we
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Fig. 3 Maximum allowed
value for the parameter sin θhH,
describing the mixing between
the lightest Higgs mode with its
first KK resonance, as a function
of β. In the left figure, we
exhibit three different values of
μSr for λ̄ = λ̄max > 0, while in
the right panel we consider three
different negative values of λ̄ for
a fixed value of μSr = 25

exhibit the case where μSr = 25 is kept fixed, while λ < 0
takes on different (negative) values. Comparing this panel
with the right panel of the previous figure, we can see that
(sin θhH)max is a steeper function of β than (sin θhS)max

when λ̄ < 0. For the choice of parameters at hand, and
depending on the value of |λ̄|, sin θhH becomes bigger than
sin θhS for β smaller than values between 1 and 10, depend-
ing on the other parameters of the model, whereas the oppo-
site happens when β takes larger values. Henceforth, for prac-
tical purposes, we will neglect the differences between S and
S1, as well as between H and h1, since they are proportional
to the small mixing angles sin θhS and sin θhH, respectively.

4 Phenomenology

Once the Higgs boson is allowed to propagate into the bulk
of the extra dimension, its mixing with the Z2-odd scalar
becomes unavoidable. This mixing will leave its imprint on
different aspects of the phenomenology. In particular, it can
lead to effects on experiments as diverse as high-energy col-
liders, both present and future ones. Moreover, as we will
see, assuming the presence of dark fermions, it can natu-
rally explain the observed DM relic abundance and leave its
imprint on DM direct-detection experiments.

We have seen how the quartic coupling leads to a mass
mixing of the Higgs-boson zero mode with both its first KK
resonance h1 and the lowest-lying Z2-odd scalar, S1. This
mixing induces modifications on the Higgs-boson couplings
to SM particles. In Sect. 4.1 we will explore these modifica-
tions and study its impact on current and future colliders.

A key aspect of our model is that the odd scalar field con-
stitutes a unique window into dark sectors featuring fermions
propagating into the bulk. Indeed, since all the 5D fermion
bulk masses are generated through Yukawa-like interactions
with the odd scalar, the scalar KK modes necessarily con-
nect any dark fermionic sector with the SM if the former is

genuinely five dimensional. Such a connection is unavoid-
able and constitutes a defining feature of the model. In the
presence of a dark fermionic sector, the required Yukawa
couplings between the odd scalar field and the bulk fermions
has two interesting consequences. On the one hand, for light
enough dark fermion masses, it induces a Higgs invisible
decay width, and this in turn implies constraints on the size
of the scalar mixing between both 5D scalar fields. We study
this in detail in Sect. 4.2. On the other hand, the dynamical
generation of the 5D fermion masses naturally connects the
visible and the invisible sectors via the KK resonances of the
odd scalar field, with S1 giving the leading contribution. In
particular, this introduces an efficient coannihiliation chan-
nel for the lightest dark fermion, which is naturally stable and
therefore a good DM candidate. We study this possibility both
in the regular freeze-out scenario and in the case of a matter-
dominated freeze-out in Sect. 4.3. Finally, in Sect. 4.4 we
study in detail the constraints coming from direct-detection
experiments using recent Xenon1T data [23,24].

4.1 Modified Higgs couplings

As we have seen in the previous section, the physical Higgs
boson can be expressed with very good approximation as a
linear combination of the interaction eigenstates h0, h1 and
S1. Since these interaction eigenstates couple differently to
the SM particles, this mixing induces modifications of the
SM Higgs couplings. Here, we study the implications of these
modifications.

The 4D effective couplings of the different scalars to the
fermions are obtained by integrating the profiles of the differ-
ent fields over the fifth dimension and a subsequently rotate
into the mass basis. In particular, the coupling of the Higgs-
boson zero mode and KK modes to a pair of fermion chiral
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zero modes, �̄a�b, is given by

yabhn = y∗√
kr

2 + β√
2(1 + β)

∫ 1

ε

dt fa(t) fb(t)χ
h
n (t) , (43)

where y∗ is defined as a function of the 5D dimensionful
Yukawa coupling Y5D [16]

y∗ =
√
k(1 + β)

2 + β
Y5D, (44)

where the latter is defined by (for an up-type quark field �Rb,
the Higgs-boson field H must be replaced by H̃ )

SY ⊃ −
∫

d5x
√
g Y5D�̄La(x, t)H(x, t)�Rb(x, t) + h.c. .

(45)

On the other hand, the coupling of two light SM fermions to
the scalar S only appears through a mass insertion. Indeed,
before EWSB there is no direct coupling between S and two
SM-like fermion fields. Such a coupling is only generated
after taking into account the fermion mixing induced by the
Higgs VEV vSM. We will compute the corresponding cou-
pling perturbatively, as it is expected to be suppressed by a
factor of O(vSM/MKK). This coupling arises from the inter-
actions of the S scalar to the different fermion zero modes
and the first KK resonance with opposite chirality, once we
rotate to the fermion mass basis after EWSB. Specifically,
the coupling between S, a chiral fermion zero mode a, and
its first KK resonance A with opposite chirality, is given by

yaAS = 2 ca

√
λS

r

k

μS

∫ 1

ε

dt fa(t) f
R
A (t)χ S

1 (t), or

yAaS = 2 ca

√
λS

r

k

μS

∫ 1

ε

dt f LA (t) fa(t)χ
S
1 (t),

(46)

depending on the zero-mode chirality, where ca is defined in
appendix A. Then, after rotating the fermion fields to the mass
basis, we induce an interaction term y f SS f̄L fR between the
SM-like chiral fields, fL and fR , and S.

We can write

δyphys
f h ≡ 1 − yphys

f h

ySM
f h

� (1 − � f ) + � fH + � f S , (47)

where we have defined � f = y fL fRh0/y
SM
f h . Here yphys

f h is the
resulting Higgs Yukawa coupling

L ⊃ − 1√
2
yphys
f h h f̄L fR + h.c., (48)

and ySM
f h denotes the corresponding parameter in the SM one.

