A Survey on Fingerprint Minutiae-based Local Matching for
Verification and Identification: Taxonomy and Experimental
Evaluation

Daniel Peralta®, Mikel Galar®, Isaac Triguero®?, Daniel Paternain®, Salvador Garcia®P*,

Edurne Barrenechea®, José M. Benitez®, Humberto Bustince®, Francisco Herrera®

%Dept. of Computer Science and Artificial Intelligence. University of Granada, 18071 Granada, Spain
bFaculty of Computing and Information Technology - North Jeddah, King Abdulaziz University, 21589,
Jeddah, Saudi Arabia
¢Departamento de Automdtica y Computacion, Universidad Publica de Navarra, Pamplona, Spain
dInflammation Research Center, a VIB-UGent Dept. UGent Dept. of Internal Medicine, Respiratory
Medicine (GEO1) Technologiepark 927, B-9052 Zwijnaarde, Belgium.

Abstract

Fingerprint recognition has found a reliable application for verification or identification of
people in biometrics. Globally, fingerprints can be viewed as valuable traits due to several
perceptions observed by the experts; such as the distinctiveness and the permanence on
humans and the performance in real applications. Among the main stages of fingerprint
recognition, the automated matching phase has received much attention from the early
years up to nowadays. This paper is devoted to review and categorize the vast number
of fingerprint matching methods proposed in the specialized literature. In particular, we
focus on local minutiae-based matching algorithms, which provide good performance with
an excellent trade-off between efficacy and efficiency. We identify the main properties and
differences of existing methods. Then, we include an experimental evaluation involving the
most representative local minutiae-based matching models in both verification and evalua-
tion tasks. The results obtained will be discussed in detail, supporting the description of
future directions.
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1. Introduction

Automatic fingerprint recognition has been one of the most known and used biometric
authentication systems during the last decades. It has been used for personal verification
and identification with great achievements [76]. A vast number of applications incorporate
fingerprint recognition as basics, such as forensics, building accessing, ATM authentication
or secure payment [113]. There are some other human characteristics that can be used as
traits of a biometric system, such as the person’s face, the retina or iris [16], the voice,
etc. There is no trait that highlights as the best one. However, on average, fingerprints
offer good capabilities in all properties analyzed by the experts and excellent results in
distinctiveness [126], permanence and global performance [113]. Although the recognition
is not as accurate as with other traits, it provides a good balance between accuracy, speed,
resource requirements and robustness.

Independent of the type of task, either verification [72] (one-to-one comparison) or iden-
tification (search for an input fingerprint in a database) [80], it is necessary to perform a
sequence of operations to build a template database and later use the system. Assuming
that there is a database and that proper enrollments have been previously taken, the order
of the operations for both tasks is given by: a capture of the fingerprint, a feature extraction
stage, a matching and a pre-selection or filtering [85] (which is associated to identification
tasks only). The capture of the fingerprint obtains an image that is not usually stored as
such in the database. Instead, a feature extraction process is applied to obtain up to three
levels of features [60]: level 1 features provide, at the global level, information of singular
points and ridge line flow or orientation; level 2 features, at a local level, refer to minutiae
details which usually correspond to bifurcations and ridge endings; and level 3 features, at
the very-fine level, include features inside the ridges such as width, shape, curvature, dots,
etc. These features are only observable in high resolution images.

Once a set of features is extracted from the fingerprint image, the final goal is to find
(or confirm) the identity of a person whose fingerprint has been previously enrolled into the
system. The matching mechanism is the responsible to provide a likeliness score between
two fingerprints. Most of the efforts in matching are with the use of minutiae details,
although there are other types of matching methods based on correlations of images, other
types of features and even on level 3 features. Minutiae matching consists of finding the
alignment between two templates that results in the maximum number of minutiae pairings.
Furthermore, minutiae matching can be classified as local or global [81], aligned or not [189],
etc; all the categories will be detailed in this paper.

Many fingerprint matching algorithms have been proposed in the literature, and the
operations with features they use are sometimes similar or even repeated. In spite of the
existence of some reviews on the topic, such as [174, 113, 71|, they are not explicitly focused
on matching and the characteristics of the methods are not completely studied or categorized.
This issue may lead to a lack of unification and even to propose very similar matching
methods in the future. Moreover, there are few attempts to empirically compare them.

In this sense, the motivation of this paper can be segregated into three main objectives:

e To gather and briefly describe all the matching methods proposed in the specialized
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literature.

e To offer an entire taxonomy based on the main processes and properties observed in
the matching methods. It allows us to understand the reasons to choose the most
suitable matching algorithm depending on the circumstances.

e To conduct an empirical study analyzing the most important local minutiae-based
matching algorithms in terms of accuracy and speed throughput when they are applied
to both verification and identification tasks.

The rest of this paper is organized as follows. Section 2 provides the necessary back-
ground in fingerprint minutiae matching. In Section 3, we introduce the main proper-
ties and the taxonomy for the matching methods. Next, Section 4 overviews the current
trends in fingerprint matching. In Section 5, experiments on several data sets compare
some of the most important local minutiae-based matching methods. Finally, Section 6
concludes the paper, including some original opinions for instruction in theory and appli-
cation and future research directions. Additional material to the paper can be found at
http://sci2s.ugr.es/MatchingReview/.

2. Background in Fingerprint Minutiae Matching

Fingerprint matching is a crucial step in both verification and identification problems.
Roughly, a fingerprint matching algorithm compares two fingerprints and returns either
a degree of similarity (a real number bounded into an interval) or a dichotomic output
(matched or non-matched). Hereafter, we use the representation of the fingerprint acquired
by enrollment as the template (7") and the representation of the input fingerprint (7). Two
fingerprints are called genuine if they represent the same finger, and impostor when they
are different.

Several factors make fingerprint matching a very challenging problem [113]: image noise,
skin condition, distortions, rotations, displacement, etc. There are two well-known properties
in fingerprints: large variability in different impressions of the same finger (large intra-class
variations) and much similarity between two images from different fingers (small interclass
variations).

The most popular and used technique is the minutiae-based matching. Subsequent sub-
sections will detail the main concepts of minutiae-based matching (Subsection 2.1), including
the distinction between global and local matching (Subsection 2.2) and feature extraction
techniques that are commonly used to obtain the minutiae for matching (Subsection 2.3).

2.1. Minutiae-based Matching

The output of a minutiae extraction stage is, at least, a set of minutiae. Each minutia
is represented by its location coordinates and orientation angles, forming a 3-tuple M =
(,y,0). T and [ fingerprints have m and n minutiae, respectively. A minutia M; in [
is considered matched with a minutia M; in T when it falls within the tolerance box of
M;. The tolerance box is defined as the maximum spatial distance and direction difference
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permitted to compensate unavoidable errors made by minutiae extractors and positioning
changes produced by distortions.

Obviously, it is mandatory to obtain the optimal displacement and rotation alignment
of fingerprints in order to maximize the number of minutiae matched. This also includes
scaling and advanced geometrical transformations. After alignment, a matching score for
the two fingerprints is calculated. To do this, the pairing function between minutiae M; and
M; must be found, assuming that each minutia has either exactly one matched minutia in
the other fingerprint or has none at all. Achieving the optimal pairing is not a trivial task
when the correct alignment is not known, as it usually happens in practice. For instance, a
minutia of I may fall within the tolerance box of two or more minutiae of 7. An assignment
algorithm, preferably fast or greedy, is usually employed for this task.

