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Simple Summary: Invasive mosquito species alter the local epidemiology of many pathogens in the
invaded areas, including locality circulating pathogens and imported ones. Four invasive species of the
genus Aedes are established in Europe, potentially affecting the transmission of vector-borne diseases
in the area. These species include Aedes aegypti, Aedes albopictus, Aedes japonicus and Aedes koreicus.
Here, we extensively review the blood feeding patterns of these invasive Aedes mosquitoes which
constitute a key parameter affecting the contact rates between infected and susceptible hosts,
thus playing a central role in epidemiology of mosquito-borne pathogens. Our results show that these
mosquito species feed on different vertebrate groups, especially on mammals. Humans are common
hosts of these species, representing 36% and 93% of the blood meals identified for Aedes japonicus and
Aedes aegypti, respectively. Birds and, even, ectotherms have been recorded as potential hosts of these
Aedes invasive mosquitoes. Given their competence for the transmission of emerging arboviruses
such as dengue or Chikungunya viruses and their rates of feeding in humans, Aedes invasive species
may have an important impact in the transmission of these pathogens in urban and periurban areas.
Finally, we identify the knowledge gaps on the blood feeding patterns of these species and propose
directions for future research.

Abstract: Aedes invasive mosquitoes (AIMs) play a key role as vectors of several pathogens of
public health relevance. Four species have been established in Europe, including Aedes aegypti,
Aedes albopictus, Aedes japonicus and Aedes koreicus. In addition, Aedes atropalpus has been repeatedly
recorded although it has not yet been established. In spite of their importance in the transmission
of endemic (e.g., heartworms) and imported pathogens (e.g., dengue virus), basic information of
parameters affecting their vectorial capacity is poorly investigated. The aim of this study is to
review the blood feeding patterns of these invasive mosquito species in Europe, summarizing
available information from their native and introduced distribution ranges. The feeding patterns of
mosquitoes constitute a key parameter affecting the contact rates between infected and susceptible
hosts, thus playing a central role in the epidemiology of mosquito-borne pathogens. Our results
highlight that these mosquito species feed on the blood of different vertebrate groups from ectotherms
to birds and mammals. However, humans represent the most important source of blood for these
species, accounting for 36% and 93% of hosts identified for Ae. japonicus and Ae. aegypti, respectively.
In spite of that, limited information has been obtained for some particular species, such as Ae. koreicus,
or it is restricted to a few particular areas. Given the high vector competence of the four AIM species
for the transmission of different emerging arboviruses such as dengue, Chikungunya, Zika or Yellow
fever viruses and their high feeding rates on humans, these AIM species may have an important
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impact on the vectorial capacity for such pathogens on urban and periurban areas. Finally, we propose
directions for future research lines based on identified knowledge gaps.

Keywords: alien species; Asian tiger mosquito; dengue; feeding pattern; feeding behavior; hosts;
vectors; yellow fever; zika

1. Introduction

Mosquitoes (family Culicidae) are almost ubiquitous, being absent only from some remote areas
such as Antarctica. Mosquitoes are a nuisance for humans because of their bites but they also transmit
many pathogens to humans and other animals [1,2]. Among vector-borne diseases, mosquito-borne
pathogens are particularly relevant causing malaria, dengue fever, Yellow fever, Japanese encephalitis
and lymphatic filariasis, among many other diseases [3,4]. For example, malaria alone is responsible for
significant rates of morbidity with approximately 405,000 fatalities annually [5]. Although mosquitoes
are particularly abundant in the humid tropics and subtropics, they also represent a public health
concern in temperate areas [6,7]. Nowadays, the public and scientific concern on mosquito-borne
diseases is increasing as new diseases emerge and others resurge or expand to new geographic areas [8].
This expansion of vector borne diseases is often fuelled by processes of invasion by mosquito species
with the capacity to transmit pathogens with large relevance for public health and well adapted to
proliferate in urban environments [9–11]. For example, the Asian tiger mosquito Aedes albopictus is a
well-known vector of pathogens including dengue, Zika and Chikungunya viruses [12,13] and has been
involved in dengue outbreaks in France in 2010, Spain in 2018 and in Italy in 2020 [14–16], Chikungunya
outbreaks in Italy [17] and the local transmission of Zika virus in France [18]. Aedes albopictus has
also been involved in the transmission of autochthonous locally circulating pathogens such as the
nematode Dirofilaria immitis in Italy [19]. In addition, mosquito invasions and the pathogens they can
transmit may also have important negative impact on wildlife populations. This is the case of the
introduction of Culex pipiens in the Hawaii archipelago that has allowed the local transmission of the
avian malaria parasite Plasmodium relictum among immunologically naïve endemic avian species [20].
This parasite significantly contributed to the decline of native bird populations [21].

