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Abstract 

Background  | Accelerometers are the method of choice for the measurement of physical behav-

iours (i.e., physical activity [PA], sedentary behaviour [SB], and sleep) in current 

research. The rapid technological advances and the access to the accelerometers’ 

raw data addresses a series of challenges upon the need for transparent, compa-

rable, and reproducible accelerometer data processing methods. The widely stud-

ied associations of physical behaviours with health outcomes should be expanded 

to understand the behaviours interplay in their relationship with health. Children 

with overweight or obesity might find in physical behaviours an effective tool to 

improve their cardiometabolic and brain health. 

Objectives  | Two main objectives are addressed in this Thesis: (i) to advance the current 

knowledge on accelerometer data collection and processing methods to study 

physical behaviours in children and adults with accelerometers; and (ii) to ex-

plore the associations of accelerometer-determined physical behaviours with 

cardiometabolic and brain health in children with overweight or obesity, as well 

as the effects of the ActiveBrains exercise randomized controlled trial 

Methods  | The design of the studies included in this Thesis are a systematic review, a soft-

ware description article, seven cross-sectional studies, a consensus statement ar-

ticle, and a randomized controlled trial. This Thesis encompasses data mainly 

from the ActiveBrains project, and complementary from the MINISTOP project 

and a pilot study on accelerometry. ActiGraph GT3X+ accelerometers attached to 

the right hip and wrists are used to quantify physical behaviours. Gold-standard 

measures of energy expenditure (i.e., doubly labelled-water), brain grey matter 

volume (i.e., magnetic resonance imaging), cardiometabolic health (i.e., blood bi-

omarkers), and body composition (i.e., dual-energy x-ray absorptiometry) are in-

cluded. Analytical approaches used include linear and quadratic regressions, 

analysis of variance (ANOVA), compositional data analysis, multivariate pattern 

analysis, and mediation models. 

Main findings  | In regards to the objective 1, this Thesis: (i) provides accelerometer data collec-

tion and processing recommendations based on existing literature; (ii) describes 

an open-source software to process raw accelerometer data to quantify physical 

behaviours in which the PhD candidate is co-developer; (iii) finds that open-

source acceleration metrics present a higher performance than proprietary activ-

ity counts to estimate energy expenditure; (iv) observes that open-source accel-

eration metrics are more comparable between them than with activity counts and 

provides cut-points to quantify PA intensity from dominant wrist-worn accel-

erometer data; (v) demonstrates large discrepancies in the time spent in SB and 

PA intensities when quantified from different cut-points, suggesting that it is not 

currently possible to know the prevalence of a population meeting the PA guide-

lines based on accelerometer data; (vi) proposes step-based metrics (including 

steps/day and various cadence-based intensity indicators) as a good proxy to 

some indicators of overall PA (i.e., counts per day, light-moderate-vigorous PA, 

moderate-to-vigorous PA) in children with overweight or obesity; (vii) provides 

a comprehensive description and international consensus on the analytical 
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approaches most-frequently used in the field, and practical recommendations on 

what analytical approaches are the best-suited to a given research question. 

Relative to the objective 2, the current Thesis: (viii) observes that the association 

of PA and SB with grey matter volume in the hippocampus in children with 

overweight or obesity might be moderated by weight status (reallocating 20 

min/day from SB to moderate-to-vigorous PA was associated with 100 mm3 more 

GMV in the right hippocampus in children with obesity type I); (ix) finds that sleep 

behaviours are associated with grey matter volume in several cortical and 

subcortical brain regions independently of SB and PA, and this seemed to be 

relevant for academic achievement in children with overweight or obesity; (x) 

remarks that a more stable and less fragmented activity-rest pattern (and earlier 

occurrence of PA) is associated with better academic achievement, executive 

function, and intelligence in children with overweight or obesity; (xi) 

demonstrates that a 20-week exercise program improves cardiometabolic health 

in children with overweight or obesity, while no effect is observed on mental 

health. 

Conclusion  | The findings from this International Doctoral Thesis provide valuable recommen-

dations on best-practice accelerometer data collection and processing techniques 

to measure physical behaviours, as well as consensus recommendations on ana-

lytical approaches for the field of PA epidemiology. Moreover, this Doctoral Thesis 

highlights the value of open-source data processing algorithms and the important 

role of PA, SB, sleep, and the activity-rest pattern in relation with brain health out-

comes in children with overweight or obesity. Finally, this Doctoral has demon-

strated that meaningful and positive changes in cardiometabolic health in chil-

dren with overweight or obesity can be obtained with a 20-week exercise pro-

gram, which should inform future health programs. 
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Resumen 

Contexto  | Los acelerómetros son el método preferido para cuantificar los comportamientos 

físicos (actividad física [AF], comportamiento sedentario [CS] y sueño) en estudios 

científicos. Los grandes avances tecnológicos y el acceso a los datos brutos de los 

acelerómetros permiten afrontar una serie de retos relacionados con la necesidad 

de métodos de procesamiento de datos transparentes, comparables y reproducibles. 

Las asociaciones de los comportamientos físicos con la salud están ampliamente es-

tudiadas, y a su vez deben extenderse para comprender mejor las interrelaciones 

entre los comportamientos físicos en su relación con la salud. Los niños con sobre-

peso u obesidad podrían beneficiarse de los comportamientos físicos para mejorar 

su salud cardio-metabólica y cerebral. 

Objetivos  | Esta Tesis trata de responder a dos objetivos generales: (i) avanzar el conocimiento 

actual en cuanto a métodos de recolecta y procesamiento de datos de acelerómetros 

para estimar comportamientos físicosen niños y adultos; y (ii) explorar las asocia-

ciones de los comportamientos físicos (medidos con acelerómetros) y la salud car-

dio-metabólica y cerebral en niños con sobrepeso u obesidad, así como los efectos 

del ensayo aleatorizado controlado ActiveBrains. 

