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ABSTRACT 

 

Open-pit sulfide mining produces large quantities of waste rock that may contain materials 

of economic interest. The exposure of sulfides accumulation may also pose a hazard to the 

environment by causing phenomena such as acid mine drainage.  This Master Thesis aims to 

map and provide a geological characterization of the rock wastes of Corta Atalaya open pit in 

Río Tinto, Spain. For this purpose, different hyperspectral imaging technologies that have 

already demonstrated their effectiveness in mineral detection such as airborne remote sensing 

in the VNIR and SWIR domain are used.  This study is complemented with the incorporation 

of an innovative hyperspectral method, the airborne LWIR. Our approach makes use of a set 

of different spectral methods, and established image processing routines, such as band ratios, 

and minimum wavelength maps. Supervised classifications are also employed as a mean to 

extrapolate mapped rock types to larger unmapped areas, spectral angle maps, and to identify 

high abundances of endmember lithologies, spectral unmixing techniques. Furthermore, this 

study will lay the foundations and pave the way for possible future lines of research regarding 

the Corta Atalaya rock wastes.  
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1. INTRODUCTION AND OBJECTIVES 

 

In the future, an enlarging demand for minerals is expected to supply the increasingly 

human needs. Circular economy thinking is an attractive topic nowadays and its 

implementation when it comes to mining may present a major opportunity in several aspects. 

As open-pit sulfide mining produces large amounts of rock waste that may contain materials 

of economic interest or may pose a hazard to the environment, knowledge and awareness of 

these is paramount. Mapping these rock wastes on the surface is important as an input to 3D 

resource modelling to better identify zones of mineralization for potential re-mining. Due to 

the development and improvement of mineral separation and processing techniques, a grand 

economic potential could be found in them. Moreover, a mineral characterization would also 

supply an accurate assessment of the environmental effects that this sulfide accumulation 

may suppose, such as the acid mine drainage (AMD). Ground-based surveying is the 

traditional method of mapping rock deposits, but is time-consuming, expensive, and 

potentially dangerous. In contrast, remote sensing, airborne  hyperspectral imaging provides 

an innovative, non-invasive, safe, rapid, high-resolution, and accurate means to characterize 

mine waste deposits to assist in mapping and identifying zones of mineralization as well as 

estimating concentrations and quantities of profitable minerals. Airborne hyperspectral 

imaging in the VNIR and SWIR domain is an established method to map geological materials 

at the surface. On the contrary, Airborne LWIR is an innovative, untried method; its 

efficiency for the mapping of sulfidic rock wastes has yet to be evaluated. 

 

Objectives 

The overarching objective of this thesis is to assess the suitability/usefulness of airborne 

hyperspectral data in the visible to near-infrared, short-wave infrared, and long-wave infrared 

range for the mapping of sulfidic rock waste deposits. This assessment is based on an analysis 

of the mineralogical composition of the waste rock material using established image 

processing routines, such as band ratios, minimum wavelength maps, and spectral unmixing 

techniques. Supervised classifications are also employed as a means to extrapolate mapped 

rock types to larger unmapped areas and to identify high abundances of endmember 

lithologies. Based on the results of these analyses, the feasibility and efficiency of different 

workflows for the mineral exploration of waste rocks will be evaluated, taking into account 

different band ranges, training data sets, and algorithms. 
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2. SPECTROSCOPY AND HYPERSPECTRAL IMAGING 

 

Principles of the method 

Spectroscopy is the study of the interaction between electromagnetic radiation (EMR) and 

matter. When electromagnetic radiation interacts with the earth’s surface, various fractions or 

wavelengths of the energy are emitted, reflected, or scattered. Furthermore, any object whose 

temperature is greater than the absolute zero will emit a radiation whose amount changes as a 

function of wavelength (Manolakis et al., 2016). These two statements constitute the basis 

and physics foundations of the method on which this research is based, the behaviour of 

electromagnetic (EM) spectra along different wavelength ranges.  

Maxwell's Laws describes that electromagnetic energy (EM) propagates in waves form 

formed by electric and magnetic fields. The different energy levels results in a range of 

different radiations that form the electromagnetic spectrum of radiation (Fig. 1). So that, the 

understanding and discrimination of the spectral characteristics, caused by the different 

physical and chemical properties of matter, can be used to help identify the constituents of 

minerals or molecular substances that make up the material (Lau, 2016). 

 

 

Fig. 1. Electromagnetic spectrum showing the visible and infrared wavelength intervals. The visible region has 

been expanded to show the wavelengths corresponding to the reflected colours seen by the human eye. 

 

From an optical point of view, transparent materials are those that can be studied by 

analysing the light that passes through a sheet approximately 30 - 50 m thick. The rest of the 

materials are called absorbent media and, in general, correspond to conductive materials. 

However, there is a wide range of materials with intermediate properties; for example, 

coloured minerals absorb part of the radiation in the visible spectrum and allow others to pass 

through. Therefore, the concept of transparent or absorbent material depends, among other 

things, on the frequency. In any case, so-called absorbent materials cannot be studied by 

transmission and must therefore be analysed by reflection. 
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When the light penetrates an absorbent medium, which can be considered to be divided 

into very thin sheets of identical infinitesimal thickness, the initial amplitude E0 decreases 

progressively as it passes through each of the sheets. The depth penetration (skin depth) can 

be defined as the thinckness that causes a decrease in the intensity equivalent to:  

 𝑒−1 ≈ 1
3⁄  Eq. 1 

 

In a way the depth of penetration represents an assessment of the absorption capacity of a 

medium. For example, copper has a penetration depth of about 0.6 nm for ultraviolet ( = 100 

nm) and reaches 6 nm for infrared ( = 10 m), which suggests that the absorption coefficient 

has a significant dispersion along the electromagnetic spectrum.  

On the other hand, the characteristic brightness of metals, and conductors in general, is 

due to the fact that light barely penetrates the medium and few electrons are ever "touched" 

by the radiation. Although each of them dissipates heat, the reality is that a very small 

fraction of the light energy is converted into heat. Much of the incident energy reappears as a 

reflected wave due to the re-emission caused by the free electrons in the conduction band. 

The explanation based on quantum theory is complex, however, an intuitive approach can be 

made by imagining that the material is a set of oscillators, some of which correspond to free 

electrons and others to electrons bound to atoms 

Spectroscopy is the study of light as a function of the wavelength that has been emitted, 

reflected or scattered from a solid, liquid or gas.  

As photons reach the surface of the material, some are reflected from the surface, some 

penetrate it, some are refracted, and some are absorbed by the material. Photons that are 

reflected from the surface or that are refracted are considered to have been dispersed. These 

photons can either be re-dispersed out of the material and captured by the detector or 

absorbed. Also, the material itself, just by being above absolute zero, is emitting photons that 

are also subject to the same physical laws of reflection, refraction and absorption as the 

incident photons (Clark, 1999). 

The objective of spectroscopy is to obtain and interpret the absorption, reflection and 

emission properties of a target material. Unlike transmitted light spectroscopy, which is 

commonly used by chemists in laboratory environments, reflectivity spectroscopy supports a 

number of different scenarios. In remote sensing, spectrometers have been installed on 

satellites and aircraft and have been used in various scientific applications such as the control 

of the tree canopy, observations of the ecosystem and urban development, and geological, 

environmental and planning research. 

 

Hyperspectral Imaging 

Within geology, mineral identification is possible as most minerals have unique 

characteristic spectral signatures or spectra. The wavelength windows used in reflectivity 

spectroscopy are approximately standardised according to Table 1. The specific ranges of 

interest will be the visible to near-infrared (VNIR) extending from 400 to 1000 nm, the short-

wave infrared range (SWIR), from 1000 to 2400 nm and the long wave infrared (LWIR), 

from 7000 to 14000 nm. 
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Table 1.  Wavelet-time windows used in standard spectoscopy 

Name Acronym 𝝀 initial [nm] 𝝀 final [nm] 

Ultraviolet UV 1 400 

Visible VIS 400 700 

Visible to near infrared VNIR 700 1000 

Shortwave infrared SWIR 1000 2500 

Medium infrared MIR 2500 8000 

Long Wave infrared LWIR 8000 140000 

 

 

Reflectance spectroscopy mainly studies the VNIR and SWIR regions of the EM 

spectrum. The radiation emitted by the Sun is modified by the earth’s atmosphere and 

surface, therefore reflectivity will be measured. In the LWIR domain, the radiation emitted by 

the Sun interaction and self-emission of materials in the scene due to their temperature will 

be used (Fig. 2). All these electromagnetic interactions can be detected and measured by 

spectrometers producing spectral images.  