Moreover

� fH = sin θhH
y fL fRh1

y fL fRh0

, � f S = sin θhS
y f S

y fL fRh0

. (49)

The quantity � f measures the ratio of the Yukawa coupling of
the Higgs-boson zero mode relative to that of the SM Higgs
boson, whereas the parameters � fH and � f S describe the
admixtures of the Higgs-boson and Z2-odd scalar KK modes
into the physical Higgs. Note that we have taken ySM

f h equal
to y fL fRh0 in the denominator of � fH and � f S , since the
difference is O(λ̄ v2

SM/M2
KK) and thus subleading. On the

other hand, � f is blind at this order to the Higgs mixing with
the odd scalar. This is a byproduct of the induced light-heavy
fermion mixing after EWSB and the shift in the 5D Higgs
VEV. It has been studied e.g. in [17] for the RS case. In
particular, for MKK = 5 TeV, �b never exceeds 2.5 · 10−2

when 1 ≤ β ≤ 10. In the case of lighter quarks, even smaller
values are expected. In this work we concentrate on � f S and
� fH, since they are direct probes of the mixing of the bulk
Higgs field with the Z2-odd scalar field.

Hereafter, we will focus on the bottom quark. The reasons
for this are twofold. On the one hand, we expect the mod-
ifications of the Yukawa couplings to be larger for heavier
quarks, while on the other hand, the bottom Yukawa cou-
pling is among those measured most accurately, having in
addition the most promising prospects. Indeed, existing mea-
surements of the h → bb̄ signal strength (relative to the SM
expectation) lead to μh→bb = 1.01±0.12 (stat.) +0.16

−0.15 (syst.)
[25]. Assuming SM production this translates into a mea-
surement of (yphys

bh /ySM
bh )2 with an uncertainty of about 20%.

However, the expected relative precision to be reached at
future particle colliders such as the ILC, CLIC and the FCC

Fig. 4 �bH and �bS as functions of β for two different values of
y∗ and fixed values of λ̄, λS/r , MKK and k/mPl. For each case, we
have generated Npoints = 3000 random values of ctR ∈ [−0.6, 0.2] and
obtained cq3

L
and cbR by correctly reproducing the top- and bottom-

quark masses
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is projected to be about 1% for the initial stages, reaching the
0.5% level in later stages of the experiments [26].

Figure 4 shows a scatter plot with values of �bH and �bS
as a function of β, for λ̄ = −0.5 and λS/r = 100. For both
quantities we display two different scenarios, corresponding
to y∗ = 3 and y∗ = 1.5, where y∗ is taken the same for
both third-generation quarks (i.e., y∗ = yt∗ = yb∗ ). For each
case, we have generated random values of ctR ∈ [−0.6, 0.2],
and obtained cq3

L
and cbR by fitting the top- and bottom-

quark masses. One can see that for small values of β the
impact on �bH of changing y∗ is magnified. This is expected
since, for these values of β, the Higgs is less IR-localized
and one expects larger differences between the profiles χh

0
and χh

1 . Indeed, regardless of the value of y∗, the prediction
for the bottom mass mb ≈ v4 ybLbRh0/

√
2 needs to remain

unchanged. Since ybLbRh0 is proportional to y∗, see (43),
changes in y∗ have to be compensated by different fermion
localizations and therefore a different value of the overlap
integral in that relation, in such a way that ybLbRh0 remains
approximately constant. The integral present in ybLbRh1 will
change accordingly, but will deviate from the other integral
as β decreases. This effect is reversed for �bS , since y∗ is
not explicitly present in the numerator of (49), with the sole
effect of changing the localization of the profiles of the third-
generation fermions. Since a smaller value of y∗ requires a
more IR-localized q3

L to reproduce the top-quark mass, one
expects a bigger overlap between S and the third-generation
left-handed doublet q3

L together with its first KK mode. This
leads to a larger value of ybS and �bS , as one can see in the
figure. Note that �bS scales with

√
λS/r , so one can readily

obtain �bS for alternative choices of this parameter. More-
over, to good approximation both quantities scale linearly
with λ̄ for small values of λ̄, because sin θhX ∝ λ̄, as can be
seen from (36).

Taking into account the projected sensitivity for the bot-
tom Yukawa coupling, one can see that we will be able to
probe sizable values of the scalar portal coupling λ̄ for mod-
erately small values of β. In particular, as can be seen from
Fig. 4, for our chosen value λ̄ = −0.5, the predicted mod-
ifications �bH and �bS can be probed as long as β is less
than about 4. For smaller values of λ̄, one could only access
smaller values of β.

The couplings of the Higgs KK modes to the W and Z
bosons of the SM (corresponding to the zero modes of the
corresponding bulk gauge fields) are proportional to the inte-
grals

ghnVV ∝
∫ 1

ε

dt

t
ϕH (t)χh

n (t) , (50)

where we have used that to a good approximation the zero-
mode profiles for of the W and Z states are flat along the
extra dimension [27–29]. Since ϕH (t) � v4χ

h
0 (t), and the

orthogonality condition for the scalar profiles is given by

[16,17]

2π

L

∫ 1

ε

dt

t
χh
m(t)χh

n (t) = δmn, (51)

the gauge bosons only couple to the Higgs-boson zero mode,
and higher KK modes of the Higgs do not couple to the
gauge-boson zero modes at tree level. For the case of the S1

scalar, which is a SM singlet, the couplings to electroweak
gauge bosons would only appear at the loop level. Therefore,
it will not modify the Higgs couplings to gauge bosons in an
noticeable way, since these changes are suppressed by a small
mixing angle O(10−2) and a loop factor.

4.2 Invisible Higgs decays

The mixing between the Higgs and the Z2-odd bulk scalar
field induces an effective coupling of the Higgs boson to any
5D bulk fermion present in the theory which is not local-
ized on the UV or IR brane. This includes the possibility
of fermions not charged under the SM group, the so-called
dark fermions. Hereafter, we will consider this case and will
study its potential signatures, including its role in explaining
the observed DM relic abundance. We will consider two dif-
ferent scenarios, depending on the origin of the dark fermion
masses. In the first scenario, the dark fermion mass arises
purely from orbifolding, i.e., from the compactification of the
WED, and it is thus proportional to its curvature,mχ ∝ MKK.
The simplest possibility is to add a 5D fermion with no zero
mode, whose first KK resonance is automatically stable and
a good DM candidate. In the case where one of the chirali-
ties of the corresponding 5D field has a Dirichlet (Neumann)
boundary condition on the UV (IR) brane, the first KK mode
can be parametrically lighter than MKK [30], potentially light
enough to be accessible in Higgs-boson decay. In this case,
the DM candidate is VL even though it can have non-trivial
quantum numbers under a possible new dark group. We thus
allow for Nχ copies of such VL fermion. In the second sce-
nario the fermion mass term connects two zero modes with
opposite chiralities, arising from two different 5D fields. In
this scenario, the fermion mass can either come through a
dark Higgs mechanism or a brane-localized VL mass. If the
dark Higgs is localized towards the IR brane, or alternatively
the VL mass is localized on the IR brane, the fermion mass is
proportional to MKK, even though a large hierarchy can arise
for UV-localized dark fermions. Either way, in this case S1

does not interact directly with these two chiral zero modes
(in the same way S1 does not couple directly to bL and bR ,
as discussed previously), since they are zero modes of two
different 5D fields. Such a coupling can, however, be gener-
ated after a mass insertion through the mediation of the heavy
KK modes (whether the mass comes from the spontaneous
breaking of the dark gauge group or a VL mass is irrelevant
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χ1

