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Background: Mitochondrial disorders are genetic diseases for which therapy remains woefully inade-
quate. Therapy of these disorders is particularly challenging partially due to the heterogeneity and
tissue-specificity of pathomechanisms involved in these disorders. Abnormalities in hydrogen sulfide
(H2S) metabolism are emerging as novel mechanism in mitochondrial dysfunction. However, further
studies are necessary to understand the effects, protective or detrimental, of these abnormalities, and
their relevance, in mitochondrial diseases.
Aim of Review: To review the recent evidences of derangement of the metabolism of H2S, at biosynthesis
or oxidation levels, in mitochondrial dysfunction, focusing specifically on the alterations of H2S oxidation
caused by primary Coenzyme Q (CoQ) deficiency.
Key Scientific Concepts of Review: Mitochondria play a key role in the regulation of H2S and GSH metabo-
lism pathways. However, further studies are needed to understand the consequences of abnormalities of
H2S and GSH synthesis on the oxidation pathway, and vice versa; and on the levels of H2S and GSH, their
tissue-specific detrimental effects, and their role the role in mitochondrial diseases. Beside the known
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Fig. 1. Schematic representation of CoQ in the mitoch
cytochrome c reductase (CIII) in the mitochondrial re

80 C.M Quinzii, L.C Lopez / Journal of Advanced Research 27 (2021) 79–84
H2S pathways, additional, tissue-specific, enzymatic systems, involved in H2S production and elimination,
might exist.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Mitochondrial diseases are metabolic disorders, clinically
heterogeneous, and characterized by tissue specificity [1]. The rea-
sons of this tissue-specificity are not completely understood [1],
but it may be related to tissue-specific pathological or compen-
satory mechanisms. Recent findings in in vitro and in vivo models
of mitochondrial diseases indicate that mitochondrial dysfunction
alters the metabolism of hydrogen sulfide (H2S), at biosynthesis or
oxidation levels [2–8]. But whether, in the context of mitochon-
drial diseases, these abnormalities have functional, beneficial or
detrimental relevance, and how modifications of the biosynthetic
and catabolic pathways affect each other, and H2S levels, are still
unclear. Here, we review these recent findings, focusing specifi-
cally on the alterations of H2S oxidation caused by primary Coen-
zyme Q (CoQ) deficiency [9,10].
Impairment of H2S oxidation in CoQ deficiency

CoQ is a critical intermediate in the mammalian respiratory
chain located in the mitochondrial inner membrane (MIM), as it
transfers electrons from complexes I (CI) and II (CII) to complex
III (CIII) in the course of producing ATP via oxidative phosphoryla-
tion (OxPhos) (Fig. 1) [11]. {Turunen, 2004 #8} Therefore, it is not
surprising that mutations in CoQ synthesis can cause OxPhos dis-
ease [9,10], presumably via (a) reduced ATP synthesis as a result
of reduced electron flow and/or (b) via increases in CoQ-derived
reactive oxygen species (ROS) that damage the OxPhos machinery
ondria. CoQ transfers electrons fro
spiratory chain.
[11]. In fact, there are several lines of in vitro and in vivo evidence
that oxidative stress is a deleterious factor in the pathogenesis of
CoQ deficiency [12–17].

However, besides its role in the respiratory chain, CoQ partici-
pates in other metabolic pathways [11], including the conversion
of sulfide (as H2S) and sulfite (as SO3) to thiosulfate (as SSO3) by
sulfide-quinone oxidoreductase (SQR; SQOR; gene SQOR) (Fig. 1),
the first reaction in the H2S oxidation pathway (Fig. 2) [18]. Impor-
tantly, electrons, in this redox reaction, that pass through CoQ are
transferred to CIII and CIV, bypassing CI and CII. The ATP produced
via this ‘‘SQR-driven respiration” is ordinarily a minor fraction of
total ATP synthesis, but becomes significant in reducing environ-
ments [19,20].

The initial evidence of this biological function of CoQ was iden-
tified in yeast ~ 20 years ago [21,22], when studies in the fission
yeast S. pombe revealed that strains with defects in CoQ biosyn-
thetic genes, were unable to produce CoQ, accumulated H2S, and
required cysteine and glutathione to grow on minimal medium
[21,22]. In these strains, grown in both rich and minimum media,
levels of H2S are decreased by cysteine supplementation, suggest-
ing that cysteine, one of the sulfur amino acids together with
methionine, controls the production of H2S [21,22].