 

 

 
Fig. 2. Scheme indicating which type of infrared energy will be used in this study depending on the specific 

range concerned. 

 

 

Hyperspectral imaging (HSI) spectroscopy is used to spatially map and spectrally identify 

matter based on its specific chemical properties (Clark, 1999). HSI sensors used to acquire 

the data are mainly composed of an imaging system, a scanning mechanism, and a 

spectrometer (Manolakis et al., 2016). For each pixel of the image, many bands of spectral 

data are acquired giving a data cube (3D) as an output: spatial data in 2D and spectral data 

along the third axis. In contrast to multispectral imaging (MSI) systems which contain only a 

few broad spectral channels (Clark, 1999), HSI are much more sophisticated and accurate in 

terms of spectral resolution and mineral identification since they contain a continuous 

spectrum over a certain wavelength range for each pixel (Goetz, 2009) (Fig. 3.) 
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Fig. 3. Conceptual figure to explain the difference between multispectral and hyperspectral Imaging. 

 

 

 

3.  AREA OF STUDY 

 

The Iberian Pyrite Belt (IPB) is part of the South Portuguese-Spanish Zone (Fig. 4.) of the 

Hercynian Iberian Massif (Julivert et al. 1974). It is located in the SW part of the Iberian 

Peninsula hosting the largest concentration of polymetallic massive sulphides on Earth 

(Inverno et al., 2015). This metallogenic province which has an extension of 250 x 20-70 km, 

presents three different types of sulfide mineralization: Massive sulfide, banded sulfides and 

stockwork. It is estimated that its ore reserves, distributed in eight supergiant deposits, exceed 

2500 Mt (Sa, 1999). One of the main and best-known deposits of the IPB is Río Tinto (RT). 

Its lengthy history and mining tradition that dates back to the Tartessian period (XXX century 

BC), thus becoming a hallmark that has determined the economy, culture, and development 

of the area (Ortiz Mateo, 2004). 

IPB has suffered a Variscan deformation occurred during the early Carboniferous (Upper 

Viseense - Upper Moscoviense). Due to intense hydrothermal activity, these fractures served 

as feeding structures for the stockwork formation. RT is formed by paleozoic materials which 

can be mainly divided into three groups: (i) the Phyllite-Quartzite Group (PQ), (ii) the 

Volcano- Sedimentary Complex (VSC) and (iii) the Culm Group (Olias Alvarez et al., 2008). 

The two main structural units at Rio Tinto zone are (i) the upper one composed of materials 

from the Culm Group which presents a breakaway at its base with a black phylonite of 20 m 

in strength (Gonz, 2006). Under this phylonite there is a pile of interlocking tectonic klippes. 

Each of these has inside thrust faults and minor folds dipping to the south, with a thickness 

that can reach 2 km. This Culm group is, therefore, the host of the sulfides that emerge in this 

part of the Iberian Pyrite Belt (González et al., 2002). 
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Fig. 4. Topographic map of the target area, the rock waste of Corta Atalaya (IGN). In the right part of the image 

composition and from top to bottom, location maps of the Iberian Pyrite Belt, Río Tinto mining district, and an 

aerial view of the target area. (Google Earth). 

RT today still holds 197 megatons of copper, besides, the three characteristic IPB sulfide 

mineralizations are found, predominating minerals such as pyrite (FeS2) and chalcopyrite 

(CuFeS2), and to a lesser extent, sphalerite or blende (ZnS) and galena (PbS). 

Corta Atalaya was one of the most ambitious projects of modern intensive mining of the 

20th century. It was born as a result of the collapse of the previous underground mine, giving 

way to an open-pit excavation with a size of 1200 x 900 m  and a maximum depth of 365 m. 

It was operational from 1907 to 1992 when it was permanently closed, by then having already 

produced more than 2000 tons of profitable minerals. The rock wastes resulting from the 

mining process of Corta Atalaya lay in the immediate vicinity of the open pit and will 

constitute the area on which this study will be focused. 
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4. METHODOLOGY 

 

This chapter is intended to give an overview of the workflow followed and explain the 

techniques, algorithms, and parameters applied to the raw data. The framework and main 

steps are shown in the chart on Fig. 5. 

 

 

Fig. 5. Implemented processing chain over the Hyperspectral Images for mapping. VNIR=Visible to near 

infrared. SWIR=Short wave infrared. LWIR=Long wave infrared. ROIs=Regions of interest. LIB=Spectral 

library. XRD=X-ray diffraction.  PSR=Portable spectroradiometer. FTIR= Fourier Transform infrared. 

After preprocessing and conditioning the airborne HSI, a set of procedures are applied on 

the images for mineral characterization and mapping. For doing so, several algorithms are 

employed using conventional processing methods based on the spectral behaviour (band 

ratios and minimum wavelength maps), and some other utilizing reference data as an input 

(spectral angle map and linear spectral unmixing). Both reference data and resulting mineral 

maps are validated and supported with ground or other types of measures (XRD analysis and 

spectral from different sources). 

 

4.1 DATA INVENTORY AND ACQUISITION  

The data acquisition for this research was done through two different routes. The firts one 

was an aerial campaign in July/August 2020 covered the whole area of interest, and a total of 

three HSI datasets corresponding to the VNIR, SWIR, and LWIR domains were obtained. 

The technical details of these flights, specifications of the sensors used, and a brief overview 

of the preprocessing and corrections to be applied to the raw images are described. 
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In parallel, a ground sampling and validation terrestrial campaign were carried out, the 

data procurement for this stage can be separated into three complementary parts: (1) Different 

hand samples for visual identification belonging to the seven most important lithologies 

present in Rio Tinto were collected. These lithologies, which will eventually form one of the 

reference data sets serving as input for the subsequently supervised classifications are as 

follows: gossan, massive sulfide, stockwork, argillic alteration, purple shales, culm shales, 

and chloritic volcanic rocks. (2) Finally, in situ measurements of the characteristic spectrum 

of the samples in question were made and (3) a set of those were taken for both mineralogical 

and further spectral laboratory analysis and characterization. As well as for the airborne 

campaign, all methods and sensors employed for each characterization will be described. 

 

Airborne HSI 

 

Fig. 6. Images from the INFACT airborne hyperspectral campaign in July/August 2020, showing a BN 2 fixed-

wing aircraft and installed hyperspectral instruments. 

 

In order to obtain the Hyperspectral image data of the Río Tinto mining district, several 

flights were made using a BN 2 fixed-wing aircraft based in Seville (Fig. 6). These flights 

were carrying hyperspectral cameras which collected data in three-dimensional data-cubes 

composed of a set of pixels, containing the measurement corresponding to a specific 

wavelength range. The weather conditions of the field campaign days were hot and sunny as 

it was summer. 

. 

❖ VNIR-SWIR  

The acquisition of the airborne hyperspectral images both in the VNIR and in the SWIR 

domain were performed simultaneously as the aircraft was carrying both cameras. A total of 

36 lines (labeled from 08 to 44) were flown at a height of 900 meters following an east-west 

direction with a 230 m line spacing, forming a mosaic that covers the entire target area. 

Additionally, single line flights were conducted over a test site (see below) at different 

heights (600, 900, and 1200 meters). All the flight lines are 10 km long and 600 metres wide 

and overlap each other for better data coverage. In the VNIR domain the Hyspex Classic 

VNIR 1800 sensor (Fig. 9) was used, recording up to 160 bands from 415.4 nm to 992 nm, 
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(3.7 nm bandwidth), and resulting in an image with a pixel spatial resolution of 0.6 meters. At 

the same time, in the SWIR domain, a total of 256 bands between 968.4 nm and 2498 nm (6 

nm bandwidth) were recorded using a HySpex SWIR 384 sensor (Fig. 9), giving a spatial 

pixel resolution of 1.25 m. The data processing both for VNIR and SWIR HSI can be divided 

into three steps, following a consecutive correction process. In the first place, the raw data 

was converted to imageries in radiance units. Later, a georectification correction was 

performed, which consisted of marking ground control points on hyperspectral images using 

a reference map and creating a boresight file and, through an iterative process, obtaining full-

band georectified imagery. Finally, the atmospheric distortions were removed by using a flat 

terrain model, a scan angle file, and a tabulated atmospheric factor corresponding to a rural 

area and a water column of 0.4/cm2. As a final product we obtain several HSI datasets in 

which the reflectance of each pixel is measured along a wide wavelength range expressed in 

micrometers. 