χ̄1

h S1

χ1

χ̄0

χ0

h S1

Fig. 5 Diagrams responsible for the generation of the Higgs coupling
to DM in the two main scenarios discussed in the text. The left figure
corresponds to the case where the DM candidate is the first KK mode
of a single 5D fermion field. The right figure corresponds to the case
where the different chiralities of the DM candidate are zero modes of
different 5D fields and the mediation via heavy KK modes is required

to this discussion). We also assume a possible multiplicity of
dark fermions given by Nχ as before.

We illustrate these two scenarios in Fig. 5. Note that in the
second case we expect the coupling of the Higgs boson to
the dark fermion to be O(mχ/MKK) suppressed. Moreover,
its calculation is rather model dependent. Alternatively, one
could leave the nature of the dark fermion mass unspecified
and define an effective Yukawa coupling, taking into account
the mixing of the heavy modes with the zero mode.

There is an additional instance, which can be thought of
as an intermediate scenario between the previous two cases.
There one adds a 5D gauge-singlet fermion field with no
additional flavor quantum numbers, which has a chiral zero
mode and a Majorana mass term localized on the IR brane.
The coupling of this field toS is generated analogously to the
second case described above, via the involvement of a heavy
KK mode and a mass insertion. Therefore, at the end of the
day, this case is rather similar to the previous one, besides
the difference in the multiplicities of fermionic degrees of
freedom for a Majorana field.

We have computed the mass of the first KK mode for a 5D
field with mixed boundary conditions, as described in the first
case above. This result is well known for non-dynamical bulk
masses but has never been explored when these are generated
by the VEV of a Z2-odd scalar. We show in the left panel of
Fig. 6 the ratio x1 = m1/MKK as a function of the usual
dimensionless bulk-mass parameter c in both scenarios. In
the model at hand, where the different fermion bulk masses
are generated by the VEV of the odd scalar field, 〈�〉 =
ϕS, this parameter takes the form given in Eq. (A4). We
also consider for comparison, the non-dynamical case where
such bulk fermion masses are introduced by hand and read
c = m/k, with m the 5D bulk mass. In this scenario the first
KK mass m1 can be made arbitrarily light by adjusting the
c parameter [30]. However, in our model a lower bound on
the mass value arises due to behavior of ϕS close to the two
branes, where it vanishes. We find this bound to be x1 ∼
6 · 10−3, corresponding to 30 GeV for our reference value
MKK = 5 TeV. We also show in the right panel of Fig. 6
the coupling of the VL fermions to the scalar S, defined

analogously to (46) but involving two KK profiles instead of
one,

yχS = 2 cχ

√
λS

r

k

μS

∫ 1

ε

dt f L1,χ (t) f R1,χ (t)χ S
1 (t), (52)

as a function of cχ for different values of μSr . In both panels
we have set MKK = 5 TeV, k = mPl/8 and λS/r = 100. We
can see that, for large values of mχ , sizable values of yχS
are expected. Note that the VL fermions could also have a
contribution to their mass coming from the dark sector (for
instance an IR-localized Majorana mass term), however this
would not affect their coupling to the scalar S.

The decay width of the Higgs boson into dark fermions is
given by

�(h → χ̄χ) = y2
χh Nχ

8π
mh

(
1 − 4m2

χ

m2
h

)3/2

, (53)

where we have defined

yχh ≡ yχS sin θhS , (54)

the coupling of the physical Higgs boson to the first dark KK
fermion.

Using that B(H → inv) < 0.33 at 95% CL [31] and
�SM
H ≈ 4 MeV, we can set an upper limit on the effective

coupling of the Higgs boson to dark fermions. We find the
upper bound on yχh to be yχh � 0.02/

√
Nχ for DM candi-

dates with mass mχ < mh/2. Note that this constraint does
not apply to heavier fermions.

4.3 Scalar-mediated fermionic dark matter

As discussed in the previous section, the Z2-odd scalar field
will couple to any fermion field propagating in the bulk of
the WED. This provides a robust bridge between the SM
and any dark sector having fermions arising from 5D bulk
fermion fields. In the case where these dark fermions are
stable and make for a viable DM candidate, the KK excita-
tions of the odd scalar field thus constitute efficient mediators
for DM coannihilation into SM particles. Moreover, as we
have already seen, the mixing between both scalar bulk fields
induces a Higgs coupling to dark fermions, thereby turning
the Higgs boson into an additional scalar mediator.

For the sake of concreteness, we will focus on the first sce-
nario discussed in the previous section, i.e., of Nχ copies of a
5D dark fermion field, having potentially parametrically light
KK modes. These potentially light KK modes – the lightest
dark particles – are stable and a viable DM candidate. In this
case, both the mass of the DM candidatemχ and its couplings
to the physical Higgs and the Z2-odd scalar, yχh and yχS ,
respectively, depend only on a single c parameter (in addi-
tion to other model parameters such as e.g. MKK, kr , λS/r or
μSr ), see Fig. 6. Considering the alternative scenario where
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Fig. 6 Left panel: mass fraction x1 = m1/MKK of the first fermion KK
mode in terms of the 5D dimensionless bulk-mass parameter cχ for the
case of a left-handed chirality, with Dirichlet and Neumann boundary
conditions on the UV and the IR brane, respectively, for two differ-
ent values of μSr . The yellow line corresponds to the case where the
fermion bulk masses do not have a dynamical origin, but appear in the

