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Abstract
Ductal carcinoma in situ (DCIS) is a pre-cancerous lesion in the ducts of the breast, and early diagnosis is crucial for optimal
therapeutic intervention. Thermography imaging is a non-invasive imaging tool that can be utilized for detection of DCIS and
although it has high accuracy (~88%), it is sensitivity can still be improved. Hence, we aimed to develop an automated artificial
intelligence-based system for improved detection of DCIS in thermographs. This study proposed a novel artificial intelligence
based system based on convolutional neural network (CNN) termed CNN-BDER on a multisource dataset containing 240
DCIS images and 240 healthy breast images. Based on CNN, batch normalization, dropout, exponential linear unit and
rank-based weighted pooling were integrated, along with L-way data augmentation. Ten runs of tenfold cross validation were
chosen to report the unbiased performances. Our proposed method achieved a sensitivity of 94.08±1.22%, a specificity
of 93.58±1.49 and an accuracy of 93.83±0.96. The proposed method gives superior performance than eight state-of-the-
art approaches and manual diagnosis. The trained model could serve as a visual question answering system and improve
diagnostic accuracy.

Keywords Ductal carcinoma in situ · Thermal images ·Deep learning · Convolutional neural network · Breast thermography ·
Exponential linear unit · Rank-based weighted pooling · Data augmentation · Color jittering · Visual question answering
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Introduction

Ductal carcinoma in situ (DCIS), also named intra-ductal
carcinoma is a pre-cancerous lesion of cells that line the
breast milk ducts, but have not spread into the surround-
ing breast tissue. DCIS is considered the earliest stage of
breast cancer (Stage 0) [1], and although cure rates are
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high the patients still need to be treated, since DCIS can
become invasive. Note that there are four other stages: Stage
1 describes invasive breast cancer, the cancer cells of which
are invading normal surrounding breast tissues. Stages 2 and
3 describe breast cancers that have invaded regional lymph
nodes andStage 4 representsmetastatic cancerwhich spreads
beyond the breast and regional lymph nodes to other dis-
tant organs [2]. Upon diagnosis of DCIS, treatment options
include breast-conserving surgery (BCS), usually in combi-
nation with radiation therapy [3] or mastectomy.

Breast thermography (BT) is an alternative imaging tool
to mammography, which is the traditional diagnostic tool for
DCIS. Unlike mammography (which uses ionizing radiation
to generate an image of the breast), BT utilizes infra-red
(IR) images of skin temperature to assist in the diagnosis
of numerous medical conditions, and has been suggested to
detect breast cancer up to 10 years earlier than mammog-
raphy [4]. Furthermore, due to its use of ionizing radiation,
mammography can increase the risk of breast cancer by 2%
with each scan [5].

Automatic interpretation of DCIS [6] by BT images con-
sists of three phases: (1) segmentation of the region of
interest, separating the breast from the image; (2) feature
extraction, choosing distinguishing features that can help rec-
ognize the suspicious lesion; (3) classification, identifying
the image as DCIS or healthy.

Previous studies have developed anumber of effective arti-
ficial intelligence (AI)methods for DCIS detection using BT.
Milosevic et al. [7] utilized 50 IR breast images to develop a
co-occurrence matrix (COM) and run length matrix (RLM)
as IR image descriptors. In the classification stage, a support
vector machine (SVM) and naive Bayesian classifier (NBC)
were used. Their methods are abbreviated as CRSVM and
CRNBC. In addition, Nicandro et al. [8] employed NBC,
whereas Chen [9] utilized wavelet energy entropy (WEE)
as features to classify breast cancers with promising results.
Zadeh et al. [10] combined self-organizing map and mul-
tilayer perceptron abbreviated as SMMP and Nguyen [11]
introduced Hu moment invariant (HMI) to detect abnormal
breasts. Finally, Muhammad [12] combined statistical mea-
sure and fractal dimension (SMFD), andGuo [13] proposed a
wavelet energy support vector machine (WESVM) to detect
breast cancer.

Nevertheless, the abovemethods require laborious feature
engineering (FE), i.e., using domain knowledge to extract
features from raw data. To help create an improved, auto-
mated AI model quickly and effectively, we proposed to use
recent deep learning (DL) technologies, viz, convolutional
neural networks (CNNs), which are a broad AI technique
combining artificial intelligence and representation learning
(RL).

Our contributions lie in four parts: (1) we proposed a novel
5-layer CNN; (2) we introduced exponential linear unit to

replace traditional rectified linear unit; (3) we introduced
rank-based weighted pooling to replace traditional pooling
methods and (4) we used data augmentation to enhance the
training set, so as to improve the test performance.

Background

Table 14 in “Appendix A” gives the abbreviations and their
explanations for ease of reading.

Physical fundamentals

BT is a sub-science field within IR imaging sciences. IR
cameras detect radiation in the long IR range (9–14µm),with
the thermal images generated being dubbed thermograms.
Physically, Planck’s law stated the spectral of a body for
frequency ω at absolute temperature T is given as

B(ω, T ) � 2oω3

l2s
× 1

θ(ω, T )
(1a)

θ(ω, T ) � exp

(
oω

kBT

)
− 1, (1b)

where B stands for the spectral radiance, o the Planck con-
stant, kB the Boltzmann constant, and ls the light speed,. If
replacing frequencyω bywavelength λ using ls � λω, above
equation can be written as:

B(λ, T ) � 2ol2s
λ5

× 1

θ(λ, T )
(2a)

θ(λ, T ) � exp

(
ols

λkBT

)
− 1. (2b)

Both charge-coupled device (CCD) and complementary
metal-oxide-semiconductor (CMOS) sensors in optical cam-
eras detect visible light, and even near-infra-red (NIR) by
utilizing parts of the IR spectrum. Basically, they could pro-
duce true thermograms with temperatures beyond 280 °C.

In our breast thermogram cases, the thermal imaging cam-
eras have a range of 15–45 °C, and a sensitivity around
0.05 °C. Furthermore, three emitted components (ECs) help
generate the following breast thermogram images: (1) EC of
the breast, (2) EC of the surrounding medium, and (3) EC in
the neighboring tissue.

