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Abstract: Mechanical power may act as a key indicator for physiological and mechanical changes
during running. In this scoping review, we examine the current evidences about the use of power
output (PW) during endurance running and the different commercially available wearable sensors to
assess PW. The Boolean phrases endurance OR submaximal NOT sprint AND running OR runner
AND power OR power meter, were searched in PubMed, MEDLINE, and SCOPUS. Nineteen studies
were finally selected for analysis. The current evidence about critical power and both power-time and
power-duration relationships in running allow to provide coaches and practitioners a new promising
setting for PW quantification with the use of wearable sensors. Some studies have assessed the
validity and reliability of different available wearables for both kinematics parameters and PW when
running but running power meters need further research before a definitive conclusion regarding its
validity and reliability.
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1. Introduction

Endurance running events are on the apex of a performance revolution, with the sub-2-h marathon
barrier just broken (i.e., Vienna in 2019). In the same way the power meter changed training and racing
in cycling [1] by providing a fair tool to assess performance with accurate replication, it might also
change the way runners compete and train.

Power, a term originated in classical physics, is defined as the product of force and velocity [2].
Despite training delivers stress on the body, the way runners measure this level of stress has been very
limited. The faster a runner goes, the higher the stress for a certain level of fitness. Training intensity is
the true marker to fitness (i.e., capacity to deal with a particular amount of stress) [3]. The application
of mechanical load (i.e., external training load factors) and psychological and physiological efforts
(i.e., internal training load factors) are affected by training stress [4]. In running, some external load
factors including volume and pace are widely used, while physiological internal load factors consider
perceived exertion scales, heart rate, or blood lactate level [4]. On multiple training days, running
distance alone could overshadow the accumulated training stress and, eventually, misinterpret the
overall training stress [4]. Pace might be as clear as volume but, indeed, it is not easy to assess as
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the running settings (i.e., surface; slope gradient) as well as weather conditions (i.e., wind velocity)
or individual internal factors (i.e., stress, sleep, illness) may affect pace considerably and, therefore,
challenge pace intensity quantification. None of these variables provides a fair and repeatable method
to measure training intensity and, when training stress is measured imprecisely, injury risk may be
increased and performance negatively altered. Given that new wearable devices allow to measure
external load metrics apart from both volume and pace, there should be a growing focus on a
combination of both biomechanical external (i.e., power output (PW)) and internal load metrics in the
future of athletes monitoring [4].

Running, as cycling, is cyclical in nature. When running, three dimensional movements are
needed. Normally, the body describes a forward movement, vertical oscillation, and a bilateral rotation
over the running cycle. For such movements, mechanical work is required accounting vertical and
forward movements for most of it. Throughout such movements, a runner acquires both kinetic
energy and potential energy changes. The applied work runners develop over the loading phase
and the subsequent take-off push to lift their body at every stride to work against environmental
factors (i.e., ground reaction force, gravity force, and surface) refers to the external mechanical work.
Then, the foot absorbs energy when colliding with the ground and produces power when pushing off.
During running, expensive equipment such as specific instrumented treadmills [5] have been utilised
to acquire force data. Despite their proved accuracy, most coaches and practitioners are forced to avoid
their use due to economic issues.

Over the last years, inertial measurement units (IMUs) emerged, allowing the quantification
of performance, providing coaches and athletes an easy-to-use tool to monitor PW during running
(e.g., Runscribe (Scribe Lab. Inc., Half Moon Bay, CA, USA), Stryd (Stryd Inc. Boulder, CO, USA) or
Myotest (Myotest SA, Sion, Switzerland)). Previous works have demonstrated the direct relationship
between anthropometric measures (e.g., body mass) and spatiotemporal parameters and kinetics
and kinematics [6–8]. Samozino and colleagues [9] attempted to supply an affordable method
to assess force-velocity and power-velocity profiles, using anthropometric and spatiotemporal
data along over-ground sprint acceleration. However, Samozino’s approach is inapplicable to
submaximal velocities.

Currently, an increasing number of systems allow the assessment of running power (new heart rate
monitors by Polar (Polar Electro Ltd., Kempele, Finland) and Garmin (Garmin Ltd., Olathe, KS, USA)).
Nevertheless, there is a lack of scientific evidence testing either its validity or reliability, as well as
limited insights on the use and interpretation of power in endurance runners, being this reduced
to a few books [3,10], and further information provided by the devices’ manufacturers (e.g., Stryd,
https://blog.stryd.com/tag/validation-white-papers/; Myotest, https://www.myotest.com/technology;
RunScribe, https://runscribe.com/blog/; Stryd, https://blog.stryd.com; Polar: https://www.polar.com/es/
smart-coaching/running-power).

Although the validity and reliability of a wide array of wearable sensors have been shown
for running spatiotemporal parameters measurement and they seem to be related with PW
estimation [11–15], a deeper knowledge on PW in endurance running and a proper understanding on
the use of power meters to quantify workload would be an outstanding step forward towards a new
boundary within running training and performance. There is a need to measure training intensity with
precision and wearable sensors might help monitor the training-induced stress and, although previous
review articles have been focused on power data while running [16,17], none of those concentrated
on validity and reliability of such wearables for running PW analysis. Advances in the knowledge
of endurance running PW would allow the assessment and monitor of power not only in laboratory
settings, but in the field as well. Therefore, the aim of this scoping review was to critically examine
the available running power meters and the current evidences about their use and application to
endurance running performance.

https://blog.stryd.com/tag/validation-white-papers/
https://www.myotest.com/technology
https://runscribe.com/blog/
https://blog.stryd.com
https://www.polar.com/es/smart-coaching/running-power
https://www.polar.com/es/smart-coaching/running-power
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2. Materials and Methods

A review of the literature was conducted following the guidelines of the Cochrane Collaboration
and taking into consideration the guidance provided by previous studies focused on scoping
reviews [18,19]. This design (i.e., scoping review) was selected in order to have a broader approach with
the aim of mapping literature characterized by a variety of study designs. Additionally, findings were
reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) for scoping reviews [20].

2.1. Eligibility Criteria

Despite the limited evidence on this topic, some a priori inclusion criteria were considered for this
scoping review: (i) only peer-reviewed articles were included; (ii) studies that were not published in
English were not explored; (iii) no restrictions for age or sex of participants were applied.

Additionally, no limitations regarding the study design were established. All manuscripts related
to running with power or power meters were considered, regardless the study design, except literature
reviews (e.g., systematic reviews or metanalysis).