The aim of this study is to review the published information on the blood feeding patterns of
invasive mosquitoes in Europe. In particular, we focus on species of the genus Aedes, which are vectors
of both introduced and native pathogens of public health relevance [9,10,22]. The blood feeding
patterns of mosquitoes is a key component in the estimation of their vectorial capacity as its study
allows the identification of the potential vertebrate hosts of mosquitoes, estimate contact rates and
represent an essential component in epidemiological studies of mosquito-borne pathogens [23,24].
In fact, human-biting rate is an important parameter for the estimation of the basic reproduction rate
(R0) of vector borne pathogens like arboviruses, i.e., arthropod-borne viruses. R0 is defined as the
average number of new cases expected from an infected individual placed in a population of susceptible
hosts [25]. When referring to mosquito-borne diseases affecting humans, other important variables
affecting R0 are vector longevity, pathogen development time and vector competence, i.e., the ability of
mosquitoes to get infected following an infected blood meal and being able to transmit the pathogen
during subsequent bites [26]. Aedes species are becoming a global concern due to their expansion
throughout the globe, in particular in the case of Aedes albopictus and Aedes aegypti, which have already
spread through the tropics, eastern Asia, Europe and North America [27].

2. Aedes Invasive Mosquitoes in Europe

In recent decades, there have been continuous introduction events of exotic mosquitoes into Europe,
facilitated by the global movements of people and goods [28–30]. Nowadays, there are four Aedes
invasive mosquito (AIM) species with known established populations in Europe, namely, Ae. albopictus,
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Ae. aegypti, Aedes japonicus and Aedes koreicus [31–34] (Figure 1). In addition, Aedes atropalpus has been
detected in several occasions in different European countries such as France and the Netherlands
although it has not been established yet [35].
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Figure 1. Current known distribution of Aedes invasive species in Europe (September 2020; accessed on
19 November 2020). The maps show the current European distribution of Ae. albopictus (upper-left
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panel). European Centre for Disease Prevention and Control and European Food Safety Authority.
Mosquito maps (internet). Stockholm: ECDC; 2020. Available from: https://ecdc.europa.eu/en/disease-
vectors/surveillance-and-disease-data/mosquito-maps.

Aedes albopictus is native to Southeast Asia but has spread its distribution to areas around the
globe in the last 40 years. In the 19th century, Ae. albopictus colonized some islands of the Indian
and the Pacific Ocean around its native range with the aid of human activities. This species was
first detected in Europe (Albania) in 1979 and during the decade of the 1980s, new populations were
established in North and South America and Africa [36–39]. This rapid spread has been possible due to
the international trade, primarily of used tires [40,41] but also in other kind of shipments such as lucky
bamboo, Dracaena sanderiana [42,43]. Further spread within countries may be facilitated by passive
transport in vehicles [44]. Nowadays, Ae. albopictus is widely spread and established in more than
15 European countries [31] including Spain [45], France [46], Italy [47], Malta [48,49], Greece [50] and
Montenegro [51].

Aedes aegypti, the yellow fever mosquito, was thought to be native to Africa, but now there
is genetic evidence of its origin from Madagascar [52]. Nowadays, it is one of the most globally
widespread mosquito species [9]. Its disseminations likely started in the 16th century, linked to the slave
trade between Africa and the Americas [53]. In the early 20th century, this species occurred in European
countries of the Mediterranean basin such as Spain, Greece, France, Italy, among others, but was
eradicated from the area after 1950s, probably due to the malaria winter control campaigns [54,55].

https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps
https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps
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Nowadays, Ae. aegypti is present in the Madeira islands [56] and in more eastern countries like Georgia,
northeastern Turkey [57], and southern Russia [32].