Métodos  | Los diseños de estudio incluidos en esta tesis son una revisión sistemática, un ar-

tículo de descripción de software, siete estudios transversales, un artículo de con-

senso entre expertos y un ensayo aleatorizado controlado. Esta tesis utiliza datos 

principalmente del proyecto ActiveBrains, y complementariamente del estudio MI-

NISTOP y de un estudio piloto de acelerometría. En todos ellos, los acelerómetros 

ActiGraph GT3X+ colocados en la cadera derecha y en las muñecas se utilizan para 

cuantificar los comportamientos físicos. Además, esta tesis incluye medidas ‘gold-

standard’ de gasto energético (i.e., agua doblemente marcada), volumen de materia 

gris cerebral (i.e., resonancia magnética), salud cardio-metabólica (biomarcadores 

sanguíneos) y composición corporal (i.e., absorciómetro dual de rayos X). Los análi-

sis estadísticos utilizados incluyen regresiones lineales y cuadráticas, análisis de va-

rianza (ANOVA), análisis de datos composicionales, análisis de patrones multiva-

riantes y modelos de mediación. 

Hallazgos | En cuanto al objetivo 1, esta Tesis: (i) proporciona recomendaciones basadas en la 

literatura existente sobre los criterios para recoger y procesar datos de aceleróme-

tros; (ii) describe un software de acceso libre (en el que el candidato a PhD es co-

desarrolador) para procesar datos de acelerómetros para la cuantificación de com-

portamientos físicos; (iii) encuentra que las métricas de aceleración ‘open-source’ 

estiman mejor el gasto energético que las cuentas de actividad proporcionadas por 

la marca de acelerómetros; (iv) observa que las métricas ‘open-source’ se comparan 

mejor entre sí que con las cuenta de actividad, y proporciona puntos de corte para 

cuantificar la intensidad de la AF a partir de datos de la muñeca dominante; (v) de-

muestra grandes discrepancias en la cuantificación del tiempo en CS e intensidades 

de AF cuando se utilizan distintos puntos de corte, sugiriendo que no es posible co-

nocer la prevalencia de personas que cumplen las recomendaciones de AF en una 

población a partir de datos de acelerómetros; (vi) propone que las métricas relacio-

nadas con los pasos (pasos/día y varios indicadores de cadencia) son un buen indi-

cador de la AF general (i.e., counts al día, AF ligera-moderada-vigorosa, y AF 

principales 
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moderada-vigorosa) desarrollada por niños con sobrepeso u obesidad; (vii) propor-

ciona una descripción comprensiva y un consenso internacional sobre las estrate-

gias de análisis de datos que deben ser utilizadas para una determinada pregunta de 

investigación. 

En cuanto al objetivo 2, la presente Tesis: (viii) observa que la asociación de la AF y 

CS con el volumen de materia gris en el hipocampo en niños con sobrepeso u 

obesidad podría estar moderada por el estado ponderal de peso (reemplazar 20 

min/día de CS por AF moderada-vigorosa se asoció con 100 mm3 de más materia 

gris en el hipocampo derecho en niños con obesidad tipo I); (ix) encuentra que los 

comportamientos de sueño están asociados con el volumen de materia gris en varias 

regiones corticales y subcorticales del cerebro, independientemente del CS y AF, y 

que estas asociaciones parecen ser relevantes para el rendimiento académico de 

niños con sobrepeso u obesidad; (x) remarca que un patrón de actividad-descanso 

más estable y menos fragmentado (así como hacer AF más temprano) se asocia con 

un mejor rendimiento académico, función ejecutiva e inteligencia en niños con 

sobrepeso u obesidad; (xi) demuestra que un programa de ejercicio de 20 semanas 

mejora la salud cardio-metabólica en niños con sobrepeso u obesidad, mientras que 

no se observó ningún efecto en salud mental. 

Conclusión  | Los resultados de esta Tesis Doctoral Internacional proporcionan recomendaciones 

sobre las mejores formas de recoger y procesar datos de acelerómetros para medir 

los comportamientos físicos, así como recomendaciones consensuadas sobre las es-

trategias de análisis para el ámbito de la epidemiología de la AF. Además, esta Tesis 

Doctoral subraya el valor del procesamiento de datos y algoritmos ‘open-source’ y el 

papel de la AF, CS, sueño y patrones de actividad-descanso en relación con la salud 

cerebral en niños con sobrepeso u obesidad. Finalmente, esta Tesis Doctoral ha de-

mostrado que se pueden obtener cambios positivos y significativos en salud cardio-

metabólica de niños con sobrepeso u obesidad con un programa de ejercicio de 20 

semanas, lo que debe ser tenido en cuenta en futuros programas de salud. 
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Historical view on the ‘Physical Activity and Health’ field 

It is by no means easy to set the onset date of an event in his-

tory, and the ‘Physical Activity and Health’ field is not an exemption. 

Everyone in the world has ever heard the motto ‘Mens sana in corpore 

sano’, or in English ‘A sound mind in a sound body’, calling for the link 

between physical and mental health. Since this motto is frequently-

quoted in Latin, one may think the Ancient Romans used it to high-

light the health benefits of physical activity (PA). Nothing is further 

from reality.  

The ‘Mens sana’ motto first appeared in a collection of satirical 

poems written by Juvenal, a Roman poet, in the 2nd century AD [1]. 

Juvenal’s intention was no other than teaching Roman citizens what 

they should pray for. In the book IV of Juvenal satires, the poet de-

bates about the myriad objects that prayers sought from the gods 

such as beauty, wealth or long life. Under Juvenal’s criterion, it was 

piacular to bother the gods with such self-interested wishes. Specifi-

cally, the Satire X states that praying for a healthy mind and a healthy 

body is everything prayers should seek from the gods. Nothing to do 

with PA, neither with exercise or sports as can be seen in Figure 1. 

 

Then, who and why first linked this motto to physical and men-

tal health? To answer this, we should travel in space (from Rome to 

Liverpool) and time (from the 2nd century to the 19th century AD). It 

was John Hulley, who used this motto to promote his football team 

‘Liverpool Athletic Club’. This motto fitted perfectly in the English 

boarding schools, which offered not only intellectual education but 

also a thorough physical training, looking for a complete education. 

After that, it was Pierre de Coubertin himself, the main developer of 

the modern Olympic Games, who used the ‘Mens Sana’ motto to pro-

mote the physical exercise benefits. The motto was recurrent in the 

Abbreviations in this page: 
PA: physical activity 
 

Figure 1 
Satire X by Juvenal 
(2nd century AD) 
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Olympics advertisement afterward (see an example in the Olympic 

medal from Amsterdam, 1928; Figure 2). 