2.2. Information sources

A systematic search was conducted in the electronic databases PubMed, MEDLINE and SCOPUS
for relevant studies until 1 June 2020. Keywords were collected through experts’ opinion, a systematic
literature review, and controlled vocabulary (e.g., Medical Subject Headings: MeSH). Boolean search
syntax using the operators “AND” and “OR” was applied. The words “endurance”, “running”,
“runner”, “power”, and “power meter” were used. Following is an example of a PubMed search:
((((((endurance) OR submaximal) NOT sprint) AND running) OR runner) AND power) OR power
meter; Filters: Publication date from 1 January 2000; Humans; English.

After an initial search, accounts were created in the respective databases. Through these accounts,
the lead investigator received automatically generated emails for updates regarding the search terms
used. These updates were received on a daily basis (if available), and studies were eligible for inclusion
until the initiation of manuscript preparation on 5 June 2020. Following the formal systematic searches,
additional hand-searches were conducted. Grey literature sources (e.g., conference proceedings)
were also considered if a full-text version was available. In addition, the reference lists of included
studies and previous reviews and meta-analyses were examined to detect studies potentially eligible
for inclusion.

2.3. Study Selection

In selecting studies for inclusion, the three-step method was followed [21]. The first step, according
to this procedure, was an initial restricted search of the appropriate database collection, followed by an
analysis of the text words included in the title and abstract, and the index terms used to characterize
the document. A second search using all known keywords and index terms was performed through all
included databases. Finally, the reference list of all the selected studies and reports has been checked
for additional studies. The authors included the aforementioned filters (i.e., the language and the
publication date limitations).

2.4. Methodological Quality in Individual Studies

To analyse the methodological quality in studies, the recommendations by Cochrane Review
Groups were taken into consideration [22]. Since all the studies examined show a cross-sectional
design, quality was assessed using the modified version of the Quality Index developed by Downs and
Black [23]. The original scale was reported to have good test–retest (r = 0.88) and inter-rater (r = 0.75)
reliability and high internal consistency (Kuder–Richardson Formula 20 (KR-20) = 0.89). The modified
version of the Downs and Black Quality Index is scored from 1 to 14, with higher scores indicating
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higher-quality studies. Two independent reviewers (DJC-FGP) performed this process and, in the event
of a disagreement about the methodological quality, a third reviewer (LERS) checked the data and took
the final decision on it. Agreement between reviewers was assessed using a Kappa correlation for
methodological quality. The agreement rate between reviewers was k = 0.93 which can be interpreted
as almost perfect [24]. It is worth noting that the study by Snyder and colleagues [25] was excluded as
it is a letter to the editor in response to Aubry and colleagues’ [26] work.

3. Results

3.1. Study Selection

Figure 1 provides a graphical schematization of the study selection process. A total of 1281 studies
were initially identified: 640 from PubMed, 378 from SCOPUS, and 263 from MEDLINE. Additionally,
6 studies were identified through other resources. From these 1287 studies, 674 after duplicates
removed. The 613 studies excluded after titles and abstracts revisions were essentially based on a lack
of relationship with the research interests of this review. After full-text revision, only 19 studies which
included either validity or reliability of running wearable sensors suppling running PW and/or the
specific discussion of such wearable sensors were considered for the current work.
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3.2. Study Characteristics

The main characteristics of the studies included in this review (n = 19) are presented in the
Tables 1 and 2. Table 1 shows a summary of 12 studies using wearable sensors with the capacity of
measuring power during different running exercises. Whereas three of those studies [11,27,28] examine
the PW kinetics during different running protocols, the other four studies [15,25,26,29] investigate
the relationship between PW and physiological parameters such as oxygen consumption (VO2) at
different intensities. Additionally, two further works [30,31] analyse the application of mathematical
models, based on power laws, to predict running performance, whereas a recent study [32] assesses
the agreement level between two mathematical models and five power meter devices through different
running conditions. Other studies examined some parameters provided by the RunScribe power meter
to describe the effects of the fatigue induced over a marathon [33,34] and the influence of different
types of ankle treatments on running biomechanics [35].
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Table 1. Studies (n = 12) involving the use of wearable sensors with the capacity of measuring power during running protocols.

References Subject Description Aim System Used Protocol Outcome Measures Results

Dobrijevic et al.
(2017) [15]

30 physical education
students (15 men and
15 women)

To explore the properties of the
F-V relationship of leg muscles
exerting the maximum pulling F
at a wide range of V on a standard
motorized treadmill

Motorized treadmill using
externally fixed strain gauge
dynamometer (CZL301,
ALL4GYM, Serbia) connected
to the subject wearing a wide
and hard weightlifting belt

Walking and running on a treadmill
at different velocities (1.4−3.3 m.s−1),
and maximum pulling F exerted
horizontally were recorded

Leg muscle capacities for
producing maximum F, V,
and power

The F-V relationship of leg
muscles tested through a wide
range of treadmill V could be
strong, linear, and reliable.
Moreover, the two-velocity
method could provide reliable
and ecologically valid indices of F,
V, and P producing capacities of
leg muscles.

García-Pinillos et al.
(2019) [17] 49 endurance runners

To examine how the PW changes
while running at a continuous
comfortable velocity on a
motorized treadmill by
comparing running power
averaged during different time
intervals

Stryd system (foot pod)

Runners performed a 3 min running
protocol at comfortable velocity and
P was examined over six recording
intervals within the 3-min recording
period: 0−10 s, 0−20 s, 0−30 s,
0−60 s, 0−120 s and 0−180 s

Running PW

P during running is a stable
metric with negligible differences,
in practical terms, between
shorter (i.e., 10, 20, 30, 60 or 120 s)
and longer recording intervals
(i.e., 180 s)

Aubry et al.
(2018) [14]

24 male runners
(13 recreational, 11 elite)

To investigate the applicability of
running power (and its
individually calculated run
mechanics) to be a useful
surrogate of metabolic demand
(Vo2), across different running
surfaces, within different
caliber runners.