5D Lagrangian along with a sign function, as it is usual in RS models.
We also show the value for which mχ = mh/2 with a dashed gray
line. Higgs decays into a pair of DM particles χ1χ̄1 are kinematically
allowed only if x1 falls below this line. Right panel: value of yχS as a
function of cχ for the same choice of boundary conditions and values
of μSr

the interaction ofS to the dark fermions requires a mass inser-
tion on a dark fermion line, it would just lead to a different
shape of the curve yχ S = F(mχ ) and, by virtue of (54), also
the value of yχh = sin θhS yχ S (modulo a different count
of degrees of freedom, in the case of Majorana fermions).
We illustrate in Fig. 7 the diagrams relevant for the coanni-
hilation χ̄χ → f̄ f in these two cases, with and without a
“dark mass insertion”, as discussed in the previous section.
We represent by a blue blob the heavy-light mass mixing
induced after EWSB in the visible sector, whereas the pos-
sible light-heavy mass mixing in the dark sector is depicted
by a pink blob. Hereafter, for the sake of concreteness, we
focus on the case of parametrically light KK fermions, for
which there is no need of specifying any further dynamics in
the dark sector.

For Higgs-mediated processes, the dominant coannihila-
tion final state will be t t̄ , if kinematically accessible (i.e. for
mχ > mt ), or bb̄, together with the vector final statesW+W−
and Z Z . In the case of diagrams mediated by S1, t t̄ or bb̄ are
the dominant coannihilation channels for moderately small
values of mχ . However, for larger values of mχ , coannihi-
lation into a SM fermion and its first KK resonance is also
possible and can be the dominant coannihilation channel by
far.

The relic abundance for a radiation-dominated freeze-out
regime can be computed using [18] (see also e.g. [32,33])

�χh
2 � x f

2
√
g�S(mχ/x f )

10−9GeV−2

〈σv〉 , (55)

Fig. 7 Diagrams contributing to the DM coannihilation cross section
with fermions in the final state. The diagrams shown in the first line
correspond to the case where the DM candidate is a (potentially light)
KK fermion χ1, whereas the diagrams in the second line correspond
to the case where a mass insertion on a dark fermion line is needed in
order to generate an effective interaction S1χ̄0χ0

where �χh2 = 0.120 ± 0.001 [34]. Here, g�S(T f ) denotes
the effective number of degrees of freedom in entropy as
function of the freeze-out temperature T f , and we have
defined a parameter x f = mχ/T f to be determined below.
〈σv〉 is the velocity-averaged cross section at the freeze-out
temperature, which can be calculated as [18]

〈σv〉 = 1

8m4
χT f K 2

2 (mχ/T f )

×
∫ ∞

4m2
χ

ds σ(s)
(
s − 4m2

χ

)√
sK1(

√
s/T f ),

(56)

123



   58 Page 12 of 20 Eur. Phys. J. C            (2021) 81:58 

where Kn(x) are modified Bessel functions. The parameter
x f in (55) is obtained by solving the implicit equation

x f = ln

(
gχ

mχ

2π3

√
45

8x f g�S(mχ/x f )
mPl〈σv〉

)
, (57)

where gχ = 4Nχ is the number of DM degrees of freedom.
Alternatively, one can also consider that DM freeze-out

happens in an early period of matter domination, as proposed
in [19,20]. Indeed, nothing prevents this from happening if
radiation becomes dominant again before big-bang nucle-
osynthesis. The fact that DM decoupling happens during
matter domination changes the freeze-out dynamics, since
the Hubble rate has a different parametric dependence com-
pared to the usual case, H ∝ T 3/2 versus H ∝ T 2. We
do not elaborate here in detail on the dynamics behind this
scenario, which is not crucial for our current analysis. One
possibility would be to have a scalar field φ localized on the
UV brane, which starts behaving like matter at a critical tem-
perature T� ∼ mφ that we assume to be much larger than
MKK. If φ is sufficiently long-lived, its contribution to the
energy density grows until it ultimately dominates the total
energy density regardless of its initial contribution (1 − τ) at
T�, where τ ∈ [0, 1] denotes the fraction of energy in radi-
ation at T = T�. Following [19,20] we will take τ = 0.99
as a benchmark value. Freeze-out happens at a temperature
T f , in a matter-dominated universe, before φ instantaneously
decays at T� < T f < T�, reheating the bath to TRH and fur-
ther diluting the DM freeze-out abundance. Hereafter we will
assume TRH ∼ 1 GeV. We refer the reader to appendix C for
more details.

We show in Fig. 8 the velocity averaged coannihilation
cross section 〈σv〉 at the freeze-out temperature as a func-
tion ofmχ , for Nχ = 1, MKK = 5 TeV and k = mPl/8. In the
top panels, we consider benchmarks with different values of
β, y∗ as well as ctR (the parameter fixing the localization of
the RH top). In both top panels, we consider sin θhS = 10−5

and λS/r = 75, as well as two different values of β and
ctR . In particular, we show β = 2 (pink), β = 10 (blue),
ctR = −0.2 (dashed line) and ctR = −0.4 (solid line). In
the top-left panel we fix y∗ = 3 for both the up and the
down third-generation quark sector, with cq3

L
and cbR being

determined by reproducing the top and bottom quark masses
for a given choice of ctR . The same is done in the top-right
panel but for y∗ = 1.5. In both cases, for the sake of sim-
plicity, light quark masses are reproduced with UV localized
fermions with identical bulk mass parameters (modulo a sign
difference between opposite chiralities) and different values
of y∗ with ys∗ = 1/2 (for our purposes, such a not-so-refined
study is more than enough). We can see that increasing the IR
localization of the RH top, i.e. having bigger values of |ctR |,
leads to a bigger cross section for most DM masses when
y∗ = 3. Since y∗ is large enough in this case, changes in ctR

does not have a dramatic impact on cq3
L

and cbR , which remain
almost unchanged. Therefore, the increase of the coannihi-
lation cross section is mostly due to a larger StL tR coupling,
which is indeed the leading one for DM masses below about
10 TeV. Such a larger coupling is the consequence of a big-
ger overlap with S and the increase in the Yukawa coupling
Y coming with c. In the case of y∗ = 1.5, on the contrary,
changes in |ctR | do have a dramatic impact on cq3