Finally, the matching score could be formulated as follows:

k
(n+m)/2
where k is the number of matched minutiae. It is a simple expression usually shared among

matching algorithms. However, advanced models normally exploit further information such
as the minutiae quality and adjusted parameters by using optimization techniques.

matching_score =

2.2. Global and Local Minutiae Matching

Fingerprint minutiae matching can be firstly divided into two families of methods:

e Global minutiae matching: the algorithms of this kind tackle the alignment process by
taking into consideration all the minutiae as a whole set in a global manner. Since the
number of components to be aligned are, at least, three (two directions and the angle),
they may require high computational resources and often the usage of a pre-alignment
stage that is based on other features extracted such as singular points or orientation
maps.

e Local minutiae matching: they consist of comparing two fingerprints according to
local structures of minutiae. These structures are formed by considering different
relationships based on proximity between closer minutiae. They are characterized by
properties that are invariant regarding global transformations, such as translations
and rotations. Thus, they do not take into account global relationships and allow to
make matching with partial information.

The benefits of local minutiae matching are simplicity, low computational complexity
and distortion tolerance, whereas global minutiae matching techniques lead to high distinc-
tiveness. However, all of these benefits could be achieved by using hybrid strategies that
perform a local minutiae matching followed by a consolidation stage. The former step deter-
mines pairs of minutiae that locally match and extracts a subset of candidate alignments for
I and T'. The latter step, which is not strictly mandatory, is aimed at checking the degree
in which local matches support global matching.
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Table 1: Enumeration of representative global minutiae matching algorithms

References Main Property
[138, 101] Hough transform-based approaches
[72, 107, 37] Ridge-based relative pre-alignment
[47, 189] Global matching of clusters of minutiae
[157, 11, 28, 163] | Algebraic geometry-based approaches
(30, 83] Singularity-based relative pre-alignment
[140, 98, 118] Warping modeling-based approaches
[120] Minutiae matching with tesselated local information
[161] Global minutiae matching with image correlation
[66, 104, 175, 82] | Orientation image-based relative pre-alignment
[151, 145, 144] | Global matching by evolutionary algorithms
[78, 92] Weighted global matching with adjustment of scores
(32, 160] Hierarchical and/or multilevel minutiae matching

Recently, most of the proposals of fingerprint minutiae matching designed to be imple-
mented in real systems have given up the idea of global matching in favor of local matching.
Nevertheless, although the focus of this paper is to review the properties and methods be-
longing to local minutiae matching, we also provide an enumeration of the most influential
global minutiae matching methods proposed in the specialized literature (see Table 1).

2.3. Feature Extraction Techniques

This section is devoted to briefly identify the subset of feature extraction techniques fre-
quently used in conjunction with fingerprint minutiae matching. It is worth mentioning that
an exhaustive review of existing techniques can be found in [113]. Next, we will summarize
the most representative algorithms according to their usage in practice and in subsequent
matching approaches proposed in the literature:

e Fingerprint segmentation [108, 34].

e Local orientation map estimation [125, 137, 4].

e Local ridge frequencies estimation [65, 109].

e Singular and core points searching [85, 74, 139, 86].

e Alignment of local orientations and ridge frequencies [27].
e Fingerprint binarization [125, 65].

e Fingerprint skeletonization [180, 58, 106].

e Minutiae extraction [1, 108].



e Spurious minutiae removal [153, 12, 184, 95, 129].

3. Local Minutiae Matching: Properties, Methods and Taxonomy

In the following, we present the taxonomy of minutiae-based local matching methods
and the properties used to build it. First, in Subsection 3.1, the essential characteristics,
which will define the categories of the taxonomy, will be outlined. Next, in Subsection 3.2,
we will enumerate all the minutiae-based local matching methods proposed in the scientific
literature. Then, each method will be categorized according to the studied properties to
provide a comprehensive taxonomy.

3.1. Properties for Categorizing Local Matching

This subsection provides a framework for the organization of the matching methods that
will be presented in Subsection 3.2. The aspects discussed here include (1) topology of local
structure, (2) type of consolidation, (3) usage of additional features, (4) minutiae peculiar-
ities and (5) parameter learning. These mentioned facets are involved in the definition of
the taxonomy, because they determine the way of operation of each matching technique.

3.1.1. Topology of local structure

Local matching is based on the computation of the similarity between local regions
of two fingerprints, for the sake of achieving the desired invariance regarding translations
and rotations. In minutiae matching, regions are associated with subsets of minutiae that
present some kind of relationship, mainly based on location and proximity. Hence, the
subsets of minutiae are organized into local structures and they can be built under different
assumptions:

e Nearest Neighbors (NN): local structures are formed by a central minutia and a certain
number of its nearest neighbor minutiae. The number of neighbors is specified as an
input parameter and the local structures are usually defined by distances, directions
and angles between pairs of minutiae.

e Fixed Radius: it creates a local structure from a central minutia by using a maximum
distance (dpq;) in the graph (V;, E;) defined as: (1) a set of vertices V; containing all
the minutiae whose spatial distance is less than or equal to d,,., and, (2) a set of
edges E; connecting the central minutia and every vertex in V;. The distance d,, 4. is
specified as an input parameter and the local structures are defined by the set of edges
in clockwise traversing, by using distances as well as absolute and relative angles.

e Texture mixed: a local structure is defined as a feature vector that contains proper
information extracted from the minutia and other types of information coming from
additional features extracted from the fingerprint image, such as local orientation, ridge
frequency, gray-scale image properties or sampling of equidistant points following the
ridge starting from the minutia, from neighbor ridges or organized in a circular pattern
around a central minutia. This aspect is closely related to the use of additional features
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(third property described in this subsection), which indicates the source of the extra
information used in the local structure. Also, if the matcher has the Ridge Properties
(within the Peculiarities in Minutia aspect), activated, this is a symptom of using the
aforementioned sampling.

e Minutiae Triplets: firstly used for indexing approaches, they are also interesting to
yield local structures. Triplets may be built by some type of triangulation or by
using all possible combinations of triplets in local regions. The local structures use
information regarding angles of the vertices, length of the sides and some triangle
properties such as direction, orientation, etc.

e K-Plet: it is an extension of the NN local based structure where it is ensured that
the nearest neighbors minutiae are equally distributed in the four quadrants around
the minutia.

e Minutia Cylinder: as an extension of fixed radius local structures, it allows a fixed
length invariant coding for each minutia based on a discretization of a cuboid into
cells. The cylinder is set up by using the radius as the base and the direction difference
between minutiae as the height. It also allows binary representation of local structures
for fast matching.

3.1.2. Type of consolidation

Although the partial scores obtained from the comparison of local structures could
straightaway get a final matching score, it is common to develop a further consolidation
stage in order to check whether the local similarity is supported at the global level or not.
It adds an extra stage to evaluate the coherence among spatial relationships taking the local
structures as basic elements. It is very useful in some cases, in which local structures could
match in fingerprints from different fingers, independent of the fingerprint region that they
represent. Different consolidation techniques have been proposed and can be easily isolated
from the rest of the properties studied in this section:

e Single transformation: it is the simplest consolidation idea, based on the alignment
of T" and I by using the best transformation resulting from a local structure matching.
A common procedure is to estimate a very limited number of pairs of local structures
that received the highest matching scores and then to use the translation and rotation
obtained from them to carry out a global alignment for the remaining minutiae.

e Comnsensus of transformations: it tries to evaluate to what extent each transformation
obtained from a local structure matching is consistent with the others. Another manner
is to assess the maximum number of consistent individual transformations. There are
different approaches to calculate this estimator, although the most common one is to
check that a subset of the most similar local structures remains consistent.

e Multiple transformations: due to the fact that the best transformation coming from
the most similar local structures is not the best transformation at the global level,
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multiple transformations may be used by: (1) selecting the final transformation ac-
cording to the highest score achieved in the final pairing stage, (2) restricting the
global matching to regions adjacent to each reference pair, or (3) fusing the results of
multiple registrations.

e Complex transformation: this group includes transformations which are based on
complex models to alleviate deformations and plastic distortions. For instance, there
are models that apply a thin-plate spline to represent elastic deformations, or use the
Parzen window to estimate the probability density.

e Incremental consolidation: when arranging the local structures into a graph, con-
necting the minutiae by the edges, the matching can be performed trough a dual graph
traversal algorithm in a breadth-first fashion. At the end of the route, the algorithm
returns the number of matched nodes. This process is repeated for every pair of
minutiae and the best solution is finally chosen.