- Stryd system (chest strap)
- Gas exchange measures
(Cosmed Quark CPET and
Cosmed K5 systems)

2 different test at 3 different paces,
while wearing a Stryd on both an
indoor and an outdoor test:
-Treadmill vO2 test: running at
3 speeds for 2 min each
-Outdoor vO2 test (on track):
identical speeds for 4 min
(1 min rest)

- Spatiotemporal
parameters
- Running PW
- vO2

Running power (with Stryd) is not
a great reflection of the metabolic
demand of running in a mixed
ability population of runners

Snyder et al.
(2017) [13] Manuscript clarification: Request for clarification to Aubry et al. (2018)

Some major methodological flaws
in the mentioned paper are
detected. The authors concluded
that data analysis and, thereby,
data interpretation are misleading

Austin et al.
(2018) [18]

17 well-trained
distance runners

To measure the correlations
between running economy and P
and form power at LT pace.

- Stryd system (foot pod)
- Gas exchange measures
(Parvo Medics TrueOne 2400)

Participants ran two 4 min trials:
one with a self-selected cadence,
and one with a target cadence
lowered by 10%

- Gas exchange measures
- RPE
- Power
- Form power
- SF

RE is positively correlated with
Stryd’s power and form power
measures yet the footpod may not
be sufficiently accurate to
estimate differences in the
running economy of runners

García-Pinillos et al.
(2019) [36]

18 recreationally-trained
male endurance runners

To determine if the P-V
relationship in endurance runners
fits a linear model when running
at submaximal velocities, as well
as to examine the feasibility of the
“two-point method” for
estimating P at different velocities

Stryd system (foot pod)

Incremental running protocol on a
treadmill. Initial speed was set at
8 km.h−1, and speed increased by
1 km.h−1 every 3 min
until exhaustion

PW (W)

The two-point method based on
distant velocities was able to
provide P with the same accuracy
than the multiple-point method.
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Table 1. Cont.

References Subject Description Aim System Used Protocol Outcome Measures Results

Vandewalle et al.
(2018) [21]

Data from 6 elite
endurance runners

- To apply the P-law and
logarithmic models and four
asymptotic models to the
individual performances of the
elite runners.
- To compare the accuracy of these
models.
- To compare the predictions of
MAS by interpolation and the
prediction of maximal running
speeds for long distances by
extrapolation

-

The empirical models were
compared from the performance of 6
elite endurance runners who
participated in international
competitions over a large range
of distances

Mathematical models to
predict running
performance

The predictions of long-distance
performances (maximal running
speeds for 30, 60 min and
marathon) by extrapolation of the
logarithmic and power-law
models were more accurate than
the predictions by extrapolation
in all the asymptotic models.

Mulligan et al.
(2018) [20]

Data from various
records for a range
of distances

To develop a novel, minimal and
universal model for human
running performance that
employs a relative metabolic
P scale

-

European and world records
performances for eight distances,
from 1 km to the marathon,
were analyzed

Mathematical models to
predict running
performance

The model presented provides a
quantitative method for extracting
characteristic parameters from
race performances of runners.
This is the to date most accurate
theoretical description of running
performances that does not
require any a priori fixing of
physiological constants

Gregory et al.
(2019) [25]

12 young adults with
history of ankle sprain

RunScribe system (foot pod,
on the heel)

To evaluate the effects of ankle
taping, bracing, and fibular
reposition taping (FRT) on
running biomechanics

Four 400 m runs at self-selected pace
on an outdoor track. Each run was
performed in a different condition
(control, taped, braced, FRT)

- Spatiotemporal (CT,
CycleT, SL)
- Kinematic (PR, PRveloc)
- Kinetic (impact G,
braking G)

Ankle taping and bracing were
shown to be comparable in
decreasing ankle kinematics and
kinetics, while FRT caused
minimal changes in running
biomechanics

Leuchanka et al.
(2019a) [23] 15 endurance runners

To examine the changes in
spatiotemporal variables during a
marathon race

RunScribe system (foot pod,
on the lace shoe)

Monitoring spatiotemporal variables
over a marathon race by comparing
3 points (km 5, 26 and 37)

- Spatiotemporal (Pace,
CT, SL and cadence)

Significant differences were found
in pace, SL, and CT when
compared across 3 race points

Leuchanka et al.
(2019b) [24] 15 endurance runners

To measure the kinematic
asymmetry during a
marathon race

RunScribe system (foot pod,
on the lace shoe)

Monitoring kinematic variables over
a marathon race by comparing
3 points (km 5, 26 and 37)

- Kinematic variables for
right and left foot (pace,
strike index, PR, PRveloc)

Changes in asymmetry were not
found to be statistically significant
over the marathon.

Cerezuela-Espejo
et al. (2020) [22] 10 endurance runners

To analyse agreement level
between power estimated PW by
five commercial wearable systems
and two theoretical models in
different environments
and conditions

5 systems:
- Stryd App
- Stryd Watch
- RunScribe (foot pod)
- Garmin Running P (watch
and chest strap)
- Polar Vantage (watch)

Three submaximal
running protocols on a treadmill
(indoor) and an athletic track
(outdoor), with changes in
speed, body weight, and slope.

Running PW derived
from the 5 systems and
theoretical PW from two
mathematical models
(TPw1 and TPw2).

The closest agreement of the Stryd
and PolarV technologies with the
TPW1 and TPW2 models suggest
these tools as the most sensitive,
among those analysed, for PW
measurement when changing
environments and
running conditions

CP: critical power; LT: blood lactate thresholds; Vo2max: maximal oxygen uptake; tlim: exhausting time at a given intensity; W´: residual performance capacity; F: force; V: velocity; P: power;
Dlim: exhaustion distance; MTT: Montreal Track Test; MAS: maximal aerobic speed; CT: ground contact time; SL: step length; PR: pronation excursion; PRveloc: pronation velocity; TPw1:
Mathematical model for power output (PW) estimation 1; TPw2: Mathematical model for PW estimation 2; PW: power output.
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The closest agreement of the Stryd and PolarV technologies with the TPW1 and TPW2 models
suggest these tools as the most sensitive, among those analysed, for PW measurement when changing
environments and running conditions

Table 2 summarises the studies (n = 7) focused on the validity and reliability analysis of
kinetic and kinematic parameters for different wearable sensors with the capacity to measure power.
Of note, no studies have examined the concurrent validity of PW during running estimated from any
power meter, finding only two studies [12,15] which examined the reliability of PW during running.
The remaining 5 studies tested the validity and reliability of spatiotemporal parameters [11,14],
kinematic parameters [37,38], or both variables [13].

