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Abstract: Soil arsenic (As) pollution is still a major concern due to its high toxicity and carcinogenicity,
thus, the study of decontamination techniques, as the organic amendment applications, keeps
upgrading. This research evaluates the potential remediation of peat in different As-polluted soils,
by assessing the decrease of As solubility and its toxicity through bioassays. Obtained reduction in As
solubility by peat addition was strongly related to the increase of humic substances, providing colloids
that allow the complexation of As compounds. Calcareous soils have been the least effective at buffering
As pollution, with higher As concentrations and worse biological response (lower soil respiration and
inhibition of lettuce germination). Non-calcareous soils showed lower As concentrations due to the
higher iron content, which promotes As fixation. Although in both cases, peat addition improves
the biological response, it also showed negative effects, hypothetically due to peat containing toxic
polyphenolic compounds, which in the presence of carbonates appears to be concealed. Both peat
dose tested (2% and 5%) decreased drastically As mobility; however, for calcareous soils, as there
is no phytotoxic effect, the 5% dose is the most recommended; while for non-calcareous soils the
efficient peat dose for As decontamination could be lower.

Keywords: soil remediation; toxicity bioassays; humic substances; calcium carbonate; iron oxides;
polyphenolic compounds

1. Introduction

Soil pollution by potentially harmful elements (PHEs) is a worldwide problem with a diverse
origin, e.g., waste generated by industrial, mining or smelting activities, intensive use of agrochemicals
or wastewater irrigation [1,2]. Reducing the concentration of PHEs in soils is essential to minimize the
current and future impacts produced on surrounding ecosystems. However, due to the high capacity
of soil to retain contaminants, the cost and complexity of the existing techniques is a challenge not yet
solved [3]. Therefore, intensive research is still necessary for the development of profitable, efficient,
and environmentally responsible techniques. As Mirsal [1] states, the properties of the pollutants,
the degree of pollution, and the natural processes that will take place in situ should be considered
for selecting the remediation techniques. Some authors argue that remediation treatments must meet
broad objectives, such as waste volume reduction efficiency, pollutant toxicity reduction efficiency,
and profitability and environmental compliance [4].

Arsenic (As) is a metalloid found in highly variable concentrations in different environments [5].
By its hazard and presence worldwide, As highlights among the PHEs. Currently, its presence is
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associated with both natural and anthropogenic sources, and in many areas, its environmental levels in
the water, sediments, or soils are of major concern due to its high toxicity that often threatens human
health and ecosystems [6]. Besides, arsenic distribution also occurs in several biological species by
direct uptake, thus, it can easily enter the food chain [7]. For all these reasons, many studies about
arsenic pollution have been carried out, and pollution problems have been located in different regions
of the world (hotspots), such as that found in soils of mining areas in China [8]; industrial complexes
in, e.g., Korea [9], Spain [10], and Canada [11]; abandoned mine soils in Australia [12], Brazil [13],
and Spain [14]; agroecosystems in Germany and France [15]; rice fields in major rice-growing countries
(India, Bangladesh, China, Pakistan, Malaysia, Thailand, Japan, and Australia) [16]; and riverside areas
of North East England [17]; among others.

Arsenic concentration in soils varies widely because it depends on the initial concentration
(background) in the parent material, the natural geochemical cycles, and the type of soil [18]. According
to the literature, the mean As values in natural soils varies from 0.1 to 80 mg·kg−1 worldwide [19–22].
As far as government information is concerned, the guideline values proposed for soil protection vary
greatly among countries and legislations. For example, the United States Environmental Protection
Agency (EPA) establishes the permissible limit in 24 mg·kg−1 [23]. Whereas in Andalusia (Spain),
the Generic Reference Level (NGR) applicable to soils polluted with As is 36 mg·kg−1 [24]. In Europe,
other examples of As guideline values are 50 mg·kg−1 [25], 76 mg·kg−1 [26], and 43 mg·kg−1 [27],
for Germany, Netherlands, and United Kingdom, respectively.