Physiological fundamentals

In healthy tissue, the major regulation and control of der-
mal circulation is neurovascular, i.e. through the sympathetic
nervous system. Its sympathetic response includes both
adrenergic and cholinergic. The former causes vasoconstric-
tion (VC, narrowing of blood vessels); conversely, the latter
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Adrenergic Cholinergic

Normal Blood VesselNarrowing Widening

Vasoconstriction Vasodilation

Fig. 1 Difference between VC and VD

leads to vasodilation (VD, widening of blood vessels). The
difference between VC and VD is presented in Fig. 1.

In the early stages of cancer growth, cancer cells pro-
duce nitric oxide (NO), resulting in VD. Tumor cells then
initiate angiogenesis, which is necessary to sustain breast
tumor growth. Both VD and angiogenesis lead to increased
blood flow; therefore, the increased heat released as a result
of increased blood flow to the tumor results in hotter areas
than healthy skin.

The thermogramof a healthy person is symmetrical across
the midline. Asymmetry in the thermogram might signify
an abnormality, or even a tumor. Therefore, the thermogram
illustrates the status of the breast and presence of breast dis-
eases by identifying asymmetric temperature distribution.

Despite this, previous studies [7, 8, 14] have not measured
asymmetry directly.As an alternative, those papers employed
texture or statistical measures. As a result, this study did not
use asymmetry information, and treated each side image (left
breast or right breast) as individual images.

Dataset and preprocessing

240 DCIS breast images and 240 healthy breast (HB) images
were obtained from5 sources: (1) our previous study [12] and
further collections after its publication. (2) Ann Arbor ther-
mography [15]; (3) The Breast Thermography Image dataset
[16]; (4) The Database forMastology Research with Infrared
Image [17] and (5) online resources using search engines
including Google, Yahoo, etc.

Since our dataset is multi-source, we normalized all
the collected images using preprocessing techniques. These
included: (I) crop: remove background contents and only
preserve the breast tissue and (II) resize: all images were
re-sampled to the size of [128 × 128 × 3]. Suppose original
image is x1(t), t ∈ [1, 480]. After Step I, we have

x2(t) � Crop[x1(t), (lt , rt , tt , bt )] (3)

where (lt , rt , tt , bt ) are four parameters denotes left, right,
top, and bottom margins of t-th image to be cropped.

Finally, after Step II, we have all the images x3(t) ∈ X3

x3(t) � resize[x2(t), (128, 128, 3)]. (4)

Fig. 2 Sample of our dataset

Note some BT images used different pseudo colormaps
(PCMs). For example, some used yellow to denote high tem-
perature while some used red; conversely, some used blue
to denote low temperature while some used green. We did
not apply the same PCM to all BT images within our dataset
for four reasons: (1) we expected our AI model would learn
to determine a diagnosis based on color difference, not the
color itself; (2) humans can make a diagnosis regardless of
the PCM configuration, so we believed AI can do the same;
(3) we expected our AI model can be universal, i.e., PCM-
independent and (4) mixing of PCM color schemes in the
training set can help make our AI model more robust when
analyzing the test set, i.e., it does not require a particular
PCM scheme.

Figure 2 shows a DCIS case, where we can clearly see
the temperature difference of the lesion and the surround-
ing healthy tissues. All the images included in our dataset
were checked by agreement of two professional radiologists
(R1, R2)withmore than 10 years of experience. If their deci-
sions [H(R1), H(R2)] agreed, then the images were labelled
correspondingly, otherwise, a senior radiologist (R3) was
consulted to achieve a consensus:

H [x3(t)] �
{
H [x3(t), R1] H [x3(t), R1] � H [x3(t), R2]
M{H [x3(t), (R1, R2, R3)]} otherwise

.

(5)

Here H is the labelling result, M denotes the majority
voting, H [x3(t), (R1, R2, R3)] denotes the labelling results
by all three radiologists.

Methodology

Improvement 1: exponential linear unit

The activation function mimics the influence of an extra-
cellular field on a brain axon/neuron. The real activation

123



Complex & Intelligent Systems

function for an axon is quite complicated, and can be written
as

fn � 1

c

(
V e
n−1 − V e

n
Rn−1
2 + Rn

2

+
V e
n+1 − V e

n
Rn+1
2 + Rn

2

+ · · ·
)

, (6)

where nmeans the index of axon’s compartment model, c the
membrane capacity, Rn the axonal resistance of compartment
n, V e

n the extra-cellular voltage outside compartment n rel-
ative to the ground [18]. This is difficult to determine in an
“artificial neural network”, and thus AI scientists designed
some simplistic and ideal activation functions (AFs), which
have no direct connectionwith the axon’s activating function,
but those AFs work well for ANNs [19].

An important property of AF is nonlinearity. The reason is
stacks of linear functionwill also be linear, and those kinds of
linear AFs can only solve trivial problems and cannot make
decisions. Only nonlinear AF can allow neural networks to
solve non-trivial problems, such as decision-making. Similar
ideas were mentioned as “even our mind is governed by the
nonlinear dynamics of complex systems” by Mainzer [20].

Suppose the input is t, traditional rectified linear unit
(ReLU) [21] fReLU is defined as

fReLU(t) � max(0, t), (7)

with its derivative as

f ′
ReLU(t) �

{
0 t ≤ 0
0 t > 0

. (8)

When t < 0, the activation of fReLU values are set to
zero, so ReLU cannot train the networks via gradient-based
learning. Clevert et al. [22] proposed the exponential linear
unit (ELU)

fELU(γ , t) �
{

γ
(
et − 1

)
t ≤ 0

t t > 0
. (9)

ELU’s derivative is

f ′
ELU(γ , t) �

{
fELU(γ , t) + γ t ≤ 0
t t > 0

(10)

The default value of γ � 1. Figure 3 represents the shapes
of five different but common AFs. Each subplot has the same
range on the x-axis and y-axis for easy comparison. Informa-
tion regarding the three AFs (Sigmoid, HT, and LReLU) can
be found in “Appendix B”.

Improvement 2: rank-based weighted pooling

The activation maps (AMs) after conv layer are usually too
large, i.e., the size of their width, length, and channels are too

large to handle,whichwill cause (1) overfitting of the training
set and (2) large computational costs. Instead pooling layer
(PL) is a form of nonlinear downsampling (NLDS) used to
solve the above issue. Further, PL can provide invariance-to-
translation properties to the AMs.