Table 3 shows the methodological quality of the studies examined. Once the review studies and
the letter to editors were excluded, 18 studies were assessed with this purpose. Out of a total score
of 14 points, all studies reported from 11 to 14 points. Of note, 16 out of 17 studies reported 0 in the
item 12 (i.e., participants prepared to participate representative of entire population) and 14 out of
17 studies reported 0 in the item 23 (i.e., randomised).
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Table 2. Studies (n = 7) examining the reliability and validity of different wearable sensors with the capacity to measure power during running.

References Subject Description Tested System Reference System Protocol Outcome Measures Results

García-Pinillos et al.
(2018) [16]

18 trained
endurance runners Stryd system (foot pod) OptoGait system

Incremental running test
(8−20 km·h−1 with 3-min stages)
on a treadmill

- Spatiotemporal parameters
(CT, FT, SL, SF)

Stryd is reliable for measuring
spatiotemporal parameters. It provides
accurate SL and SF measures but
underestimates CT (0.5−8%) and
overestimates FT (3−67%)

Koldenhoven et al.
(2018) [32] 12 recreational runners RunScribe wearable sensor 3D motion capture system

(Vicon system)
2.4 km running protocol on
treadmill, at self-selected speed - PR, PRveloc, and CycleT

RunScribe showed good to excellent
concurrent validity for the
outcome measures

Brayne et al.
(2018) [31] 13 runners Wireless accelerometer

(RunScribe): skin mounted

Uniaxial piezoresistive
accelerometer (model
352C22, PCB Piezotronics):
skin mounted

Participants ran at 3 different
speeds on a treadmill
(2.5, 3.5, 4.5 m.s−1) for a total of
40 s (10 s to regulate running
gait and 30 s data collection)

- Peak tibial acceleration (g)

RunScribe accelerometer accurately
measures peak tibial accelerations
when compared to a research
accelerometer, at a range of speeds

Hollis et al.
(2019) [33] 15 recreational runners RunScribe system

(foot pod, on the heel)

Intra-system comparison
(in different
experimental conditions)

Two 1600 m runs (slow: 3−4;
fast: 5−6 on a 0−10 RPE scale) on
two surfaces (track, grass).
Randomized order.

- Spatiotemporal (CT, CycleT, SL)
- Kinematic (PR, PRveloc)
- Kinetic (impact G, braking G)

RunScribe sensor is valid to identify
changes in the outcome
measures when participants ran in
different conditions.

Navalta et al.
(2019) [29]

20 young,
healthy individuals Stryd system (foot pod) Intra-system reliability

Two 5 min self-paced walks along
a trail, and two 5 min trail runs
(5 min rest period)

- Pace and distance
- Power: average elapsed power,
maximal power, average elapsed
form power
- Stiffness: average elapsed leg spring
- Spatiotemporal: CT
- Vertical oscillation

Trail running task returns moderate to
excellent reliability across all measures

García-Pinillos et al.
(2019) [30]

49 amateur
endurance runners

RunScribe system
(foot pod) on 2 locations:
- Heel shoe
- Lace shoe

High-speed video analysis
at 1000 Hz

Treadmill running for 3 min at
self-selected comfortable velocity

- Spatiotemporal gait parameters
(CT, FT, SL, SF)

RunScribe is a valid system to measure
spatiotemporal parameters during
running on a treadmill. The location of
the RunScribe plays an important role
on the accuracy of spatiotemporal
parameters. The lace shoe placement
showed smaller errors for CT, FT and
SL, whereas the heel shoe was more
accurate for SF

Cerezuela-Espejo et
al. (2020) [19]

12 endurance-trained
male athletes

5 systems:
- Stryd App
- Stryd Watch
- RunScribe (foot pod)
- Garmin Running P
(watch and chest strap)
- Polar Vantage (watch)

- Metabolic cart (VO2)

Participants were initially
familiarized with the protocol and
then, two protocols were
performed in two different
settings (outdoor vs. indoor):
- Testing 1: Submaximal protocol
with incremental speed
- Testing 2: Submaximal protocol
with incremental body weight
A 3rd testing condition was
performed only indoor, with
increasing slope at
submaximal velocity

- P output during running

The Stryd system is the most repeatable
technology, among the five analyzed,
for P estimation.
The concurrent validity analysis
indicated that PW estimated by the
Stryd device showed the closest
relationship with the VO2 directly
measured by the metabolic cart.

CT: ground contact time; CycleT: cycle time; SL: step length; PR: pronation excursion; PRveloc: pronation velocity; RPE: rate of perceived exertion; FT: flight time; SF: step frequency; VO2:
oxygen uptake; RE: running economy; PW: power output.
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Table 3. Modified Downs and Black scale [23].

Study Item 1 Item 2 Item 3 Item 6 Item 7 Item 10 Item 12 Item 15 Item 16 Item 18 Item 20 Item 22 Item 23 Item 25 Total (out of 14)

Dobrijevic et al. (2017) [15] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 13
Aubry et al. (2018) [14] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12
Austin et al. (2018) [18] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12

García-Pinillos et al. (2019) [36] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12
García-Pinillos et al. (2019) [17] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12

Vandewalle et al. (2018) [21] 1 1 1 1 1 1 0 U 1 1 1 0 0 1 11
Mulligan et al. (2018) [20] 1 1 1 1 1 1 0 U 1 1 1 0 0 1 11
Gregory et al. (2019) [25] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 13

Leuchanka et al. (2019a) [23] 1 1 1 1 1 1 0 1 1 1 1 1 0 0 11
Leuchanka et al. (2019b) [24] 1 1 1 1 1 1 0 1 1 1 1 1 0 0 11

García-Pinillos et al. (2018) [16] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12
Koldenhoven et al. (2018) [32] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12

Brayne et al. (2018) [31] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 13
Hollis et al. (2019) [33] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12

Navalta et al. (2019) [29] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12
García-Pinillos et al. (2019) [30] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 12

Cerezuela-Espejo et al. (2020) [19] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 13
Cerezuela-Espejo et al. (2020) [22] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 13

Key: 0 = no; 1 = yes; U = unable to determine. Item 1: clear aim/hypothesis; Item 2: outcome measures clearly described; Item 3: patient characteristics clearly described; Item 6: main
findings clearly described; Item 7: measures of random variability provided; Item 10: actual probability values reported; Item 12: participants prepared to participate representative of
entire population; Item 15: Blinding of outcome measures; Item 16: analysis completed was planned; Item 18: appropriate statistics; Item 20: valid and reliable outcome measures; Item 22:
participants recruited over same period; Item 23: Randomised; Item 25: adjustment made for confounding variables.
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4. Discussion

This review provides a critical assessment on the existing scientific literature regarding PW
quantification in endurance running as well as the different current accessible devices for its estimation.
After the meticulous analysis described above, a few studies aiming at assessing running power in
relation to physiological parameters and power-duration relationship at several running intensities
were found. Eighteen studies included in this review were assessed in order to determine the
methodological quality and high scores were reported according to the modified Downs and Black
scale [23] (i.e., all studies reported more than 11 points out of a total score of 14). Although no
studies attempting to assess concurrent validity of PW estimation in running using power meters,
their reliability for such estimation was analysed.