Aedes japonicus was originally distributed in southern China, Korea, Japan, Taiwan and southern
Russia [58]. Of the four known subspecies of Ae. japonicus, only Aedes j. japonicus, native to Japan,
Korea, and Russian Primorsky Krai region, has become invasive [58]. Aedes japonicus was found
established outside its native range for the first time in the United States [59] while the first report
in Europe was in France in 2000 [60]. Since then, established populations of this mosquito species
have also been detected in Belgium [61], Germany, Switzerland [62], Austria, Slovenia, Croatia [63],
the Netherlands [64], Italy, Hungary [33] and Luxembourg [58]. More recently, thanks to a citizen
science platform, Ae. japonicus has been also recorded in some regions of North Spain, where it is
currently established [65].

Aedes koreicus is native to Asia, being present in South Korea, Japan, China, and eastern Russia [66].
This species was first detected outside its range in Belgium in 2008, where it is currently established [67].
Since then, the species has been recorded in Italy [68], Slovenia [69], Germany [70], European Russia [71],
Hungary [72], and Switzerland [73]. The species is nowadays established in all the mentioned countries
except Slovenia and Switzerland [34].

Finally, the American rock pool mosquito Ae. atropalpus, native from eastern North America,
expanded its distribution in America due to the utilization of tires as breeding sites and the commerce
of used tires through the continent [9]. In the 1990s, this species was reported in northern Italy in a used
tires wholesale that imported tires from North America [28]. However, the rapid implementation of
control treatments avoided the establishment of the population [47]. Aedes atropalpus was subsequently
reported in 2003 and 2005 in France, and in the Netherlands in 2009, but in all the cases the populations
were eradicated [9,74]. Nowadays, there are not known established populations of Ae. atropalpus in
Europe, although it is introduced in the south of the Netherlands [35].

3. Methods Used for the Identification of Vertebrate Hosts of Invasive Aedes Mosquitoes

Mosquito species differ in their feeding preferences, which determine their contact rates with
both pathogens and vertebrate hosts [75,76]. Due to the differential vector competence of mosquitoes
and host susceptibility for pathogens, knowledge on the feeding patterns of mosquitoes provides
valuable information to identify the key vectors of pathogens, its main reservoirs and also to assess
the risk of transmission to humans and other target species. In the case of AIMs, studying their
blood-feeding preferences may help to understand how they could affect the local transmission of
circulating pathogens and how the risk of local transmission of native and imported pathogens is
changed by invasive mosquito presence.

Mosquitoes with a recent blood meal in their abdomen could be used to trace their vertebrate
host species. Different approaches have been used for the identification of mosquito’s blood meal
sources, including precipitin test [77,78], gel diffusion [79,80] or enzyme-linked immunosorbent assay
(ELISA) [81,82], and molecular techniques [83,84]. More recently, the matrix-assisted laser desorption
ionization-time off light mass spectrometry (MALDI-TOF MS) has also been applied to mosquito’s blood
meal identification. This is a proteomic technique based on the profiling of the blood meal proteins
and the identification of the host by comparison with a reference database. This technique has already
been used successfully for host identification in Ae. albopictus raised in laboratory, both for single and
mixed blood meals [85,86], although there is still scarce evidence of its effectiveness identifying blood
meals from field collected Aedes mosquitoes [87] given the large diversity of vertebrates present in
wild communities. Another technique that has been recently used for blood-meal identification of
mosquitoes is mid-infrared spectroscopy [88]. Although, to our knowledge, it has not been already
used with invasive Aedes species, this methodology may represent an additional, less expensive and
quicker alternative to other widely used methods [88]. Further information on the blood feeding
patterns of these mosquito species could be obtained by exposing different hosts (e.g., humans or other
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animals) to mosquito attacks [89,90]. The novel mosquito electrocuting trap may allow researchers to
identify the risk of exposure of humans to mosquito bites, including invasive Aedes species [91].