Beyond poems and mottos, Ancient 

physicians, mainly from China and Greece, 

did believe in the value of PA for health. For 

example, ‘if we could give every individual 

the right amount of nourishment and exer-

cise, not too little and not too much, we 

would have found the safest way to health’ 

is a quote attributed to the Ancient Greek 

physician Hippocrates, considered by many as ‘the father of medi-

cine’. However, a diametrically opposed view prevailed until the 20th 

century when complete bed rest was prescribed for patients with 

acute myocardial infarction.  

In 1953, Morris et al. found an increased risk of myocardial in-

farction in bus drivers compared with bus conductors [2]. Addition-

ally, mortality rates after the myocardial infarction occurrence were 

higher in bus drivers (Figure 3) [2]. Given the inherent PA levels to 

those professions (i.e., being bus drivers less active than conductors), 

PA was considered the main factor that explained this increased risk 

[2]. This study is considered by many as the origin of the ‘Physical 

Activity and Health’ scientific field. Since then, a myriad of observa-

tional studies have reported the PA benefits on non-communicable 

diseases and mortality [3–5].  

 

Once the relationship between PA and health was repeatedly 

observed, the next major question of the field was about the amount: 

how much PA should be performed to be healthy? The American Col-

lege of Sport Medicine was an early reference with the publication in 

1975 of Guidelines for Graded Exercise Testing and Exercise Prescrip-

tion [6]. This book and its subsequent revised edition had a major 

influence on the fields of exercise science and clinical and 

Figure 2 
Medal from the Olympic 
Games in Amsterdam, 1926 

Figure 3 
Myocardial infarction incidence 
and related mortality rates re-
ported in the study by Morris et 
al. in 1953 [2] 

Abbreviations in this page: 
PA: physical activity 
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rehabilitation medicine. The next major development in public 

health recommendations for PA was led by the American College of 

Sports Medicine and the Centers for Disease Control and Prevention 

in 1995. The specific recommendation outlined in this document was 

to engage in at least 30 min of MPA, which has been highly influential 

in the modern guidelines. Already in 2008, the US Government 

launched an update on the public health recommendations for PA [7]. 

Not much later, in 2010, the World Health Organization (WHO) 

launched the international version of these guidelines [8]. The PA 

guidelines were developed mainly based on PA data assessed with 

self-reports. In brief, 60 min per day of moderate-to-vigorous PA 

(MVPA) were recommended for children and adolescents, and 150 

min per week of MVPA for adults and older adults. Hereinafter, these 

cut-off points have widely served to investigate how the attainment 

to PA guidelines is associated with an array of health outcomes. Cur-

rently, further efforts from the US Government and the WHO have 

resulted in updated recommendations on PA, which now encompass 

evidence based on self-report and modern technologies as tools to 

asses PA.  

Moving on to the last decade, the prestigious scientific journal 

‘The Lancet’ launched its first version of the ‘Physical Activity Series’ 

(https://www.thelancet.com/series/physical-activity) in 2012, at 

the time of the London Olympic Games. These Series included high 

quality research on global PA surveillance, PA promotion and associ-

ations with health. The global surveillance of PA was carried out with 

self-reports given the lack of consensus for PA assessment with ac-

tivity monitors. Hallal et al. described PA data in adolescents from 

105 countries, and in adults from 122 countries [9]. Worldwide, they 

found that around 30% of adults did not reach the recommended 150 

min of MVPA per week; and neither around 80% of adolescents the 

recommended 60 min of MVPA per day [9].  

The worldwide physical inactivity health threats were de-

scribed by Lee et al. [10]. They quantified that 9% of the worldwide 

premature mortality is attributable to physical inactivity [10]. In this 

regard, it is important to differentiate between physical inactivity 

and sedentary behaviour (SB). Time spent in SB has demonstrated to 

be an independent (of PA) risk factor for cardiovascular disease 

(CVD) [11], with around 4% of premature mortality worldwide at-

tributable to it [12]. Thus, one may be active and sedentary at the 

same time if performing the recommended amount of PA, but also 

engaging too long in SB.  

Both PA and SB coexist with sleep time in the 24 h of the day; 

insufficient sleep is a risk factor for CVD [13]. Interrelationships be-

tween PA, SB and sleep, collectively described as physical behaviours 

[14], have drawn the attention of a number of researchers world-

wide, giving birth to a new field that could be described as ‘Physical 
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Behaviour epidemiology’ (Figure 4). These interrelationships are 

mainly defined as: the usual high correlations observed between 

these behaviours; and the fact that increasing the daily time devoted 

to any of these behaviours (e.g., PA) would reduce the daily time 

spent in at least one of the remaining behaviours (e.g., SB and/or 

sleep). Therefore, the ‘Physical Activity and Health’ field is evolving 

to the ‘Physical Behaviour Epidemiology’ field, which englobes more 

precisely the studies included in this Thesis.  

In the last decade, the 

use of accelerometers to as-

sess PA, SB, and sleep has be-

come an objective and feasible 

alternative to self-reports. Ac-

celerometers measure the ac-

celerations of the body place-

ment where they are attached, 

serving as indicator of body 

movement (PA). Algorithms 

can be applied to estimate the PA intensity, volume, type, and other 

related behaviours, such as SB or sleep. The extremely rapid devel-

opment in this field allows for a better determination of the physical 

behaviours’ relationships with health in humans. ActiGraph (Pen-

sacola, FL, USA) is one of the pioneer manufacturers of accelerome-

ters, which are still today widely used for the study of PA and health. 

First ActiGraph (formerly known as the Manufacturing Technology 

Incorporated [MTI] ActiGraph, and the Computer Science Applica-

tions Inc. [CSA]) devices were developed in the early 1990s for appli-

cations within the US military forces. Shortly after, accelerometers 

were applied to sports sciences as an objective way of assessing PA 

in free-living conditions, being the European Youth Heart Study one 

of the pioneer studies in using accelerometers in 1998-99 to quantify 

PA in children and adolescents at population level [15,16]. 

Key concepts  

Core terms 

Physical behaviours | In the last few years, the ‘Physical Activity 

and Health’ research field has not only focused on PA. The field has 

included other constructs such as SB and sleep. These behaviours 

share the 24 hours of every day, which makes them highly dependent 

on each other. Altogether, these behaviours have been named as 

‘physical behaviours’ and represent a change in the focus of the field 

from studying the isolated associations of PA with health, to the 

study of the combined effects and interactions between physical be-

haviours in relation to health [17]. In this Thesis book, physical be-

haviours refer collectively to PA, SB and sleep. 