For a 2 × 2 region, suppose the pixels within the region
� � {ϕi j}, (i � 1, 2, j � 1, 2) are

� �
[

ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

]
. (11)

Strided convolution (SC) can be regarded as a convolution
followed by a special pooling. If the stride is set to 2, the
output of SC is:

ySC� � ϕ1,1. (12)

The shortcoming of SC is that it will miss stronger acti-
vations if ϕ1,1 is not the strongest activation. The advantage
of SC is the convolution layer only needs to calculate 1/4 of
all outputs in this case, so it can save computation.

L2P calculates the l2 norm [23] of a given region �.
Assume the output value after NLDS is y, L2P output yL2P�

is defined as yL2P� � sqrt
(∑2

i, j�1 φ2
i j

)
. In this study, we add

a constant 1/|�|, where |�| means the number of elements
of region �. Here |�| � 4 if we use a 2 × 2 NLDS pooling.
This added new constant 1/4 does not influence training and
inference.

yL2P� �
√∑2

i, j�1 φ2
i j

|�| . (13)

The average pooling (AP) calculates the mean value in the
region � as

yAP� � average(�)

� ϕ1,1 + ϕ1,2 + ϕ2,1 + ϕ2,2

|�| . (14)

The max pooling (MP) operates on the region � and
selects the max value. Note that L2P, AP and MP work on
every slice separately.

yMP
� � max(�)

� 2
max
i, j�1

ϕi, j . (15)

Rank-based weighted pooling (RWP) was introduced to
overcome the down-weight (DW), overfitting, and lack of
generation (LG) caused by the above pooling methods (L2P,
AP, and MP). Instead of computing the l2 norm, average, or
the max, the output of the RWP yRWP

� is calculated based on
the rank matrix.
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(a) Sigmoid (b) HT (c) ReLU

(d) LReLU (e) ELU

Fig. 3 Shape of five different activation functions. HT hyperbolic tangent, ReLU rectified linear unit, LReLU leaky rectified linear unit, ELU
exponential linear unit)

First, rank matrix (RM) R � {rm} is calculated based on
the values of each element ϕm ∈ �, usually lower ranks
r ∈ R are assigned to higher values (ϕ) as

ϕm1〈ϕm2 ⇒ rm1〉rm2. (16)

In case of tied values (ϕm1 � ϕm2), a constraint is added
as

(ϕm1 � ϕm2) ∧ (m1 > m2) ⇒ rm1 > rm2. (17)

Second, (ER) map E � {em} is defined as

em � α × (1 − α)rm−1, (18)

where α is a hyper-parameter. α � 0.5 for all RWP layers,
so we do not need to tune α in this study. Equation (18) can
be updated as

em � α × αrm−1 � αrm . (19)

Third, RWP [24] is defined as the summation of ϕi j and
ei j as below

yRWP
� �

2∑
i, j�1

ϕi j × ei j . (20)

Figure 7 in “Appendix C” gives a schematic comparison
of L2P, AP, MP, and RWP.

Table 1 Pseudocode of RWP

Step 1 For an activation map AM with size of [ , ]

Step 2 for = 1: % is row index

For = 1: % is column index

Select the 2 × 2 region Φ:

Φ = (2 − 1: 2 , 2 − 1: 2 ),

Generate rank matrix :

= { }, See Eqs. (16)(17),

Generate exponential rank :

= { }, See Eq. (19),

Generate RWP ( , ), See Eq. (20).

end

end

Step 3 Output RWP pooling result :

= ( , )| = 1: , = 1: .

For better understanding, a pseudocode of RWP is pre-
sented in Table 1. We suppose there is an activation map
XAM with size of [R,C], where R means the number of
rows, and C means the number of columns. Note row index
is set to r and column index c. The RWP output of XAM is
symbolized as yRWP with size of

[ R
2 , C

2

]
. Table 2 itemizes

the equations of every pooling methods.
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Table 2 Comparison of different pooling methods

Approach Output

Raw � �
[

ϕ1,1 ϕ1,2
ϕ2,1 ϕ2,2

]

SC ySC� � ϕ1,1

L2P
yL2P� �

√∑2
i, j�1 φ2

i j
|�|

AP yAP� � ϕ1,1+ϕ1,2+ϕ2,1+ϕ2,2
|�|

MP yMP
� � max2i, j�1 ϕi, j

RWP yRWP
� �

2∑
i, j�1

ϕi j × ei j

Improvement 3: L-way data augmentation

Traditional data augmentation is a strategy that enables AI
practitioners to radically increase the diversity of training
data, without collecting new data actually. In this study, we
proposed a L-way data augmentation (LDA) technology to
further increase the diversity of the training data. The whole
preprocessed image set X3, from Eq. (4), will separate into
K folds:

X3
split−→{X3(k � 1), . . . , X3(k � K )}, (21)

where k represents the fold index.
At k-th trial, fold k will be used as the test set Dk , and

other folds will be used as the training set Ck :

Ck � X3 − Ck (22a)

Dk � X3(k), (22b)

If we do not consider the index k, and just simplify the
situations as X3 → {C, D}, for each training image c
(k) ∈ C, k � 1, . . . , |C |, we will do the following eight
DA techniques. Here we suppose each DA technique will
generate W new images.