All of these different approaches for the identification of vertebrate hosts of mosquitoes have pros
and cons that should be evaluated in terms of accessibility to specialized laboratory equipment, time,
conservation of the samples, precision in host species identification and economic costs of analyses.
For example, serological methods, such as ELISA or precipitin test, consist of the identification of hosts
by exposing the blood to immunoglobulin G (IgG) conjugated against potential host species. Therefore,
this technique is limited by the availability of antisera against some target species and the cross-reactivity
between serum proteins in the case of closely related species limiting the range of hosts that can be
identified [23,92]. Both of these techniques have been broadly used to identify blood meals of Aedes
species [93–95]. To overcome the limitations regarding the availability of antisera and cross-reactivity,
some of these studies used a combination of different techniques. For example, Savage et al. [96]
used both precipitin test and ELISA to check for possible false positives, while Richards et al. [97] and
Apperson et al. [81] employed PCR to conduct the specific identification of blood meals previously
identified as avian-derived using ELISA. A similar procedure was used by Jansen et al. [92] with
subsamples of blood meals that tested negative using an ELISA identification approach. On the
other hand, the use of MALDI-TOF MS is still limited by the low number of species included in
the database [85], although available information is progressively growing [98]. Molecular methods
can be used to overcome this limitation, allowing increased specificity in the host identification.
They consist of the amplification of sequences from different genes using either specific or universal
primers. These techniques include DNA sequencing, use of group-specific primers, heteroduplex
analysis, PCR-restriction fragment length polymorphism (PCR-RFLM), real-time PCR, reverse line-blot
hybridation and DNA profiling [24]. DNA sequencing is the simplest and most specific method and is
ideal for insects that feed on a wide range of vertebrate hosts or whose range of hosts is unknown.
Once the sequence is obtained, matches can be found in available databases such as GenBank or the
Barcode of Life Data System [24,99]. However, these approaches may be limited by factors including
the gradual digestion of the blood meal that reduce the success of host identification [100,101] and
the occurrence of partial blood meals that may not provide enough starting material [24]. In addition,
DNA sequencing does also have constraints because it is time-consuming and relatively expensive,
even more in the case of mixed-host blood meals. In addition, different sets of primers may match
with sequences of the Ae. albopictus cytochrome (cyt) b gene, consequently amplifying the DNA of the
mosquito (one unspecific extra locus) and not of the vertebrate hosts [102,103].

There are different genes that can be used as diagnostic markers for molecular blood meal
identification, such as mitochondrial genes, ribosomal RNA genes, nuclear genes and repetitive DNA
sequences, including micro and minisatellites [24]. Mitochondrial genes, especially cyt b and c oxidase 1
(COI) genes, are, by far, the most broadly used genes for the molecular identification of mosquito blood
meals sources. Within their advantages are the high number of copies and the high variability they
present even between closely related species. However, nuclear genes have also been used successfully
for identification of blood meals from vectors, but they present restrictions such as the low variability of
the sequences in closely related species and that a low number of vertebrates have been characterized
for these genes [104]. In addition, mammal blood cells are enucleated, limiting the use of these genes
and highlighting the value of working with mitochondrial sequences [24].