Figure 4 
Graphical representation of 
the ‘Physical Behaviour  
Epidemiology’ scientific field. 
Designed for this PhD thesis using 
the tribar as a base. 
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Physical activity | PA is any bodily movement produced by skeletal 

muscles that requires energy expenditure [18]. This term encom-

passes all types (e.g., walking, running, dancing), intensities (e.g., 

light [LPA], moderate [MPA], vigorous [VPA]) and domains (e.g., lei-

sure, occupational, transportation, household) of PA. Additionally, 

PA can also be considered relative to the physiological effect pro-

duced (e.g., aerobic, anaerobic, muscle-strengthening). In this thesis, 

accelerometer-determined PA encompasses all PA types, intensities 

and domains, with special attention to walking, aerobic PA and mus-

cle-strengthening PA in specific studies. 

Sedentary behaviour (SB) | SB refers to any waking behaviour 

characterized by an energy expenditure ≤ 1.5 metabolic equivalents 

(METs), while in a sitting, reclining or lying posture [19]. As such, SB 

presents two major features: low energy expenditure and the body 

posture. While accelerometers have been widely used in relation to 

energy expenditure, the usefulness of accelerometers data to esti-

mate body posture is limited [20]. Therefore, the estimation of SB via 

accelerometers should be interpreted with caution. In this Thesis, 

only time spent at SB is considered given the limitations of the body 

posture estimation using accelerometers data. This term is often 

used wrongly as a synonym of physical inactivity, but it is not. See 

definition of physical inactivity below. 

Sleep | Sleep is defined as an active, repetitive and reversible brain 

process of reduced perception and responsiveness to environmental 

stimuli [21]. From a movement perspective, sleep periods are char-

acterized by very low movements during a relatively long period of 

the day, usually in a lying posture.  

Accelerometer | Technically, accelerometers are sensors able to de-

tect accelerations. Accelerometer sensors are included in an array of 

devices, such as smartphones, activity monitors, pedometers, or cars. 

Among the applications of accelerometers, it is their usability to esti-

mate physical behaviours. Accelerometers data can be used to esti-

mate PA, SB and sleep by applying algorithms to the data. While ac-

celerometer refers specifically to the sensor, in this Thesis, the term 

accelerometer is used to refer to the whole device, being used there-

fore as synonym of activity monitor or tracker among others. 

Other related terms 

Physical activity intensity | The intensity of the PA is quantified in 

terms of the energy expenditure that it requires to be performed. A 

relative measure of the energy expenditure is often used as criterion, 

namely METs. The METs indicate the relative energy cost of a certain 

PA in terms of ml of O2 consumed per kg of weight during one minute 

(ml/kg/min). On average, adults consume 3.5 ml/kg/min in basal 

conditions, which is often used as an absolute reference (i.e., 1 MET 

= 3.5 ml/kg/min). Relative METs can be derived from the 
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measurement of the energy consumption of each individual at basal 

conditions. In the ‘Physical Activity and Health’ field, PA intensities 

have been usually classified into LPA (e.g., 1.5-3 METs), MPA (e.g., 3-

6 METs) and VPA (e.g., >6 METs). Traditionally, the ‘Physical Activity 

and Health’ field has mainly focused on MVPA. However, given the 

current interest and discussions about PA of intensities less than 

MPA, the term PA is used in this Thesis to discuss the full range of 

intensities (i.e., from LPA to VPA). 

Exercise | The term exercise refers to a subcategory of PA, charac-

terized for being planned, structured, repetitive and purposive [18]. 

Usually, the major aim of exercise is to improve at least one compo-

nent of physical fitness. 

Physical inactivity | Physical inactivity should not be confounded 

with SB. Physical inactivity stands for an insufficient PA level to meet 

the current public health recommendations on PA [19]. Oppositely, 

to be physically active refers to meeting the PA recommendations. As 

such, a child might be physically active and sedentary at the same 

time if engaging in at least 60 min of MVPA per day, but concomi-

tantly spending long times in SB. 

Physical activity-related energy expenditure | Component of the 

total energy expenditure (TEE) related to the performance of PA, 

usually measured in kcal or kJ. Although PAEE is not the biggest com-

ponent of TEE, it is the most malleable; as such, PAEE is the main fo-

cus of researchers and health care professionals dealing with energy 

balance. 

Obesity 

Obesity | Obesity defines abnormal or excessive adiposity in the or-

ganism, as measured by body fat percentage. Furthermore, its distri-

bution in the body is also determinant of health, being the abdominal 

or central fat the most harmful. Central fat, measured as waist cir-

cumference, is considered a cardiometabolic risk factor for both chil-

dren and adults. Apart from the excess of adiposity, it is important to 

consider that most of the current knowledge on the health conse-

quences of obesity is based on body mass index (BMI). Therefore, 

obesity could also mean an excess of body weight rather than only 

adiposity.  

Overweight | Similar to obesity, overweight refers to an excess of 

body adiposity, although at a lower level than obesity. Overweight is 

the weight status above normal-weight and below obesity. 

Body mass index (BMI) | BMI is a measure of body composition that 

encompasses the body weight relative to the height (i.e., kg/m2). 

Given its simple measurement, it is widely used as indicator of obe-

sity even if it does not directly measure body fat. There are interna-

tionally accepted cut-off points for normal-weight (18.5 – 24.9 

kg/m2), overweight (25 – 29.9 kg/m2) and obesity (≥ 30 kg/m2). 
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Although it has been widely criticized, BMI has demonstrated a bet-

ter predictive capacity for premature mortality than ‘gold-standard’ 

measures of adiposity [22].  

Cardiometabolic health 

Cardiometabolic health | In this thesis, the term ‘physical health’ 

refers to cardiometabolic health, body composition, physical fitness 

components. Even though physical health could encompass a wider 

range of health outcomes (e.g., musculoskeletal health), this thesis 

rather focuses on the abovementioned components. 

Body composition | Body composition is considered an important 

component of cardiometabolic health given their well-established 

relationships. Body composition refers to a method of studying the 

body as a composite of its core components: fat mass, lean mass, and 

water. 