(1) Gamma correction (GC). The equations are defined as:

−−→
c1(k) � GC[c(k)]

�
[
cGC1

(
k, ηGC1

)
, . . . cGCW

(
k, ηGCW

)]
, (23)

where ηGCj ( j � 1, . . . ,W ) are GC factors.
(2) Rotation. Rotation operation rotates the original image

to produce W new images [25]:

−−→
c2(k) � RO[c(k)]

�
[
cRO1

(
k, ηRO1

)
, . . . cROW

(
k, ηROW

)]
(24)

where ηROj ( j � 1, . . . ,W ) are rotation factors.
(3) Scaling. All training images c(k) were scaled [25] as

−−→
c3(k) � SC[c(k)]

�
[
cSC1

(
k, ηSC1

)
, . . . cSCW

(
k, ηSCW

)]
, (25)

where ηSCj ( j � 1, . . . ,W ) are scaling factors.
(4) Horizontal shear (HS) transform. W new images were

generated by HS transform

−−→
c4(k) � HS[c(k)]

�
[
cHS1

(
k, ηHS1

)
, . . . cHSW

(
k, ηHSW

)]
, (26)

where ηHSj ( j � 1, . . . ,W ) are HS factors.
(5) Vertical shear (VS) transform. VS transform was gen-

erated similarly to HS transform

−−→
c5(k) � VS[c(k)]

�
[
cVS1

(
k, ηVS1

)
, . . . cVSW

(
k, ηVSW

)]
, (27a)

ηVSm � ηHSm ,∀m ∈ 1, 2, . . . ,W . (27b)

(6) Random translation (RT). All training images c(k)were
translated W times with random horizontal shift εx and
random vertical shift εy , both values of which are in the
range of [−�,�], and obey uniform distribution U :
−−→
c6(k) � RT[c(k)]

�
[
cRT1
(
k, εx1 , ε

y
1

)
, . . . cRTW

(
k, εxW , ε

y
W

)]
, (28)

where

εxm ∼ U[−�,�],∀m ∈ [1,W ] (29a)

ε
y
m ∼ U[−�,�],∀m ∈ [1,W ], (29b)

where � is the maximum shift factor.
(7) Color jittering (CJ). CJ shifts the color values in original

images [26] by adding or subtracting a random value.
The advantage of CJ is it can help bring in randomness
change to the color channels, so it can aid production of
fake color images:

−−→
c7(k) � CJ[c(k)]

�
[
cCJ1

(
k, ξ r1 , ξ

g
1 , ξb1

)
, . . . cCJW

(
k, ξ rW , ξ

g
W , ξbW

)]
.

(30)
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Table 3 Proposed five models

Index Inheritance Name Description

Model-0 Base CNN model BCNN Base model with NCL conv layers and NFCL fully-connected layers

Model-1 Model-0 + BN + DO CNN-BD Add BN and DO to Model-0

Model-2 Model-1 + ELU CNN-BDE Use ELU to replace ReLU in Model-1

Model-3 Model-1 + RWP CNN-BDR Use RWP to replace MP in Model 1

Model-4 Model-1 + ELU + RWP CNN-BDER Use ELU and RWP to replace ReLU and MP in Model-1, respectively

The shifted color random values are within the range of
[−�,+� ], as

ξCCm ∼ U[−�,� ] (31a)

∀m ∈ [1,W ] ∧ ∀CC ∈ {r , g, b}, (31b)

where CC means color channel. � means maximum
color shift value.

(8) Noise injection. The 0-mean 0.01-variance Gaussian
noises [27] were added to all training images to pro-
duce W new noised images:

−−−−→
cL/2(k) � NO[a(k)]

�
[
cNO1 (k), . . . cNOW (k)

]
, (32)

where NO denotes the noise injection operation.
(9) Mirror and concatenation. All the above L/2 results are

mirrored, we have

−−−−−→
cL/2+1(k) � M

(−−→
c1(k)

)
(33a)

−−−−−→
cL/2+2(k) � M

(−−→
c2(k)

)
(33b)

· · ·

−−−→
cL(k) � M

(−−−−→
cL/2(k)

)
. (33c)

where M represents the mirror function. All the results
are finally concatenated as

−−−−→
cLDA(k)︸ ︷︷ ︸
L×W+1

� concat

⎧⎨
⎩c(k)︸︷︷︸

1

,
−−→
c1(k)︸ ︷︷ ︸
W

, . . . ,
−−−→
cL(k)︸ ︷︷ ︸

W

⎫⎬
⎭. (34)

The size of
−−−−→
cLDA(k) is L×W +1 images. Thus, the LDA

can be regarded as a function c(k) 
→ −−−−→
cLDA(k).

Proposedmodels and algorithm

We proposed five models in total in this study. Table 3
presents their relationships. Model-0 was the base CNN
modelwith NCL conv layers and NFCL fully connected layers.
InModel-0, we used max pooling (MP) and ReLU activation
function. Model-1 combinedModel-0 with batch normaliza-
tion (BN) and dropout (DO). Model-2 used ELU to replace
ReLU in Model-1, while Model-3 used RWP to replace MP
inModel-1. Finally,Model-4 introduced both ELU and RWP
to enhance the performance based on Model-1.

The top row of Fig. 4a shows the activation maps of the
proposed Model-0. Here the size of input was S0 � 128 ×
128 × 3, the first conv block is composed of one conv layer,
one activation function layer, and one pooling layer. After
conv layer, S1 � 128 × 128 × 32. Then after the activation
function layer, the output is the same as S1. After the pooling
layer, the size is S2 � 64 × 64 × 32. The conv block then
repeats three times, we have S3 � 64 × 64 × 64 and S4 �
32×32×64 for the second conv block, S5 � 32×32×128,
and S6 � 16 × 16 × 128 for the third conv block, S7 �
16 × 16 × 256 and S8 � 8 × 8 × 256 for the four conv
block. Then S8 was flattened and passed through the first fully
connected layer with output as S9 � 1× 1× 50. The output
of the second fully connected layer was S10 � 1 × 1 × 2.

Measures

The randomness effect of each run reduced performance
reliability, so we used K -fold cross validation to analyze
unbiased performances. The size of each fold is |X3|/K .
Due to there being two balanced classes (DCIS and HB),
each class will have |X3|/(2 × K ) images. The split setting
of one trial is shown in Table 6. Within each trial, (K − 1)
folds were used as training, and the rest fold were used as
test. After combining all K trials, the test image grew to
|X3|. If above K -fold cross validation repeats Z runs, the
performance will be reported on |X3| × Z images.