The controversy surrounding power estimation in running is rooted in the question of whether it is
indeed power which is being estimated. Unlike cycling, running entails negligible external mechanical
work. It involves positive and negative work; the former, pushing off with each stride and the latter,
braking on landing [39]. Moreover, elastic energy stored in the Achilles tendon and other tissues
makes a significant contribution as up to fifty percent of power required for each step is released
as these tissues stretch upon landing and subsequently recoil to aid pushing off. The issue when
estimating power in running is that even perfect estimates do not closely correlate to effort required [39].
During cycling, the relationship between mechanical power and total metabolic energy consumption
remains constant when conditions are altered, but this is not so when running [39,40]. Readers need to
be aware that given the recent application of power meters to endurance running, the increasing need
for PW quantification, and the consequent novelty of this research interest, the limited information
available might make the discussion of the current study difficult. However, the subsequent sections
seek to provide some insight into how running power quantification can help enhance running
performance and its quality.

4.1. Current Evidence on PW during Running

While in cycling PW is measured in reference to both direction and quantity of the force applied
to the crank, as well as its angular velocity, power needs to be calculated in a different way while
running. Since forward and vertical movements of the body account for most of the mechanical work,
an accurate calculation of both horizontal and vertical power over the propulsion phase (i.e., a function
of forward force and vertical force, respectively) is required to measure running power effectively.

Mechanical power on flat terrain might be estimated in mechanical terms just as function of
runner anthropometry (height, mass), spatiotemporal parameters (speed, step rate, ground contact
time) and wind speed employing model proposed recently by Jenny and Jenny [41]. In steady running
on flat surface, mechanical power and the rate of mechanical energy dissipated into heat should match.

Considering this assumption and following the mathematical approach mentioned above [41],
mechanical energy in steady flat running compiles the energy dissipated by aerodynamic drag,
dissipation due to both vertical oscillation and braking. The aerodynamic contribution may be
estimated based on air and runner density and running and wind velocity. However, when running on
a treadmill wind speed can be considered zero reducing, thus, the importance of this variable.

On the one hand, dissipation in vertical oscillation can be estimated regarding step rate, ground
contact time, running velocity and a potential energy recovery factor. This factor is variable between
subjects and that might be the main concern with this assumption. The lack of considering this factor
could lead to overestimation in this part of the mechanical power. On the other hand, dissipation
due to braking ground reaction force could be modelled by using the runner’s centre of mass
excursion and spring-mass model assumptions. In that context, the power generated in a horizontal
direction to maintain running velocity could be estimated by anthropometrics, running speed, and the
aforementioned energy recovery factor.

The most controversial part of such a model [41] might be the energy recovery factor. Nevertheless,
when measuring mechanical power calculations employing ‘gold standard’ methods different
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assumptions are, done making the assessment of mechanical PW a challenging measure even in
the best testing conditions.

The critical power (CP) in tasks such as swimming, cycling, and running and its relationship
with VO2, blood lactate threshold, and work-exhaustion time was critically reviewed by Vandewalle
and colleagues [42]. Theoretically, CP supposes the existence of a particular work-rate that can be
held before exhaustion [43]. In this review [42], it is determined that CP matches a steady state
during heavy submaximal exercises (i.e., between 6 and 30 min). On the contrary, CP is not a reliable
predictor of exhaustion time considering the hyperbolic nature of power-exhaustion time relation [42].
Another review focused on the existing models for residual performance capacity estimation and
its application for pacing [16]. The authors examined the quantity of work than can be executed
in exercises above CP. Although the review by Vandewalle and colleagues found CP to be a poor
predictor of exhaustion time given the power-exhaustion time relation, Jones and Vanhatalo determined
that within a range of various exercise intensities (e.g., endurance running), this relationship gives a
fundamental basis to proper understand the physiological bases of fatigue development, what may
result in an outstanding effect for monitoring both training and athletic performance [16].

The power-duration relationship was also described over a wide range of power intensities [17].
Three different exercise intensities were identified. First, exercise intensity below aerobic threshold
(i.e., fatigue appears slowly and it mainly has a central origin) was defined as moderate intensity.
Then, intensity over lactate threshold but under CP was referred as heavy intensity (i.e., there is a
depletion of muscle glycogen due to central and peripheral fatigue). Finally, severe intensity was
identified referring to an intensity above the CP, which relates to gradual muscle metabolic homeostasis
alterations and subsequent peripheral fatigue [17]. Literature shows different calculation methods for
power-duration relationship such as power law [44,45] and hyperbolic models [46–48], and exponential
decay operations [49,50]. Seemingly, hyperbolic calculations of power-duration relation suit best for
both reasonable physiological estimations and a proper option to the fundamental data [17] but, the truth
is that all these calculations are operationally weak for coaches and extremely time-consuming. In order
to counteract the models mentioned above and to provide in-field application for running biomechanics
monitoring and training loads tracking to clinicians, coaches and practitioners, wearable technologies
were upgraded considerably and made economically affordable. A review study on wearable devices
and their provided metrics (i.e., kinetic and kinematic parameters) in the evaluation and treatment of
runners identified best practices, applications and potential limitations of such systems [51]. The author
stated that clinicians should assure that the use of wearable sensors should be based on evidence
aiming at running-related injuries prevention and performance enhancement, and the guidelines given
by each sensor’s manufacturer must be followed [51].