3.1.3. Use of additional features

We call as additional features those cases in which local structures also incorporate infor-
mation gathered from other external sources. They may come from other feature extraction
processes such as the local orientation image or the local ridge frequency estimation. Once
again, we would like to emphasize that the additional features must be external with respect
to the minutiae extraction algorithm. Thus, these additional features can cooperate with

the mandatory features associated to minutiae (minutiae position and direction) defined by
standards like ISO/IEC 19794-2. The external additional features used are the following:

e Ridges Frequency (RF): a local ridges frequency represents the local average pixel
distance between ridges. It can be used either as a local feature associated to a certain
region (or minutia) of the fingerprint image, when it is relativized with respect to
the global ridges frequency of the fingerprint, or to normalize distances between two
minutiae as a method of palliating the effect of distortion.

e Core points: the locations and orientations of core singularities are extracted from
the fingerprint images for supporting the decision made by the local matching. For
instance, they could be used to perform a relative pre-alignment, discarding those
minutiae that are far from the original directions, or to involve only those minutiae
that are close to them.

e Local Orientation (LO): locally, a fingerprint has a well-defined orientation field given
by the ridge direction in a certain region of the image. In order to estimate it, it is
normal to define a window size (ranging from 8 x 8 to 16 x 16) in order to quantize the
average direction into 8 or 16 angles. The local orientation is then a number associated
to a region of the fingerprint and it can be also associated to a central minutia of a
local structure.



e Gray-Scale Images (GSI): they include texture information such as regions of gray-
scale fingerprint images enhanced by filters, derived from variances among pixels, ob-
tained by Gabor expansion or FingerCode textures [75].

3.1.4. Peculiarities in minutiae

Unlike the previous property, we define as a peculiarity in minutiae the additional infor-
mation closely related to the minutia that can be extracted by using an advanced minutiae
extractor. They are considered as supplementary features, different of position and direc-
tion, directly obtained from the minutiae set and being essential for the performance of a
concrete matching technique. In what follows we present the most important ones:

e Types of minutia: one of the most common peculiarities required by many matchers
is the type of minutia, dividing them into two classical types: bifurcations and ridge
ends.

e Ridge Count (RC): this peculiarity is associated to each central minutia of the local
structure and represents the number of ridges that are cut across the line joining
two minutiae. The minutiae extractor requires access to the binarized or skeletonized
fingerprint image to be computed.

e Ridge Properties (RP): the ridge which the minutia belongs to is analyzed in terms
of its degree of curvature or by sampling some equidistant points along the curve to
form relationships with respect to the central minutia. Here, the minutiae extractor
requires to explore the skeletonized fingerprint image to walk through the ridges.

3.1.5. Parameter learning

Finally, with the term of parameter learning we refer to the application of machine learn-
ing based techniques to optimize the separation between genuine and impostor fingerprints.
They are usually employed in the optimization of the similarity score that determines the
final decision. The parameters typically involved in the learning process are the weights
associated to the contribution of each pair of matched minutiae to the computation of the
final score. This and other forms of parameter learning are the following:

e Matching Score (MS): a function receiving as input the feature vectors that represent
two local structures and obtaining as output the similarity score is learned by means
of neural networks or other regression schemes. The learning process is supervised
and it is focused on optimizing the final matching score between genuine or impostor
fingerprints.

e Local Similarity (LS): an off-line learning process is performed to learn the genuine
similarity between local structures or to adjust the contribution weights associated to
each component of the feature vector.



3.2. Tazxonomy of Minutiae-Based Local Matching Methods

Nowadays, more than 80 minutiae-based local matching methods have been proposed
in the specialized literature. This section is focused on enumerating and categorizing them
according to the properties studied before. Table 2 presents an enumeration of the methods
reviewed in this paper. In this field, the authors do not usually give a name for their proposal,
with few exceptions. Thus, we will use the reference of the paper as their identifier.

As we can see in Table 2, the most common proposals use the Texture based topology,
being the main baseline method the one proposed in [154]. Regarding other topologies,
almost all the NN and Radius approaches provide from the matchers [81] and [136]. Referring
to consolidation and the additional features, we can observe that all categories are spread
over all methods without a clear norm. The access to the RP is more common in recent
methods. Moreover, the RC and the use of the Types of minutiae are in decline in recent
years, due to their lack of uniformity in different prints obtained from the same finger.
Finally, few techniques require the use of parameter learning.

4. Related and Current Work on Matching

Once we have provided a comprehensive review on minutiae-based fingerprint matching
methods, it is meaningful to also provide other kinds of procedures using for matching. They
can be seen as related techniques that could be connected with matching, and current work
in other ways of improving matching in different application areas. In this sense, this section
gathers the most relevant developments in different issues (Subsection 4.1), distinguishing
among correlation-based matching techniques (Subsection 4.2), indexing algorithms and
advanced progresses in matching (Subsection 4.3).

4.1. Correlation-based Techniques and Matching without Minutiae

Generically, matching by correlation of images occurs when two fingerprint images are
superimposed and their similarity is computed through the correlation between correspond-
ing pixels for different alignments. However, this apparently simple operation rarely leads
to acceptable results, mainly due to undesirable changes of global structure and brightness
and contrast of the image, both depending on distortions and skin condition. Moreover, this
process may involve high computational costs.

In the specialized literature, there are various alternatives coped to palliate some of
the problems associated with correlation-based matching. For example, to alleviate the
distortion problem, some proposals use local windows around the minutiae [90], singular
points alignment before correlation [124] or advanced correlation filters [159]. To reduce the
computational complexity, the correlation is performed in local regions in the Fourier domain
[168], or using the Fourier-Mellin transform to maintain rotation and translation invariance
(149, 84], the symmetric phase only filter to reduce noise [66] and the curvelet transform [57].
Recently, there is a promising trend that transforms minutiae positions and orientations to
spectral representations in fixed-length feature vectors invariant to translations, rotations
and scale. They are suitable to be reduced by dimensionality reduction techniques to speed
up the matching process [171, 121].
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Table 2:

Enumeration and classification of minutiae-based local matching methods

References Local Structure Type of Additional Minutiae Parameter
Topology Consolidation Features Peculiarities | Learning

[165] NN Incremental None None None
81, 6] NN Single None Types + RC None
[136] Radius Consensus None RC None
[94] Texture Multiple RF Types None
[181] NN Single Core None None
[5] NN Complex None None None
[63] Texture Single LO Types + RP None
[141] Not defined Not defined RF + GSI Not defined None
[150] Triplets None None RC None
[154‘ 166, 117] Texture Multiple LO None None
[29] NN Single None Types + RP None
[123, 182] Texture Multiple LO RP None
[127, 116] Triplets Multiple None None None
[142] Texture Multiple LO Types None
[170] Radius Multiple None None None
41 K-Plet Incremental Core Types None
46 Triplets Multiple None Types + RC None