4. Blood Feeding Patterns of Invasive Aedes Mosquitoes

We developed an extensive literature review on the blood feeding patterns of Ae. aegypti, Ae. albopictus,
Ae. japonicus and Ae. koreicus—the four AIMs currently established in Europe. Studies considered here
include those covering both their native and introduced distribution ranges. We used Google Scholar as
the main search engine to find articles identifying vertebrate hosts of mosquitoes. We made searches with
keywords including “Blood meal AND the scientific name of the mosquito species (e.g., Aedes albopictus)”
(February, 2020) and “Feeding pattern AND the scientific name of the mosquito species” (March, 2020).
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This procedure was conducted for Ae. albopictus, Ae. aegypti, Ae. japonicus and Ae. koreicus. Additional
references were obtained from the citations in these studies while other references were facilitated
by colleagues. Overall, 276 studies were obtained at a first stage. We only selected studies based on
the identification of blood meals of mosquitoes. From them, only those including information about
the blood-feeding patterns of wild-caught invasive Aedes mosquitoes were selected. Studies that did
not include data about the species focus of this study or that studied mosquitoes raised or fed in the
laboratory were not used. Review articles were not considered here. As a result, we found 46 studies on
the blood feeding patterns for four of the mosquito species that are included in this study. An Excel
table was created including the information of interest, such as species studied, country where the study
was developed, the habitat characteristics of the area of capture (i.e., urban, periurban or rural areas),
total number of mosquitoes analyzed, methodology of blood meal identification, and the proportion of
feedings obtained from different vertebrate hosts.

Aedes albopictus was the species most intensively studied with 31 articles focused on this species,
followed by Ae. aegypti, Ae. japonicus and Ae. koreicus, which were included in 14, 8 and 2 studies,
respectively. Overall, the dataset included in this study corresponded to 11,618 engorged mosquitoes.
Of them, 6448 corresponded to Ae. aegyti, 4893 to Ae. albopictus and 227 to Ae. japonicus. Information of
the vertebrate hosts from only 50 blood meals corresponded to Ae. koreicus. Most (80.4%; n = 37) of
these studies were conducted in the invaded distribution range of these mosquito species, with only 11
of them being developed in Europe. Only five studies included data from both invaded and native
distribution areas. No studies focusing on the identification of vertebrate hosts of Ae. atropalpus
were found. Within these studies, 14 used serological methods, namely, ELISA, precipitin test or
immunodiffusion technique, for the blood meal identification, while 27 used molecular methods and
five combined both of them (four used ELISA and PCR and one used precipitin test and PCR).

According to the published information, 37 species were identified as vertebrate hosts of at least
one of the AIM species studied, including 26 mammals and 11 birds. Ten other vertebrate groups were
also identified as hosts of these AIMs, although the accuracy of identification reached levels above
host genus. The broader host range was recorded for Ae. albopictus including 20 mammal and 5 bird
species (Table 1), and Ae. albopictus was the only one that was documented to feed on ectotherms,
including reptiles, amphibians and fish (Figure 2a). Aedes aegypti and Ae. japonicus fed on 5 mammal
and 4 bird species and 15 mammal and 5 bird species, respectively. Only three species of mammals
were identified as hosts of Ae. koreicus, with no records of birds. Results of the percentage of vertebrate
host groups of the four AIM species are shown in Figure 2, including those studies developed in Europe
(Figure 2b). Despite the ability of most of these species to feed on blood from different vertebrate
groups, the vast majority of blood meals derived from mammals, representing over the 90% of the
single blood meals identified. Interestingly, the anthropophilic behavior of these species is supported
by the fact that humans represent 36–93% of the total single blood meals. Avian sources represented
only 0–6% of the single blood meals.

The occurrence of mixed blood meals, those containing blood from two or more vertebrate host
species, was highly variable between studies. The proportion of these mixed meals ranged from <1% to
78% of the total feedings for Ae. aegypti, and from 3% to 100% for Ae. albopictus, although this extremely
high value was reported by a study where only seven individuals were analyzed [82]. For the case
of Ae. japonicus, authors recorded a percentage of 8% and 50% of mixed blood meals in the only two
studies recording its occurrence, although the highest value was obtained in a study including only
two mosquitoes [105]. To our knowledge, the occurrence of mixed blood meals has not been reported
for Ae. koreicus, likely due to the low number of studies and mosquitoes analyzed for this species.
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Table 1. Vertebrate hosts of the four invasive Aedes species identified using molecular methods.