Regarding evidence-based use of wearable sensors, the relationship between VO2 as metabolic
demand and running PW measured by five commercially available technologies was recently
assessed [15]. Twelve endurance-trained male athletes completed 10 submaximal multistage running
tests wearing a portable metabolic computer. On two occasions (test-retest), the athletes performed
three submaximal treadmill running protocols with manipulations in speed, body weight and slope,
and the same protocol was repeated in an athletic track. The Stryd system showed the higher concurrent
validity to the VO2 (r ≥ 0.911) between the five wearables, and it was also found as the more repeatable
and sensitive in all the conditions studied. Furthermore, the level of agreement between these
5 wearable systems was also analysed against two physics theoretical models for PW estimation [10,52]
in different running conditions [32], showing that the Stryd and Polar Vantage systems are the most
sensitive tools for PW estimation in running given their close agreement with both theoretical models
(r > 0.93). The Stryd power meter estimates power production while running separating this metric
into two parts: power and form power. Apparently, power reflects the PW associated with changes in
the athlete’s horizontal movement, while form power represents the power production originated by
the combination of the oscillatory up and down movements of the centre of mass and lateral power
as the athlete moves forward. This system utilises mathematical calculations to estimate these two
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parameters from kinematic data collected from the described movements executed by the runner’s
foot [29]. Form power apparently represents the power production originated by the combination
of the oscillatory up and down movements of the centre of mass and lateral power as the athlete
moves forward.

On the other hand, the power-VO2 relationship in elite and recreational runners had been
previously assessed by Aubry and colleagues [26]. To this aim, 13 amateur and 11 elite runners executed
a two-setting protocol (i.e., indoor and outdoor). Indoors, participants developed 3 sequential paces
(i.e., elite: 14, 16, and 18 km·h−1; amateur: 11−16 km·h−1) 2 min each, where VO2 was analysed via
gases expiration system. Outdoors (no precipitations and minimal wind), participants were asked to
run at the same pace that they ran indoors. Participants ran for 4 min each pace while measuring VO2

using a portable metabolic computer. Additionally, Stryd was used to calculate running power in both
settings. Regarding the relationship metabolic demand-running power, the authors found a significant
but weak correlation between VO2 and running power (r = 0.29, p = 0.02). Comparing both settings,
metabolic demands were found to be significantly higher (i.e., greater VO2) outdoors (i.e., outdoor
track) than when treadmill running. When speed increased, the difference in VO2 values become
higher amongst treadmill and outdoor running [26]. Then, after assessing metabolic demand-running
mechanics relationship, the authors found moderate strength associations for metabolic demand
and ground contact time, vertical oscillation, and step frequency at treadmill running in recreational
runners [26]. The authors of the aforementioned study concluded that the use of Stryd power meter
should be avoided when assessing running economy as it is unable to distinguish the metabolic
demands of an athlete when running on different settings (i.e., outdoors vs. indoor). Of note, the version
used during the study is not mentioned (the latest version is even able to consider air resistance)
limiting, therefore, their findings. Controversially, Snyder and colleagues clarified several important
methodological mistakes made by Aubry and colleagues [26] which led to confusing conclusions [25].
Regarding surface, VO2 was measured long before steady state for treadmill tests (latest VO2 test
started at 1:30 min), but much later over ground (latest VO2 test started at 3:30). It is well-known,
as stated by Snyder and colleagues, that VO2 needs more than 1:30 min to reach steady state causing,
therefore, great differences between VO2 when measured at 1:30 and 3:30 min, and, even greater at
faster speeds [25]. The authors claimed that these methodological flaws exclude precise correlation
analysis between VO2 and power measured with Stryd on different surfaces [25]. Considering speed,
a speed-normalised power to speed-normalised VO2 correlation was reported in the article [26],
therefore denying VO2 change because of speed [53]. Snyder and colleagues [25] suggested the use of
the accepted physiological term ‘cost of transport’ instead of ‘metabolic demand’, which was used
by the authors and leads to confusion in the readers and it does not vary over speed [54]. The actual
power-VO2 correlation is proposed to address this error [25]. With respect to subjects, Snyder and
colleagues [25] criticise the individual assessment of training metric as they [26] collect data by subject
prior executing the correlation analysis when within-subject correlation between VO2 and further
variables is appropriate for training and racing [55]. For such study [26], data collection should be
developed over different within-subject measurements [25].

Furthermore, the Stryd reliability for PW during treadmill running at a self-selected constant
speed with a slope gradient at 0% was proved to be a stable data between short and long intervals
(i.e., 10–120 s and 180 s, respectively) [28]. No significant differences were found in the amount of
power production between the different spans of times acquired (p = 0.276, partial ETA2 = 0.155) and an
almost perfect association in the previously mentioned amount of power production recorded over the
intervals (ICC ≥ 0.999). As the authors mentioned, the conditions in which the study was performed
may influence the stability of running power over time and these findings should not be taken for
granted when transferred to over-ground running [28]. The findings reported here seem to be very
advantageous for clinicians and practitioners since, if compared to other physiological parameters such
as heart rate or VO2, PW tend to stabilise over time earlier than others traditionally used. However,
PW is a mechanical parameter which considers work per time. That work exhibits a muscular and
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tendinous component. While muscle work needs oxygen consumption to produce work, tendons store
and release energy without consuming any oxygen. Therefore, work produced while running requires
different quantities of oxygen depending upon the amount of work is done by muscles or tendons.
Thus, PW may not be directly related to running metabolic cost. Following the evidence-based use
of wearable sensors, it has been found a linear power-velocity relationship(r = 0.999) at submaximal
speed, and, the consequent used of the two-point method to predict PW in running at different speeds
using the Stryd power meter [36]. The authors executed an incremental run-to-exhaustion protocol
on a motorized treadmill at 0% slope gradient. The power-velocity relationship determined from
three two-point methods at proximal (10 and 12 km·h−1), intermediate (10 and 14 km·h−1), and distal
(10 and 17 km·h−1) speeds showed the same precision than the multiple-point method (used also
by the authors to compare PWs through the study) to provide PW estimated by the Stryd power
meter. As stated by the authors of the aforementioned study, since the two-point method can be
developed faster and without developing fatigue in the athletes, it should be used when assessing PW
to acquire accurate power estimations over a range of submaximal running speeds [36]. This might be
an outstanding contribution to the strength and conditioning scene as the power-velocity relationship
could be frequently updated influencing, therefore, on the quality of both running training and
performance. The lack of evidence regarding the power-biomechanics (i.e., contact time, flight time,
step frequency, step length, surface) relationship as well as the effect of fatigue on PW when running
expose the need of further research on how the running gait parameters and environmental factors
affect PW estimation. Bridging the gap between research and practical use of power in running would
bring the stunning potential of such parameter to light. The insights provided here into the validity and
reliability of the different commercially available wearable sensors for spatiotemporal parameters show
the emerging potential of such devices for running PW measurement given their narrow association
considering theoretical approaches previously proposed [6–9].