7 NN Consensus None None MS
[134, 167] Texture Single LO None None
[132] Texture + Triplets Single LO None None
[155, 156] Texture Single LO RC None
[178, 183] Triplets Single None None None
[179] NN Single None Types None
[13] NN None None RC None
[35, 15] Radius Consensus None None None
36 Texture + Triplets Consensus LO None LS
39 K-Plet Incremental None Types None
40 Texture Single GSI None None
[50, 133, 187] Texture Multiple None RP None
(62, 96] Texture Consensus GSI RP None
(93] K-Plet Complex None None None
[143] NN Consensus None RC None
7] Texture Multiple GSI None None
48, 2] Texture None None RP None
[61] Texture Complex GSI RP None
(131 Radius Consensus LO None None
[135 Texture Multiple None Types + RP None
[172, 177] Triplets Incremental None None None
[164] Texture Consensus LO RP None
8] Texture Single Core + GSI RC None

49 Radius + Texture Multiple RF + Core + LO | Types + RP MS
88 Triplets None None Types None
89 Radius Incremental None None None
115 K-Plet Single GSI Types None
162 K-Plet Single RF + GSI RP None
188 NN None None Types + RC None
[14] Texture Consensus None RC + RP None
[20, 152] Texture Complex None RP None
[21] Radius + Texture Multiple RF + LO RP MS
[87] NN Single GSI Types + RC None
114 Texture Incremental None Types + RP None
146 Radius None None None None
147 Texture None LO None None
173 Radius Consensus None Types + RC None
186 Triplets Multiple None Types None
[19] Texture Multiple RF + LO RP None
126, 67] Cylinder Consensus None None None
[148] NN Multiple None None None
31 Texture + Triplets None GSI None None
42 K-Plet Incremental None RC + RP None
53 NN None None None None
[100] Texture + Radius Consensus GSI None None
[185] Triplets Single LO None None
17 Texture Multiple LO + Core RP None
18 Radius + Texture Incremental Core + LO RP None
23 Texture + Cylinder Consensus RF + LO + Core None None
33 Texture None GSI None None
43 Radius Multiple None Types None
55 Radius + Texture None LO + GSI None None
[119] Texture + Triplets None Core + GSI None None
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Other approaches perform fingerprint matching without the use of minutiae. They use
the so-called texture information, being the most popular the FingerCode approach [75],
which chains tessellated areas related to core points with Gabor filter to capture useful
texture information. FingerCode features have been used in later research [7, 122, 176].
Isolated orientation [91] or ridge information [169] can also be used for matching. Finally,
when high resolution images are available, level-3 features such as sweat pores, dots and
incipient ridges can be used instead of minutiae [68, 103].

4.2. Fingerprint Indexing

Fingerprint indexing arises from the necessity of quick access to the fingerprint tem-
plates database in identification tasks. Some indexing techniques use partial information
provided by the extracted minutiae of the fingerprint and build local structures centered
on each minutia to establish similarity relationships between fingerprints and key indexes.
This allows the ordering of candidate templates to increase the probability to match true
paired fingerprints. Actually, these approaches can be viewed as minutiae-based matching
approaches if the matching score is proportionally related to the number of coincident local
structures.

The pure indexing proposals found in the literature are those based on minutiae triplets,
which consider triangle-based characteristics to compute similarity among fingerprints, such
as lengths, angles, handleless [10], etc.; and triangulations to improve efficiency [99]. Other
indexing approaches utilize LO [105] and also RF [22]. Finally, several criteria for narrowing
the candidate list obtained from indexing are evaluated in [24].

4.3. Current Progress in Matching

Nowadays, the matching field is continually in progress, offering new developments to
improve personal identification. In the following, we briefly mention different matching
related issues being currently tackled:

e Accelerating fingerprint matching: many efforts have been performed to speed up the
matching process, for instance, by means of FPGA-based [79], GPU-based [59] parallel
architectures or distributed computing [130].

e Fingerprint matching in embedded systems: sensors [3] and smart cards [9].

e Latent fingerprint matching: it is a more complicated problem because these finger-
prints are inadvertent impressions left by fingers on surfaces [70, 128].

e Palmprint matching: based on ridges [44], minutiae [25, 32] and also effective ap-
proaches for latent matching [69, 102].

e Combinations with other traits and multiple matching: with face recognition [64],
multiple matching [73], multiple sample [38] and minutiae-based synthesis for matching

[158].
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e Privacy protection in fingerprint matching: which tries to avoid the traditional encryp-
tion with its associated decryption, which exposes the fingerprint to the attacker. Two
examples of recent techniques are the reverse MCC representation [51] and the combi-
nation of two different fingerprints into a new identity, based on minutiae, orientations
and singular points [97].

5. Experimental Evaluation of Local Minutiae Matching Methods

This section is devoted to perform an experimental evaluation of the most important lo-
cal minutiae-based matching algorithms. Subsection 5.1 establishes the experimental frame-
work, presenting information about the used databases, the performance measures, the
algorithms and their parameters. Then, Subsection 5.2 shows the analysis of the results of
the used methods over the public FVC databases. Subsection 5.3 presents a study over four
databases captured by the authors.

5.1. Experimental Set Up

This section describes the databases (Subsection 5.1.1), the accuracy measures (Sub-
section 5.1.2) and the framework (Subsection 5.1.3) used to carry out the experimental
evaluation of the matchers.

5.1.1. Databases

We have used a wide variety of databases to test the performance and behavior of the
matching algorithms. Table 3 presents their characteristics, showing their size and the
average number of minutiae of the template and input fingerprints.

Table 3: Summary description of the used databases.

Denomination Number of | Impressions | Average template Average input

Fingerprints per finger minutiae number | minutiae number
FVC2000_dbla 100 8 49.51 48.93
FVC2000_db2a 100 8 58.43 57.97
FVC2000_db3a 100 8 132.97 144.18
FVC2000_db4a 100 8 36.88 37.10
FVC2002_dbla 100 8 53.11 49.69
FVC2002_db2a 100 8 61.87 56.93
FVC2002_db3a 100 8 58.23 57.52
FVC2002_db4a 100 8 50.52 49.78
FVC2004_dbla 100 8 49.01 62.84
FVC2004_db2a 100 8 64.45 64.19
FVC2004_db3a 100 8 94.52 98.63
FVC2004_db4a 100 8 55.00 52.61
DB1 1228 10 45.26 45.20
DB2 1228 10 145.79 142.94
DB3 1228 10 44.36 43.34
DB4 1228 10 44.50 43.35

First, we apply the algorithms over twelve of the well-known FVC databases, using the
first impression of each finger as template, and the other seven impressions as input. These
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databases are designed for verification competitions, and therefore their fingerprints have
bad quality on purpose. More information about the FVCs databases can be found in
(110, 112, 111].

Four additional databases, captured by the authors’ research groups, are used for the
study. They simulate a real environment for identification with consented fingerprints cap-
tures of reasonable quality. All of them are composed by the same fingers, captured by four
different sensors (Table 4).

Table 4: Sensors used to capture the fingerprints.

Database | Sensor Sensor type | Fingerprint type
DB1 Upek Eikon Capacitive Swipe

DB2 Suprema RealScan-D | Optical Rolled

DB3 Suprema BioMini Optical Plain

DB4 SecuGen Hamster IV | Optical Plain

A total of 308 people participated in the study. The fingerprints of the thumb, forefinger
and middle finger of both their hands were captured along three different sessions. After
removing the failed captures, we selected three random input fingerprints per session and a
single template fingerprint for each finger and sensor. After this manner we get four final
databases that contain the same 1228 fingers captured by four different sensors.

5.1.2. Accuracy measures
The accuracy of a fingerprint matcher can be measured from two different perspectives:

e Verification: consists of matching two fingerprints to determine whether they corre-
spond to the same finger or not.

e I[dentification: tries to find the match of an input fingerprint in a database, comparing
it to all the templates.