Suppose the ideal confusion matrix E ideal over the test set
at k-th trial and z-th run is

E ideal(k, z) �
[ |X3|

2×K 0
0 |X3|

2×K

]
, (35)
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Fig. 4 Block chart of five proposed models. S size, C conv, BN batch normalization, R ReLU, E ELU, D dropout, F fully connected

where the constant 2 is because our dataset is a balanced,
i.e., DCIS class has the same size of HB. After combining K
trials, the ideal confusion matrix is at z-th run is

E ideal(z) �
K∑

k�1

E ideal(k, z)

�
[ |X3|

2 0
0 |X3|

2

]
(36)

In realistic inference, we cannot get the perfect diagonal
matrix as shown in Eq. (36), suppose the z-th run real confu-
sion matrix is

E real(z) �
K∑

k�1

E real(k, z)

�
[
a(z) b(z)
c(z) d(z)

]
(37)
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where 0 ≤ a, b, c, d ≤ |X3|/2. The four variables
(a, b, c, d) represent TP, FN, FP, and TN, respectively. Here
P means DCIS and N means healthy breast (HB).

Four simple measures
(
ν1, ν2, ν3, ν4

)
can be defined as

ν1(z) � a(z)

a(z) + b(z)
(38a)

ν2(z) � d(z)

c(z) + d(z)
(38b)

ν3(z) � a(z)

a(z) + c(z)
(38c)

ν4(z) � a(z) + d(z)

a(z) + b(z) + c(z) + d(z)
. (38d)

where
[
ν1(z), ν2(z), ν3(z), ν4(z)

]
means sensitivity, speci-

ficity, precision, and accuracy at z-th run, respectively.
Besides, F1 score ν5(z), Matthews correlation coefficient
(MCC) ν6(z), and Fowlkes–Mallows index (FMI) ν7(z) can
be defined as:

ν5(z) � 2 × ν3(z) × ν1(z)

ν3(z) + ν1(z)

� 2 × a(z)

2 × a(z) + b(z) + c(z)
(39a)

ν6(z) � d(z) × a(z) − c(z) × b(z)√
γ (z)

(39b)

γ (z) � [c(z) + a(z)] × [a(z) + b(z)]

× [d(z) + c(z)] × [d(z) + b(z)] (39c)

ν7(z) �
√

a(z)

a(z) + c(z)
× a(z)

a(z) + b(z)
. (39d)

After averaging Z runs, we can calculate the mean (M)

and standard deviation (SD) of all k-th (∀k ∈ [1, 7]) mea-
sures as

M
(
νk
)

� 1

Z
×

Z∑
z�1

νk(z) (40a)

SD
(
νk
)

�
√√√√ 1

Z − 1
×

Z∑
z�1

[
νk(z) − M

(
νk
)]2

. (40b)

The result is reported in the format of M ± SD. For ease
of typing, we write it in short as MSD.

Experiments and results

Parameter setting

Table 4 shows the parameter setting of variables in this study.
The values were obtained using trial-and-error. The total size

Table 4 Parameter setting of variables

Parameter Meaning Value

|X3| Size of preprocessed image set 480

|Ck | Size of training set at k-th trial 432

|Dk | Size of test set at k-th trial 48

K Total number of k-folds 10

W Number of new images for each DA 30

L Number of DA techniques 16

� Maximum color shift value 50

Z Total number of runs of K-fold cross validation 10

NCL Number of conv layers/blocks 4

NFCL Number of fully connected layers/blocks 2

Table 5 LDA parameter setting

LDA parameter Values

GC factors ηGC1 � 0.4, ηGC2 � 0.44, . . . , ηGC15 �
0.96, ηGC16 � 1.04, ηGC17 �
1.08, . . . ηGCW � 1.6

Rotation factors ηRO1 � −W ◦, ηRO2 �
−W + 2◦, . . . , ηRO15 � −2◦, ηRO16 �
+2◦, ηRO17 � +4◦, . . . , ηROW � +W ◦

Scaling factors ηSC1 � 0.7, ηSC2 � 0.72, . . . , ηSC15 �
0.98, ηSC16 � 1.02, ηSC17 �
1.04, . . . , ηSCW � 1.3

HS factors ηHS1 � −0.15, ηHS2 �
−0.14, . . . , ηHS15 � −0.01,
ηHS16 � +0.01, ηHS17 �
+0.02, . . . , ηHSW � +0.15

Maximum shift factor � � 15

Maximum color shift value � � 50

of our dataset was 480, and thus the size of the preprocessed
image set is |X3| � 480. The number of folds and runs were
all set to 10, i.e., K � 10, Z � 10. Then, each fold contained
48 images, that is 24 DCIS and 24 HB images. The training
set contained |C | � 432 images, and the test set contained
|D| � 48 images. The number of DA ways was L � 16, the
number of new images for each DA technique was W � 30.
Thus,we created L×W � 480 new images for every training
image. The number of conv layers/blocks was NCL � 4, and
the number of fully connected layers/blocks was NFCL � 2.

Table 5 itemizes the LDA parameter settings. The GC
factors ηGC varied from 0.4 to 1.6 with an increase of 0.04,
skipping the value of 1. The rotation vector ηRO was in the
value from −W to W an increase of 2°, skipping ηRO � 0.
Scaling factor ηSC varied from 0.7 to 1.3 with an increase
of 0.02, skipping ηSC � 1. HS factors ηHS varied from −
0.15 to 0.15 with an increase of 0.01, skipping the value of
ηHS � 0. The maximum shift factor � � 15. The maximum
color shift value was � � 50.
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Table 6 K-fold cross validation setting

Set DCIS HB Total

Training (ninefolds) 216 216 |C | � 432

LDA training 103,896 103,896 |DA(C)| � 207,792

Test (onefold) 24 24 |D| � 48

Total 240 240 |X3| � 480

Table 6 shows the K-fold cross validation setting, which
was used in the experiment to report unbiased performances
[28]. For each trial, the training image set contained 216
DCIS and 216 HB images. Then after L-way data augmen-
tation, the LDA training set contained 103,896 images for
each class, and thus together |DA(C)| � 207, 792 images.
The size of the test set during each trial was only 48 images.
Combining 10 trials, the final combined test set is the same
as the original dataset of 480 images.

Statistical result of proposedmodel-4

The ten runs of our Model-4 results are shown in Table
7. Here it shows using our Model-4 CNN-BDER yielded
ν1 � 94.08 ± 1.22, ν2 � 93.58 ± 1.49, ν3 � 93.63 ± 1.37,
ν4 � 93.83 ± 0.96, ν5 � 93.85 ± 0.94, ν6 � 87.68 ± 1.91,
ν7 � 93.85 ± 0.94. In summary, our model-4 showed high

accuracy, potentially aiding radiologists to make fast and
accurate decisions.