Physical fitness | Physical fitness relates to the ability to perform 

PA. Fitness is a status that can be effectively modified through regu-

lar PA, but which also depends on genetic factors [18]. It is a powerful 

marker of health across the lifespan [23]. In childhood, the fitness 

components more related to health include cardiorespiratory (CRF), 

muscular and speed-agility fitness. CRF is the ability to perform PA 

during a long period of time, usually measured as the maximal oxy-

gen consumption capacity (VO2max). Muscular fitness measures the 

muscle strength and it is usually measured separately for upper and 

lower limbs. Speed-agility fitness is usually measured with the time 

spent in carrying out a certain circuit which requires speed and agil-

ity. 

Cardiometabolic health | The cardiometabolic health refers to sta-

tus of those factors that are important for the cardiovascular and 

metabolic health. This includes, but it is not limited to: blood pres-

sure, lipid biomarkers (i.e., high-density lipoprotein [HDL], low-den-

sity lipoprotein [LDL], total cholesterol and triglycerides), glycemia 

biomarkers (i.e., insulin and glucose) and waist circumference. Poor 

levels in these indicators are high-risk factors for the development of 

type 2 diabetes (T2D) and CVD. 

Brain health 

Brain health | Brain health includes brain biomarkers (e.g., grey 

matter volume [GMV]) and factors associated with academic achieve-

ment, cognition and mental health [24].  

Brain structure | The human brain is the central organ of the human 

nervous system. The human brain consists of the cerebrum, the 

brainstem and the cerebellum. In this Thesis book, the main compo-

nent of the brain structure investigated is the GMV. The grey matter 

includes vasculature, glial cells and neuronal bodies and contributes 

to the process of information in the brain. 
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Academic achievement | Rather than focusing on the school grades, 

a continuous, standardized, valid, and reliable measure of the aca-

demic achievement is used in this thesis. We used the Spanish ver-

sion of the Woodcock-Muñoz test for academic achievement. Trained 

examinators assessed children individually in a face-to-face protocol 

lasting around 100-120 min per child. The battery included tests of 

reading, language, mathematics, and sciences. 

Executive function | Executive functions include a set of cognitive 

processes that are necessary for the cognitive control of behaviour. 

In ActiveBrains, the executive function domains measured were cog-

nitive flexibility, inhibition, and working memory. 

Intelligence | Although the term intelligence may include a broad set 

of characteristics hardly measurable, this thesis included an intelli-

gence quotient (IQ) score. Such score was composed of crystallized 

and fluid intelligence scores from a standardized test. Even if this 

score is not full representative of intelligence, it is a proxy to what 

traditionally has been defined as intelligence. 

Psychological ill-being | Psychological ill-being represent unpleas-

ant feelings or emotions that represent pre-clinical psychological 

states and clinically diagnosed mental health disorders. Specifically, 

psychological ill-being refers to stress, anxiety, depression and neg-

ative affect.  

Psychological well-being | Psychological well-being is a composite 

score of those positive affective states and functioning with optimal 

effectiveness in life. In this Thesis, psychological well-being is com-

posed of positive affect, happiness, optimism. 

 Psychological self-perceptions | Psychological self-perceptions 

represent the opinions and feeling of individuals on themselves. In 

this Thesis, the psychological self-perceptions investigated are self-

efficacy, self-concept and self-esteem.
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Motivation 

Research in the ‘Physical activity and Health’ has been incredi-

bly enhanced by the development of new technologies to better 

quantify PA and related behaviours (e.g., SB, sleep, among others). 

Indeed, these advances allows a more objective and accurate quanti-

fication of the behaviours, which allow to draw a more precise pic-

ture on how these behaviour associate with health benefits. How-

ever, the rapid advances have also led to inconsistencies on the col-

lection, treatment, and application of the accelerometer data to an-

swer specific research questions. The field would therefore benefit 

from studies on the accuracy and comparability of different data col-

lection and processing techniques in the quantification of physical 

behaviours (i.e., PA, SB, and sleep), as well as from the appropriate 

data analytical approaches to examine their relationship with health 

outcomes. These two blocks are approached in this Thesis, which is 

accordingly organized in two sections. 

Measurement of physical behaviours 

There cannot be study of the associations of physical behav-

iours with health without valid and reliable quantification of physical 

behaviours. This premise underlies the first section of this Thesis. In-

terestingly, the first method used to quantify PA in epidemiological 

research simply consisted in the assumption that the PA level is rel-

ative to work [2]. This assumption has been repeatedly confirmed 

[25–27], being the occupation an indicator of the overall PA, espe-

cially in those workers with a low education level [25]. Although the 

occupation can be an indirect estimator of the PA level, there cur-

rently exist alternatives to directly assess PA. Overall, the PA assess-

ment tools can be classified into self-reported, activity monitors, and 

‘gold-standard’ or criterion methods. Although validity and reliabil-

ity are higher using ‘gold-standard’ methods, their feasibility is very 

limited. An introduction and contextualization of currently available 

PA assessment methods in each of these categories is needed to un-

derstand the reasons why this thesis focuses on the assessment of PA 

with accelerometers. 

Self-report tools 

Self-reports or parental reports (for younger populations) have 

been used for more than 50 years so far [28]. Among their ad-

vantages, self-reports are of low burden for the participants and re-

searchers, cost-effective, versatile, and accepted by the research and 

the medical communities [29]. However, their limitations are nota-

ble, such as: the participants subjectivity which may bias the findings 

[30]; or the social desirability, which may affect the answers to the 

questionnaires [31,32]. Traditionally, the advantages of self-reports 

have outpointed their limitations, so that they have been widely used 
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in surveillance, epidemiology, cross-sectional or longitudinal studies. 

Most of the knowledge on the ‘Physical Activity and Health’ field was 

based on self-report measures, even public health guidelines on PA 

were first developed attending to the data described in self-reports. 

In the last decades, the ‘Physical Activity and Health’ field has 

evolved with the awareness of the limitations of self-reports and the 

development of objective methods to quantify PA in the daily life. 

Many observational studies have corroborated or contrasted previ-

ous assumptions from self-reported data using activity monitors. 

However, self-reports are still the method of choice for global sur-

veillance [9] given the lack of a consensus and the high impact of the 

data processing on the quantification of PA with activity monitors. 

Activity monitors or wearables 

Activity monitors or wearables are any device which can be 

placed on a person to monitor certain aspects related to PA (Figure 

5 for an example). Basically, activity monitors include pedometers, 

accelerometers, heart rate sensors, and multi-sensor systems based 

on combinations of the previous sensors. Pedometers and accel-

erometers provide mechanical information on PA (i.e., movement), 

while heart rate monitors record the physiological response to PA. 