L
, since the

RH top can not account for the top mass alone, requiring
a fairly IR-localized third-generation quark doublet. There-
fore, the contribution to StL tR coming from the mixing of
both top chiralites are similar, which leads to bigger changes
in the cross section in the region of DM masses between 1 and
4 TeV as one can see from Fig. 8 top-right panel. On the other
hand, bigger values of β lead in general to a larger mixing
between fermion-zero modes and their KK resonances after
EWSB, increasing the effective coupling y f S after diagonal-
ization. Therefore, in general, one expects a larger coannihi-
lation cross section for mχ � 10 TeV and increasing values
of β. Changing β also affects the StL tR coupling indirectly,
since reproducing the observed quark masses results in dif-
ferent values of the mass parameters c. This explains why the
dashed blue line in the top-right panel of Fig. 8 is below the
other ones, since c3

qL accidentally gets close to zero and thus
reduces the left-handed doublet contribution to the StL tR
coupling, as can be seen in Eq. (46). Finally, note that the
abrupt deep around mχ ∼ 8 TeV is due to the zero in yχS
shown in Fig. 6. Indeed, the cross section should exactly van-
ish at this point, but our numerical scan is unable to capture
such an steep behavior.

In the bottom panels of Fig. 8, on the other hand, we show
〈σv〉 for different values of λS/r as a function of mχ . In both
bottom panels, we fixβ = 2, y∗ = 3 for both third-generation
quark sectors, as well as ctR = −0.2. The left-bottom panel
corresponds to the choice sin θhS = 10−5, whereas for the
bottom-right one we take sin θhS = 10−6. By reducing the
mixing, one effectively suppress the Higgs mediated contri-
bution to the coannihilation cross section, which is mostly
relevant for small DM masses and, in particular, around
mχ ≈ mh/2. This will have an impact on direct detection as
we will see later, since the Higgs provides the leading con-
tribution to such experiments, and larger values of sin θhS
will typically lead to more severe bounds from these exper-
iments. The parameter λS/r controls the effective Yukawa
coupling of the S scalar to fermions yχS , see Eqs. (46) and
(52). We consider λS/r = 50 (red), λS/r = 100 (pink) and
λS/r = 150 (blue). Increasing λS/r has the effect of increas-
ing the coannihilation cross section in general, besides for
values of mχ � mS/2 where the rise in the coupling is off-
set by the increase of its decay width. One should note that the
resonant-like peak starting around 7–8 TeV is not only due
to the S resonance but also to the fact that new heavy-light
final states become kinematically accessible in the coanni-
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Fig. 8 Velocity-averaged annihilation cross section 〈σv〉 at the freeze-
out temperature as a function of the DM mass mχ , for Nχ = 1,
MKK = 5 TeV and k = mPl/8. In the top panels, we fix sin θhS and
λS/r and consider two different values of y∗. In both cases, we take
two different values of β and ctR . In the bottom panels, we fix β, y∗
and ctR and consider different values of λS/r for sin θhS = 10−5 (left)
and sin θhS = 10−6 (right). In all four panels, we also show in dashed
gray the 〈σv〉 prediction for diagrams mediated by the exchange of the

first KK graviton. We also show the velocity averaged cross section
reproducing the relic density experimental value from Planck in dashed
black, and the equivalent for a matter dominated freeze out in gray, for
two different values of TRH, after using T� = 105 GeV and τ = 0.99.
For these lines the section in dot-dashed gray corresponds to predic-
tions for which x f < 3, and therefore in this regime the DM decouples
relativistically [19,20]

hilation. They consist of a first KK fermion resonance of
mass ∼ 15 TeV together with a SM-like fermion. We do not
show values of mχ beyond ∼ 15 TeV since the DM mass
can not be made heavier than this value for MKK = 5 TeV.
One could entertain the possibility of adding brane-localized
masses or kinetic terms for this to happen, but for the sake
of concreteness we do not explore such possibilities here.
At any rate, for such large values of mχ , one would need to

eventually include the decays of S to a pair of low-lying KK
fermions, which will make S much wider of what is sensible
in a perturbative theory.

In addition, we display for comparison the contribution
due to diagrams mediated by the first KK graviton, which
are also irreducible in models with WEDs (see e.g. [33,35]
for useful expressions). We can see that, for the chosen val-
ues of MKK and k/mPl, corresponding to MKK = 5 TeV
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and �π = mPle−kπr = 40 TeV, the contribution of the odd
scalar resonance S dominates over the KK graviton one. In
particular, this happens for all values of mχ , with the excep-
tion of the small region where the coupling yχS goes to zero.
The relative importance of each contribution and the loca-
tion of the graviton peak can be changed by modifying the
ratio �π/MKK and/or by including brane kinetic terms [36].
We will not explore such possibilities, being our aim here to
show that the scalar contribution can naturally be the leading
one, as one can readily see from the figure. In addition to the
KK-graviton contribution, one also expects a contribution to
the coannihilation cross section arising from the exchange of
the radion. This contribution is rather model dependent, since
the radion mass is subject to the specifics of the stabilization
mechanism. A natural expectation is that the radion is much
lighter that the first KK graviton. This case was considered
e.g. in [37], where the authors considered a light radion inter-
acting with IR-localized matter and found the radion contri-
bution to be mostly irrelevant. A similar result is expected
here, for a light radion not mixing with the other bulk scalars.
The interesting case where the stabilizing scalar mixes with
both the Higgs and the Z2-odd scalar would require a fairly
extensive case study, which is beyond of the scope of this
paper.

Finally, we also show the values of the velocity averaged
cross section for which the observed DM relic abundance
is reproduced, both in the usual scenario and in the case
of an early period of matter domination. In particular, we
show in dashed black the values of 〈σv〉 for which a value of
�χh2 = 0.12 is reproduced, in the case of a regular freeze-
out mechanism, and in the scenario of matter domination
in gray, for τ = 0.99, T� = 105 GeV and two values of
TRH, 1 and 102 GeV, respectively. The lines in dot-dashed
gray correspond to regions where x f < 3, where the DM
is expected to decouple relativistically and the current treat-
ment loses validity, see [19,20] for more details. We can see
that the observed relic abundance can be reproduced in the
case of matter domination for masses mχ ∼ 8–10 TeV. In
the usual case of radiation domination, 〈σv〉 can be a non-
negligible fraction of the one which is required to reproduce
the observed relic abundance for mχ ∼ 15 TeV, which is in
the ballpark of the naturally expected fermion masses.