Due to the elevated environmental levels of arsenic observed and the risks that it poses for
human health, various technologies, both conventional and more advanced, are being used for arsenic
removal from the soil and water systems [23]. In recent years, among them, stands out the soil/water
phytoremediation, for being a technique that respects the environment [28,29], and other bioremediation
treatments, such as land farming, composting, and biopiles techniques [30]. Another interesting
and frequently used methodology for the decontamination of PHEs is the amendments with organic
compounds, which is characterized by being a highly viable method of reducing concentrations or toxic
effects in polluted soils, and for being economical, efficient, and with good social acceptance [31–34].
The application of organic amendments in soils polluted by PHEs produces important changes in
the main soil properties (e.g., increase pH, boost organic carbon content, increment ion exchange
capacity, raise soil moisture, and improve soil structure) and modifies the solubility and bioavailability
of pollutants [3,35]. Likewise, treating soils contaminated with organic matter facilitates at the same
time the activation of the nutrient cycle and the microorganisms involved; thus, that the ecosystemic
functions that facilitate the long-term remediation of the soil are recovered. Some examples of this
technique are the use of vermicompost [35,36], and, as different researchers point out [37–39], the use
of peatland soils, characterized for their high potential to adsorb different metals such as Ni and
Sb and the metalloid As present in waters. This high potential is likely due to peat having a large
active surface area, a consequence of the high organic matter content, and thus a large number of
adsorption sites. Additionally, adsorption is not the only feasible immobilization mechanism of PHEs
as processes such as precipitation, coprecipitation, and complex formation are also expected and would
aid retention [38,40].

Although the aforementioned studies demonstrate its capacity to adsorb As present in water
(natural water and mine wastewater) and atmospheric depositions, there is little research on the
use of peat in the remediation of As-polluted soils. For this reason, the present study is focused on
the assessment of the remediation capacity of the peat in As-polluted soils. Furthermore, to gain
targeted information about its potential use in soil remediation projects, the proposed experiments
will be carried out both in anthropogenically polluted soils (areas affected by a mining discharge
that present significant residual pollution) [41] and in artificially polluted soils (natural soils that are
polluted in the laboratory), selected from previous toxicity studies [42]. The specific aims will be (i) to
determine the peat doses applicable to soils, depending on their typology, for effective and economical
implementation of the remediation technique; (ii) the assessment of the As mobility and the evaluation
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of soil toxicity through the use of quick and economic toxicity bioassays (soil respiration and seed
germination/root elongation of Lactuca sativa L. tests).

2. Materials and Methods

2.1. Soil Samples

Three soil samples were selected for this study: 1 soil polluted in situ, consisting of the surface
layer (uppermost 20 cm) of an eutric Regosol affected by residual pollution after the Aznalcóllar mine
spill [43] and located in the Guadiamar Green Corridor (AZN); and 2 ex situ (spiked) soils, 1 sampled
from the C horizon of a calcaric Kastanozem (SC), and another from a C horizon of a leptic Regosol
(SNC), both samples were selected by their contrasting properties and were described in Romero-Freire
et al. [44]. In all cases, soil samples were obtained from composite subsamples of the same horizon and
thoroughly homogenized before the analysis. The 2 natural soil samples (SC and SNC) were selected
due to the strong differences in the calcium carbonate content to study the role of carbonates in As
fixation. AZN samples were taken in an area with high residual pollution, which has partially avoided
remediation measures carried out in the area (i.e., the addition of carbonates, clays, and organic wastes)
throughout these years [14].

The main parameters analyzed in the soil samples were: pH (soil:water ratio 1:2.5), electrical
conductivity (EC) (soil:water ratio 1:5), calcium carbonate content (CaCO3), organic carbon (OC),
textural analysis (clay content), cation exchange capacity (CEC), degree of base saturation (BS),
bulk density (BD), porosity (Po), and available water (AW). The main physicochemical properties were
analyzed according to standard analysis methods [45]. On the other hand, in addition to analyzing
total iron content (Fet) by acid digestion in strong acids (HNO3 + HF), free iron content (Fed) and
amorphous iron content (Feo) were also analyzed following the Holmgren [46] and Blakemore [47]
techniques, respectively. All analyses were done in triplicate.

2.2. Peat Characterization

The organic compound selected for remediation treatments in the As-polluted soil samples was
peat from the Agia’s peat bog located in Padul (Granada, Spain), which is an acidic minerotrophic
peat bog (or fen type). To have a correct characterization of the peat, the same properties and same
analytical techniques as for soils have been applied (Table 1). Besides, the fractionation of the organic
carbon (OC) presented in the peat was determined, according to Kononova [48], by the determination
of the Total Humic Extract (THE), Humic Acids (HA), and Fulvic Acids (FA). The polyphenolic profile
of the peat was determined by high-performance liquid chromatography (HPLC) using an Agilent
1200 series® HPLC-DAD-ESI-MS n (Agilent Technologies, Inc.(R), Santa Clara, CA, USA). All peat
analyzes were carried out in triplicate.