 

❖ LWIR  

In this case, the acquisition of the HSI dataset in the LWIR domain was acquired 

simultaneously with the LIDAR, using a thermal lightweight and compact hyperspectral 

camera. In the same way as for the VNIR-SWIR, single line flights were conducted over a 

test site at different heights (600, 900, and 1200 meters). Hyperspectral data from both the 

main flight and the 600-meter test site flight is used in this work. The HSI instrument used 

was the Telops Hypercam L-W (Fig. 9), a Fast Fourier Transform (FFT) spectrometer that 

records 126 bands per pixel covering a spectral range of 7829.7–11468 nm with a bandwidth 

of 30.5 nm wavelength. The image preprocessing for the LWIR case was very similar to that 

for the VNIR and SWIR ones. In the same way as in the previous section, the raw data were 

converted to images in radiance units, a georectification was performed and finally, an 

atmospheric correction was performed separating emissivity from temperature. This time we 

obtain a single dataset that records emissivity instead of reflectance and whose wavelength 

range is expressed in wavelength number units. 

 

Ground Sampling and Lab Validation 

In the course of the 4-day field campaign, while the flights described above were 

conducted, different types of ground truthing data were collected. The first step was 

designing a reference/test site area (Fig. 7.) with the most important lithologies of Río Tinto 

listed above.  For this purpose, samples of each lithology were piled up in a flat area, forming 

rectangles of varying extensions, ranging from 15.5 square meters for the gossan, the smallest 

reference site, to 27 square meters for the argillic alteration. No area was designed for the 

chloritic volcanics as it is the characteristic material of the entire surface layer, being present 

everywhere. All of them are large enough to be visually distinguishable in the airborne HSI 

obtained.  

For a better characterization of the lithologies that conform the reference sites, samples 

were collected, and a mineralogical analysis was conducted by powder X-Ray diffraction 

(XRD) (Appendix A1). Moreover, manual spectral points measurements of characteristic 

spectra of test sites lithologies were acquired in situ with handheld spectrometers and 

later under laboratory conditions. All samples and spectra measures collected were assembled 
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for the purpose of using spectral features for the remote detection and mapping of these and 

similar materials. The Helmholtz Institute Freiberg for Resource Technology provided the 

laboratories for these analytical studies and spectral measurements. The Helmholtz Institute 

Freiberg for Resource Technology provided the laboratories for these analytical studies and 

spectral measurements. 

   

Fig. 7. Reference/test site for airborne hyperspectral mineral mapping with endmember lithologies set up in the 

survey area. Image 1 shows the aerial view of the test sites area. From number 2 to 6 real size images of the test 

sites (gossan, massive sulfide, stockwork, argillic alteration and Culm shales). 

❖ Lab Spectra    

Laboratory spectra was acquired using a drill core scanner equipped with an Aisa Fenix 

HS camera (Fig. 9). This sensor is composed of two different detectors CMOS and Stirling 

cooled MCT which cover the VNIR (380-970 nm) and SWIR (970-2500 nm) ranges of the 

EM spectrum respectively and each provide a spectral resolution (Full Width at Half 

Maximum-FWHM) of  3.5 nm ands 12 nm. The fully automatic workstation makes use of a 

retractable table to pass the samples under the field of view of the camera which remains 

fixed at the top. 

❖ Field Spectra 

A portable Spectral Evolution PSR 3500 (Fig. 9.) spectroradiometer was used to acquire in 

situ spectra measurements providing fast quantitative assessment. This sensor records up to 

1024 bands between 350 and 2500 nm at a spectral resolution of 3.5 nm (1-5 nm bandwidth 

between 350 and 1000 nm) and 7 nm (2-5 nm between 970 and 2500 nm). In order to subtract 

the instrument spectral response, a calibration was done before and during the acquisition 

with a material that has about 99% reflectance over the entire spectral range. Exceptionally, 
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for dark samples with a noisy spectrum, a material with less reflection was used for 

calibrating. These hand-held spectral measurements were taken placing the sensor tip 1 meter 

above the samples surface (Fig. 8.) and each spectral record consists of 10 individual 

measurements taken consecutively and averaged. 

 

Fig. 8. Detailed view of the lithologies and rock types that constitute the reference sites from which field 

measurements were acquired and hand samples were collected for further laboratory analysis. 1 = gossan, 2 = 

massive sulfide, 3 = stockwork, 4 = purple shales, 5 = culm shales, CHL= chloritic volcanics.  

Field measurements in the MWIR to LWIR were taken using an Agilent 4300 Fourier 

Transform Infrared spectrometer (Fig. 9.). This sensor was set to a spectral resolution of 8 

cm^-1. The radiance values obtained were converted automatically to reflectance using a pre-

calibrated SpectraGold target with >95% reflectance. For each scan, the arithmetic mean of 

32 consecutive individual measurements was calculated. 

 

Fig. 9. Hyperspectral sensors used for data acquisition. At the top of the image and from left to right are the 

HySpex VNIR, HySpex SWIR and Telops Hypercam L-W, used in the airborne data acquisition. At the bottom 

are the sensors and cameras used for the ground sampling and validation from left to right are: PSR +3500 and 

Agilent 4300 FTIR for field spectra and AisaFenix for lab spectra from hand samples.  
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4.2 DATA TREATMENT  

The resolution and spectral range of the airborne HSI acquired enable the identification 

and mapping of minerals. However, working with the raw data cubes can be tedious due to 

their size, and a little spectral signal conditioning is also convenient. This section briefly 

outlines the treatment process to be followed for these. 

Smoothing 

As the raw data cubes are very noisy and, in some cases, it is quite difficult to determine the 

general spectral trend and absorptions by means of visual evaluation, smoothing was 

performed using the THOR Workflow Tool Spectral Smoothing in ENVI.  This function uses 

the Savitzky-Golay smoothing filter to soften the noise of the signal. The parameters that 

configure this tool are the filter width, the derivative order (set to zero by default), and the 

degree of the smoothing polynomial. Larger filter width values produce a softer outcome at 

the expense of flattening the sharp peaks and valleys. Typical values for the polynomial 

smoothing degree are 2 to 4 and must be lower than the width of the filter. For the 

hyperspectral images corresponding to the VNIR and SWIR ranges, the filter bandwidth used 

was five and the degree of the polynomial, two. On the contrary, for the hyperspectral image 

in the LWIR domain, a third-grade polynomial filter and bandwidth 9 was applied.  

Mosaicking  

The flight bearing the LWIR domain HS camera covered the entire area of interest in a 

single flight line. However, in the case of the VNIR and SWIR, as the field of view of the 

corresponding HS cameras is lower than the Telops camera, several flight lines had to be 

made to cover the Rio Tinto areat. These flight lines had to be merged to obtain the whole 

geographical area of the rock waste, for this purpose the ENVI georeferenced-based 

Mosaicking Tool was implemented. The software also provides useful tools for common 

requirements such as feathering the edges of overlapping areas and image border 

transparency. The flight lines that compose the target area are the following 25, 26, 28, 30, 

and 32. However, for the VNIR after a slight visual examination, it was decided that lines 23, 

28, and 32 would be dispensed with as the reflectance values (Y-axis) were overestimated for 

all pixels, thus giving not so much erroneous data but misleading inconsistent with the rest of 

the images and highly susceptible to give rise to errors in future processing. 

Stacking 

The layer stacking tool in ENVI is used to concatenate hyperspectral images with different 

frequency or wavelength ranges. Establishing the order of the data cubes images logically and 

setting a pixel size for the resulting image is primordial. The image comprising the smallest 

wavelength range will be placed above and, in order to lose as little information as possible, 

the pixel size will be the one belonging to the image with the highest spatial resolution.  

Vegetation Removal NDVI 

Existing vegetation can yield erroneous values in mineral classifications in HSI. Pixels 

containing vegetation, show a characteristic spectral signature in the Red and Near IR ranges 

a band ratio (the inner working of this algorithm will be discussed further in the 4.3 section), 

automatically determines which pixels correspond to vegetation. The vegetation mask will be 

extrapolated to the rest of the HSI datacubes removing the corresponding pixels. 
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4.3 DATA PROCESSING 

This chapter comprises a detailed explanation of the largely automatized approaches, 

adapted algorithms, and tools used to obtain mineral estimates and classifications. 

First, refined techniques and procedures are implemented. These are the classification 

algorithms, which can be supervised or unsupervised. Supervised ones use class-specific 

probes provided by training samples and may well trigger the classification maps more 

accurately than the others (Ghamisi et al., 2017). The methods used will be Linear Spectral 

Unmixing (LSU) and Spectral Angle Map (SAM). These two classifications are applied 

through the entire wavelength range of the spectral dataset in question. LSU estimates 

abundances while SAM assigns each pixel to the most predominant lithology present. 