More recent studies in mammalian cells and tissues, showed
that CoQ deficiency severely decreases SQR levels and, as a
consequence, impairs SQR-driven respiration, and H2S oxidation,
and leads to accumulation of H2S [7,8]. Specifically, defects of
SQR-driven respiration and decreased levels of SQR protein, pro-
portional to the decrease in the levels of CoQ, were found in fibrob-
lasts from patients with CoQ deficiency due to various molecular
m NADH-ubiquinoneoxidoreducatse (CI) to succinate dehydrogenase (CII) and CoQ-

http://creativecommons.org/licenses/by-nc-nd/4.0/


CoQ 
Ox 

SO32- 

SSO32- 

O2 

SO42- 

SUOX 

TST 
GSSH 

CoQ
Red 

H2S 

C III 

C IV 

H+ 

H+ 
Thiosulfate 

Hydrogen Sulfide 

Sulfite Sulfate 

C V 

SQR 

F0 F1 

GSH 

ETHE1 

H+ 

H+ Mitochondrial Matrix 

CBS 

CSE 

3-MST 

H2S 

Homocysteine 

Cystathionine 

Cysteine 3-MP 

Cytoplasm 

Fig. 2. Transsulfuration and H2S oxidation pathways. In the transsulfuration pathway (in orange), the enzymes cystathionine b-synthase (CBS) and cystationine c-ligase (CSE)
use cysteine as a substrate for the synthesis of sulfides (H2S). The same cysteine is used by glutamate cysteine ligase (GCL) for the synthesis of GSH in the glutathione pathway
(not shown). In the mitochondrial H2S oxidation (in red), sulfide-quinone oxidoreductase (SQR) converts sulfide into thiosulfate by transferring two electrons from H2S to
CoQ. Thiosulfate is then converted into sulfite by thiosulfate sulfurtransferase (TST) and persulfide dioxygenase (ETHE1), a reaction that requires glutathione (GSH) as an
electron acceptor. Excess sulfite is converted into sulfate by sulfite oxidase (SUOX). 3-MP = 3-mercaptopyruvate, 3-MST = 3-mercaptopyruvate sulfurtransferase, CoQ
Ox = Coenzyme Q oxidized, CoQRed = Coenzyme Q reduced.
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defects in enzymes of CoQ biosynthesis [7,8]. These abnormalities
were rescued by CoQ supplementation, and recapitulated by
genetic and pharmacological inhibition of CoQ synthesis, indicat-
ing that CoQ regulates SQR levels. In contrast, SQR, rather than
CoQ levels, were responsible for the up-regulation of the down-
stream H2S oxidation enzymes (Fig. 2) [7,8].

Importantly, CoQ supplementation also increased levels of SQR
in control cells [7], indicating that CoQ regulates H2S oxidation in
physiological conditions, as well as in pathological states. This
finding might have therapeutic implications for mitochondrial
OxPhos defects other than CoQ deficiency, as deficiencies of CI
and CII, which are localized up-stream SQR, and might be by-
passed, by using SQR to feed electrons to complex III. For example,
it may explain the results obtained by Vafai and colleagues, who
developed a chemical screening platform to identify CI by bass fac-
tors, and found that naphthoquinones supplementation has thera-
peutic effects in CI deficient murine myoblasts [23].

H2S oxidation was found to be impaired also in three mouse
models of human primary CoQ deficiency, which manifest clini-
cally with nephrotic syndrome (NS), encephalopathy, and myopa-
thy [7,8], three of the most common phenotypes of human CoQ
deficiency [10]. The models showed similarities in the biochemical
and molecular phenotype, as well as differences, probably reflec-
tive of tissue specific pathomechanisms [7,8].

In the mouse model of CoQ-deficient NS due to a missense
mutation in Pdss2, the first and rate-limiting step in CoQ biosyn-
thesis [24,25], we observed that all organs had low CoQ levels
and OxPhos deficiency, but remarkably, only kidney also had ele-
vated reactive oxygen species (ROS) and markers of oxidative
stress [5,16], decreased levels of H2S oxidation enzymes, accumu-
lation of H2S, and GSH depletion [5,7]. Pdss2kd/kd mice have also
low levels of plasma and urine thiosulfate, and increased blood
C4-C6 acylcarnitines [5,7], indicating a defect in short-chain fatty
acid oxidation, due to the inhibition of the short- chain acyl-CoA
dehydrogenases (SCAD), a known toxic effect of H2S accumulation
[26].

Notably, increased ROS and low SQR were already evident in
kidney of Pdss2kd/kd mice at age 1 month, before the onset of the
disease [5]. Furthermore, administration of CoQ in these Pdss2kd/
kd mice prolonged survival, from ~ 6 months in untreated mice
to > 20 months in the CoQ-treated animals, prevented NS, as well
as significantly reversed oxidative stress and sulfide derangement,
acetylcarnitine profile, and GSH levels [5].