Each perspective employs different accuracy measures. In this paper, we use the following
verification measures:

e False Matching Rate (FMR): rate of different fingerprints that are considered to be
the same by the matcher. Each possible score has an FMR associated; the higher the
score, the lower the FMR.

e False Non-Matching Rate (FNMR): rate of corresponding fingerprints that are erro-
neously considered different.

e Equal-Error Rate (EER): value (corresponding to a certain score threshold) where
FMR and FNMR are equal.

e ROC: curve that plots the Genuine Matching Rate (GMR = 1 — FNMR) versus the
FMR.
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e FFMR100: lowest achievable FNMR for a FMR < 1%.
e FFMR1000: lowest achievable FNMR for a FMR < 0.1%.
o ZeroFMR: lowest achievable FNMR for a FMR = 0%.

Within an identification process, most of the accuracy measures are related to the rank,
which is the position of the genuine score if all the obtained scores are ordered in descending
order. In other words, the rank is the minimum number of database fingerprints that have
to be returned by the identification system to ensure that the correct identity is included.
We use the following identification accuracy measures:

e True positive rate (TPR): percentage of test fingerprints that are correctly identified
in the database, when only the best matching score is retrieved. The TPR is the error
obtained when using a rank of 1.

e R100: lowest rank that allows an error lower than 1%.
e ZeroR: lowest rank that does not allow errors.

e Cumulative Match Curve (CMC): curve that represents the error associated to each
rank.

The optimum value for R100 and ZeroR is 1, whereas the worst one is the size of the
database.

In addition to all these values, the average matching time is also important to determine
if a matching algorithm is suitable for a certain identification system.

For reasons of space and concision, not all of these measures are presented in the paper.
The full set of results is accessible at http://sci2s.ugr.es/MatchingReview/.

Statistical tests allow to establish a fair comparison between the methods and to detect
significant differences. In this paper, we use the nonparametric tests recommended in [45, 54,
which claim to be simple, safe and robust.

Furthermore, we apply the Friedman test [52] to measure the differences between the
methods with a multiple comparison analysis. The Holm procedure is applied to find out
which algorithms are distinctive. !

5.1.8. Experimental framework

To compute these measures it is necessary to perform all the matching comparisons
between template and input fingerprints. In order to obtain the results within a reasonable
time, and to fix a common execution environment, all the experiments have been carried
out within the parallel framework proposed in [130], which speeds up the computation
while ensuring that the results are the same as in a sequential execution. The NIGOS

! Additional information about these tests, as well as the corresponding software, are available at http:
//sci2s.ugr.es/sicidm/.
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mindtct algorithm [165] has been used for the minutiae extraction. All executions have been
performed in a cluster of 12 machines, each of them with two Intel(R) Xeon(R) E5-2620
CPU at 2.00 GHz and 64GB RAM.

The empirical study involves 12 matching algorithms from those listed in Table 2. We
want to outline that all the implementations of the matching algorithms, excepting the
proposed in [165], were developed by us and they are only based on the descriptions and
specifications given by the respective authors according to their papers. It is also noteworthy
that our implementation of Feng’s algorithm only uses the minutiae features provided by the
minutiae extractor, and therefore is not as complex as the original algorithm. The parameter
values used for all matchers have been extracted from these papers and are shown in Table 5.
In the cases where the parameter values are not given in the original paper, we experimentally
selected values that suit the general case. We have not performed any training to adapt these
parameters, because our objective is not to maximize the accuracy, but to fairly compare
the matchers and their robustness in a common environment and upon different databases.

5.2. Analysis and Empirical Results on FVC Databases

This section analyzes the results obtained over the 12 FVC databases, in terms of veri-
fication and identification.

5.2.1. Verification

Tables 6 and 7 present the EER and FMRI100, respectively, as the error percentage
obtained for all tested algorithms over the 700 input fingerprints of each FVC database.
The best result for each database is stressed in boldface. Additionally, Figure 1 plots the
ROC curve for the most difficult FVC database (FVC2002_db3a, which obtains the highest
average EER).
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Figure 1: ROC curve for FV(C2002_db3a

Bozorth3 is the best performing algorithm in general. If we focus on the EER, MCC also
obtains good results, while Deng is more accurate in terms of FMR100. The ROC curves
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Table 5: Parameters for the methods used in the experiments

Algorithm Parameters

Mindtct [165] | output format = ANSI INCITS 378-2004

image enhancement = enabled

Bozorth3 [165] | input format = ANSI INCITS 378-2004, Maximum number of minutiae = 150,

Minimum number of minutiae = 10

Jiang [81] wg = 1, wy = 54w, wy = 54w, w, = 0, w; =0
Consolidation step iterations = 5, Minutiae neighborhood size = 2

BG, =8 BGy = %, BGy = =

Ratha [1306] Neigh=6, F,,;,=0.4, TM=8, RelDist=0.2, RidgesDiff=10,
EdgesDiff=0.1, MisMatch=10000
Tan [150] A,=10, A;=20, WindowsSize=32, Triplet,nge=2,

Tripletside: 15aTTZ'pletminutieaDensity:2 7TT7:pletRidgeCount:2a
TS=0.15, To=30, Ty =150, Ty=100, Tp=12, Ty=8, MaxTriangleWidth=300

Tico [154] T Hpgy = 25, Block = 16, NumRadius=4, THR;=I1, TH Rp;,=6,
THRangle:%7 ]\/[TIZG, M:025
Deng [46} ]\/[inu“aeminDelanuyZQO7 TH1:36 THn,m,LZQO, THedge:15,

Wo=1, Wi=W,=23180 ' 1},=3 W,=W5=6,

TH=8, THo=THy=TH,,,= 1, TH, =3, THg,=0.2

Qi [132] THpgy = 25, Block = 16, PointSeg=3,MinutiaeSeg=6, LongSeg=18,
THR=II, THRo=%, THRp;=10, TH Rynge=",
War=0.6,Wo—0.4

Chen [35] Thry = 55, Thry — 80, R = 80, RS = 100,60, — 0.25, 0, — 0.4

leny, = 5,1eng = 20, Thriop, = 0.7

Chikkerur [39] | K = 8, Bounding box = {8, 7/6,7/6}

Feng [49] Neighborhood radius = 60, Translation Tolerance Box = 8,

Rotation Tolerance Box = /6, Rotation maximum threshold = 57/9,
Minimum normalized similarity = 7

MCC [26] R=170,N,=16,Ny=6,0, = 2,04 =%, j1y = 0.01, 79 = 400

w = 50, minyc = 0.75, miny = 2, miny g = 0.60,00 = 3, max,, =12

Floating-point-based version: enabled, consolidation scheme= LSSR, up = 20
wg = 0.5, 4 =5,7p = 0.6, min,, =4

py =5, s = 5,70 = —1.6,75 = =30, 7§ = =30, 1 = 5

MCC+L1 [23] | Block, = 16, Block; = 32, F'Vigng = 36, F'Vyqdius = 4

W1=W;3=0.16, W5=0.37, W,=0.31, Threshold=0.4

show that Bozorth3, MCC and Deng dominate all methods, followed by Jiang.
These four algorithms are substantially different from each other. For example, MCC
uses cylinders as local structure, while Deng uses the texture and Jiang and Bozorth3 use
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Table 6: EER percentages for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 7.481 12.945 43.557 25.711 83.286  7.633 25.446 69.143 37.840 20.013  8.207 24.804
FVC2000_db2a 8.751 16.451 42.499 37.143 87.429  9.308 20.124 66.143 39.406 22.252 8.578 20.725
FVC2000_db3a 18.750 24.954 41.996 30.965 95.857 14.814 29.978 64.714 43.219 40.022 20.216 23.152
FVC2000_db4a 5.817 8.166 42.042 24.228 91.857 17.006 41.777 46.571 36.498 32.259  6.026 20.144
FVC2002_dbla 15.286 16.312 41.761 26.366 80.000 16.676 34.640 63.571 40.776 15.067 15.325 23.287
FVC2002_db2a 14.564 13.404 38.141 27.708 79.571 12.959 27.852 46.000 37.840 15.254 12.553 22.166