2.3. Soil Samples Preparation

The SC and SNC soil samples were spiked with sodium arsenate solutions (Na2HAsO4 × 7H2O)
at different concentration ranges (0, 300, and 600 mg·kg−1 As) under controlled laboratory conditions.
The selected concentrations (well above the permissible limits in soils) were chosen according to the
first guideline values proposed for Andalusia in the industrial areas (300 mg·kg−1 As), and multiplying
the highest concentrations of industrial areas by 2, which had been used in Romero-Freire et al. [42]
where As toxicity in relation to soil properties was studied. Once spiked, soil samples were incubated
for 4 weeks under controlled humidity and temperature conditions to stabilizing the added pollutant
and optimizing the time consumption according to previous observations [41,49,50].

After soil incubation, different peat treatments were applied. Peat doses selected were 0%, 2%,
and 5% with respect to the total dry weight of the samples. These doses were in relation to the organic
amendments used in the Aznalcóllar soil remediation [51] and other restoration plans of mining
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areas [52]. After the application of these amendments, samples were incubated again for another
4 weeks, under the same conditions.

Table 1. Main properties of the selected soil samples and peat (mean ± standard deviation).

Properties AZN SC SNC Peat

pH (H2O, 1:2.5) 6.77 ± 0.07 8.79 ± 0.02 5.87 ± 0.09 3.50 ± 0.14
EC 2 (dS·m−1) 0.40 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 3.10 ± 0.21
CaCO3

3 (%) 0.53 ± 0.04 92.32 ± 0.86 nd 1 nd 1

OC 4 (%) 0.72 ± 0.13 0.38 ± 0.17 0.49 ± 0.02 25.04 ± 0.05
Clay (%) 8.81 ± 0.40 7.70 ± 0.58 8.31 ± 0.12 nd 1

CEC 5 (cmol+ kg−1) 8.46 ± 0.16 2.94 ± 0.13 3.83 ± 0.37 41.77 ± 1.16
BS 6 (%) 97.10 ± 1.12 100.00 ± 0.00 30.70 ± 1.05 66.24 ± 3.35

BD 7 (g·cm−3) 1.56 ± 0.01 1.53 ± 0.02 1.57 ± 0.003 0.32 ± 0.006
Po 8 (%) 41.30 ± 0.51 37.75 ± 0.92 40.60 ± 0.10 83.74 ± 0.01

AW 9 (%) 7.18 ± 0.04 5.38 ± 0.06 7.40 ± 0.03 8.51 ± 0.01
AsT

10 (mg·kg−1) 120.20 ± 0.14 3.39 ± 0.15 4.39 ± 0.10 11.85 ± 0.10
AsW

11 (mg·kg−1) 0.03 ± 0.01 0.01 ± 0.001 0.01 ± 0.001 0.03 ± 0.001
Fet 12 (g·kg−1) 68.40 ± 0.31 16.80 ± 0.35 71.20 ± 0.12 14.40 ± 0.06
Fed 13 (g·kg−1) 26.30 ± 0.25 3.30 ± 0.03 7.80 ± 0.10 0.97 ± 0.04
Feo 14 (g·kg−1) 18.80 ± 0.21 0.01 ± 0.01 1.00 ± 0.06 0.43 ± 0.06

THE 15 (%) - - - 27.26 ± 0.30
HA 16 (%) - - - 22.64 ± 0.20
FA 17 (%) - - - 4.62 ± 0.30

1 non-detected; 2 electrical conductivity; 3 calcium carbonate content; 4 organic carbon content; 5 cation-exchange
capacity; 6 degree of base saturation; 7 bulk density; 8 porosity; 9 available water; 10 total arsenic concentration;
11 water-soluble arsenic concentration; 12 total iron; 13 free iron; 14 amorphous iron; 15 Total Humic Extract; 16 Humic
Acid; 17 Fulvic Acid.

After the incubation period, water-soluble extracts (1:1) were done from treated soils. In the obtained
extracts pH (pHW), electrical conductivity (ECW) were measured with a pH/conductometer 914
Metrohm (Metrohm AG, Herisau, Switzerland) and a EutechTM CON700 (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) conductivity-meter, respectively, and soluble arsenic concentration (AsW) was
measured by inductively coupled plasma–mass spectrometry (ICP-MS) in a spectrometer PerkinElmer
®NexIONTM 300D (Waltham, MA, USA).

In total, 105 treatments were carried out in the 3 different groups of samples: 15 AZN (5 soil
samples × 3 peat treatments), 45 SC (5 soil samples × 3 As treatments × 3 peat treatments), and 45
SNC (5 soil samples × 3 As treatments × 3 peat treatments). Each treatment was identified as follows:
First, an acronym representing the soil sample considered (AZN, SC, SNC), separated by a hyphen the
number that identifies the content in As added (0, 300, 600 mg·kg−1) and separated by another hyphen
the percentage of peat added (0%, 2%, 5%).