4.2. Commercially Available Systems to Measure PW during Running

Despite the application of IMUs for estimating PW during running being recent, different
commercially systems are available. Two of the most widely used wearable sensors for such purposes
are Stryd and Runscribe.

Stryd system is a pioneer in manufacturing wearable power meters for running. Stryd estimates
running power in watts. This power meter, a foot pod reinforced with carbon fibre (weight: 9.1 g) and
based on an IMU of 6 different axis (i.e., 3-axis accelerometer and 3-axis gyroscope) and with a sampling
rate of 1000 Hz, attaches to the runner’s shoe to estimate metrics for performance quantification
(i.e., pace and distance, average elapsed power, maximal power, average elapsed form power, average
elapsed leg spring, and average elapsed ground time). Some studies have analysed the reliability of
this sensor for both spatiotemporal and PW parameters [11,12,15]. Of note, the latest version of Stryd
is capable of estimating the energy expenditure of working against air resistance by measuring the air
resistance one faces while running in regards with a white paper located at the manufacturer’s website
and where the trials performed to assess the Stryd’s ability to determine wind speed are meticulously
described (https://storage.googleapis.com/stryd_static_assets/white_papers/wind-white-paper-8-17.
pdf). This sensor employs both kinematic and environmental microelectromechanical sensors together
with user-supplied biometrics and proprietary physical and data-driven algorithms to calculate air
resistance force as follows:

FA =
1
2
ρCdAv2 (1)

where ρ stands for air density, Cd for drag coefficient, A for the cross-sectional area that encounters the
air resistance, and v for the vector of the runner’s relative velocity with local air mass surrounding
them. According to the aforementioned white paper, the Stryd system should be centrally located
on the laces and towards the toe of the shoe as this placement reported the lowest error regarding
wind measurement accuracy (i.e., wind technology is able to correctly report relative air speed under

https://storage.googleapis.com/stryd_static_assets/white_papers/wind-white-paper-8-17.pdf
https://storage.googleapis.com/stryd_static_assets/white_papers/wind-white-paper-8-17.pdf
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4 km·h−1). However, no peer-reviewed research has been performed to assess the level of accuracy
of such device when accounting for air resistance arising therefore the need to evaluate it in the
near future.

The use of the Runscribe wearable sensor attached to either the lace or heel of the shoes, based on a
nine-axis (three-axis magnetometer, accelerometer, and gyroscope, respectively) IMU with an accuracy
of 0.002 seconds (sampling rate: 500 Hz), is also widespread around the running world. The way
Runscribe estimates power is based on GOVSS model [52] and various assumptions. GOVSS model
estimates power using the runner’s speed, step rate, weight, and height, as well as slope gradient
and wind velocity based on linear regression models [52]. Several studies attempted to determine the
reliability and validity of such foot pods for either kinetic or kinematic parameters [13–15,37,38].

Despite the common use of the Stryd and Runscribe wearable sensors, there are other options
for running power estimation commercially available. Cerezuela-Espejo and colleagues [15] also
analysed Garmin Running Power (v1.6, Olathe, KS, USA) and Polar Vantage V (firmware 3.1.7, Polar,
OY, Kempele, Finland). The Garmin device estimates PW data derived from the combination of a
Garmin sport watch and one of the sensors recommended by the manufacturer (i.e., HRM-Run or
HRM-Tri heart rate monitor and Running Dynamics Pod on the waist belt). Polar Vantage V estimates
power production with no need of an extra sensor (e.g., foot pods). This multisport watch is capable of
calculate indirectly several metrics such as average power, maximum power and laps power using
the built-in barometer and GPS sensors. Although a positive relation with VO2 was found for both
devices (r ≤ 0.841), they exhibited limited test-retest reliability, particularly Garmin Running Power
in laboratory settings and Polar Vantage V outdoors. Myotest device, usually fixed onto a belt and
fastened and placed level with the navel’s runner (according to manufacturer’s guidelines), provides,
amongst others (i.e., cadence, runner’s centre of mass vertical movement, contact time, flight time,
step length, stiffness, pace, distance), running PW. Unfortunately, the way Polar, Garmin, and Myotest
estimate PW remains unrevealed.

Every wearable sensor that provides power metrics employs some form of running power model
combined with different assumptions. Therefore, there exist conditions in which such models do not
concur until all the different wearable sensors standardise and implement the same model for running
PW estimation.

4.3. How Valid and Reliable is PW during Running When Measured by These Devices?

Despite the lack of a concurrent validity study where any of the commercially available power
meters are compared with the ‘Gold Standard’ to measure running power (i.e., force-plate-instrumented
treadmill or a long force platform system), the accuracy of the PW when running provided by these
wearable devices might be limited. The variety of available technologies for running gait analysis
(e.g., accelerometers, gyroscopes, force plates, pressure plates, and photoelectric cells) implies a variety
of devices should exist for analysing stride characteristics. However, some of these devices have not
been validated yet. The validity and reliability of a gait analysis system are essential to determine
whether results are due to changes in gait pattern or are simply systematic measurement errors.
As already mentioned, white (non-peer-reviewed) papers provided by manufacturers to promote
the likely potential of their devices, attribute the different values of running power obtained by the
different devices to differences in estimating power. Indeed, Myotest attempted to demonstrate
validity and repeatability of Myotest App on an Apple watch for PW analysis in comparison
with Garmin-Garmin Pod, Polar Vantage V, Stryd (White paper provided by the manufacturer,
https://www.myotest.com/technology). A sample of 7 runners executed a 2000 m run protocol with an
elevation gain of 22.8 m where 500 m were run on flat ground, 500 m uphill at a constant slope, 500 m
of constant-slope downhill, and 500 m on flat ground at a self-selected speed over the entire protocol.
It was reported that given the outputs shape and the existence of similar peaks, a correlation between
the analysed systems is seemingly demonstrated considering that the different systems are sensitive
to elevation changes (i.e., lower power at uphill/downhill shift and higher power at uphill running).

https://www.myotest.com/technology
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Mean-normalised power signal was used to remove the constant shift in the signals, and it was shown
that PW measured with Myotest is closer to power measured with Garmin and Stryd. These findings
must be taken cautiously as it is well-known that white papers lack the peer-review process.