Later in this section, two search tools will be applied. These are the calculation of band 

ratios and the minimum wavelength mapper. These are focused on the study of specific parts 

of the wavelength range. 

SAM 

The spectral Angle Mapper (SAM) is a supervised matching algorithm that permits rapid 

mapping of the similarity of image spectra to a reference spectrum (Boardman 1993). The 

spectra of each pixel are expressed as vectors in an n-dimensional coordinate system with an 

N equal number of available bands (Kruse et al., 1993). SAM represses the influence of 

shading effects to accentuate the target characteristics (De Carvalho et al., 2000). The 

similarity between two spectra is determined according to the angle formed by the 

characteristic vector of these. After comparing, each pixel is then assigned to the class that 

displays the smallest angle (Fig. 10.). The classification image given as output shows the best 

match to the endmembers for each pixel and several rule images, one for each endmember, 

are produced showing the spectral angle value for each individual pixel. For a more accurate 

classification, the threshold range for the similarity analysis, relied on very small angles 

(around 0.1 rad). 

 

Fig. 10. Scheme of a 3D plot of a target and reference spectrum separated by alpha. Band values represented on 

axes x, y and z. 
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LSU 

The spectral linear unmixing, is a technique that considers each target pixel spectra as a 

linear combination of the endmember reference spectra, having a particular relevance when 

estimating the abundance of certain materials or minerals is the desired purpose.  It presents 

two options for restriction: unrestricted unmixing or partially restricted unmixing. In this last 

one, the abundances can obtain negative values but the sum of the multiplication factors of 

each endmember is limited to one. The result of this process is a quantity estimation image 

for each endmember and an RMS error image to help determine the areas of the final 

members that are missing or incorrect. 

MWL  

The minimum wavelength mapper (MWL) algorithm (Bakker et al., 2011; van Ruitenbeek 

et al., 2014) is used to highlight/enhance variations in mineral abundances and identify 

random mineral and alteration phases in different absorption bands through specific ranges. 

By using in-house Python scripts (based on a toolbox developed by Jakob et al., 2018), the 

precise wavelength position of the absorption feature and its depth are mapped. This will 

provide us with insight into which material is in greatest abundance since there is a relation 

between the absorption depth and concentration. 

Band Ratios 

It is also possible to retrieve significant geological information using a relatively simple 

algorithm as a band ratio (BR), i.e. the division of the reflectance values of two selected 

bands marking the maximum and minimum of a certain distinctive absorption feature. Band 

ratios based on averages across multiple bands are more robust against noise than using 

single bands (Fig. 11). We use several spectral indices developed for ASTER data (Cudahy et 

al., 2008) that are sensitive to mica, chlorite, iron oxides and opaque minerals. 

 

 

Fig. 11. Band ratio. The first figure and equation represent the most simplified and elementary form of the band 

ratio calculation. The second show the calculation for noisy spectral signals where we have to make an 

arithmetic mean to avoid taking extreme values that may lead to errors. 
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4.4 REFERENCE DATA (Spectral libraries) 

As it has been mentioned before, for supervised classifications there must be reference 

data with which the algorithm compares the target image and establishes similarity patterns. 

For these data integration, two different sources are available: (1) spectra measurements from 

the test sites; (2) point measurements belonging to a rock waste type classification made by 

the geologists of Atalaya Mining, the company currently operating the mining district.  

 

Test sites  

The test site reference data consists of separate spectral libraries (acquired by the different 

methods described in sections 21.1 and 2.1.2) whose endmembers or classes are those 

belonging to the test sites lithologies: gossan (G), massive sulfide (MS), stockwork (STK), 

argillic alteration (ARG), purple shales (PS), culm shales (CLM), and chloritic volcanics 

(CHL).  

❖ Image spectra 

For the airborne spectral library, pixels corresponding to each test site and for each of the 

three datasets (VNIR, SWIR, and LWIR) were extracted using the ROI ENVI tool. The 

median spectra of every lithology in each range was calculated; using this estimator (central 

position variable in a sorted data set) gives a more robust result as it eliminates the effects of 

possible edge pixels from the background that can mislead to erroneous values. 

Number of pixels used for each end-member library:  

- Spectral library in the VNIR domain (pixel size 0,6 m): G = 30; MS = 30; STK = 42; 

ARG = 48; PS = 30; CLM = 42; CHL =154. 

- Spectral library in the SWIR domain (pixel size 1,25 m): G = 6; MS = 9; STK = 8; 

ARG = 9; PS = 4; CLM = 12; CHL = 25. 

- Spectral library in the LWIR domain (pixel size 0,9 m): G = 9; MS = 12; STK =16; 

ARG = 12; PS = 12; CLM = 16; CHL = 42. 

 

❖ Field and Laboratory Hyperspectral libraries 

All individual field-based spectra were plotted and visually examined in order to eliminate 

erroneous records whereupon an arithmetic average was calculated. 

- The mean spectra of FTIR spectral library are based on the following number of 

single spectra: G = 12; MS = 14; STK = 13; ARG = 14; PS = 14; CLM = 14; CHL = 

13.  

- For the PSR, the data over which it was built were the following: G = 39; MS = 40; 

STK = 51; ARG = 37; PS = 43; CLM = 48; CHL = 65. 

The procedure pursued for the lab spectra measures was similar to the airborne: pixels 

from the HS image were extracted and a median was calculated. 

- The Fenix camera scanned the following hand samples: 20200724_001 Chloritic 

volcanics, 20200724_002 Culm shales, 20200724_003, Purple shales, 20200724_004 
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Argillic alteration, 20200724_005 Stockwork, 20200724_006 Massive sulfide, 

20200724_007 Gossan (Fig. 12). XRD analysis was later performed on the same 

samples. 

 

(a)                                                       (b) 

Fig. 12. (a) Fenix camera hyperspectral image of the collected test site hand samples placed in trays distributed 

along the table to maximise the detectable surface. First column and from top to the bottom: argillic alteration, 

purple shales, culm shales, chloritic volcanics. Second column and from top to bottom: gossan, massive sulfide, 

stockwork. (b) Polygons drown on the HS image and from which the pixels for spectral data were extracted.   

 

Rock waste types classification 

A total of six types of rock waste of the soil classification provided by Atalaya Mining are 

present in the target area:  

● Pyritic stockwork with superficial oxidation waste type (STK). It constitutes the 

most abundant unit in the rock waste and corresponds to the outcrop of the 

mineralization that contained most of the stockwork. It has a high content of sulfur 

and oxides, presents an intense red colour and hydrothermal alteration processes. 

● Pyritic stockwork with chloritic and sericitic alteration waste type (A-STK). This 

class comprises, as well as gossan to a lesser degree, felsic rocks and chloritic and 

siliceous alterations. It is variable in its sulphur content and its colour varies from 

grey to yellow. 

● Massive sulfide accumulation waste type (MS). Derived from massive sulphide 

veins, some of them with a significant copper content.  

● Gossan waste type (G). This is presented as small accumulations on the surfaces of 

the waste units. Most blocks come from stockwork with low sulphur content 

oxidation areas.  

● Slate waste type (SLATE). Variable unit in terms of origin and composition. Very 

low or nulo sulphur content, escombro inerte) and with colours ranging from brown 

and black to greenish and purple. Pueden presentar alteración caolinítica. 

● Mixed waste waste type (MIX). This unit is the result of the combination of two or 

more of the waste types described above, mainly the oxidised stockwork and the 

altered stockwork or this second and slates. 

The obtaining of the rock waste types classes characteristic spectrum was conducted in a 

practically identical procedure to that followed for the airborne spectral library or the test site 

lab library. On a stack that combines the three airborne hyperspectral data cubes (VNIR, 
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SWIR and LWIR), a series of representative polygons (Fig. 13) containing the classes 

mentioned above were delimited on the map and characterized as Regions of Interest in 

ENVI. Subsequently they were converted into a spectral library that employs the mean of the 

collected pixels. The choice of the polygons was made based on two reasons: (i) The 

distribution of the rock waste types on the map of Atalaya mining, and (ii) the spectral 

consistency of the set of pixels chosen for each region. 

 

 

Fig. 13. Location of pixels extracted from the validation map of rock waste types to serve as ground-truth 

information/ input into supervised classification. 

Number of pixels used for the rock waste type end-member library:  

- Spectral library in the VNIR_SWIR_LWIR domain (pixel size 0.6 m): STK = ; A-

STK = 30; MS = 42; G = 48; SLATE = 30; MIX = 42. 