In Coq9R239X and Coq9Q95X mice, models of CoQ deficiency due to
mutations in Coq9, SQR levels and function were decreased propor-
tionally to residual CoQ levels in kidney, brain, and muscle [8].
Coq9 is required for the stability and function of Coq7, which is
responsible for one of the three hydroxylations of CoQ benzo-
quinone ring [27,28]. Coq9R239X mice develop a fatal mitochondrial
encephalopathy, associated with oxidative stress and a defect of
respiratory supercomplexes assembly in brain, while Coq9Q95X -
mice develop a late-onset mild mitochondrial myopathy in females
[27,29]. Supplementation with ubiquinol-10 (the reduced form of
CoQ) partially rescues the SQR depletion in muscle and kidney of
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Coq9R239X, parallel to increases in CoQ levels on those tissues [8]. In
contrast to what observed in Pdss2kd/kd mice, tissues of Coq9R239X -
and Coq9Q95X did not show down-regulation of the enzymes down-
stream of SQR; in fact, TST levels and activity were increased, as
observed in CoQ deficient cells [8]. However, similar to Pdss2kd/kd

mice, H2S levels were increased in kidney, while levels of total
GSH were significantly decreased [8]. The presence of additional
H2S biosynthetic pathways in the kidney, beside the transsulfura-
tion pathway, might explains why H2S accumulates preferentially
in this tissue [30,31].

The consequences of H2S accumulation found in CoQ deficiency,
partially recapitulate the biochemical and molecular abnormalities
previously reported in Ethylmalonic aciduria encephalopathy (EE),
an autosomal recessive disorder caused by mutations in the gene
encoding for the mitochondrial enzyme ETHE1, a persulfide dioxy-
genase involved in the same H2S oxidation pathway as SQR (Fig. 2)
[32]. Impairment of ETHE1 activity in human and mice causes
chronic accumulation of H2S in tissues, and SCAD inhibition with
accumulation of C4- and C5-acylcarnitines in plasma. Furthermore,
it causes tissue-specific cytochrome c oxidase (COX) deficiency
[32,33], due to the formation of a covalent bond between H2S
and the Fe atom coordinated by heme a. The chronic exposure
and binding of H2S to COX causes accelerated degradation of its
protein subunits thus reducing the amount of fully assembled
and functionally active enzyme [34,35]. COX activity, but not its
protein levels, are decreased also in tissues of the first three
patients described carrying mutations in SQR, a novel cause of
Leigh syndrome [36]. Interestingly, there is no evidence of COX
deficiency in CoQ deficiency, perhaps due to less severe accumula-
tion of H2S. Fibroblasts from patients with EE have low levels of
SQR and GSH, complicating the understanding of the mechanism
underlying ETHE1 deficiency [37,38].
Impairment of the glutathione pathway in H2S oxidation
defects

H2S has been linked to ROS production through differentmecha-
nisms [39,40]. One of the mechanisms that links H2S to oxidative
stress is GSH depletion [39,40], which is a well-known cause of
ROS and oxidative stress, both present in mitochondrial diseases
[41–44], including CoQ and ETHE1 deficiencies [12–16,45]. Studies
in yeast indicate that levels of H2S are tightly regulated by the equi-
librium of the transsulfuration and oxidation pathways (Fig. 2).
Thus, increased levels of H2S (e.g. as a result of reduced SQR in CoQ
deficiency) might operate in a negative feedback loop on the
transsulfuration pathway. Because L-cysteine is also a key precursor
of GSH biosynthesis, it is possible that as a consequence of reduced
utilization of L-cysteine by the transsulfuration pathway, cysteine
for GSH synthesis will also be reduced. Alternatively, H2S auto-
oxidation of transsulfuration enzyme may generate reactive sulfur
and oxygen radicals that deplete GSH. Thus, this reduction in the
GSH levels could induce a reduction in GPx4 levels and the activities
of glutathione peroxidase (GPx) and glutathione reductase (GRd), as
observed inCoq9R239X mice [8].Nevertheless, theglutathione system
isnot globallydepleted inCoQdeficientfibroblasts, and Sqr depleted
Hepa1c1c7 cells [8], indicating that GSH depletion is a tissue-
specific, perhaps secondary effect of SQR depletion.

Interestingly, GSH, and GPX4 depletion, together with lipid ROS
formation, characterize ferroptosis, a form of regulated non-
apoptotic cell death [46]. GPX4 has been known to prevent
ferroptosis by converting lipid hydroperoxides into non-toxic lipid
alcohols [47]. Recently, also apoptosis-inducing factor mitochon-
drial 2 (AIFM2) has been identified as a potent ferroptosis-
resistance factor, which co-operates with GPX4 and GSH to sup-
press phospholipid peroxidation and ferroptosis [48,49]. AIFM2,
re-named ferroptosis suppressor protein 1 (FSP1), is recruited to
the plasma membrane where it functions as an oxidoreductase
that reduces CoQ -using NAD(P)H- which halts the propagation
of lipid peroxides [48,49]. However, AIFM2 might block ferroptosis
through a mechanism independent of CoQ [50]. CoQ deficiency
causes cell death, which correlates with ROS levels, and oxidative
stress [12–15], but whether it causes specifically ferroptosis, has
never been investigated.