Model comparison

We next compared the Model-4 CNN-BDER result with
other four models (Model-0 BCNN, Model-1 CNN-BD,
Model-2CNN-BDE, andModel-3CNN-BDR). The compar-
ison results are shown inTable 8.Here,Model-4CNN-BDER
yielded the best results among all five models. Note that
ν2 and ν3 of Model-3 CNN-BDR are quite close to those
of Model-4 CNN-BDER, but considering the results were
obtained using an average of ten runs, we can still conclude
thatModel-4 CNN-BDER has higher accuracy thanModel-3
CNN-BDR in terms of all seven indicators.

Kruskal–Wallis test was preformed based on Model-4
against Model-(m), where m � 0, 1, 2, 3. The p value result
matrix P is listed in Table 9. The null hypothesis is the indi-
cator vector νn(n � 1, . . . , 7) of Z runs of Model-(m) and
that of Model-4 come from the same distribution, and the
alternative hypothesis that not all samples are obtained from
the same distribution. Then we recorded the corresponding
p value as p(m, n). The final matrix P � [p(m, n)],m �
0, . . . , 3, n � 1, . . . , 7. Note here we chose Z � 30. The
reason is our data are not normally distributed (see Table 7),
so it is important to obtain a larger sample set.

Table 7 10 runs of the proposed
model-4 Run Sen ν1 Spc ν2 Prc ν3 Acc ν4 F1 ν5 MCC ν6 FMI ν7

1 92.50 94.58 94.47 93.54 93.47 87.10 93.48

2 92.92 92.50 92.53 92.71 92.72 85.42 92.72

3 94.58 93.33 93.42 93.96 94.00 87.92 94.00

4 94.17 95.42 95.36 94.79 94.76 89.59 94.76

5 94.58 93.33 93.42 93.96 94.00 87.92 94.00

6 92.50 93.75 93.67 93.13 93.08 86.26 93.08

7 94.17 90.42 90.76 92.29 92.43 84.64 92.45

8 95.42 95.42 95.42 95.42 95.42 90.83 95.42

9 93.75 94.17 94.14 93.96 93.95 87.92 93.95

10 96.25 92.92 93.15 94.58 94.67 89.22 94.68

MSD 94.08±1.22 93.58±1.49 93.63±1.37 93.83±0.96 93.85±0.94 87.68±1.91 93.85±0.94

Table 8 Model comparison (with LDA)

Approach Sen ν1 Spc ν2 Prc ν3 Acc ν4 F1 ν5 MCC ν6 FMI ν7

Model-0 90.54±0.90 91.58±1.65 91.51±1.55 91.06±1.05 91.02±1.01 82.14±2.10 91.02±1.01

Model-1 91.71±2.06 91.96±0.94 91.94±0.95 91.83±1.28 91.81±1.35 83.68±2.55 91.82±1.35

Model-2 93.58±1.66 92.54±1.34 92.63±1.22 93.06±1.09 93.10±1.10 86.15±2.17 93.10±1.10

Model-3 92.83±1.53 93.54±1.39 93.50±1.37 93.19±1.29 93.16±1.31 86.38±2.57 93.16±1.31

Model-4 94.08±1.22 93.58±1.49 93.63±1.37 93.83±0.96 93.85±0.94 87.68±1.91 93.85±0.94

Bold means the best
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Table 9 p value of hypothesis
test (Z � 30) m Sen ν1 Spc ν2 Prc ν3 Acc ν4 F1 ν5 MCC ν6 FMI ν7

0 2.61e−11 1.96e−5 9.76e−7 1.04e−10 3.42e−11 8.23e−11 3.42e−11

1 3.03e−6 1.46e−5 5.21e−6 3.19e−8 2.91e−8 1.72e−8 2.45e−8

2 0.3169 0.0027 0.0017 0.0076 0.0102 0.0069 0.0098

3 0.0021 0.7388 0.5740 0.0388 0.0397 0.0325 0.0397

Bold means p <0.05

Table 10 Results of not using LDA

Approach Sen ν1 Spc ν2 Prc ν3 Acc ν4 F1 ν5 MCC ν6 FMI ν7

M0-NLDA 89.46±1.16 87.67±1.02 87.89±0.89 88.56±0.73 88.66±0.74 77.15±1.47 88.67±0.74

M1-NLDA 89.75±1.81 89.46±1.42 89.50±1.26 89.60±1.10 89.62±1.14 79.23±2.19 89.62±1.14

M2-NLDA 91.54±1.47 92.04±1.74 92.02±1.63 91.79±1.26 91.77±1.25 83.60±2.52 91.78±1.25

M3-NLDA 91.21±0.75 91.50±1.23 91.49±1.12 91.35±0.74 91.34±0.71 82.72±1.47 91.35±0.71

M4-NLDA 92.17±1.36 91.46±1.41 91.53±1.32 91.81±1.11 91.84±1.10 83.64±2.22 91.84±1.10

M4-LDA 94.08±1.22 93.58±1.49 93.63±1.37 93.83±0.96 93.85±0.94 87.68±1.91 93.85±0.94

Bold means the best
M model, NLDA not using LDA

The first row and second row of Table 9 show that all p
values are<0.05. So, the test rejects the null hypothesis at the
5%significance level, indicating thatModel-4 is significantly
better thanModel-0 andModel-1 for all seven indicators. For
the third row, the p values show that Model-4 is significantly
better than Model-2 for all indicators other than sensitivity
ν1. For the last row, the p values show that Model-4 is sig-
nificantly better than Model-3 for all indicators other than
specificity ν2 and precision ν3.

Effect of LDA

Table 10 presents the results of not using LDA, showing
decreased accuracy compared to those using LDA and high-
lights the effectiveness of our proposed LDA. The future
research direction is to explore more types of DA techniques
and increase the diversity of LDA, hence, improving the
generalization ability of our AI models. Note that Model-0
BCNN and Model-1 CNN-BD without LDA obtain perfor-
mances lower than 90%, which are worse than traditional AI
methods that do not utilize deep learning. This means deep
learning with big data can improve performance, if we do not
have big data (not using data augmentation means our train-
ing set is only 432 images as shown in Table 6), then deep
models may not compete with traditional shallow models.