4.4 Direct detection

Direct detection experiments can also set very important con-
straints on the parameter space in scalar-mediated models of
DM. Indeed, they constraint all the parameter space in the
case of Higgs-mediated DM, with the exception of a small
region around the Higgs resonance, see e.g. [34]. We study
here the constraints from direct detection experiments in our
model. In particular we will compare our predictions with
results from Xenon1T [23,24]. We are interested in the spin-

independent cross section

σχN ≈ 4

π
μ2

χN

[
Z f p + (A − Z) fn

]2 � 4

π
μ2

χN A2 f 2
n , (58)

with Z and A the atomic number and atomic mass of the
target nucleus, respectively, and μχN the reduced mass of
the DM and nucleus system [32,33,38]. In order to compute
such cross section we use following effective Lagrangian

Leff = f p(χ̄χ)( p̄ p) + fn(χ̄χ)(n̄n). (59)

The terms f p and fn are effective coupling constants and
can be written as

f p,n
m p,n

=
∑

q=u,d,s

f (p,n)
Tq

αq

mq
+ 2

27
f (p,n)
Tg

∑
q=c,b,t

αq

mq
, (60)

where αq stands for the effective four-fermion interac-
tion vertex, obtained by considering the scalar t–channel
exchange. In our model αq has the following form

αq = yχS

{
yqS
m2
S

+ yqh sin θhS
m2

h

}
. (61)

Finally, f (p,n)
Tg is defined as

f (p,n)
Tg = 1 −

∑
q=u,d,s

f (p,n)
Tq , (62)

and the values for f qp and f qn are [33,39]

f up = (20.8 ± 1.5) · 10−3, f dp = (41.1 ± 2.8) · 10−3,

f un = (18.9 ± 1.4) · 10−3, f dn = (45.1 ± 2.7) · 10−3,

f sp = f sn = 0.043 ± 0.011.

(63)

One can compare the contribution of each scalar to the
direct detection cross section by computing the ratio between
the terms appearing in Eq. (61). We find that the channel
mediated by the Higgs boson is dominant provided that

sin θhS >
m2

h

m2
S

yqS
yqh

∼ 10−7, (64)

i.e. we expect the Higgs mediated interaction to be the leading
contribution for sin θhS > 10−7. This tells us in particular
that we can relax the constraints coming from direct detec-
tion by making the mixing smaller, while keeping the same
coupling yχS to the DM fermions. However, this is only
possible up to the point when the odd scalar contribution
becomes dominant,

(αq)min ≈ yχS yqS
m2
S

. (65)

We show in Fig. 9 the constraints coming from direct
detection and invisible Higgs decays for the velocity aver-
aged coannihilation cross section 〈σv〉 as a function of mχ .
We used Nχ = 1, MKK = 5 TeV, k = mPl/8 and different
mixing values between the odd scalar and the Higgs boson,
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Fig. 9 Velocity averaged coannihilation cross section at the freeze-out
temperature for different values of the mixing between the odd scalar
and the Higgs boson, sin θhS = {10−3, 10−4, 10−5, 10−6}, from top
left to bottom right. The first two cases correspond to negative values
of λ̄. We have set Nχ = 1, MKK = 5 TeV and k = mPl/8. We show in
yellow the predictions for two different benchmarks with different val-
ues of y∗ and λS/r . In both cases, we have fixed ctR = −0.2 and β = 2.
We show the constraints coming from the Higgs invisible decay width

in gray and the limits from Xenon1T in purple. We show the velocity
averaged cross section reproducing the relic density experimental value
from Planck in dashed black, and the equivalent for a matter domi-
nated freeze out in gray, for two different values of TRH, where we used
T� = 105 GeV and τ = 0.99. For these lines the section in dot-dashed
gray corresponds to predictions for which x f < 3, and therefore in this
regime the DM decouples relativistically [19,20]

sin θhS = {10−3, 10−4, 10−5, 10−6}, from top left to bottom
right. The first two mixing angles can only be achieved for
λ̄ < 0, whereas the last two can be obtained for positive and
negative values of λ̄. We display in each figure two differ-
ent benchmarks, corresponding to the choices y∗ = 3 (solid
line) and y∗ = 1.5 (dashed line) for the third generation
quarks t and b (as before, light generations have identical
bulk mass parameters in absolute value and different val-

ues of y∗, starting with ys∗ = 1/2). In both cases, we have
set β = 2 and ctR = −0.2, while λS/r has been chosen
in such a way that �S/mS ≈ 0.7. More specifically, we
have taken λS/r = 120 and λS/r = 65, for y∗ = 3 and
y∗ = 1.5, respectively. Since the width is mostly given by
the decay of S into a third generation quark and its first
KK resonance, such assignment ensures that the overall cou-
pling of the odd scalar field to the visible sector is roughly
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the same in both cases. However, the smaller value of y∗
in the benchmark {y∗ = 1.5, λS/r = 65} leads to a more
IR-localized third-generation left-handed doublet q3

L and to
a much larger coupling of S to b̄LbR and q̄3

L plus its first KK
resonance, even with a smaller value of λS/r . At the end of
the day, however, the solid lines are above the dashed ones
for most values of mχ , since the DM coupling yχS is smaller
by a factor

√
120/65 ∼ 1.4, which makes up for the small

differences existing among the couplings to the visible sec-
tor. The differences between both benchmarks are magnified
once the purely S-mediated channel, corresponding to the
right column of Fig. 7, is the most dominant one. This hap-
pens in particular for large DM masses and/or small values
of sin θhS , as one can readily see by comparing the different
panels in Fig. 9.

The gray region shows the area excluded by the LHC
experimental limits on the Higgs invisible decay width, and in
purple we show the Xenon1T constraints. The latter are found
by plotting the velocity averaged coannihilation cross sec-
tion obtained after rescaling yχS such that σχN saturates the
Xenon1T experimental bound, 〈σv〉Xenon1T. For the values
of sin θhS shown in this figure, the leading contribution to the
DM-nucleon cross section is by far the one arising from the t-
channel exchange of a Higgs boson, with the exception of the
last case where sin θhS = 10−6 and the S contribution, while
still subleading, starts to be relevant. This explains why the
Xenon1T bound for the {y∗ = 3, λS/r = 120} benchmark is
weaker than the limit obtained for {y∗ = 1.5, λS/r = 65},
whenever the coannihilation cross section is dominated by
the S contribution. Indeed, in the former case, the couplings
of S to the visible sector are slightly larger. This leads to
a larger value of 〈σv〉Xenon1T after rescaling yχS and to a
weaker bound from direct detection. When 〈σv〉 is domi-
nated by the Higgs exchange, direct detection bounds become
indistinguishable for both benchmarks, since the Higgs cou-
plings to the SM quarks are mostly fixed and SM-like.