Concerning the reliability of such wearables, a recent study analysed the repeatability different
devices (Stryd, Runscribe, Garmin Running Power, and Polar Vantage V) show when measuring power
when running as well as their concurrent validity against VO2 [15]. For such a purpose, 12 highly-trained
endurance runners executed a submaximal incremental running speed test and a submaximal
incremental body weight test in two different settings (i.e., outdoor and indoor). An additional increasing
slope gradient at submaximal speed test was executed only indoor. After completion, the authors
found Stryd to be the most repeatable device for power estimation. Additionally, Stryd concurrent
validity assessment for power estimation was found to show the closest relationship with the VO2max

measured directly by metabolic cart [15]. Of note, the authors of this study distinguish between Stryd
App and Stryd Watch. Although the Stryd sensor is found to be the same using both app and watch,
the variations reported by the authors between these systems is not justified. It might be arguable
that the normalisation applied by each system (i.e., Stryd app and watch) differs from one other,
but this is not mentioned by the authors. Nevertheless, the findings reported by Cerezuela-Espejo and
colleagues [15] constitute a huge contribution providing clinicians, coaches, and practitioners a reliable
wearable sensor to quantify running power in training, retraining, and competition.

Some of these devices have been used previously for measuring running kinetics
(i.e., PW amongst others) and kinematics parameters (i.e., running spatiotemporal gait characteristics).
The aforementioned GOVSS model [52] and Jenny’s model [41] for estimating mechanical power
rely mainly on runners anthropometry, environmental factors (i.e., air density and wind speed) and
running spatiotemporal parameters (i.e., speed, step rate and ground contact time). With this in
mind the measurement of spatiotemporal parameters is essential for an accurate power estimation.
Regarding this, some studies have shown good reliability of wearable sensors when measuring such
parameters [11–15]. García-Pinillos and colleagues [11], over a speed incremental running protocol on
a treadmill, tested the reliability of Stryd for running spatiotemporal parameters (i.e., contact time,
flight time, step length, and step frequency) against a proved reliable photoelectric cell system for
such purpose (i.e., Optogait system) [56]. The authors found that Stryd measures accurately step
length and step frequency but underrates slightly contact time overrates flight time in comparison
with such system. Likewise, the intra-Stryd reliability has also been analysed [12] over two different
5-min tasks (i.e., two self-paced walks along a trail a and two trail runs separated by a 5-min rest
period) with 20 healthy individuals (it was not mentioned whether the participants had any running
experience). The authors assessed all the data provided by the Stryd power meter. Regarding trail
running, all variables were found to have relative test-retest reliability, meeting the set the intraclass
correlation coefficient (ICC) threshold. When considering an interval of confidence equals to 95%,
pace, average elapsed power, average elapsed form power, average elapsed leg spring, and vertical
oscillation were deemed to have good to excellent reliability; maximal power, average elapsed ground
time, and distance were reported to exhibit moderate to excellent reliability [12].

The intra-validity analysis of the Runscribe sensor has also been examined [13,14]. This sensor
was used to measure spatiotemporal (i.e., contact time, step length, and cycle time), kinematic
(i.e., foot pronation excursion and pronation velocity), and kinetic parameters (i.e., impact ground
force and braking ground force) on two different surfaces (i.e., track and grass) at two different
running speeds (comfortable self-selected speed and an increased speed) [13]. Over two 1600-m
runs, first at a slow pace and then fast on two randomised-ordered surfaces (i.e., track and grass),
Runscribe foot pod sensors were found to be valid to determine variations in the aforementioned
spatiotemporal, kinetic, and kinematic parameters in different conditions (i.e., different surfaces) [13].
Furthermore, validity measurements regarding the Runscribe placement on the running shoes have
also been examined [14]. In this study, the location of the Runscribe on the running shoes (i.e., heel or
shoelace) was assessed against a reference technology (i.e., high-speed video camera at 1000 Hz).
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The authors found Runscribe to be a valid system to examine spatiotemporal variables in treadmill
running. Additionally, the location of the Runscribe needs to be considered as it was found to be
sensitive to metrics accuracy. When analysing contact time, flight time, and step length, the shoelace
placement is recommended as smaller errors were found when comparing to the Runscribe attached to
the heel. In contrast, the heel showed higher accuracy when analysing step frequency [14]. In a recent
study [15] where test-retest reliability of several wearable sensors was tested, Runscribe was found to
be the second most repeatable sensor for speed, slope gradient, and body weight (standard error of
measurement ≥ 30.1 W, coefficient variation [CV] ≥ 7.4%, ICC ≤ 0.709), only after the Stryd power
meter, for indoor settings. However, when employed in outdoor, Runscribe exhibits both the highest
errors and poorest repeatability (SEM ≥ 59.3 W, CV ≥ 14.8%, ICC ≤ 0.563) [15]. When its concurrent
validity between PW estimation and VO2 consumption examined over an increasing speed test by a
metabolic cart, Runscribe exhibited values of r ≥ 0.582 and standard error of estimate (SEE) ≤ 13.7%
for indoor and outdoor settings. Moreover, the power estimation and VO2 agreement was reduced
over both conditions (body weight, SEE = 10.3%; slope, SEE = 18.5%). Regarding data collection, it is
worth highlighting that the authors did not specify the placement of the Runscribe wearable sensors
affecting, as previously discussed, the possible interpretation of the measured outcomes.

5. Conclusions

The previous works on running PW and the theoretical approaches provided for its estimation are,
from a practical standpoint, hard to include in the everyday routine of an athlete. This study provides a
critical evaluation of available scientific information regarding PW quantification in endurance running
as well as the different accessible devices for its estimation. The inexistence of studies attempting to
evaluate concurrent validity of PW estimation measured by wearable sensors when running (apart from
non-peer-reviewed manufacturer’s white papers), the limited available information about the dynamic
of PW during running and its short-term response to acute influencing factors (e.g., velocity, slope,
fatigue) and long-term training adaptations (i.e., PW as a tool for monitoring training adaptations) made
the analysis reported here especially difficult. However, it is arguable that the outcomes stated here are
tremendously useful as PW stabilises earlier than other variables commonly used (i.e., heart rate or
VO2). Furthermore, running power increases alongside velocity, resembling their linear relationship at
different submaximal speeds. Additionally, the reliability of commercially available wearables has
been assessed, finding Stryd to be the most reliable and accurate wearable device for running PW
estimation. Ultimately, given their novelty and potential application, the analysis of PW while running
and its estimation by wearable devices needs more attention from a research perspective in order to
provide practitioners a reliable, valid, and friendly tool to improve both training and performance
quality in running.
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