 

4.5 VALIDATION DATA 

To evaluate the accuracy of the obtained HS results (SAM, LSU, bands ratios), they are 

compared to the map of rock waste types, which is supplied by Atalaya Mining. The 

validation vector map is first rasterized at the same resolution as the input image. Then all 

image values are extracted per rock waste type and visualized in probability histograms and 

box and whisker plots. 
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 5. RESULTS AND DISCUSSIONS 

 

Due to the complexity of the working path followed and the diverse nature of the 

techniques and algorithms used, for a better understanding of the method, the presentation of 

results and their discussion will be done simultaneously. The development of this chapter can 

be divided into two consecutive and complementary sections. Besides, they are necessary to 

achieve the main objective of this thesis: the assessment of the effectiveness when using 

airborne hyperspectral images for mineral mapping. 

• The first step is focused on the test site spectral library building and its 

interpretation. Subsequently, two different supervised techniques for mineral 

characterization are employed: Linear Spectral Unmixing and Spectral Angle 

Mapper. These classifications are made over an entire infrared wavelength range 

and require different reference data to ensure its effectiveness 

• The second section proposes alternative approaches to gain an insight into the 

composition of the rock waste deposit, putting into practice the following 

methods: Minimum Wavelength Mapper and Band Ratios. As was anticipated, 

these two techniques target specific wavelength ranges. 

In a parallel way, the results acquired are validated and contrasted. Finally, a general 

evaluation of the workflow followed, and the usefulness and validity of the methods and 

algorithms used is made. The maps presented within the results are projected on the WGS 84 

/UTM zone 29N Coordinate Reference System (EPSG: 32629). 

 

5.1 TEST SITES LIBRARIES AND CLASSIFICATION ALGORITHMS 

Test sites spectral library   

Fig. 14. shows the end-member library from the test sites extracted from the three airborne 

datasets. The figure is divided into three parts, one for each range (VNIR, SWIR and LWIR). 

Note that the wavelength and reflectance scale is different for each range. LWIR was 

converted into reflectance for a better understanding of the spectral signal behaviour through 

the entire infrared domain. Fig. 15. shows the test sites endmember library from the 

laboratory plotted in conjunction with the field spectra measurements. Fenix and PSR graphs 

cover the same range (400-2500 nm) showing a strong correlation between them. It is not the 

same if we compare the airborne spectra with the one obtained in the field or laboratory. The 

characteristics and absorption features will be preserved but the atmospheric effects will be 

very present. 

In the VNIR range, diagnostic features for iron sulfates and iron hydroxide minerals can 

be found. The PSR lab spectra from the samples of the test site show typical Fe features 

mostly in the gossan, but to some extent also in the argillic, purple shale and chloritic sampes. 

For the massive sulfide and stockwork, the spectra are mostly flat. For the gossan sample 

high contents in hematite are most likely based on comparisons with library spectra (e.g., 

Crowley et al., 2003). This is confirmed by the XRD results. 
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Fig. 14. Spectral library from the reference sites. Airborne VNIR (415.4-992), Airborne SWIR (968.4-2498) and 

Airborne LWIR (7800-11800). 

 

 

Fig. 15. Spectral library from the reference sites. Lab spectral Fenix Camera (378-2503),  PSR (344.64-

2500)  FTIR (7800-11800) 

In the SWIR range, we can distinguish pronounced point absorptions at different 

wavelengths that are indicative of characteristic element contents. Absorptions for AlOH-

bearing minerals can be observed around 2200 nm for the gossan, the argillic, and the shales. 

The chloritic alteration has a minimum in the FeOH range around 2260 nm. The argillic also 

shows pronounced water features at 1400 nm and 1900 nm. These water features are more 

prominent in the airborne spectral library compared to the lab spectral library. This is due to 

atmospheric effects when data acquisition. For the massive sulfide and stockwork, the spectra 

are mostly flat.  

The spectrum in the LWIR range shows a softer trend, without sharp absorption, spectra 

with broad features. Quartz features can be appreciated in stockwork, gossan and argillic 

lithologies because of dominance of this mineral abundance over other (spectrally active) 
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minerals detectable in the LWIR range like pyroxene, feldespato, muscovite, garnet, apatite 

and chlorite. Chlorite and muscovite features present in 9.4 µm are shown in argillic 

alteration, Culm shales and purple shales mostly. Once again, mostly flat spectra for massive 

sulfide with no distinguishable abstorions. On average, in comparison with FTIR spectra 

(Fig. 16.), the signal is subdued but characteristic absorptions are preserved. 

 

 

Classifications algorithms  

In this chapter, two different approaches for utilizing airborne hyperspectral data for 

mineral exploration in rock waste deposits are evaluated: (a) using spectral unmixing based 

on “pure lithologies” as a means to identify high abundances of ore material in the rock 

wastes, and (b) mapping types of rock wastes (for resource characterization and 

environmental monitoring) using supervised classification methods as a means to extrapolate 

information from small, ground-truthed areas to larger, unmapped areas. 

LSU   

To map the abundance of the typical materials of the RT mine, particularly the ore-bearing 

lithologies, Linear spectral Unmixing technique using the test sites’ spectral library as 

Fig. 16.  

Comparison of the spectral signatures for the same 

lithologies obtained from different sources. Red = 

FTIR spectral signature. Black = Airborne image 

spectra. Note that for a better integration of the 

measures, both radiance units are (normalized?) in 

emissivity. From left to right, top to bottom: Chloritc 

volcanics, culm shales, gossan. massive sulfide, 

stockwork and argillic alteration. 
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reference data is applied. The efficiency of mapping endmembers using different wavelength 

ranges is assessed. 

Fig.17. shows the gossan, massive sulfide and stockwokr abundance maps obtained for the 

VNIR, SWIR, and LWIR datacubes. For a more detailed display of the linear spectral 

unmixing imagery, including the abundance maps for all endmembers and an RMS image 

estimating the incurred RMS error in each domain, see Appendix (A.3).  Abundance values 

are represented in a grey scale, ranging from black to white with the latter corresponding to 

maximum abundance. 

 

Fig. 17. Linear spectral unmixing for Gossan, Massive sulfide and Stockwork based on VNIR, SWIR and LWIR 

HS datacubes, respectively. 

 

We will mainly be interested in the abundance of the ore mineralizations which include 

massive sulfide, stockwork, and gossan. However, we also know that the chloritic alteration 

is usually associated with stockwork so its estimation can be used as a proxy. The rest of the 

lithologies (argillic alteration, purple, and culm shales) are considered to be sterile in terms of 

economic value or environmental threat, but it is not out of place to have an estimation of 

quantities and distribution along the rock waste.  

For the VNIR maps, a pattern is reproduced in all images, being easier to distinguish in 

stockwork and massive sulfide: Halfway down in the image we see a sharp in tonality which 

may be the result of the atmospheric distortions or, most probable, overlapping when 

mosaicking the individual images that conform the whole area. In the SWIR range, the 

stockwork abundance map is quite noisy and there is a low pixel continuity. In the LWIR 
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imagery too many patches and aerial artifacts interfere leading to misclassifications. The 

RMS error for this range is unacceptable (Appendix A3). 

     In order to compare in a quantitative way the obtained abundances with the ground truth 

data, and thus to assess the effectiveness of this tool when estimating quantities and target 

mineral distribution, validation graphics were performed (Fig.18). This graph shows the 

distribution of the estimated abundance of each of the pure lithologies (gossan massive 

sulfide, stockwork) along the different rock waste types for every range. We obtain a poor 

correlation in which we neither distinguish nor are able to make associations or partnerships 

between the rock waste types and the presence of determined pure lithologies.  

 

Fig. 18. Validation charts showing the abundance and distribution estimated of the stockwork, massive sulfide 

and gossanfor each rock waste type in every range (VNIR SWIR and LWIR). 

One of the reasons behind this is that minerals possess their characteristic features 

absorptions in different specific parts of the infrared EM spectrum. This means that 

depending on the range we are in; some minerals will be identified, and others will be 

unnoticed. For this technique to be effective, it is strongly recommended using a stack that 

combines all the wavelength ranges we have available information on. The other reason is 

quite obvious, high RMS error values (Appendix A3) and visible external patches, marks, and 

noise in the images contribute to misleading classifications. 

SAM 

Since the spectral library extracted from the test sites corresponds to 'pure' lithologies, may 

significantly differ from the actual composition of the target pixels found in the rest of the 
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mining area, especially in the rock waste. SAM assigns each pixel to its predominant 

lithology, being pointless using these ‘pure lithologies’ as endmembers when we are dealing 

with mixed pixels. For this purpose, the rock waste types library is used as a means to 

extrapolate types of waste rock to larger areas (Section 4.4 Reference data. Rock waste types) 

(Appendix A4). 