Figure 5 summarizes and compares all ten models, where
LDA and NLDA represent use and non-use of LDA, respec-
tively. From Fig. 5 we can clearly observe that our Model-4
CNN-BDER using LDA can obtain the best performance
among all six models.

Here we do not run hypothesis test, since all the models
without LDA show reduced performance than the mod-

els with LDA. We have already proven that the statement
“Model-4 is better than Models-(0–3)” is statistically signif-
icant, so we can conclude that Model-4 is better than Models
without LDA.

Comparison to state-of-the-art approaches

Our proposed Model-4 CNN-BDER was compared with
state-of-the-art approaches. First, we used the 40-image
dataset in Ref. [12]. The comparison results are presented in
Table 11. Note here the performance of our Model-4 differs
from previous experiments, because we analyzed a smaller
dataset (40-images). The reason why our method is better
than SMFD [12] is because SMFD, i.e., statistical measure
and fractal dimension, can help extract statistical and global
texture information, but it is inefficient in extracting local
information.

Next, we compared our Model-4 with recent state-of-
the-art algorithms on the entire 480-image dataset using 10
runs of tenfold cross validation. The comparison algorithms
includeNBC[8],CRNBC[7],CRSVM[7],WEE [9], SMMP
[10], HMI [11], SMFD [12], WESVM [13]. The compara-
tive results are shown in Table 12. Here Ref. [7] provided two
methods, one using naive Bayesian classifier, and the other
using support vector machine.

The results in Table 12 showed that our Model-4 CNN-
BDER method performed better than eight state-of-the-art
approaches. Except MCC ν6, the other six indicators of
our method are greater than 93%. While, the second best
method is SMFD [12], whose seven indicator values are
all less than 91%. SMFD [12] can help extract statistical
and global texture information, but it is inefficient when
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Fig. 5 Using LDA versus not using LDA (M model, LDA using proposed LDA, NLDA not using LDA)

Table 11 Comparison with Ref [12] on 40-image dataset

Method Sen ν1 Spc ν2 Prc ν3 Acc ν4 F1 ν5 MCC ν6 FMI ν7

SMFD [12] 93.0 92.5 92.54 92.8 92.77 85.50 92.77

Model-4 (ours) 94.50±1.58 94.00±2.11 94.07±1.90 94.25±1.21 94.27±1.18 88.53±2.36 94.28±1.17

Table 12 Comparison results on 480-image dataset

Method Sen ν1 Spc ν2 Prc ν3 Acc ν4 F1 ν5 MCC ν6 FMI ν7

NBC [8] 69.04±1.80 70.33±2.22 69.98±1.25 69.69±0.90 69.49±0.93 39.40±1.78 69.50±0.92

CRNBC [7] 81.33±2.11 84.54±1.77 84.07±1.30 82.94±0.74 82.65±0.90 65.95±1.46 82.68±0.88

CRSVM [7] 81.46±2.12 88.71±1.14 87.85±0.92 85.08±0.78 84.51±0.98 70.38±1.48 84.58±0.95

WEE [9] 90.17±1.47 88.17±1.69 88.43±1.35 89.17±0.51 89.27±0.50 78.38±0.99 89.29±0.49

SMMP [10] 88.17±2.12 89.54±1.69 89.42±1.49 88.85±1.21 88.77±1.27 77.75±2.40 88.78±1.27

HMI [11] 66.46±2.09 76.50±1.55 73.89±0.99 71.48±0.80 69.96±1.15 43.20±1.56 70.07±1.10

SMFD [12] 90.96±0.86 90.63±1.21 90.67±1.10 90.79±0.78 90.81±0.76 81.59±1.57 90.81±0.76

WESVM [13] 75.29±1.86 78.04±1.15 77.43±0.90 76.67±0.95 76.33±1.12 53.37±1.88 76.35±1.12

Model-4 (ours) 94.08±1.22 93.58±1.49 93.63±1.37 93.83±0.96 93.85±0.94 87.68±1.91 93.85±0.94

extracting local information. WEE [9] has a similar prob-
lem, since wavelet energy entropy uses wavelet to extract
multi-resolution information, and a higher decomposition
level of wavelet can extract finer-resolution. But it is dif-
ficult to run high-level decomposition in practice. Hence,
the information from WEE [9] is mostly at a coarse level.
CRNBC [7] and CRSVM [7] used co-occurrence matrix
(COM) and run length matrix (RLM) as the feature extrac-
tion method, and employed naive Bayesian classifier (NBC)
and support vector machine (SVM) as classifiers. COMcom-
putes the distribution of co-occurring pixel values at given
offsets, while RLM computes the size of homogeneous runs

for each grey level. Both features are easy to implement
for computer scientists, but their capability of distinguishing
tumors from surrounding healthy issues needs to be veri-
fied. Also, NBC and SVM are traditional classifiers, whose
performances are not as high compared to recent deep learn-
ing approaches. SMMP [10] combined self-organizing map
(SOM) and multilayer perceptron (MLP) methods. SOM
used unsupervised learning to generate a low-dimensional
discretized representation of the input space from the train-
ing image samples, whileMLP has only one hidden layer that
may limit its expressivity power. WESVM [13] used wavelet
energy support vector machine as the classifier. However,
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Table 13 Manual diagnosis by three experienced radiologists

Observer Sen ν1 Spc ν2 Prc ν3 Acc ν4

P1 71.67 74.17 73.50 72.92

P2 81.25 73.75 75.58 77.50

P3 75.42 82.50 81.17 78.96

wavelet energy is not a popular feature descriptor, whose
improvements and modifications on wavelet energy are still
in progress. The two worst methods are NBC [8] and HMI
[11]. The former assumes the presence/absence of a feature of
a class is unrelated to the presence/absence of any other fea-
tures; however, this assumption is difficult to fulfil in practice.
The latter employed seven Hu moment invariants as feature
descriptors, which may be insufficient to capture informa-
tion regarding breast cancer masses. The performance can
be improved by combining with other feature descriptors. In
all, Table 12 shows the improved performance of our Model-
4 CNN-BDER method.