The ‘Physical Activity and Health’ field is increasingly using pedome-

ters and accelerometers to measure various components of PA. In re-

gard to heart rate monitors, they are less feasible for long recordings 

(i.e., longer than 7 days). Therefore, pedometers and accelerometers 

are more-frequently used, and heart rate monitors are mainly used 

as a criterion method to validate or calibrate the previous ones in 

terms of PA intensity assessment. 

There is not a defined gold-stand-

ard among activity monitors [33]. The 

choice of which activity monitor to use 

depends on a number of factors, such as 

the specific component of PA of interest, 

the target population of its cost-effec-

tivity, among others. In brief, pedome-

ters provide an adequate solution to 

measure the main form of PA per-

formed by the general population [34,35]. Furthermore, they provide 

an easily interpretable and understandable measure (i.e., steps) that 

can be used to quantify PA in cross-sectional, longitudinal or inter-

vention studies, as well as a target to achieve the recommended level 

of PA. Otherwise, modern accelerometers (see example in Figure 5) 

record the accelerations produced by the body attachment site 

where they are placed on throughout the day. Acceleration infor-

mation is much richer than steps, since there are available algorithms 

to estimate not only steps, but also other activity types (such as 

Figure 5 
ActiGraph GT3X+ accelerometer. 
This is one of the models most-
frequently used in research. 
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sitting or cycling [36]), time spent in different PA intensities [37] or 

SB, or even certain characteristics of sleep [38–40]. Therefore, accel-

erometers are being widely used in the ‘physical behaviour epidemi-

ology’ field. The accelerometer data processing methods are being 

developed drastically fast, with no clear consensus on the best prac-

tices to collect and process accelerometer data. 

‘Gold-standard’ or criterion tools 

Finally, the ‘gold-standard’ or criterion methods are mainly 

used as reference in validation or calibration studies. They are not 

feasibly applicable in large populations during long periods, so they 

cannot be used to measure the habitual PA performance in the daily 

life. However, they represent the ground truth when evaluating the 

validity of the abovementioned activity monitors or self-reports. 

These methods encompass measures of the oxygen consump-

tion or energy expenditure through direct or indirect calorimetry or 

doubly labelled water, as well as activity type classification through 

direct observation, among others. They are characterized by a high 

accuracy and reliability and a very low feasibility for their applica-

tion in large populations or for long-term recordings. Therefore, they 

are not used for lifestyle PA assessment, but they are used as crite-

rion methods to validate either self-reports or activity monitors for 

the assessment of PA, SB or other related behaviours.  

Why does this Thesis focus on activity monitors? 

Figure 6 

shows a broad cate-

gorization of the 

methods to assess 

PA abovemen-

tioned in terms of 

accuracy and feasi-

bility. Activity mon-

itors are placed at a 

fair trade of feasi-

bility and accuracy. 

Accelerometers are the cornerstone of this thesis because:  

1. Their application in research and clinic settings, and their 

commercialization has substantially increased [41].  

2. Their drastic development requires research to improve com-

parability across data collection and processing protocols. 

3. Accelerometers can substantially increase validity and relia-

bility for the PA assessment compared to self-reports. 

4. Beyond PA, accelerometers data can be used to estimate SB 

and sleep characteristics, which open a wide range of oppor-

tunities in the physical behaviour epidemiology field. 
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assessment methods in 
terms of accuracy and 
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Physical behaviours and health in childhood obesity 

Obesity is a devastating condition that shortens the lifespan by 

affecting the function of many organ systems [42]. Obesity increases 

the risk of T2D and CVD [43], two of the top-10 leading causes of 

death worldwide [44]. Not only that, obesity itself is estimated to 

cause more than 2.6 million deaths per year. Obesity may onset in 

childhood, having dramatic health consequences also at early ages. 

Children with obesity present poor cardiometabolic [45,46] and 

mental health [47], and high risk for T2D and CVD later in life [48]. 

The health consequences and the high prevalence of childhood 

obesity worldwide place it as one of the most serious global public 

health challenges of the 21st century. The WHO and the World Obe-

sity Federation (WOF) estimated more than 340 million children and 

adolescents with overweight or obesity worldwide in 2016. The rate 

of children with overweight or obesity has tripled from 1960 to date. 

The BMI increase has plateau in high-income countries in recent 

years, although at very high and worrisome values [49].  

 

The high prevalence and the dramatic consequences of obesity 

throughout the lifespan require of cost-effective strategies to lower 

the obesity rates, and the risk of comorbidities in the populations liv-

ing with obesity. Best practice interventions should target the life-

style factors at early ages, and PA is key in the management of obesity 

in children [43].  

Cardiometabolic health 

The T2D burden in youths is alarmingly increasing [50], which 

is in parallel with the worldwide childhood obesity rise [49]. Almost 

every child diagnosed with T2D presents obesity [50]. Additionally, 

childhood obesity also is a high-risk factor for future T2D and CVD 

[48]. Physical fitness has demonstrated to be a powerful marker of 
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Worldwide prevalence of childhood 
overweight (including obesity) as 
defined by the WOF. 
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health throughout the lifespan, starting at your ages. Thus, best prac-

tice prevention of T2D and CVD onsets in childhood obesity, and PA 

(to efficiently improve physical fitness) should be the cornerstone of 

prevention strategies given its proven multi-organ benefits [51]. In 

this Thesis book, ‘cardiometabolic health’ includes an array of health 

outcomes related to cardiometabolic health, body composition, and 

physical fitness. 

Extensive cross-sectional and longitudinal observational stud-

ies establish a link between PA and cardiometabolic health, body 

composition, and physical fitness in children [51]. Specifically, there 

is evidence enough to conclude that PA is favourable for bone health, 

adiposity, and physical fitness [51], but more research is needed to 

understand the PA associations with cardiometabolic health. Specif-

ically, studies investigating the effects of PA on cardiometabolic 

health, body composition and physical fitness in children with obe-

sity are limited. It seems that PA can be effective to improve the lipid 

profile [52] and the blood pressure [53] in children with obesity. 

In this thesis, the effects of a PA program on cardiometabolic 

health, body composition, and physical fitness in children with over-

weight or obesity is addressed, with a detailed examination of the PA 

and SB profiles of the children. 