The HSI dataset on which these classifications are being conducted is a stack that 

combines the three airborne cubes, VNIR, SWIR, and LWIR. NDVI (vegetation) and slope 

masking was performed to avoid possible misclassification. The end-memebers employed 

are: Pyritic stockwork waste, altered pyritic stockwork waste, mixed waste, slate waste, 

massive sulfide waste and gossan waste. 

 

           

Fig. 19.  a.1 SAM supervised classification for the six rock waste types using an angle = 0.1 rad. a.2 Validation 

chart comparing the previous SAM with the ground truth rock waste types classification. b.1 SAM supervised 

classification for the six end-members rock waste types using a different angle for each: STK=0.0864 rad; A-

STK=0.0802 rad; MIX=0.0936 rad; SLATE=0.0888 rad; MS=0.1158 rad; GOS=0.0658 rad.   b.2 Validation 

chart comparing the b.1 SAM with the ground truth rock waste types classification. 

Fig. 19. a.1 presents a SAM using an equal threshold angle (0.1 rad) for each of the 

occurring endmembers. The vast majority of pixels are classified. The central part of the rock 

waste contains homogeneously mixed pyritic stockwork, altered stockwork and mixed 

stockwork units. There does, however, seem to be an area in the right corner where a massive 

sulfide unit is concentrated. It is interesting to note how in the lower part of the image we do 

not find such a variety of classes and not all pixels are categorized, which leads us to consider 

that there is somehow either an overestimation of the blue and orange classes, (A-STK) and 

(G) respectively, or an underestimation of the rest. 
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As in the previous section, to compare the obtained distribution with the ground truth data, 

and thus to assess the effectiveness of this tool when extrapolating reference point 

measurements to larger zones, a validation was made.   

Considering the validation graph (Fig. 19. a.2), we can suggest that some of the rock waste 

types are misclassified, especially pyritic stockwork and mixed stockwork. This may be 

caused by choosing a higher angle value when building the SAM. In the following approach, 

this classification method has been fine tuned: 

Rule map images resulting from this first SAM classification helped to assist in 

determining a more accurate angle for each class. Histograms showing the distribution of 

pixels over the range out of the rule images were plotted and the angle value corresponding to 

the inflection point of the curve’s slope for each class was chosen.  In this way, figure 19.b.1, 

presents a new enhanced SAM resulted at a different angle for each endmember: 

STK=0.0864 rad; A-STK=0.0802 rad; MIX=0.0936 rad; SLATE=0.0888 rad; MS=0.1158 

rad; GOS=0.0658 rad.  

This time, in the lower part of the map most of the pixels are not classified (Fig. 19 b.1). 

According to the validation graphs (Fig. 19 b.2), the correlation for stockwork, massive 

sulfide and slates is reinforced, however, for the gossan seems to introduce further errors. 

Inaccuracies or small variations in classifications can come out of two sources: (i) similarities 

in the spectra of two waste types, (ii) mixing zones of these. 

In general terms, SAM seems to perform quite well. Both maps follow a similar pattern to 

the one in the VNIR and LWIR linear spectral unmixing, this leads us to think that the 

misclassifications and underestimation have not the origin in the spectral libraries used as 

reference data but in the raw image itself, especially in one of the earliest stages: the VNIR 

and LWIR individual mosaicking. It should be further discussed at some length. 

 

5.2. ALTERNATIVE APPROACHES 

These algorithms supported by simple mathematical methods enhance the importance of the 

local geology and mineral spectroscopy understanding. They are targeted at specific ranges, 

so knowing the spectral response of minerals in the target area help us to know in which 

range can be identified. 

Minimum Wavelength Maps. 

Shifts in wavelength position may be highly relevant to hyperspectral remote sensing. In 

order to identify the most relevant mineral phases, 2 minimum wavelength maps in different 

ranges of the EM spectrum have been carried out. Wavelengths ranges have been chosen in 

line with previous knowledge and understanding of the particular geology of the area, a 

Volcanic Massive Sulphides system (VMS). According to the map legend, the colour 

corresponds to the wavelength position of a certain absorption feature, and the intensity 

reflects its depth. 

Figure 20.a shows the MWL corresponding to the SWIR domain, between 2150 and 2400 

nm. In the image, we can distinguish the existence of four major colours which will therefore 

be associated with the presence of four predominant minerals distributed over the area. 
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Blueish colors are predominant in the image occupying the central part of the rock waste, 

they represent maximum absorptions around 2200 nm. This being an indicator of AlOH 

content, which is very abundant in minerals such as white micas. White micas are common 

minerals resulting from the alteration in mineralised bodies such as the Volcanogenic massive 

sulphide ore deposit. In the XRD, there is a high presence of mica in culm and purple shales 

and argillic alteration. The rock waste periphery presents a greenish colour that can be easily 

related to the presence of chlorite, whose deepest absorptions are located at 2250 and 2350 

nm due to its content of FeOh.  Absorption features between 2310 and 2350 nm are caused by 

Mg-OH and CO3 bond stretching, and thus, alteration minerals such as, chlorite, biotite, 

epidote and carbonates exhibit characteristic absorption features within this range [ref], 

compounds that characterize chlorites. The entire surface layer of RT which is maily chloritic 

alteration is composed of 50% chlorite (see XRD). Purple colours can be related to the 

existence of kaolinite, a mineral that presents sharp absorptions in both 2165 and 2186 nm. 

According to the XRD there is not much existence of kaolinite, especially and to our surprise 

in the argillic alteration which is where we expected it since belonging to the clay group, 

kaolinite is a key mineral in the argillic alteration identification. Furthermore, all the pixels 

showing kaolinite are located in slope zones (based on MDT model) which can yield to 

erroneous values so they can be false indicators. 

 
(a)                                                                               (b) 

Fig. 20. (a) Minimum wavelength map (2150–2400 nm) based on short-wave infrared hyperspectral image 

showing wavelength of deepest absorption feature of the Corta Atalaya rock waste deposit to evaluate the 

content of alteration mineral content. Blueish colors = white mica-dominated pixels, purple = kaolinite, green = 

chlorite. (b) Minimum wavelength map (8.25–10 µm) based on long-wave infrared hyperspectral image 

showing wavelength of deepest absorption feature of the Corta Atalaya rock waste deposit to evaluate the 

content of alteration mineral content. Blueish colors = chlorite and muscovite-dominated pixels, pink colors = 

kaolinite, greenish colors = quartz. 

Figure 20.b shows the MWL map for the specific LWIR range between 8.25 and 10.0 

µm). Reddish colours will be ignored as they are on either end of the spectrum, so they do not 

provide any information. Small yellow-greenish areas spread around the rock waste, 

correspond to quartz-bearing lithologies as quartz feature absorption presents its minimum 

around 8630-8633 nm. Kaolin is represented by the colour pink as its feature absorption is 

around 9.8 µm; this time is distributed in the plateau highest zones, the possible distortion 
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caused by this topographic feature has yet to be evaluated. Chlorite and Muscovite share a 

feature absorption around 9400 nm due to the presence of the AlOH phase and cannot be 

distinguished from each other, on the map this phase is represented by the blue to purple 

colours. These two minerals are the most abundant in the rock waste, being present in almost 

all the lithologies described above but massive sulfide mineralization (see XRD analysis). 

Albite also presents an absortion in 9.4 but we can practically ignore it because, once again, 

relying on the XRD analysis, it only constitutes a small part of the composition of the culm 

shales. 

For both maps, as the areas corresponding to step slopes have an homogeneous color, it is 

proposed that these areas introduce a topographic distortion and possibly lead to 

misclassifications. 

Band Ratios. 

Minerals have distinctive absorption features through the electromagnetic spectrum. The 

thresholds used in the process are subjective and scene dependent so the ratios need to be 

selected on the basis of critical parameters. Considering the prior knowledge of the target 

area, the following ratios were calculated: Iron index, Opaque index, Ferric oxide 

composition index, AlOh Group index, and quartz index. These provide us with an overview 

of the content and distribution of the same in the rock waste (Fig. 21).  

 

Fig. 21. Upper images: Ferric oxide composition index based on band ratio of (630:690/520:600). Iron 

index based on band ratio of (740 to 760 nm)/(850 to 890 nm) and Opaque index (520 to 600 nm)/(1600 to 1700 

nm). Lower images: AIOHcomposition based on band ratio of (2145 to 2185 nm)/(2235 to 2285 nm) and 

Quartz index  of (8475 to 8825 nm)/[(8125 to8475 nm) +(8925 to 9275)]. 