Other mechanisms unrelated to GSH might be responsible for
H2S-mediated oxidative stress; for example, through increased
S-sulfhydration of proteins specifically involved in cell redox
status. In fact, protein S-sulfhydration, a post-translational mod-
ification of protein cysteine residues, is important for regulation
of various cell functions [51,52], and is increased in CoQ defi-
cient fibroblasts [7]. Nevertheless, in aging there are increased
levels of ROS and oxidative stress, but protein S-sulfhydration
is decreased [53].
Up regulation of the transsulfuration and gluthatione pathways
in mitochondrial DNA defects

H2S is produced mostly from L-cysteine, that can be taken up
with the diet, extracted from endogenous proteins, or synthesized
endogenously via trans-sulfuration of serine by L-methionine,
through the transsulfuration pathway (Fig. 2), which is expressed
in all tissues [30].

Notably, L-cysteine, is also a key precursor of glutathione (GSH)
biosynthesis, and its entry into that pathway is rate-limiting. Thus,
mechanisms that regulate the availability of L-cysteine, likely
affect both pathways, as demonstrated by metabolomics/transcrip-
tomics approaches in different models of mitochondrial dysfunc-
tion. For example, studies on the effects of the 1-methyl-4-
phenylpyridinium (MPP + ), whose neurotoxicity is mediated by
different mechanisms, including CI inhibition, revealed increased
GSH associated with upregulation of ATF-4 and the transsulfura-
tion enzymes CTH and CBS. In cells stressed with MPP+, knock-
down of ATF-4 or CTH, reduced GSH levels [54]. CI deficiency also
causes GSH synthesis in a model of renal oncocytoma [55].

Up-regulation of the transsulfuration and GSH synthesis
enzymes is found in mitochondrial DNA (mtDNA) depleted HEK-
293 cells, and in mice with mtDNA replication defects due to muta-
tions in the mitochondrial helicase Twinkle [3,4]. These alterations
are not isolated, but rather represent an aspect of a metabolic
switch likely mediated by ATF-4 activation [3,4], and the contribu-
tion of every metabolic pathway to the pathogenesis of human
mitochondrial disease has not yet been investigated. Evidence of
abnormalities of the transsulfuration pathway were also identified
in patients with mtDNA maintenance/translation disorders. A sim-
ilar pattern was observed also in plasma of patients with mito-
chondrial dysfunction, including mtDNA deletions, secondary to
inclusion bodies myositis (IBM) [2,56].

Up-regulation of the transsulfuration pathway and H2S accu-
mulation are present in a variety of models of longevity and stress
resistance associated with dietary restriction [57], and they might
contribute to the beneficial effects of hypoxia shown in Ndufs4-/-

mice [58,59], possibly through SQR-driven respiration, or through
protection against oxidative stress mediated by protein S-
sulfhydration. Ndufs4-/- mice lack NADH: ubiquinone oxidoreduc-
tase iron-sulfur protein 4 (Ndufs4), and recapitulate the main find-
ings of CI-related Leigh syndrome, the most common infantile
mitochondrial encephalopathy. They develop a rapidly progressive
encephalopathy, starting at ~ 40 days after birth, with > 90% mor-
tality by 50 days of life [60]. Muscle, brain, and fibroblasts show
evidence of oxidative stress and abnormal mitochondria [61,62].
In this model, hypoxia has been shown to prevent and rescue neu-
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rological phenotype, and to prolong survival, but the mechanism is
still unknown [58,59].

Conclusions

In the last few years, abnormalities of H2S metabolism have
been reported in a variety of models of mitochondrial dysfunction;
however, the role of these abnormalities in mitochondrial diseases
is still unknown. Further studies are needed to understand the
relation of sulfide metabolism and mitochondrial diseases and
the consequences of abnormalities of H2S and GSH synthesis on
the oxidation pathway, and vice versa; and on the levels of H2S
and GSH, and their tissue-specific detrimental effects. In this
regard, we should consider not only the known, additional,
tissue-specific, enzymatic pathways, that produce H2S beside the
transsulfuration pathway, but also those other, still unknown sys-
tems, involved in H2S production and elimination, that might exist.
Importantly, available data indicate that mitochondria play a key
role in the regulation of those H2S pathways.
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