Brain health 

 ‘Brain health’ is defined as a composite of factors related with 

cognition, brain, and mind [24]. Improving brain health during child-

hood is important to enhance brain development, achieve academic 

goals and improve cognition [51]. Within the brain, GMV is a measure 

of the volume of tissue in the brain region being examined. It repre-

sents all tissue properties contained in grey matter including vascu-

lature, glial cells, and neuronal cell bodies. Further, greater GMV in 

the developing brain is positively associated with brain health out-

comes such as academic achievement or cognition [54], being crucial 

characteristic to success in school and in general life.  

Lifestyle behaviours such as PA, SB and sleep are associated 

with academic achievement and cognition in children [51]. A recent 

Position Stand of the American College of Sports Medicine concluded 

that there is evidence supporting that PA can benefit cognition, and 

particularly executive function (i.e., cognitive flexibility, inhibition 

and working memory) [55]. These relationships may be partly ex-

plained by the associations of these lifestyle behaviours with GMV 

[54]. Specifically, GMV in the hippocampus is crucial for short- and 

long-term memory [56,57]. GMV in the hippocampus can be ampli-

fied by PA and sleep [58]. However, most of the studies investigating 

the associations of PA and sleep in children with brain health out-

comes have used self-reported PA. Investigations of these 
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associations with objective methods would confirm previous litera-

ture and accurately quantify the magnitude of the association. 

Less attention has been paid to the circadian rhythm of PA and 

sleep in relation to brain health, namely the activity-rest pattern. The 

activity-rest pattern defines the timing and stability of these behav-

iours throughout the day and across days. Unstable and fragmented 

activity-rest patterns are associated with obesity [59,60], lower CRF 

[60], and depression [59] in childhood.  

In this Thesis, the associations of accelerometer-determined 

PA, SB and sleep with brain health will be investigated in children 

with overweight or obesity. Specifically, we will examine the GMV, 

academic achievement, executive function, and intelligence quotient 

(IQ). As discussed in the Preface, it is important to investigate the as-

sociations of PA, SB and sleep with health considering the co-depend-

encies of these behaviours (see Figure 4). The analyses performed 

in this thesis book have been selected to appropriately approach this 

co-dependency. 

Thesis structure 

This Thesis main topic of study is physical behaviours, includ-

ing PA, SB and sleep, although the main focus is on PA. Two sections 

are separately presented in this thesis book based on the nature of 

the objectives they respond to. The Section I addresses those aims 

related to the objective measurement of PA, SB and sleep with accel-

erometers. Seven studies on methodological issues in which the ac-

celerometer data were the object of study are presented. I have had 

the opportunity to work with data from the ActiveBrains and the 

MINISTOP (Mobile-based INtervention Intended to STop Obesity in 

Pre-schoolers) projects to answer these questions. The ActiveBrains 

project is a randomized controlled trial (RCT) aimed to test the ef-

fects of an exercise program on academic achievement, cognition, 

physical and mental health outcomes in children with overweight or 

obesity. The MINISTOP project is a mobile-based intervention in-

tended to stop obesity in pre-schoolers. Additionally, I led a pilot 

study on how the body attachment site affects the accelerometer data 

recording in adults. The Section II focuses on the associations of PA, 

SB and sleep with physical and mental health outcomes in children 

with overweight or obesity. For this section, I analysed data from the 

ActiveBrains project on PA, SB, sleep, physical and brain health in 

children with overweight or obesity. 

Gaps addressed in this Thesis 

We identified a number of gaps in this current scientific 

knowledge that are addressed by the studies included in this Thesis 

book. The Table 1 briefly describes these gaps, together with the 

contributions of this thesis book.   

Abbreviations in this page: 
GMV: grey matter volume 
PA: physical activity 
RCT: randomized controlled 
trial 
SB: sedentary behavior 



Introduction 

Page 51 of 385 

 Gap Contribution 

S
E

C
T

IO
N

 I
 

There is a lack of recommended pro-
cedures for accelerometer data collec-
tion and processing decisions to ob-
tain valid, reliable and reproducible 
estimates of PA, SB, sleep. 

Systematic review of the accelerome-
ter data collection and processing pro-
tocols to assess PA and related behav-
iours (Study I).  

Practical recommendations based on 
the previous evidence (Study I) 

Comparability of the PA, SB and sleep 
estimates derived from accelerome-
ters using different (yet frequently 
used) protocols is under explored 

Co-development of an open-source 
software which allows consistent ac-
celerometer raw data processing in 
several brands (Study II) 

Cross-sectional studies on the compa-
rability of SB and PA outputs using dif-
ferent body attachment sites, data pro-
cessing decisions and cut-points 
(Studies III and IV) 

The assessment of PAEE using wrist-
worn accelerometer data is limited 

Study on wrist accelerometer data 
processing for the estimation of en-
ergy expenditure in pre-schoolers 
(Study V) 

Cut-points for the assessment of 
SB/PA from dominant wrist-worn ac-
celerometers are very limited 

Development of cut-points for the as-
sessment of SB and PA from domi-
nant-wrist in adults (Study IV) 

The promotion of walking is cost-ef-
fective and beneficial for older adults. 
However, studies are lacking in chil-
dren with overweight or obesity. 

Cross-sectional study on how walking 
relates to overall PA in children with 
overweight or obesity. Implications for 
PA promotion (Study VI) 

There are not clear recommendations 
on the choice of analytical approaches 
to investigate the associations of phys-
ical behaviours with health.  