FVC2002_db3a 20.062 27.686 46.093 33.002 95.286 21.258 37.346 86.714 43.462 31.922 21.867 32.015
FVC2002_db4a 21.003 23.281 42.641 29.839 88.857 24.352 39.921 90.286 36.369 23.692 23.988 26.181
FVC2004_dbla 17.374 24.999 44.405 40.286 98.429 20.409 42.930 83.571 47.938 23.209 19.562 28.592
FVC2004_db2a 17.183 23.798 45.195 38.728 48.000 20.766 35.354 85.143 42.102 29.003 19.786 31.675
FVC2004_db3a 6.265 13.834 43.545 31.792 79.000 9.396 31.119 29.714 43.415 35.287 10.037 18.699
FVC2004_db4a 26.189 31.438 42.315 33.712 65.286 28.372 40.106 93.286 40.029 29.240 28.122 27.160

Table 7: FMR100 percentages for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 13.334 20.269 98.704 67.550 90.591 12.764 50.339 100.000 97.107 76.583 14.239 79.610
FVC2000_db2a 18.712 27.582 98.647 80.952 94.609 18.435 47.920 100.000 96.458 89.613 18.564 71.068
FVC2000_db3a 37.876 54.204 98.619 89.996 98.250 28.632 95.592 100.000 98.114 97.057 46.071 82.449
FVC2000_db4a 14.012 15.944 98.621 77.234 100.000 31.254 88.820 100.000 95.597 89.744 9.657 66.374
FVC2002_dbla 24.967 25.806 98.605 67.114 92.114 22.380 56.529 100.000 97.442 52.155 22.192 76.952
FVC2002_db2a 22.645 20.300 98.378 64.810 94.427 17.357 46.073 56.559 97.010 48.794 19.363 72.116
FVC2002_db3a| 37.324 56.179 98.830 85.811 100.000 39.946 74.281 100.000 97.974 90.282 47.915 86.162
FVC2002_db4a 52.152 51.010 98.655 80.990 96.435 51.858 75.166 100.000 96.911 85.916 51.861 86.607
FVC2004 dbla 36.286 51.935 98.748 92.937 98.631 41.550 77.401 100.000 98.048 87.091 36.503 86.848
FVC2004_db2a| 35.089 52.450 98.787 91.740 97.416 37.457 74.450 91.571 97.785 95.038 41.324 86.201
FVC2004_db3a 13.618 34.910 98.704 86.950 95.782 28.127 79.643 40.986 98.521 98.007 28.420 71.332
FVC2004_db4a| 60.790 66.630 98.637 85.705 97.055 69.738 83.779 100.000 97.156 87.176 66.055 89.465

the nearest neighbors. The consolidation type is also different. However, it is noteworthy
that none of them use any additional features: Jiang and Deng use both the minutia type
and the ridge count, while Bozorth3 and MCC only use the basic minutia information.

It is also interesting that, even though MCC+L1 obtains good results when the GMR
is high, it does not improve the results obtained with the bare use of MCC. Note that the
MCC+L1 algorithm uses a different, less accurate variant of MCC (with binary encoding
and a different consolidation), meant to be very efficiently implemented on hardware.

This states that none of the characteristics described in Subsection 3.1 can be discarded
as worse than the rest: the verification performance is determined by the matching algo-
rithm as a whole, and each local structure and consolidation can supply useful information.
Nevertheless, the use of additional features does not always lead to more accurate results.

Along with the accuracy, the computational performance is a very important character-
istic of a fingerprint matching algorithm, especially when it has to deal with large fingerprint
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databases.

Table 8 summarizes the average matching times for the tests performed so far. Note
that these times are measured in computational time, and therefore are not affected by the
parallel framework in which the tests have been carried out.

Table 8: Average matching times (in milliseconds) for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 1.026 0.382 2.865 161.339 21.319 2.409 0.739 3.936 5.051 3.577 10.094 0.762
FVC2000_db2a 1.719 0.541 3.938 513.535 34.927 4.400 0.913 7.712 6.187 6.632 13.710 0.979
FVC2000_db3a 6.187 4.149 22.220 81277.765 228.140 91.468 4.653 51.330 91.320 46.758 82.510 4.854
FVC2000_db4a 3.145 0.234 1.606 49.119 11.242 1.284 0.466 2.249 3.330 2409 5.733 0.436
FVC2002_dbla 1.349 0.422 3.189 279.543 21.319 3.386 0.749 4.541 5.532  4.047 10.880 0.784
FVC2002_db2a 1.233 0.551 4.149  442.721 33.742 3.989 0.955 4.777 6.725 4.554 14.559 0.901
FVC2002_db3a 1.235 0.534 3.964 436.841 28.712 4.222 0.986 6.771 6.301 5.920 14.168 1.054
FVC2002_db4a 1.268 0.397 2915 338.823 18.921 3.697 0.784 5.163 5.046 4.770 10.334 0.745
FVC2004_dbla 1.488 0.491 3.656 313.619 16.544 3.849 0.942 6.434 5.563 5.553 12.253 0.801
FVC2004_db2a 1.534 0.680 4.845 853.888 33.527 5.448 1.292 9.432 7.482 7.922 17.974 1.275
FVC2004_db3a 16.566 1.850 10.815 10575.240 99.901 21.829 2.336 27.278 18.136 25.183 40.523 2.535
FVC2004_db4a 1.312 0.461 3.340 540.880 25.047 4.189 0.872 6.484 5.325 5.913 11.737 0.840

We can notice that in all cases, Jiang is the fastest algorithm, followed by Qi. The former
performs a simple consolidation and does not use any additional features, which makes the
computation very fast. The latter does not involve any consolidation, and therefore performs
all the matching process from a local point of view.

In the other extreme, the Tan’s algorithm is extremely slow, especially for databases with
more minutiae per fingerprint. This algorithm computes all the triplets of the fingerprints,
and compares them. This computation has factorial order and therefore takes a long time
for fingerprints with a certain number of minutiae. This is an example of an algorithm that
could be improved by a previous minutiae filtering.

It is curious to note that the Qi’s algorithm is very fast, although it also uses triplets.
However, it includes a first candidate selection using the texture, avoiding the creation of
all possible triplets.

If we compare the overall performance of the algorithms, we can observe that the consol-
idation bears a high weight in the runtime. Complex consolidations require more computing
time, as for MCC, Deng and Tico.

Another observation that can be made is that MCC+L1 is considerably faster than
MCC. This is due to the structure of MCC+L1, which first compares the L1 features of the
fingerprints, and applies MCC only if they are similar enough. This hierarchical matching is
able to save a lot of computing time, but also explains why MCC+L1 is often less accurate
than MCC.

Table 9 shows the results of the statistical tests for several accuracy measures, highlight-
ing Bozorth3, MCC and Deng as the best algorithms.
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Table 9: Statistical tests over the verification measures over the FVC databases

Algorithm EER |[FMR100| FMR1000 | ZeroFMR
Bozorth3 1.500 2.083 1.750 1.292
Jiang 4.000 3.500 3.833 3.458
Ratha 9.917 11.083 11.250 10.042
Tan 7.250 6.833 7.250 7.167
Tico 11.750 9.750 10.208 10.042
Deng 3.000 2.083 2.250 3.083
Qi 7.583 5.583 6.333 8.833
Chen 10.833 10.500 7.250 5.500
Chikkerur 9.000 9.917 10.625 10.042
Feng 5.333 7.500 7.833 9.458
MCC 2.500 2.333 2.167 2.250
MCC+L1 5.333 6.833 7.250 6.833
Friedman P-value|6.18¢-011| 6.13e-11 5.33e-11 7.34e-11

5.2.2. Identification
Tables 10 and 11 summarize the R100 and TPR values, respectively. Finally, Figure 2
displays the CMC curves for the FVC2002_db3a database.