2.4. Determination of As Concentrations

Total arsenic concentration (AsT) was determined from acid digestion in strong acids (HNO3 + HF),
and water-soluble arsenic concentration (AsW) was determined from the soil:water extracts (1:1 ratio).
In all cases, As was measured by ICP-MS in a spectrometer PerkinElmer ®NexIONTM 300D (Waltham,
MA, USA). Instrumental drift was monitored by regularly running standard element solutions between
samples. For calibration, 2 sets of standards containing the analyte of interest at 5 concentrations were
prepared using rhodium as an internal standard. Procedural blanks for estimating the detection limits
(3 × σ; n = 6) were <0.21 µg·L−1 for As. The analytical precision was better than ± 5% in all cases.

2.5. Toxicity Bioassays

To evaluate the soil toxicity after peat treatments, 2 short-term toxicity bioassays were selected:
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1. Heterotrophic soil respiration was measured by determining the CO2 flux from treated soils with
a microbiological analyser µ-Trac 4200 SY-LAB model (Neupurkersdorf, Austria) according to
ISO 17155 protocol [53]. Soil moisture content was fixed at field capacity and soils were incubated
at a constant temperature of 30 ◦C. The production of CO2 was determined by absorption in vials
with a solution of potash (KOH 0.2%) during 96 h, and related to the mass of soil used to obtain
a measure of respiration rate. The results were expressed as the basal respiration rate (BR) in
mg·CO2·day−1

·kg−1
·soil. This test was done in triplicate in all studied soil treatments and also

using only peat samples.
2. Seed germination/root elongation of Lactuca sativa L. toxicity test, according to OECD [54] and US

EPA [55] recommendations. This test assessed the phytotoxic effects on seed germination and
seedling growth in the first days of growth [56]. In Petri dishes, 15 seeds of Lactuca sativa L. and
5 mL of soluble extract from the treated soils were placed in an incubator at 25 ± 1 ◦C, and the
number of germinated seeds and the length of the germinated seed roots were measured after
120 h. Two endpoints were calculated: (a) The percentage of germinated seeds (SG) in relation
to the control, and (b) the percentage of root elongation (RE) in relation to the control (distilled
water). This assay was done in triplicate in all treatments.

2.6. Data Analyses

Normality was checked with the Shapiro–Wilk test and homoscedasticity with the Levene
test. As none of these conditions were met, even when transforming the variables, non-parametric
Kruskal–Wallis and Mann–Whitney U test (p < 0.05) for the analysis of multiple comparisons were
applied. Furthermore, in order to analyze the influence of soil properties on the solubility and toxicity
of arsenic, Spearman correlation analysis involving soil properties, peat doses added, water-soluble
arsenic concentrations, and endpoints of the toxicity bioassays (BR, SG, and RE) were also performed.
All these analyses were performed with a confidence level of 95% by using SPSS v.21.0 software
(SPSS Inc.(R), Chicago, IL, USA).

3. Results

3.1. Properties of the Soil and Peat Samples

Results observed for the Aznalcóllar polluted field soil (AZN) showed slightly acidic pH,
low content of carbonates (<1%), and moderate electrical conductivity. Whereas the AsT level
(>100 mg·kg−1) and the levels of iron oxides (Fed and Feo) were higher than in the reference soils.
The reference soils (SC and SNC) differed from each other by the content of carbonates, pH, degree of
base saturation, and the contents in the different forms of Fe, with much higher Fe contents in the SNC
samples. The total As (AsT) concentrations were similar, with average content below the considered
background level of 29 mg·kg−1 [57] (Table 1).

The peat selected had an acidic pH, a high electrical conductivity of 3.10 dS·m−1, and a
degree of base saturation of more than 50%; it showed low bulk density (BD) and, consequently,
high porosity (Po). The organic carbon content (OC) was 25.04%, of which 27.26% corresponds
to Total Humic Extract (THE). This THE was divided into 22.64% Humic Acids (HA) and 4.62%
Fulvic Acids (FA). Peat showed a total iron content (Fet) of 14.40 g·kg−1, and AsT of 11.85 mg·kg−1,
of which 0.03 mg·kg−1 was soluble in water (<1%) (Table 1). The polyphenolic profile of the peat
identifies three compounds: 4-hydroxybenzoic-4-glucoside acid (662 mg·kg−1), p-coumaroylquinic
acid (1222 mg·kg−1), and lariciresinol-sesquilignan (4783 mg·kg−1), representing 0.66% w/w of the total
peat, with the phenolic compound lariciresinol-sesquilignan being the most abundant (Figure S1).