We also show the velocity averaged cross section repro-
ducing the observed relic density both in the usual freeze-out
scenario (dashed black) and in the case of an early period
of matter domination, for values of TRH = 102 GeV (dark
gray) and 1 GeV (light gray). For both gray lines, we used
T� = 105 GeV and τ = 0.99. Similarly to Fig. 8, lines in dot-
dashed gray correspond to regions where x f < 3 and the DM
is expected to decouple relativistically. We can see that for
sin θhS = 10−3, one can not explain the observed relic abun-
dance without exceeding the bounds from Xenon1T. How-
ever, this is not the case in the matter dominated scenario
with TRH = 1 GeV, where the required coannihilation cross
section to explain the DM relic abundance does not exceed
the Xenon1T bound for y∗ = 3. In the case of y∗ = 1.5, the
required cross section is excluded by the Xenon1T bound.
In the case of sin θhS = 10−4 we can reproduce the correct
amount of DM for both values of TRH, in the scenario of

matter domination, being the values of 〈σv〉 corresponding
to the top of the resonant peak excluded by direct detec-
tion bounds. For even smaller values of sin θhS like 10−5 or
10−6, the data from Xenon1T never constrains the predic-
tions for the coannihilation cross section obtained in both
benchmarks, since the Higgs coupling to DM yχh becomes
too small. Therefore, by assuming an early period of matter
domination, we are able to explain the observed DM relic
abundance for moderately small values of sin θhS without
conflicting current direct detection experiments. Even in the
case of radiation domination, we can get to values of 〈σv〉
relatively close to the ballpark of what is needed, expectingS
to be a non-negligible fraction of the required coannihilation
cross section, even though additional mediators accounting
for most of the coannihilation are certainly needed.

5 Summary

We have demonstrated that the addition of a Z2-odd scalar
field developing a VEV in extra-dimensional models can not
only account for the origin of the 5D fermion masses, but
also provide a unique window into any 5D fermionic dark
sector. Indeed, since such a scalar field generates dynami-
cally fermion bulk masses through Yukawa-like interactions
with the different 5D fermions, it will also irrevocably con-
nect the SM with any possible dark sector featuring bulk
fermions. Moreover, in realistic models the Higgs scalar field
propagates into the bulk of the WED, and thus a mixing
with the new scalar field is unavoidable. In this work, we
have studied in detail the phenomenological consequences
of such a portal, showing that the lightest KK dark fermion
is stable and can coannihilate efficiently thanks to the media-
tion of the odd-scalar resonances as well as the Higgs boson.
Indeed, we have demonstrated that it is possible to repro-
duce the observed DM relic abundance for an O(10) TeV
KK dark fermion assuming that freeze-out occurs during an
early period of matter domination, without conflicting with
current data from direct-detection experiments. Even in the
regular case of a radiation dominated freeze-out, this irre-
ducible contribution to the coannihilation cross-section can
account for a non-negligible part of the required value when
the DM mass is ∼ 15 TeV. We have also shown that these
scalar contributions to the coannihilation cross section can be
more important than those arising from the exchange of KK
gravitons. The bounds arising from direct detection are only
relevant when the parameter sin θhS controlling the mixing
between the SM-like Higgs boson and the first KK resonance
S of the Z2-odd scalar field is � 10−4. For smaller values,
the contribution to the direct-detection cross section given by
t-channel Higgs exchange becomes less and less important,
to the point of becoming of the same order as the one from
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the t-channel exchange of the S resonance, which is beyond
the reach of current direct detection experiments.

We have also studied the impact of the scalar mixing on
precision measurements of Higgs couplings. In particular,
we have computed the modifications of the Higgs couplings
to electroweak gauge bosons and the bottom quark as a con-
sequence of the mixing between the SM-like Higgs boson
and the first KK resonances of both bulk fields, H and S. We
have demonstrated that planned future colliders could probe
the induced modifications on the b-quark Yukawa in the case
where β � 4, values for which the Higgs boson has a strong
presence into the bulk. We have also studied the constraints
on the Higgs effective Yukawa coupling to DM when its mass
is light enough to allow for the Higgs boson to decay into a
pair of DM particles. We conclude that the effective Yukawa
coupling to the dark fermions yχh � 0.02/

√
Nχ , with Nχ

being the multiplicity of the 5D dark fermion.
In summary, we have shown that models with a WED natu-

rally feature a compelling explanation for the observed relic
abundance of DM, consisting of an O(10) TeV fermionic
WIMP coupled to the SM by a heavy scalar mediator S with
mass mS ∼ 30 TeV. All this is possible without conflict-
ing with current data from colliders, flavor experiments and
cosmology and while still providing natural solutions to the
hierarchy problem and the flavor puzzle, which are arguably
two of the most important theoretical problems in particle
physics.
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Appendix A: Fermion equations of motion

The Yukawa interaction between the odd bulk scalar S1 and
a �̄a�A pair, corresponding to a fermion zero mode (a) and
a first KK mode (A), comes from the term generating the
different fermion bulk masses

S ⊃ −
∫

d5x
√
g Ya�̄a�A�. (A1)

In this case, the EOM for a fermion field with a 5D bulk mass
generated dynamically reads

[±t∂t − ca vS(t)] f L ,R
0,a (t) = 0, (A2)

for the zero mode and[
t2∂2

t + x2
n t

2 ∓ ca t v
′
S(t)

+ ca vS(t) (±1 − ca vS(t))
]
f L ,R
n,A (t) = 0,

(A3)

for the n-th KK mode [10], where ca is the usual dimen-
sionless 5D mass. In the scenario at hand, it is defined by
[10]

ca ≡ Ya

√
6

λS

μS

k
. (A4)

Here, we have used the following KK decomposition for the
fermions

� =
∑
n=0

�n(x)