Table 10: R100 values for FVC databases (100 templates)

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 100 91 100 100 96 100 100 100 100 100 72 79
FVC2000_db2a 100 96 100 100 94 72 97 100 100 100 64 7
FVC2000_db3a 100 98 100 94 97 81 98 100 100 100 98 84
FVC2000_db4a 100 79 100 100 100 100 100 100 100 100 33 95
FVC2002_dbla 100 95 100 100 100 100 100 100 100 100 89 85
FVC2002_db2a 100 92 100 100 100 100 98 100 100 100 88 80
FVC2002_db3a 100 98 100 100 99 100 99 100 100 100 91 86
FVC2002_db4a 100 95 100 100 98 100 100 100 100 100 91 84
FVC2004_dbla 100 94 100 100 100 100 99 100 100 100 87 91
FVC2004 _db2a 100 96 100 100 99 98 99 100 100 100 94 94
FVC2004_db3a 100 90 100 100 96 49 99 100 100 100 64 84
FVC2004_db4a 100 96 100 100 96 100 99 100 100 100 94 89

It is curious to observe that, while MCC+L1 is the best algorithm if we focus on the
rank, MCC obtains better numeric results (for example for FVC2000_db4a) and Deng and
Bozorth3 have higher TPR in most cases. The CMC curves explain this behavior. For low
ranks, Deng and Bozorth3 perform better, and therefore have a lower TPR. MCC is slightly
below Deng in accuracy, while MCC+L1 obtains good results for very high ranks.

The high values obtained denote the difficulty of the FVC databases: the algorithms
need to return the majority of the databases in order to ensure that the genuine fingerprint
is returned. Note that the methods that have a value of 100 return the entire database.
Chen’s algorithm has a very low CMC curve because the matching score is often exactly
zero (when the compared fingerprints do not match some conditions). This causes some
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Table 11: TPR percentage for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 87.857 78.571 37.714 50.143 10.857 86.286 49.286 29.286 3.000 28.571 85.286 43.429
FVC2000_db2a 82.857 71.714 42.857 45.286 5.143 85.286 49.000 33.286 4.429 12.714 81.571 50.714
FVC2000_db3a 63.143 45.286 26.571 17.857 2.714 72.571 10.714 33.143 2.286 2.143 54.000 50.714
FVC2000_db4a 88.571 82.429 24.857 38.429 8.429 70.286 10.000 51.143 3.429 7.429 91.571 52.000
FVC2002_dbla 77.714 75.857 53.143 49.571 8.000 78.286 42.571 35.143 3.571 47.286 77.429 44.000
FVC2002_db2a 80.143 81.429 69.286 52.000 6.571 83.143 54.286 47.571 4.000 56.429 80.429 58.143
FVC2002_db3a 63.571 41.000 18.714 20.286 12.286 60.857 25.000 13.286 1.857 8.571 50.143 21.286
FVC2002_db4a 48.000 44.571 28.714 31.000 2.143 50.857 23.857 8.714 3.143 14.000 46.857 29.000
FVC2004 _dbla 65.286 46.714 23.143 9.000 1.429 61.857 23.857 16.143 2.571 29.143 60.857 23.143
FVC2004_db2a 64.714 46.429 20.286 11.714 3.000 63.000 25.571 12.286 2.571 5.000 58.429 21.571
FVC2004_db3a 86.714 65.571 16.000 29.286 6.714 83.857 19.429 61.429 2571 1.000 74.429 57.286
FVC2004_db4a 37.286 34.143 21.000 26.429 1.857 29.000 17.571 4.714 3.286 9.857 32.714 25.429
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Figure 2: CMC curves for FV(C2002_db3a

genuine scores to be the lowest ones in the fingerprint database, and therefore the rank
necessary to ensure a certain identification accuracy is greatly increased.

Table 12 displays the results of the statistical tests.

In general, the identification results of these algorithms are similar to the ones obtained
for verification, and their behavior remains the same.

To conclude the study, Figure 3 outlines two directed-graphs for verification and identifi-
cation statistical results respectively. Each method is represented as a vertex, and the edges
connect two methods in which the Holm test has detected significant differences. Specif-
ically, in Figure 3a, those methods that receive an arrow are outperformed by the linked
algorithm in terms of EER, whereas in Figure 3b, we focus on the TPR measure. A Thick
line means that a method statistically outperform another considering all the verification or
identification measures. To simplify the graphs, the methods with identical differences with
the others have been grouped in the same nodes.
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Table 12: Statistical tests for the identification measures over the FVC databases

Algorithm TPR R100|ZeroR
Bozorth3 1.667 8.875| 7.375
Jiang 3.667 3.458| 4.083
Ratha 7.208 8.875| 7.375
Tan 7.083 8.292| 7.375
Tico 10.917 5.625| 6.917
Deng 1.917 6.333| 6.792
Qi 7.250 6.167| 7.000
Chen 8.417 8.875| 7.375
Chikkerur 11.583 8.875| 7.375
Feng 9.417 8.875| 7.375
MCC 2.833 1.958| 4.625
MCC+L1 6.042 1.792| 4.333
Friedman P-value |5.652e-11|5.652e-11| 0.089

The figure ratifies the analysis of the accuracy measures: Bozorth3, MCC, Jiang and
Deng are the most accurate algorithms for the FVC databases, with statistically significant
differences with respect to the other methods.

—oens
C o > T > Jiang

Chen

Chikkerur

Bozorth3
Deng

(a) Verification (b) Identification

Figure 3: Significant differences among the tested methods

5.8. Analysis and Empirical Results on Captured Databases

In the preceding section, the algorithms of Bozorth3 [165], Jiang [81], Deng [46] and MCC
[26] were highlighted as the most accurate for the FVC databases, as they are statistically
better than other methods both for verification and identification. This section performs a
deeper study upon the four captured databases described, focusing on these four algorithms.

22



5.3.1. Verification

Table 13 presents the results obtained in terms of EER, FMR100 and FMR1000. Figure
4 displays the ROC curves.

Table 13: Verification performance measures (in percentages)

EER FMR100 FMR1000
Database|Bozorth3 Jiang Deng MCC |Bozorth3 Jiang Deng MCC | Bozorth3 Jiang Deng MCC
DB1 2.763 6.292 4.288 3.448 4.852 15.092 9.337 6.908 11.144 29.223 22.733 15.638
DB2 0.686 3.712 3.393 0.350 0.617 6.546 6.056 0.180 1.219 14.131 15.309 0.623
DB3 0.839 2.518 1.018 0.414 0.779 4.013 1.025 0.280 2.103 9.177 2.845 0.889
DB4 0.788 2.512 0.951 0.443 0.701 3.958 0.929 0.303 1.951 8.806 2.624 0.834

Database
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Algorithm
— Bozorth3
- - Deng
-+ Jiang

-— MCC

Figure 4: ROC curves for captured databases

Note that the error values for these databases are far better than those obtained for the
FVC ones, which are designed for test purposes and whose quality is deliberately bad.

In this case, MCC obtains the best results for all measures and databases except DB1,
in which Bozorth3 is better, and the ROC curves follow the same behavior. Jiang gets the
worst values among the three tested algorithms.

MCC and Bozorth3 only use the basic minutiae information to build their local struc-
tures, while Deng takes into account texture information and some minutiae peculiarities
such as the ridge count and the type. Therefore, the fact that Deng is able to obtain good
results with the FVC databases—even though it is outperformed by MCC and Bozorth3 for
the captured ones—suggests that the texture is less affected than the minutiae in the FVC
bad quality images.