3.2. Arsenic Solubility

The leachate from the AZN samples showed acidic pHW without statistically significant differences
among the peat treatments. Whereas, ECW increased significantly with additions of 2% and 5% of
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peat (0.44 and 0.53 dS·m−1, respectively). In SC soils spiked with As, the addition of peat decreased
the pHW significantly. Similar results were obtained in the SNC samples, but with lower pHW values.
In addition, it was observed that the addition of As significantly increased the pHw due to the fact
that As had been added in the form of sodium arsenate solutions (Na2HAsO4 × 7H2O). Regarding the
ECW, it was observed that in almost all treatments with As and peat, the EC of the leachates increased
significantly, except in the SNC-300-2 and SNC-600-2 treatments, where there were no significant
differences (Table 2).

Table 2. The pHW, electrical conductivity (ECW) in water-soluble extract (1:1), and water-soluble As
content (AsW) in the three studied soil samples with the different addition of As and peat (mean ±
standard deviation).

Soil AZN SC SNC

As (mg·kg−1) 120.2 0 300 600 0 300 600

Peat (%) pHW (1:1)

0 4.49 ± 0.08 a 7.16 ± 0.23 aA 7.76 ± 0.03 bB 7.91 ± 0.07 cB 3.78 ± 0.15 aA 6.25 ± 0.73 bB 6.45 ± 0.14 bB
2 4.59 ± 0.08 a 7.08 ± 0.02 aA 7.20 ± 0.09 aAB 7.31 ± 0.02 bB 3.72 ± 0.09 aB 5.46 ± 0.09 aA 5.67 ± 0.08 aA
5 4.67 ± 0.08 a 6.90 ± 0.02 aA 7.02 ± 0.09 aAB 7.13 ± 0.02 aB 3.64 ± 0.10 aB 5.32 ± 0.09 aA 5.53 ± 0.07 aA

Peat (%) ECW (1:1) (dS·m−1)

0 0.39 ± 0.01 a 0.13 ± 0.01 aA 0.49 ± 0.01 aB 0.89 ± 0.05 aC 0.04 ± 0.01 aA 0.18 ± 0.01 aB 0.33 ± 0.02 aC
2 0.44 ± 0.07 b 0.19 ± 0.01 bA 0.52 ± 0.01 bB 0.95 ± 0.03 abC 0.10 ± 0.01 bA 0.19 ± 0.01 aB 0.33 ± 0.01 aC
5 0.53 ± 0.07 c 0.28 ± 0.02 cA 0.61 ± 0.00 cB 1.01 ± 0.03 bC 0.19 ± 0.01 cA 0.28 ± 0.02 bB 0.42 ± 0.01 bC

Peat (%) AsW (1:1) (mg·kg−1)

0 0.026 b 0.010 bA 152.513 bB 337.450 bC 0.019 bA 26.427 bB 118.123 bC
2 0.014 a 0.004 aA 0.759 aB 2.588 aC 0.015 abA 0.450 aB 2.592 aC
5 0.013 a 0.006 aA 0.113 aB 0.289 aC 0.004 aA 0.157 aB 0.631 aC

Lowercase letters indicate statistically significant differences for each As treatment with different peat additions;
and capital letters among the different treatments with As for the same peat content (Kruskal–Wallis test, p < 0.05).

Soluble As (AsW) decreased significantly with peat treatments, regardless of the percentage of
peat applied and for all treatments with As. In AZN-0, AsW was low (0.026 mg·kg−1); even so, the peat
treatments significantly decreased the As solubility, with a reduction of 46.15% in AZN-2 and 50.00%
in AZN-5 compared to AZN-0, respectively. In the reference soils, once polluted, different amounts of
AsW were obtained but far from the total As added, showing SC higher AsW than SNC. In SC-300-0 and
SC-600-0, the reduction of AsW in relation to the dose of As added was 49.16% and 43.76%, respectively;
and in SNC-300-0 and SNC-600-0, the reduction was 91.99% and 80.31%, respectively. The addition
of peat significantly enhanced arsenic retention. Peat additions at 2% and 5% decreased AsW with
respect to the no addition by more than 98% in all samples. This decrease in AsW was even observed,
and significantly, in the reference soil samples when adding peat (Table 2).