Ferric oxide composition index (630:690/520:600) highlights hydrothermally altered 

rocks that have been subjected to oxidation of iron-bearing sulphides (L3 Harris Geospatial 

Solutions, n.d.). The interest in determining the presence and distribution of oxidised ferrous 

materials is evident: our work area is a rock waste of massive sulfides open pit. Thus high 

values of iron oxide can be regarded as proxies for massive sulfide, stockwork, and overall 

gossan. 
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Fe index (740:760 nm)/(850:890 nm):highlighting areas of high iron hydroxide and 

sulfate content. Detected in the VNIR domain, it leverages the difference between the ferric 

iron (Fe3+) reflectance peak and ferrous iron (Fe2+) absorption feature induced by crystal 

field transitions (Clark, 1999). Highlighting iron-rich areas, on a scale from blue to red, with 

red being the maximum concentration value, will be a good indicator of possible ore bodies 

existence. We may appreciate zones where it is more concentrated and others where it seems 

to be more disseminated. Note that the red patches where the distribution is more 

homogeneous correspond to slope areas and hence yield false positives. 

Opaque index (520 to 600 nm)/(1600 to 1700 nm.): This band ratio calculated through 

the VNIR and SWIR range. Is a useful measure of reduced rock. Opaque minerals such as 

sulfides are sensitive to strong absorption at all optical wavelengths (Cudahy et al., 2008). It 

appears to be more content of opaques in the lower part of the rock waste and to a lesser 

extent in the right corner. Two circular areas in the middle of the map and a larger one on the 

lower right part can be easily distinguished due to their strong signal.  

Quartz index (8475 to 8825 nm)/[(8125 to8475 nm)+(8925 to 9275)]: being one of the 

most common minerals on earth, quartz, has a unique spectral feature in thermal infrared. It 

displays a very pronounced absorption near 8630 nm between two peaks of 8230 nm and 

91300 nm. According to the distribution map, it can be noted that quartz is a predominant 

material (red) in the zone, also  as indicated by the XRD analysis being present in most of the 

mineralizations with the exception of ore bodies and gossan (see XRD), so its absence (blue 

areas) can serve as a proxy for these lasts. 

AIOH composition (2145 to 2185 nm)/(2235 to 2285 nm): It seems to be more 

abundant in the upper part of the image, can be related to the presence of slates and alteration. 

 

 

Fig. 22. Validation for the band ratios displayed in Fig. X (above). Lines refer to band ratios calculated 

from the average spectra of the test site endmember lithologies. Note the good separation between waste rock 

types for most of the indices and the good correlation between band ratios of mapped waste types and test site 

lithologies. 
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The integration of the BR maps combined together with the validation data constituted by 

the waste types classification, and the BR calculated from the Fenix spectra measures of the 

test sites, considered as ‘pure lithologies’ contributed to the better interpretation of the 

remotely-spectral information which increases the reliability of the results (Fig. 22). 

The ferric oxide composition band ratio turns out to be a good discriminant for the 

detection of pure lithologies as chloritic volcanic rocks and gossan especially, the latter 

having a band ratio value of 1,9 meaning a sharp slope between the two sets of bands. 

Therefore, for ferric oxide composition band ratio values around this value, we can 

practically guarantee that it would be pure Gossan.  When it comes to the rock waste types 

classification, it seems consistent that the gossan waste type shows also higher band ratio 

values but is not comparable to the gossan of the test site since it is probably mixed with 

other materials. Lower BR corresponds to the ore, either Massive sulfide, and stockwork of 

the pure lithologies or Massive sulfide of the waste classification. There is a strong 

correlation between the Ferric oxide BR calculated for the massive sulfide unit from the 

waste classification and that of the test sites.   

For the iron validation, two points should be highlighted: in terms of the rock waste 

types classification, the groups that seem to have the most iron content are the Pyritic 

Stockwork and the Gossan. On the other hand, it may be noted that for pure lithologies, the 

ratio of massive sulfide, and stockwork is very low when, according to XRD, its composition 

is mainly pyrite, especially for the MS (93%). This low ratio may be due to the alteration in 

the stockwork of pyrite to FeOH phases and Fe sulfates. 

The opaque index seems to be a top discriminant for the massive sulfide, whose 

characteristic BR value coincides for both classifications (rock waste type and test sites). We 

can affirm that from an index value of 1.3 onwards, we would almost certainly find Massive 

sulfide..It should be pointed out that gossan in both classifications appears to be the one with 

the least opaque content which can be quite disconcerting as the XRD analysis shows almost 

50% of hematite, a metallic mineral; Due to the large iron feature present in hematite, this 

mineral is not considered spectrally opaque.  the lower values of the two categories 

correspond to Massive sulfide.  

For the ALOH compositon index, an outstanding separation for the Chloritic Volcanics 

lithology from the test sites is given. It’s known they are usually associated with stockwork, 

so it is a lithology worth considering. Regarding the rock waste types classification, the 

pyritic stockwork with Chloritic alteration is the one presenting a higher band ratio value, but 

it is also well sorted along the BR values axis meaning that not all that unit have this high 

composition of AlOH. 

For the quartz index, excellent distinction for the Massive sulfide from the other test 

sites lithologies is shown. This test site-massive sulfide BR coincides with the median value 

of the Massive sulfide from the waste types classification, making a good match. The slate 

waste group, which is very abundant and varied, may interfere a little, but we can use other 

BR values to distinguish between the two, such as the iron oxide content, which is present in 

the slate, but not in the massive sulfide, or the opacity index, which is the opposite. 
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6. CONCLUSIONS 

 

A short summary of the main outcomes and conclusions of this work: 

• The test sites end-member spectral libraries from the different sources (airborne remote 

sensing, field and laboratory) are robust and consistent with each other. 

 

• The feature absorptions presented of each lithology can be easily related to the expected 

ones according to its mineralogical analysis (XRD). 

 

• The characteristic spectrum of each reference lithology is sufficiently distinctive to be 

considered as different spectral endmembers.  

 

• For this case of study, using the test sites end-member library as input for supervised 

classifications is only meaningful when estimating quantities.  

 

• Results obtained from LSU are not satisfactory, this may be due to errors in preprocessing 

and preliminary steps when correcting the raw airborne datasets. On the other hand, it has 

been demonstrated that, along the different spectral ranges, the abundance estimation for 

the same materials are completely different; suggesting that the best way to integrate this 

unmixing tool would be using a stack combining all infrared ranges thus no material is 

overestimated or overshadowed by others. 

 

• In a rock waste area, as the mixture of materials is highly heterogeneous, it is more 

appropriate to map mixed classes rather than ‘pure lithologies’. 

 

• Employing such relatively simple, expert-guided algorithms such as MWL and BR in this 

example yield much better discrimination of materials than naive classification methods 

that use the entire spectrum as an input. 

 

• In the pursuit of ore-bearing minerals not only the two main lithologies (massive sulfide 

and stockwork) are subject of interest, but some others that can be used as a proxy must 

be considered, e.g. chloritic volcanic rocks and gossan. 

 

• Accurate knowledge of the method and the local geology will allow us to refine and 

implement these techniques in a satisfactory way.  

 

• This study enhances the importance of an interdisciplinary approach between remote 

sensing and geology, enlightening that in no means we can prescind from expertise 

geologists.  
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Limitations 

Throughout the development of this study, different limitations and challenges have 

emerged. In the first place, the airborne HSI datacubes used in this study were preliminary 

and were partly affected by high noise and artefacts, so as part of pre-processing, a number of 

filters had to be applied running the risk of erasing peaks or absorptions in the signature that 

may provide key information when identifying some mineral phases. As it was explained 

before, to get an image of the whole target area, images from different flights (in the same 

wavelength domain), had to be mosaicked. During this process, some issues arose, especially 

in the VNIR domain. It is interesting to note that for different flight surveys but performed on 

the same day, in apparently the same atmosphere and external conditions, and utilizing the 

same sensor, the range in the reflectance axis (Y) for the datasets are completely different. 

For some images varying from 0 to 500 and for others from 0 to 3500. This poses a serious 

problem when, due to overlapping of flight lines, for a same pixel two completely different 

values are given. To solve this, the only possible thing that could be done was removing 

images whose Y-axis ranges were out of line with the general norm.  Despite all this was 

done, it can be clearly appreciated how in the SAM and LSU results (being not so evident for 

all the endmember abundance maps), this problem still persists. Although this issue should 

not affect the BR and MWL results, slight signs are suggesting the opposite, so this should be 

examined in detail. On the other hand, when stacking the datacubes upon the rock waste 

types SAM has been performed, several issues, once again concerning the reflectance range, 

had to be faced. VNIR and SWIR HSI had to be normalized together and besides, as there 

was an overlapping of a few wavelength bands recorded in both ranges, those needed to be 

removed. LWIR signature had to be stretched as otherwise it would have passed unnoticed in 

comparison to the VNIR SWIR.    