Aedes albopictus Family Species References

Mammals Hominidae Homo sapiens [73,84,97,103,105,106], [107] *, [108–113], [114] *, [115], [116] *, [117]
Canidae Canis lupus ** [97,108–110,113], [114] *, [115,117]
Felidae Felis silvestris ** [97,105,106], [107] *, [109], [114] *, [117]

Procyonidae Procyon lotor [97], [116] *

Muridae
Rattus norvegicus [110,113], [116] *, [117]

Mus musculus [105]
Cricetidae Peromyscus leucopus [109]
Sciuridae Sciurus carolinensis [111]
Leporidae Sylvilagus floridanus [109], [116] *

Suidae Sus ** [108,111], [114] *, [115]
Bovidae Bos taurus [73]
Cervidae Odocoileus virginianus [117]
Equidae Equus caballus [97]
Soricidae Suncus murinus [111]

Erinaceidae Erinaceus europaeus [84]
Dasypopidae Dasypus novemcintus [116] *

Phyllostomidae Tonatia bidens [110]
Didelphidae Didelphis virginiana [97,109]

Birds
Phasianidae Gallus domesticus [97,115]

Turdidae Turdus merula [84]
Passeridae Passer montanus [84]

Tamnophilide Taraba major [110]
Cardinalidae Cardinalis cardinalis [97]

Anatidae Unknown [115]
Aedes aegypti

Mammals Hominidae Homo sapiens [92,116,118–121]
Canidae Canis lupus ** [92,116,118,120]
Felidae Felis silvestris ** [92,120]
Bovidae Bos taurus [92,118]
Suidae Sus scrofa ** [118]

Equidae Equus caballus [120]
Birds

Phasianidae Gallus domesticus [120]
Phasianidae Francolinus squamatus [119]

Mimidae Mimus polyglottos [116]
Musophagidae Crinifer piscator [119]

Aedes japonicus
Mammals Hominidae Homo sapiens [81,117,122–125]

Canidae
Canis lupus ** [122]
Canis latrans [126]

Felidae
Felis silvestris ** [117]

Panthera leo persica [122]
Procyonidae Procyon lotor [126]

Phocidae Phoca vitulina [122]
Muridae Rattus norvegicus [117]
Sciuridae Unknown species [123]
Camelidae Lama sp. [122]

Bovidae
Bos taurus [125]

Boselaphus tragocamelus [122]
Ovis sp. [122]

Cervidae
Dama dama [124]

Odocoileus virginianus [123,124,126]

Equidae Equus caballus [81,124]
Equus asinus [122]

Didelphidae Didelphis virginiana [124]
Birds

Phasianidae Gallus domesticus [122]
Turdidae Turdus merula [122]

Passeridae Passer domesticus [122]
Spheniscidae Spheniscus humboldti [122]

Rheidae Rhea pennata [122]
Aedes koreicus

Mammals Hominidae Homo sapiens [127,128]
Canidae Canis lupus ** [127,128]
Bovidae Bos taurus [128]

* These also reported blood meal hosts such as “amphibian”, “fish” or “turtle”. ** The identification of blood from
Canis lupus, Sus scrofa and Felis silvestris may correspond to domestic animals.
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amphibians and fish (green) for the four Aedes invasive species studied (a) in both their native and
invaded ranges or (b) studies conducted only in Europe. Blood meals derived from more than one
vertebrate species (i.e., mixed blood meals) were excluded from the plot. The studies used for this
figure are listed in the Supplementary Material Table S1.