3.3. Assessment of Peat Treatments Adequacy from Bioassays. Arsenic Solubility

3.3.1. Basal Soil Respiration

The basal soil respiration test was also done with the peat alone, showing basal respiration (BR)
values of 101.84 ± 9.94 mg·CO2·day−1

·kg−1
·soil. BR increased significantly as the amount of peat added

increased in AZN soils. In calcareous samples (SC), the increase in pollution without peat additions
(SC-300-0 and SC-600-0) showed a slight, but not significant, decrease in BR. Peat additions significantly
increased BR up to about 100 mg·CO2·day−1

·kg−1
·soil. Peat at 2% significantly increased BR compared

to the no peat addition. Peat at 5% further increased the respiration rate, with significant differences
among the three As treatments. Similar results were obtained in the non-calcareous samples (SNC)
with higher levels in BR than in SC. Treatment with 2% of peat considerably increased the BR, being
higher in the reference sample and decreasing significantly with As addition. The addition of 5% of
peat showed a significantly increases BR with values >100 mg·CO2·day−1

·kg−1
·soil. Comparing the
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results obtained for the same pollution level with increasing peat dose, significant differences appeared
between SNC-300-2 and SNC-300-5, and between SNC-600-2 and SNC-600-5 (Figure 1).

Figure 1. Basal respiration rate (BR) for soil samples with different treatments. Lowercase letters
indicate statistically significant differences for each treatment with different peat additions; and capital
letters among the different treatments with As for the same peat content (Kruskal-Wallis test, p < 0.05).

3.3.2. Germination and Elongation Test with the Lactuca Sativa L. Plant

AZN soil showed a low germination rate for AZN-0 and AZN-2, respectively, and even lower for
the higher peat treatment (AZN-5), but without significant differences between peat treatments. In SC
soils, without As addition, reported germination of 100%, whereas with As addition, it completely
inhibits the Lactuca sativa L. seed germination (Figure 2). The addition of peat in the polluted SC
soil entailed a high germination rate. In non-calcareous soil (SNC), the germination test showed
substantially different results compared to calcareous soil (SC). When there was no addition of peat,
the germination of Lactuca sativa L. occurred in the three As treatments. In both SNC-0-0 and SNC-300-0,
the germination was 100%, while in the SNC-600-0, germination decreased significantly by 43%.
Besides, peat treatments decreased SG in all treatments without showing significant differences due to
the high dispersion in the data (error bars).

Figure 2. Percentage of germination for Lactuca sativa L. seeds (SG%) exposed to the different soils
and treatments. Lowercase letters indicate statistically significant differences for each treatment with
different peat additions; and capital letters among the different treatments with As for the same peat
content (Kruskal-Wallis test, p < 0.05).
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In AZN soil, a trend to decrease the percentage of RE with the increase of added peat was observed.
In calcareous soils (SC), without As addition, RE was 97%. However, samples polluted with As, due to
the total inhibition of germination, did not record data on root elongation. However, it is interesting to
note that the addition of peat favored RE with values even higher than 100%. Only in the treatment
with 600 mg·kg−1 of As, RE was lower, but a clear increase was observed with the amount of peat
added. For SNC soils, RE was >100% in SNC-0-0, while it decreased significantly with the addition
of As, SNC-300-0 (15.7%), and SNC-600-0 (3.3%). Moreover, peat addition to the reference soil SNC
caused a significant decrease in RE. In the treatments with 2% and 5% peat addition, there were no
statistically significant differences in the RE values. However, when 2% of peat was added, there was
an increasing trend in RE; while, when 5% was added, RE was reduced not significantly (Figure 3).

Figure 3. Lactuca sativa L. root elongation (RE%) in the soils with different treatments. Lowercase letters
indicate statistically significant differences for each treatment with different peat additions; and capital
letters among the different treatments with As for the same peat content (Kruskal-Wallis test, p < 0.05).
Values higher than 100% indicate hormesis.

3.4. Relation between Soil Properties and Their Recovery

In SC samples, higher As solubility (Table 2) is related to soil toxicity by the endpoints used
in toxicity bioassays (BR, SG, and RE) (p < 0.01). However, the addition of peat improves the three
endpoints with a high degree of significance (p < 0.01). While, in the SNC and AZN samples,
with no or few carbonates, the treatment with peat only shows a direct correlation (p < 0.01) with the
respiration bioassay (BR). In both soil samples, iron oxides (Fed and Feo) were inversely correlated
with water-soluble As concentration (p < 0.01), whereas other soil properties such as OC and CEC
were directly correlated. Note that in these cases, the behavior of As pollution on the Fed and Feo
content was uneven, with no correlation in SNC samples, and high direct correlation (p < 0.01) in the
case of the AZN samples (Table 3).

Table 3. Spearman correlations between different soil samples, remediation treatment with peat, and
the solubility of As in soils.