Comparison tomanual diagnosis

Three experienced radiologists (P1, P2, P3) were invited to
independently inspect our dataset of 480 thermogram images.
None of the radiologists had observed any of the images in
advance.

The results of three radiologists are itemized in Table 13.
The first radiologist (P1) obtained a sensitivity of 71.67%, a
specificity of 74.17%, a precision of 73.50%, and an accu-
racy of 72.92%. The second radiologist (P2) obtained the
four indicators as 81.25%, 73.75%, 75.58%, and 77.50%,
respectively. The third radiologist P3 obtained the four mea-

sures as 75.42%, 82.50%, 81.17%, and 78.96%, respectively.
Comparing Table 13 with our methodModel-4, which is also
illustrated in Fig. 6, fromwhich we can see that our proposed
CNN-BDERmethod can give higher performance than man-
ual diagnosis. The reason may be DCIS is Stage 0 of breast
cancer, so some lesions are difficult to discern by radiolo-
gists while AI can potentially capture those slight and minor
lesions.

Conclusions

We built a new DCIS detection system based on breast
thermal images. The method CNN-BDER is based on
convolutional neural network, and CNN-BDER has three
contributions: (1) use of exponential linear unit to replace
traditional ReLU function; (2) use of rank-based weighted
pooling to replace traditional max pooling and (3) A L-way
data augmentation was proposed.

The results show that our Model-4 CNN-BDER method
can achieve ν1 � 94.08 ± 1.22, ν2 � 93.58 ± 1.49,
ν3 � 93.63 ± 1.37, ν4 � 93.83 ± 0.96, ν5 � 93.85 ± 0.94,
ν6 � 87.68 ± 1.91, ν7 � 93.85 ± 0.94. Our Model-4 offers
improved performance over not only the other four proposed
models (Model-0, Model-1, Model-2, and Model-3) vali-
dated by Kruskal–Wallis test, but also eight state-of-the-art
approaches.

The shortcomings of our proposed Model-4 are threefold:
(1) the model has not been verified clinically, but will cer-
tainly form the basis of future studies; (2) the model does not
work with mammogram images, so we will aim to develop
a hybrid model in the future which can help give predic-

Fig. 6 Comparison of proposed
model against three radiologists
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tive results regardless of whether the input is a thermogram
image, a mammogram image or both.

The future direction will be following aspects: (1) try to
expand the dataset and introduce more thermal images; (2)
move our AI system online and allow radiologists world-
wide to test our algorithm and (3) test other advanced AI
algorithms.
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Appendix A

See Table 14.

Table 14 Abbreviation list

Abbreviation Full meaning

DCIS Ductal carcinoma in situ

BT Breast thermography

BCS Breast-conserving surgery

FE Feature engineering

RL Representation learning

IR Infra-red

CCD Charge coupled device

CMOS Complementary metal-oxide–semiconductor

EC Emitted component

VC Vasoconstriction

VD Vasodilation

PCM Pseudo color map

CRLW Compression ratio of learnable weights

NLDS Nonlinear downsampling

RWP Rank-based weighted pooling

LDA L-way data augmentation

SSDP Small-size dataset problem

CC Color channel

GBL Gradient-based learning

HS Horizontal shear

VS Vertical shear

Appendix B

Suppose the input is t, traditional AF is in the form of sigmoid
function fsig, defined as

fsig(t) � 1

1 + exp(−t)
, (41)

with its derivative as

f ′
sig � fsig(t) × [1 − fsig(t)

]
(42)

Sigmoid output is in the range of [0, 1]. In some situa-
tions, the range [−1, 1] is expected. fsig(t) could be shifted
to become the hyperbolic tangent (HT) function

fHT(t) � exp(t) − exp(−t)

exp(t) + exp(−t)
, (43)

with its derivative as

f ′
HT(t) � 1 − f 2HT(t). (44)

Nonetheless, the widespread saturation of fsig and hyper-
bolic tangent function fHT make gradient-based learning
(GBL) and its variants perform poorly in the neural network
training phase. Hence, rectified linear unit (ReLU) fReLU has

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex & Intelligent Systems

Fig. 7 A schematic of L2P, AP, MP, and RWP

grown in popularity, because it accelerates the convergence
of GBL compared to fsig and fHT.s

When t < 0, the activation of fReLU values are zero,
so ReLU cannot learn via GBLs, because the gradients are
all zero. The leaky ReLU (LReLU) could ease this problem
caused by changing hard-zero activation of ReLU. LReLU’s
function fLReLU(t) is defined as

fLReLU(t) �
{

β × t t ≤ 0
t t > 0

, (45)

where parameter β � 0.01 is the commonly pre-assigned
value. Its derivative is defined as

f ′
LReLU(t) �

{
β t ≤ 0
t t > 0

. (46)

Appendix C

Using Fig. 7 as an example, and assuming the region �

(1, 1) at 1st row 1st column of the input AM I is chosen as
�(1, 1) � I (row � 1, col � 1), the row vector of �(1, 1) is
vec[�(1, 1)] � (8 0.2 2.2 1.1

)
.We can calculate the results

of L2P is: yL2P�(1,1) � sqrt
((
82 + 0.22 + 2.22 + 1.12

)
/4
) �

sqrt((64 + 0.04 + 4.84 + 1.21)/4) � 4.19. The AP result is:
yAP�(1,1) � average(�(1, 1)) � (8 + 0.2 + 2.2 + 1.1) ÷ 4 �
2.88. MP result is: yMP

�(1,1) � max(�(1, 1)) � max
(8, 0.2, 2.2, 1.1) � 8. For the RWP, we first calculate the
rank matrix is vec(R) � (

r11 r12 r21 r22
) � (

1 4 2 3
)
.

Thus, vec(E) � ( e11 e12 e21 e22
) �

(
1
2

1
24

1
22

1
23

)
.

Finally, the RWP result is calculated as yRWP
�(1,1) �

8
2 + 0.2

24
+ 2.2

22
+ 1.1

23
� 4.70.
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