5. Concluding Remarks and Future Prospects

Some of the AIMs studied, particularly Ae. albopictus and Ae. japonicus, have a wide range of hosts,
feeding on a broad diversity of vertebrates. All the AIMs had a marked feeding preference for mammals,
especially to feed on humans. In particular, human blood represented over 90% of the blood meals
identified for Ae. aegypti and Ae. koreicus (Figure 2). This large percentage of human-derived blood
meals could be explained, at least in part, due to the nature of the collection sites. Although sampling
sites include urban, periurban and rural areas [93,129,130], where the availability of humans may differ,
most studies have been conducted in urban environments, especially when studying Ae. albopictus and
Ae. aegypti. Aedes aegypti has a highly anthropophilic behavior, entering houses to feed on human blood
and breeding in man-made containers in most of its populations [131]. Birds, and other vertebrates,
have been also recorded as potential hosts for these AIMs, although they represent a low percentage
of the mosquito blood meals studied. Aedes albopictus was the species with the highest percentage
of avian blood meals, and the only one found to feed on ectotherms. When focusing on studies
developed in Europe, a slight change can be appreciated in the proportions of the blood meal sources
in Ae. albopictus and Ae. japonicus. Aedes albopictus shows an increase in the proportion of feedings
obtained from humans, which is not surprising given the fact that all six studies had collection sites
in urban environments, and only two combined urban and periurban environments. Aedes japonicus,
on the contrary, presents a decrease in the anthropophilic pattern. Again, this can be caused by the
nature of the collection sites, since the mosquitoes were captured in a zoo and in two resellers of used
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tires. Nevertheless, the data collected in Europe are scarce, including the study of a relatively low
sample size of mosquitoes collected in a handful of countries. Thus, it would be desirable to develop
additional studies in Europe to understand seasonal and spatial variation in AIM blood feeding
behavior and the impact of urbanization on mosquito feeding patterns and its potential consequences
for pathogen transmission in villages and cities. Based on these results and information of their vector
competence, AIMs may play an important role in the transmission of pathogens circulating between
mammals, especially humans. However, although avian pathogens such as avian malaria have been
detected in Ae. albopictus, its relevance may be considered low compared to other species such as
Culex pipiens [84,103,106]. This may be also the case for the transmission of zoonotic pathogens of
avian origin such as West Nile virus, in spite that this species has been reported as a potential bridge
vector between birds and humans in invaded ecosystems [132].

Interestingly, studies on the feeding preferences of mosquitoes are still scarce as most of the
published information did not consider the abundance of the potential vertebrate hosts in the studied
localities. This could lead, for example, to an overestimation of the anthropophilic behavior of AIMs
in studies developed exclusively in urbanized environments where humans may represent the most
common available hosts. In fact, a recent study identified urbanization as a key component explaining
the variation of Ae. aegypti preference for human odors [133]. This anthropophilic behavior showed in
urbanized areas [103,107] could facilitate the transmission of mosquito-borne pathogens and facilitate
local transmission arising from virus imported by infected travelers. Thus, future studies on the
feeding pattern of AIMs may be carried out combined with censuses of vertebrate hosts in the area.

This review also highlights other limitations of the current knowledge of the feeding patterns of
AIMs in Europe due to the extremely low number of mosquitoes analyzed for some species. This is
particularly the case for Ae. koreicus, for which records of blood meal hosts have been obtained for
only 50 mosquitoes. These numbers are even lower when considering just the blood meals analyzed
from European populations of mosquitoes. It is important to highlight that studies focused on AIMs
are still scarce in Europe. Specifically, we found only ten studies that analyzed the feeding patterns
of AIMs in the area, but they were developed in areas corresponding to only five countries (Spain,
Italy, the Netherlands, Switzerland and Madeira (Portugal). This fact may be partially due to the
limited distribution range of most of these mosquito species in Europe. However, the blood feeding
patterns of Ae. albopictus have only been studied in Spain, Italy and Switzerland [73,84,103,106,112,129],
despite being currently established in more than 15 European countries [31]. In addition, previous
studies have not analyzed the factors affecting spatial or seasonal variation in blood meal composition
or in the incidence of human blood meals in this species. Furthermore, we found no data on the feeding
patterns of Ae. atropalpus. This is not surprising in the case of Europe, since the species was eradicated
from different countries and nowadays there are not known established populations, although it is
present in a small area in the Netherlands [35].

Overall, these findings highlight a major gap of knowledge that should be fulfilled in the future to
finally understand how the establishment of Aedes species has changed the patterns of transmission
of mosquito-borne pathogens in Europe and the risk of local outbreaks of imported arboviruses and
other imported pathogens.

In addition, molecular and serological techniques can be used to identify pathogens present
in the abdomen of blood-engorged insects (e.g., xenosurveillance) [134,135]. This procedure allows
researchers to obtain information not only about mosquitoes feeding preferences, but also which
pathogens are interacting with them and are circulating in the populations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/12/848/s1,
Table S1: Vertebrate hosts of Aedes invasive species identified using different approaches.
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