It is also noteworthy that Jiang and Deng perform better with the DB3 and DB4
databases (plain fingerprints), while Bozorth3 excels on DB1 (swipe fingerprints), and MCC
obtains better results with DB2 (rolled fingerprints). This could happen due to the convex
hull computation carried out by MCC, which filters the minutiae on the borders of the fin-
gerprint. Bozorth3, Deng and Jiang do not carry out any special treatment on those areas,
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which are more prone to errors. In all cases, the DB1 database (captured with a narrow
swipe sensor) is the most difficult one for the verification.

As for the computing times, we observe the same behavior as with the FVC databases
(Table 14). Jiang is the fastest algorithm, followed by Bozorth3, MCC and Deng, which
involve more complex consolidations and more information.

Table 14: Average matching times (in milliseconds)

Database|Bozorth3 Jiang Deng MCC
DB1 3.679 0.469 11.178 6.061
DB2 12.076 7.501 175.132 64.826
DB3 3.227 0.415 9.057 5.884
DB4 3.184 0.423 9.054 5.797

5.3.2. Identification
To conclude this study, Table 15 and Figure 5 present the identification performance
measures and the CMC for the four tested algorithms over the four captured databases.

Table 15: Identification performance values (1228 templates)

R100 ZeroR TPR
Database | Bozorth3 Jiang Deng MCC |Bozorth3 Jiang Deng MCC | Bozorth3 Jiang Deng MCC
DB1 1228 866 147 237 1228 1228 1228 1169| 90.264% 69.942% 85.125% 84.057%
DB2 1 297 121 1 1228 1228 1220 1202| 99.077% 87.559% 93.838% 99.222%
DB3 1 172 6 1 1228 1224 1228 1027| 99.050% 90.771% 98.082% 99.285%
DB4 1 118 4 1 1228 1228 1228 1228| 99.168% 90.879% 98.172% 99.358%
Database
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Figure 5: CMC curves for the captured databases

Again, MCC highlights as the most accurate algorithm, except for the DB1 database,
for which Deng obtains better R100 and Bozorth obtains better TPR. The CMC curves
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illustrate these results, showing that for low ranks, Bozorth3 performs better than MCC
and Deng over DB1. As the rank increases, the cumulative accuracy of Deng increases too.
This result contrasts with the verification analysis, which stated that both Bozorth3 and
MCC outperform Deng for all databases.

The explanation of this fact is that the verification performance measures are calculated
considering a fixed score. That is, each point of the ROC curve plots the FMR and FNMR
obtained with a certain score. However, the rank is independent of the numerical value
of the scores: it only takes into account their order. The different behavior of ROC and
CMC means that the score variability over these databases is higher for Deng than for MCC
and Bozorth3. This means that, given an input fingerprint, Deng can ensure with a high
confidence that the genuine score is higher than the impostor ones; however, it does not
ensure with the same confidence that the genuine and impostor scores of all fingerprints can
be separated by a certain fixed threshold.

Otherwise, the relative performance of the databases is maintained: the swipe sensor
provides fingerprints that are more difficult to recognize, as well as the DB2 sensor for rolled
fingerprints.

6. Conclusions

In this paper, we have compiled the most relevant work in the scientific literature about
fingerprint local minutiae-based matching. We have described the background in the field,
including some references about global matching and feature extraction techniques. Then,
we have studied the main properties of the local matching algorithms, as well as the infor-
mation they are based on, distinguishing between five different aspects: topology of local
structure, type of consolidation, usage of additional features, minutiae peculiarities and pa-
rameter learning. Using all this information we have built a taxonomy of more than 80 local
minutiae matching methods.

In order to complete the study, we have designed and implemented an experimental
framework using two sets of databases: 12 from the FVC competitions, which are publicly
available, and 4 databases captured by the authors’ research groups. The study analyzes
the results of 12 of the studied matchers, both in terms of verification and identification
performance measures.

After the work realized in this paper, the following conclusions can be drawn:

e Fingerprint matching is a very active field, with dozens of proposed matching methods.

e The obtained results reveal big differences in the accuracy of the matchers, highlighting
some of them as more precise than the others.

e The best performing algorithms do not share any special characteristics, although none
of them uses any fingerprint features apart in addition to the minutiae coordinates,
angle, type and ridge count.

e Furthermore, it has been seen that for different databases, different matchers may
be the most accurate. An especially revealing result is that there is a big difference
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between processing rolled, plain and swipe fingerprints, as the different number of
minutiae and the presence or not of minutiae on the borders affects the behavior of
the matchers.

e This states that some of the different approaches to design matching algorithms are
equally valid, and depend on the particular fingerprints.

e There is also a big difference in the computational complexity of the methods: the
fastest methods are more suitable for systems with very large fingerprint databases.

e This paper can help nonexperts to choose an appropriate matching algorithm that
suits their particular problem.

e [t can also help other researchers in the field to develop new matching methods, using
the components and properties described in this paper.

In our opinion, the specialized literature contains lots of ideas related to minutiae fin-
gerprint matching, some of them are quite similar and even it may be possible to find
overlap among them. Most of the fingerprint matching approaches introduced in the last
four decades are minutiae based. One of the reasons to expect minutiae-based algorithms to
perform well is the sheer amount of research done on this approach. Original ideas are those
which have served as inspiration of the rest of the matching methods. The majority of them
were analyzed in this paper with empirical studies, trying to fix one of the main problems
observed in this respect in the literature: almost all the proposals were compared under
different configurations and without a standard. However, this task is very tedious due to
the fact that the papers do not provide all the details to achieve a perfect implementation
of the idea presented, especially the information related to the values of the parameters
employed.

In the theoretical slope, we realize that the usage of isolated minutiae for matching,
although is enough to achieve competitive performance, falls short in more complex scenarios.
This is the reason that justifies the fact of real life implementations of fingerprint systems
that fuse fingerprints with other traits or employ double fingerprint inputs. The world-
wide large scale deployment of fingerprint systems demands a new generation of accurate
and highly interoperable algorithms; therefore the development of minutiae-only matching
algorithms will not be abandoned for a long time.

In the practical slope, the experiments have shown that none of the features established in
the taxonomy can be considered as better than the others, and that the matching algorithms
work as a whole. The same algorithms have also been proven to perform differently in
different databases. Therefore, all the local structures, consolidations and features described
in the taxonomy can be useful for future developments, as the key of an accurate matching
algorithm is an adequate use of these parts and not the parts themselves. It has also been
noted that the difference in the identification time can be huge depending on the used
methods, especially for rolled fingerprints. When time is a limited resource, care must be
taken on choosing local structures and consolidations that are at most linear or quadratic
with respect to the number of minutiae.
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As future research directions, we particularize the following ones:

e Biometric Fusion: the main advantage of fusion in the context of biometrics is an

improvement in the overall matching accuracy. This is commonly known as multi-
factor authentication and is considered more secure than using fingerprints alone as
these other factors have some of their own strengths. Combining fingerprints with other
biometric traits offers several advantages, such as the improvement of the universality
or the problems caused by the acquisition of poor quality images due to external
factors.

Indexing and Big Data: as we mention in Section 4.2, the indexing is particularly
useful when large volumes of fingerprints are stored every day. Identification task in
large data bases could become in a real challenge for obtaining quick responses for each
query. The employment of Big Data solutions to fingerprint matching and indexing is
incoming in the near future.

High quality images: in certain applications, it is possible to acquire high resolution
images in which at the very-fine level, intra-ridge details can be detected. These
include width, shape, curvature, edge contours of ridges as well as other permanent
details such as dots and incipient ridges. One of the most important fine-level details
is the finger sweat pores, whose positions and shapes are considered highly distinctive.
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