Variables Peat RE 2 SG 3 BR 4 EC 5 pH 6 OC 7 CEC 8 Fed 9 Feo 10 BD 11

AZN
Peat - - - 0.986 ** 0.993 ** −0.761 ** 0.971 ** 0.988 ** −0.933 ** −0.968 ** −0.999 **

AsW
1 −0.787 ** - - −0.770 ** −0.803 ** 0.661 * −0.739 * −0.792 ** 0.778 *** 0.766 ** 0.801 **

SC
Peat - 0.662 ** 0.583 ** 0.839 ** - −0.733 ** 0.944 ** 0.994 ** 0.916 ** 0.987 ** −0.824 **

AsW
1 −0.558 ** −0.828 ** −0.913 ** −0.742 ** - 0.896 ** −0.521 ** −0.550 ** −0.346 ** −0.550 ** -

SNC
Peat - - - 0.916 ** 0.452 * - 0.999 ** 0.939 ** −0.874 ** −0.918 ** −0.994 **

AsW
1 −0.492 ** - - −0.559 ** - 0.557 ** −0.490 ** −0.461 ** - - 0.472 **

1 water-soluble As concentration; 2 Lactuca sativa L. root elongation; 3 Lactuca sativa L. seed germination; 4 basal soil
respiration rates; 5 soil electrical conductivity (1:5); 6 soil pH (1:2.5); 7 organic carbon content; 8 cation-exchange
capacity; 9 free oxides iron; 10 amorphous iron; 11 bulk density. * p < 0.05; ** p < 0.01.
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4. Discussion

According to the different doses of peat added, we observed that the adsorption processes on
colloidal fractions of the soils played a key role in the As solubility. Although the cation exchange
capacity (CEC) and the organic carbon (OC) content of the analyzed soil samples was low, peat additions
increased the soil OC content, as well as the total humic extract and humic and fulvic acids, which
provides an important content of reactive colloidal fractions that allow the complexation of the different
chemical forms of As (mainly arsenates) [58]. The additions of 2% and 5% of peat enhance arsenic
retention above 98% in most cases (except in AZN), thus reducing its solubility. These results are
consistent with other studies proposing the use of peatland materials for the decontamination of
waters polluted with As and other PHEs, from, e.g., gold mines in Finnish Lapland [38] or Northern
England [59], among others. In the present study, soil properties such as pH, iron oxides content (Feo)
and OC are essential to As retention probably due to the influence they exert on the control of speciation,
bioavailability and solubility of As in soils [60,61]. Soil pH controls strongly the adsorption processes of
the arsenic in the soil [62]. Authors such as Jones et al. [63], Simón et al. [64], and Tyler and Olsson [65],
among others, agree that within the soil pH range (3.8 to 6.3), arsenic is more easily adsorbed, while
arsenic precipitation could decrease from pH > 6.5. These data agree with the obtained results, since
the different treatments with As, both in the SC and SNC soil samples, reveal a slight tendency to
increase the As solubility when the pH of the solutions increases. For example, in non-calcareous soil
samples (SNC) polluted with 300 and 600 mg·kg−1 As, without peat additions, the AsW concentration
is lower with respect to calcareous soil samples (SC) with a basic character. This, in addition to the
action of iron oxides, is because the pH in SNC is below 6.5. However, this increase in solubility
is minimal since it is damped by the action of remediation with peat. Thus, when the pHW of the
solution is basic and Ca2+ dominates in the cation exchange complex, it plays an important role in the
As adsorption promoting binding bridge between the forms of arsenate and the humic substances
of the peat, decreasing the As solubility, as it was observed in the SC samples, by the formation of
organo-mineral complexes [66]. On the other hand, in the case of SNC samples, the acidic pH of
the solution and the higher content of iron oxides, allow the co-precipitation of As with Fe and peat,
thereby justifying the decrease in the As solubility, compared to the samples not treated with peat.
Coinciding with Mukwaturi [67], the added organic matter is likely to play an important role in the
formation of complexes between organic matter, Fe (III) and As, leading to an immobilization of the
arsenic. However, without peat additions, the content of AsW was much lower than that added, which
shows the greater retention power that iron oxides perform compared to carbonates coinciding with
the stated by Kabata-Pendias and Pendias [5] and Pierce and Moore [68]. In fact, in anthropogenically
polluted soil samples (AZN), although the AsT concentration was 120.2 mg·kg−1, it showed a low As
solubility that could be largely controlled by the high amount of iron oxides present.