(
t

ε

)2√
MKK fn(t), (A5)

satisfying

2
∫ 1

ε

f A∗
m (t) f Bn (t) = δmn . (A6)

The 5D Yukawa interaction leads to the effective 4D vertex
S1�̄a�A, with effective Yukawa

yaAS = 2 ca

√
λS

r

k

μS

∫ 1

ε

dt fa(t) f A(t)χ S
1 (t). (A7)

The coupling to a VL fermion χ , corresponding to the first
KK resonance of some 5D fermion, is given by

yχS = 2 ca

√
λS

r

k

μS

∫ 1

ε

dt f L1,χ (t) f R1,χ (t)χ S
1 (t). (A8)
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Appendix B: Cross section expressions

The different coannihilation cross sections of χ̄χ into a pair
of SM particles are given by (see e.g. [20])

σ(χ̄χ → f̄ f ) = Nf y2
χS

16π
s

(
1 − 4m2

f

s

)3/2 (
1 − 4m2

χ

s

)1/2

×
[
y2
f h sin2 θhS(
s − m2

h

)2 + y2
f S(

s − m2
S
)2 + 2 y f h y f S sin θhS(

s − m2
S
) (
s − m2

h

)
]

,

σ (χ̄χ → hh) = y2
χS

32π

(
1 − 4m2

h

s

)1/2 (
1 − 4m2

χ

s

)1/2

×
[

9 sin2 θhSm4
h

v2
4

(
s − m2

h

)2 + sin2 θhSx4
S1
M4

KK

v2
4

(
s − m2

S
)2

+ 6m2
h sin2 θhSx2

S1
M2

KK

v2
4

(
s − m2

S
) (
s − m2

h

)
]

,

σ (χ̄χ → VV ) = δV y2
χS sin2 θhS

8π

(
1 − 4m2

V

s

)1/2

×
(

1 − 4m2
χ

s

)1/2
m4

V

v2
4

(
s − m2

h

)2
[

2 + (s − 2m2
V )2

4m4
V

]
,

σ (χ̄χ → Q̄q) = NQ y2
χS y

2
Qq

16π

s(
s − m2

S
)2

×
(

1 − m2
Q

s

)3/2 (
1 − 4m2

χ

s

)1/2

,

(B1)

with δV = 1, 1/2 for V = W±, Z .

Appendix C: Matter dominated freeze-out

We review here the relevant formulae for the calculation
of the current DM relic abundance after freeze-out during
an early period of matter domination (see [19,20] for more
details).

We assume the presence of a long-lived heavy scalar field
φ, localized on the UV brane, which starts behaving like
matter at a critical temperature T� ∼ mφ , which we assumme
to be much larger than MKK, i.e., T� � MKK. If φ is long-
lived enough, its contribution to the energy density ρφ will
grow until ultimately monopolize the total energy density
regardless of its initial contribution at T�, given by (1 − τ),
with τ ∈ [0, 1]

τ = ρR + ρχ

ρR + ρχ + ρφ

∣∣∣∣
T=T�

, (C1)

and ρχ , ρR , the energy density of DM and the visible sector
of the extra-dimensional theory.

Using the Friedmann equation

H2 = 1

3m2
Pl

[
ρR + ρχ + ρφ

]
(C2)

and defining H� = H(T�) we obtain

H2 = H2
�

[
g∗τ

g∗ + gχ

(a�

a

)4 + (1 − τ)
(a�

a

)3

+ gχτ

g∗ + gχ

(a�

a

)4
]

, (C3)

where g∗ is the effective number of relativistic degrees of
freedom of the visible sector of the extra-dimensional theory.
Assuming that the entropy is conserved in this sector and
taking into account that g∗ � gχ , we can write

H = H�

√
1 − τ

( x�

x

)3/2
[

r

1 − τ

( x�

x

)
+ 1

]1/2

, (C4)

where we have defined x = mχ/T and x� = x(T�).
The annihilation rate �ann can be written as

�ann = gχm3
χ

(2πx)3/2 e
−x 〈σv〉 (C5)

where 〈σv〉 is the velocity-averaged coannihilation cross sec-
tion. In our scenario of scalar mediated fermionic DM, after
Taylor expanding (σv) with respect to v2

r , we can write

(σv) � a + bv2
r = bv2

r , (C6)

since a = 0 as we have seen in the previous section. There-
fore, one can write the velocity-averaged coannihilation cross
section as

〈σv〉 � 6b

x
, (C7)

which leads to

�ann = gχm3
χ

(2π)3/2 e
−x 6b

x5/2
. (C8)

We can define the freeze-out temperature by asking H(x f ) =
�ann(x f ), with x f = mχ/T f . This leads to

x f = log

(
gχ

(2π)3/2

m3
χ6b

H�x
3/2
�

(1 − τ)−1/2

×
(
x2
f + r x�

1 − τ
x f

)1/2
)

.

(C9)

The yield Y = nχ/s, with s the entropy density, is given
at freeze-out by

Y f =
(

λ

∫ ∞

x f

dx

(
1 + τ

1 − τ

x�

x

)−1/2

x−7/2

)−1

, (C10)
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where

λ = 2π2g∗Sm3
χ6b

45H�x
3/2
�

, (C11)

where g∗S is the number of effective entropic degrees of
freedom. More explicitly, it reads

1

Y f
≈ π2g∗Sm3

χ 〈σv〉
90H�x4

�

(
1 − τ

τ

)5/2

×
(

3x f sinh−1
(√

x�τ

x f (1 − τ)

)

+
√

x�

x f

(
τ

1 − τ

)3/2√
1 + x�τ

x f (1 − τ)

×
[

2x� − 3x f
(1 − τ)

τ

])
,

(C12)

where we have approximated 〈σv〉 ≈ 6b/x f . Finally, the
prediction for the DM relic abundance, assuming a matter
dominated universe during freeze-out, reads

�χh
2 = ζ

s0mχY f

ρcritical
, (C13)

where ρcritical = 8.13 ·10−47 GeV4, s0 � 2.29 ·10−38 GeV3.
In the above equation, ζ parametrizes the dilution of the DM
abundance after freeze-out due to the decays of φ and the
subsequent entropy injection

ζ = sbefore

safter
= �χ

�
f
χ

, (C14)

which can be expressed with good approximation as follows

ζ ≈ 45

4π3

1

(1 − τ)g∗
TRH

T�

. (C15)
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