 

Optimal workflow  

Based on the outcomes of this study, the following workflow recommendations are 

suggested: 

• Addressing the importance of counting with proper training data and validation data 

to prove our results. 

 

• Emphasizing the benefits of working with the entire wavelength range when it comes 

to unmixing pixels. As not all minerals have distinguishable features in all parts of the 

infrared spectrum (VNIR SWIR and LWIR), they may go unnoticed in some ranges, 

while for others they may be overestimated. 

 

• Being supported and relying on a mineralogical analysis of the rock waste types such 

an XRD would be extremely recommended. As they seem to perform pretty good in 

the SAM, knowing the fraction of ore-bearing mineral that each one contains, would 

allow us to quantify in a very accurate way the value of rock waste 

 

• Having reliable raw data, with proper preprocessing and corrections. In certain 

approaches, we can assume the errors this lack may cause, such as in MWL and BR, 

but in others, like the SAM and LSU, they clearly interfere, influencing the results 

and making them far less trustworthy. 
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7. FINAL DISCUSSION 

 

• In terms of mineral identification, this study confirms the effectiveness of using HSI 

for sulfidic rock waste deposits mapping. It has also effectively demonstrated the 

added value brought to the mineral characterization of rockwastes by incorporating 

the LWIR spectral range.  

 

• Supervised classifications, especially the Spectral Angle Mapper tool, used as a 

means of extrapolating mapped rock types to a larger unmapped area have proved 

satisfactory, but care has to be taken in applying the correct weights to the 

endmembers to avoid overfitting effects.  

 

• Geological indices generated from simple algorithms such as band ratios and 

minimum wavelength mapping guided by expert knowledge resulted in the best 

discrimination of geologic materials in the rock waste deposit. Classification 

approaches which focus on spectral features that are characteristic within a given 

mineralization environment are thus considered to be more effective than any naive 

classification techniques that are based on entire spectra. Geological knowledge of the 

area and good ground truthing data are of paramount importance.  
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APPENDICES 

 

APPENDIX A1:  REPRESENTATIVE TABLES  

Table 1. The XRD results for the test site lithologies. 

 

 

 

Table 2. Number of pixels from each test site lithology used for the endmember extraction that will constitute 

the spectral libraries for the VNIR SWIR and LWIR domains. 

 VNIR (pxl 0.6 m) SWIR (pxl 1.25 m) LWIR (pxl 1.25 m) 

Gossan 30 6 9 

Massive Sulfide 30 9 12 

Stockwork 42 8 16 

Argillic Alteration 48 9 12 

Purple Shales 30 4 12 

Culm Shales 42 12 16 

Chloritic 
Volcanics 

154 25 42 
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APPENDIX A2: TECHNICAL SPECIFICATIONS OF CAMERAS 

HySpex VNIR 1800 Camera Specifications 

 

Parameter Specified Value 

Spectral range  400 – 1000 nm  

Spatial pixels  1800  

Spectral channels  186  

Spectral sampling  3.26 nm  

FOV*  17°  

Pixel FOV across/along*  0.16/0.32 mrad  

Bit resolution  16 bit  

Noise floor  2.4 e-  

Dynamic range  20000  

Peak SNR (at full resolution)  > 255  

Max speed (at full resolution)  260 fps  

Power consumption  30 W  

Dimensions (l–w–h)  39 – 9.9 – 15 cm  

Weight  5.0 kg  

Camera Interface  CameraLink  
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HySpex SWIR 384 Camera Specifications 

 

Parameter Specified Value 

Spectral range  930 - 2500 nm  

Spatial pixels  384 

Spectral channels  288 

Spectral sampling  5.45 nm  

FOV*  16°  

Pixel FOV across/along*  0.73/0.73 mrad  

Bit resolution  16 bit  

Noise floor  150 e-  

Dynamic range  7500  

Peak SNR (at full resolution)  > 1100 

Max speed (at full resolution)  400 fps  

Power consumption  30 W  

Dimensions (l–w–h)  38 – 12 – 17.5 cm  

Weight  5.7 kg  

Camera Interface  CameraLink  
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HyperCam VLW Camera Specifications 

 

Parameter Specified Value 

Spectral Range 7.7 – 11.8 

Spectral Resolution Up to 0.25 

Spectral Resolution 320 x 256 

FOV (Field of view) 6.4 x 5.1 

Typical nesr 20 

Radiometric Accuracy (K) <10 

Data Transfer Camera Link 

Power to Consumption 180 W 

Weight 31 kg 

Operating Temperature -20 to 40 1C 
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Aisa Fenix Hyperspectral Camera 
 

  VNIR  SWIR 

Camera specifications     

Spectrograph 
 High efficiency transmissive imaging 

spectrograph 

Spectral range   380 - 970 nm 970 - 2 500 nm 

Spectral resolution  3.5 nm  12 nm 

F/#  F/2.4 

Smile / Keystone  < 0.2 pixels 

Polarization sensitivity  Throughput practically independent of 
polarization 

Signal-to-noise ratio (peak)  600 - 1 000:1  1 050:1 

Spatial resolution  384 pixels 

Frame rate  Up to 100 Hz   

Integration time  Adjustable within frame period 

FOV  32.3° 

IFOV  0.084° 

Swath width  0.58 x altitude 

Altitude for 1m pixel size  660 m 

Electro mechanical shutter  Yes 

Detector 
 CMOS Stirling cooled 

MCT 
Stirling cooled 

MCT 

Spectral binning options  2x      4x   8x - 

Number of spectral bands  348   174   87 274 

Spectral sampling / band  1.7  /  3.4 /  6.8 nm  5.7 nm 

Data interface  CameraLink 12-bit  CameraLink 16-
bit 

Typical power consumption 150 W 

Maximum power 
consumption 

500 W 

Environmental 
characteristics 

    

Storage temperature  - 20 ... +50 ºC 

Operating temperature + 5 ... +40 ºC, non-condensing 
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Agilent  4300 Handheld FTIR 
 

Parameter Specified Value 

Size 10 x 19 x 35 cm 

 Weight 1.88 kg 

Power 
Two Internal batteries (3 h), 100/120/240 V 

AC, 50/60 Hz 

Spectral range DTGS 4500–650 cm-1 

Resolution 4–16 cm-1 

Controller 
Integrated CPU with Microsoft Windows CE 

6.00 Edition 

Software 
Can be operated by Agilent MicroLab PC or 

Mobile software 

Warmup time 10 min 

Response time 2 min 

Operating temperature 0–50 °C 
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PSR +3500 

 

 Parameter Specified Value 

Spectral range  350 - 2500 nm 

Spectral Resolution- FWHM 
(Full Width at Half Maximum) 

2,8 nm @700 nm;  8 nm @1500; 6 nm @2100 

Si Detector 512 elements Si photodiode array (350-1000nm) 

InGas Detectors (cooled) 512 elements Si photodiode array (350-1000nm) 

FOV*  17°  

Fiber Mount Otions 0.16/0.32 mrad  

Noise Equivalence Radiance 16 bit  

Max Radiance 2.4 e-  

Minimum Scan Speed 20000  

Wavelength Reproducibility > 255  

Wavelength Accuracy 0,5 band width 

Communications Interface USB or Class I Bluetooth- laptop or PDA compatible 

Size 8,5 x 11,5 x 3,25 

Tripod Mounting 2 each 1/4-20 mounting holes provided 

Weight 3,5 kg 

Batteries Lithium ion; 7,4 V; 7200 mAh; 400g/battery 

Battery Operation Removable battery; tipically up to 4 hour 

On Board Memory Storage of 1000 spectra 
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APPENDIX A3: LINEAR SPECTRAL UNMIXING RESULTS 

 

Fig. 1. Image layout scheme. 

 

 

 

 

Fig. 2. VNIR Linear spectral unmixing. Abundance maps for each endmember and RMS error image 
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Fig. 3. SWIR Linear spectral unmixing. Abundance maps for each endmember and RMS error image 

 

Fig. 4. LWIR Linear spectral unmixing. Abundance maps for each endmember and RMS error image 
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APPENDIX A4: ROCK WASTE TYPES SPECTRAL LIBRARY 

End-member spectral library corresponding to the rock waste types classification. These 

spectra are the result of the arithmetic mean of the collected pixels from the stack datacube 

(VNIR, SWIR and LWIR). 

 

Fig. 27. Rockwaste types spectral library 

 

 