The observed decrease in As solubility showed positive results in the microbial activity of the
soils, according to Spearman’s correlation. However, this increase in microbial activity measured by
basal soil respiration appears to be related to the addition of peat rather than the consequent reduction
in As solubility; as the addition of peat improves physicochemical properties such as OC content
and porosity (Po), and activates soil biota [69]. Kumpiene et al. [70], stating that peat amendments in
soils polluted with As and high levels of Fe do not show toxicity to microorganisms, and, therefore,
it is the most efficient method of reducing As dissolved in water retained in soil pores and in depth,
most likely as a result of low soil density and good air diffusion in the soil, as could be deduced
for AZN soil samples. Similarly, Niemeyer [71] obtained a good positive correlation between added
organic amendments and basal respiration. However, other researchers maintained that the respiration
of certain microorganisms can be reduced by humus-rich peat extract and concluded that they can
have a toxic effect [72].

In the Lactuca sativa L. phytotoxicity test, the calcareous samples (SC), where the seeds do not
germinate at any of the As levels of pollution when they are treated with peat, showed a clear positive
response in seed germination (SG) and root elongation (RE), even higher than that obtained in the
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controls. However, in the samples with no or low carbonates (SNC and AZN), peat addition did not
have a positive influence on SG and, consequently, on RE. Conversely, the addition of peat to SNC
and AZN on the Lactuca sativa L. bioassay showed a negative effect probably caused by the toxic role
that polyphenolic compounds such as lariciresinol-sesquilignan, which is found at a high level in the
peat, can play. In this sense, Nishiwaki et al. [73] examined the lariciresinol stereoisomers effect on
the growth of plants like Lactuca sativa L., and observed that most of the diastereomers reduced the
growth of Lactuca sativa L. at a rate between −20.7% and −1.6%. Likewise, Cutillo et al. [74] observed
inhibition of germination of Lactuca sativa L. between 50% and 75% at low concentrations of various
derivatives of lignans. A toxic effect caused by polyphenolic compounds that appear to be concealed
when calcium carbonate is present, as it does not occur in carbonate soil samples.

Finally, if we compare the influence that the peat dose added had in the bioassays, we observed
that in calcareous soil (SC) samples, 5% peat slightly improved the respiration rate in soils with
high pollution (600 mg·kg−1 As) compared to the 2% peat dose. However, this fact is much more
prominent in the samples of non-calcareous soil (AZN and SNC) for the proportion of 5% peat in both
levels of pollution by As, which agrees with what has been reported by other authors studying the
influence of iron oxides rich-amendments, like the peat, in the restoration of As-polluted mine soils [75].
Likewise, the addition of 5% peat is much more effective than the 2% in terms of root elongation
for Lactuca sativa L. in calcareous soil (SC) since it buffers the phytotoxic effects of the polyphenolic
compounds even at the 600 mg·kg−1 As level of the SC samples. However, for non-calcareous soils,
the addition of a higher dose of peat has a large negative effect on SG and RE that does not compensate
for the greater reduction in the As solubility. Taking into consideration all this, and that the reduction
in As solubility achieved with the addition of 5% is greater than with the addition of 2%, although,
without statistical significance, the dose of peat to be added as the most recommended amendment for
calcareous soils is 5%, while for non-calcareous soils it is 2% since it reduces the solubility and the
phytotoxic effect of polyphenolic compounds is less severe.

5. Conclusions

The application of peat as an organic amendment in As-polluted soils showed high efficiency
in fixing As in both natural and artificially polluted soils, regardless of the presence of calcareous
properties in the soils. While soils fix some of the added As, increasingly with higher iron oxide content
in the soil, additions of 2% and 5% of peat greatly enhance arsenic retention, with values above 98% in
most cases. Peat addition increases OC, total humic extract, and humic and fulvic acids, providing
important colloidal reactive fractions that allow the complexation of the As compounds, reducing As
solubility. Soil As toxicity differs according to soil properties and peat addition. Biological response to
arsenic additions was worse (lower soil respiration and inhibition of Lactuca sativa L. seed germination)
in calcareous soils than in non-calcareous soils, and the former soils showed the greatest improvement
in biological response by lowering As toxicity with peat amendments. In fact, in non-calcareous soils,
peat addition has a negative effect on the biological response since peat contains large quantities of
polyphenolic compounds such as lariciresinol-sesquiligninan that have a phytotoxic effect, which in
the presence of carbonates appears to be concealed; thus additional studies are needed to assess the
potential toxicity of the use of peat as an organic amendment and to prevent hazards derived from
the environmental management of the As-polluted soils. Since, although both doses of peat tested
(2% and 5%) drastically reduced As mobility in calcareous soils, the 5% dose is the most recommended
due to the great reduction of As and the absence of phytotoxic effect by polyphenolic compounds;
while, in non-calcareous soils, the recommended dose is 2%, although peat amendment should be
added carefully in these soils to avoid phytotoxic effects.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/11/968/s1,
Figure S1: Chromatogram of peat—Determination of polyphenolic profile of the peat.
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