Consensus study on the implications 
of: (1) descriptors to capture physical 
behaviours from accelerometer data, 
(2) statistical methods to analyse ac-
celerometer-determined physical be-
haviours (Study VII) 

S
E

C
T

IO
N

 I
I 

Information on the association of PA 
and sleep with brain health in children 
with overweight or obesity is scarce 

Cross-sectional studies on PA, SB and 
sleep associations with GMV, academic 
achievement and cognition in children 
with overweight or obesity (Studies 
VIII, IX and X) 

The PA benefits on physical health 
have been widely investigated. How-
ever, there is still the need to further 
investigate the effect of PA program 
holistically on body composition, 
physical fitness and cardiometabolic 
health in children with overweight or 
obesity  

RCT to explore the effects of a 20-
week long, multi-gamed based, con-
current aerobic and strength exercise 
program on cardiometabolic health 
(including body composition, physical 
fitness and cardiometabolic health) in 
children with overweight or obesity 
(Study XI) 

There has not been investigated 
whether changes on the daily time 
spent in physical behaviours due to an 
exercise program can explain the 
groups’ and the individuals’ responses 
to the exercise 

Investigation of the changes in the 
daily time spent in physical behav-
iours produced during the exercise 
program, and whether these changes 
could explain differential responses to 
the exercise (Study XI) 

The chronic effects of an exercise pro-
gram on mental health in children 
with overweight or obesity are under 
reported 

RCT to explore the effects of a 20-
week long, multi-gamed based, con-
current aerobic and strength exercise 
program on mental health (including 
psychological ill-being and well-being) 
in children with overweight or obesity 
(Study XI) 

Table 1 
Overall view of the gaps iden-
tified and the contributions 
of this Thesis book 

 

Abbreviations in this page: 
GMV: grey matter volume 
PA: physical activity 
PAEE: physical activity-related en-
ergy expenditure 
RCT: randomized controlled trial 
SB: sedentary behavior 
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Section I | Measurement of physical behaviours 

Section I focuses on examining the influence of accelerometer 

data collection and processing decisions on the assessment of physi-

cal behaviours (i.e., PA, SB and sleep) and related outcomes (e.g., 

PAEE, steps). Three aims were addressed in this section with a sys-

tematic review, a software description study, four observational 

studies, and an expert consensus statement. 

Aim I (Study I) – State-of-the-art and practical considerations 

To provide practical considerations for the assessment of SB, 

PA, PAEE, steps, or sleep, with accelerometers based on an in-depth 

review of the accelerometer data collection and processing decisions 

made in the existing literature. This is approached via two specific 

objectives addressed in Study I: 

1. To compile and classify existing studies assessing SB, 

PA, PAEE, or sleep using the ActiGraph GT3X+. 

2. To review data collection and processing criteria when 

using GT3X+ and provide age-specific practical consid-

erations based on the validation/calibration studies 

identified. 

Aim II (Studies II-VI) – Data collection and processing  

To investigate the accelerometer data collection and pro-

cessing criteria influence in the estimation of energy expenditure, as 

well as the comparability of acceleration metrics, PA, SB, and steps 

when derived from differing data collection protocols (e.g., different 

devices or body attachment sites), or data processing decisions (e.g., 

different acceleration metrics, cut-points, or algorithms). The spe-

cific aims addressed in Studies II-VI are: 

1. To provide a one-stop overview of the GGIR package, the 

papers underpinning the theory of GGIR, and how re-

search contributes to the continued growth of GGIR 

(software co-developed by the PhD candidate). 

2. To assess the capacity of different acceleration metrics 

from wrist accelerations to estimate TEE and PAEE as-

sessed with doubly-labelled water. 

3. To study the comparability between different accelera-

tion metrics across right hip, dominant wrist, and non-

dominant wrist attachment sites during different peri-

ods of the day (i.e., 24 hours, waking, and sleeping 

hours). 

4. To use previously established cut-points for accelera-

tions measured at the non-dominant wrist [61,62] to de-

velop and cross-validate cut-points in a separate sample 

for accelerations measured at the dominant wrist in a 

sample of young adults. 

Abbreviations in this page: 
ENMO: Euclidean norm minus 1 G 
LFENMO: ENMO of the low-pass 
filtered raw accelerations 
MAD: mean amplitude deviation 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SB: sedentary behaviour 
TEE: total energy expenditure 
VACounts: activity counts in the 
vertical axis 
VMCounts: activity counts in the 
vector magnitude 

Acceleration metrics: in this 
Thesis, the term acceleration 
metrics is used indistinctally 
from accelerometer signal aggre-
gation. It refers to those metrics 
that are derived from processing 
the accelerometer raw signal to 
remove the gravitational acceler-
ation and noise. Acceleration 
metrics include ENMO, MAD, 
LFENMO, VMCounts, VACounts, 
or Activity Index, among others. 
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5. To examine how cut-points relative to different attach-

ment sites and acceleration metrics affect the final esti-

mations of SB and PA in children with overweight or 

obesity. 

6. To investigate the proportion of overall PA that is ex-

plained by ambulatory activity in children with over-

weight or obesity. 

7. To study step-based patterns relative to PA guidelines 

achievement in children with overweight or obesity. 

Aim III (Study VII) – Consensus on data analytical approaches 

To provide a comprehensive description, discussion, and con-

sensus on the analytical approaches most-frequently used in the 

‘Physical activity and Health’ field and their implications for the 

study of associations with health outcomes. Study VII approaches 

this through two specific aims:  

1. To provide a comprehensive description and discussion 

on the most-frequently used analytical approaches (i.e., 

from descriptors to statistical modelling) currently used 

in the field, highlighting their strengths and limitations 

and providing practical recommendations on their use. 

2. To identify current gaps and future research directions 

around the analysis and use of accelerometer data in the 

‘physical behaviour epidemiology’ field. 

  

Abbreviations in this page: 
PA: physical activity 
SB: sedentary behaviour 
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Section II | Physical behaviours and health in childhood obesity 

Section II is dedicated to study the association of accelerome-

ter-determined physical behaviours with cardiometabolic and brain 

health outcomes in children with overweight or obesity. Physical be-

haviours are always considered as modifiable exposures in this sec-

tion. Three cross-sectional studies and a RCT were carried out. 

Aim IV (Studies VIII-X) – Cross-sectional studies on brain health 

To study the cross-sectional associations of PA, SB and sleep 

with GMV, and their implications for academic achievement, execu-

tive function, and IQ in children with overweight or obesity. Specific 

aims in Studies VIII-X include: 

1. To investigate associations of objectively-measured SB 

and PA with GMV in the hippocampus. 

2. To explore the association of sleep behaviours with GMV 

in the different brain regions, with a special focus on the 

hippocampus as a region-of-interest (ROI) in children 

with overweight or obesity. 

3. To study the associations of the activity-rest pattern in-

dicators with academic achievement, executive function 

and IQ in children with overweight or obesity. 

4. To investigate whether the GMV in those regions associ-

ated with the physical behaviours were also related to 

academic achievement, executive function, and IQ in 

children with overweight or obesity. 

Aim V (Study XI) – RCT on cardiometabolic and mental health 

To investigate the effects of a 20-week multigame-based PA 

program on cardiometabolic and mental health in children with 

overweight or obesity. 

1. To investigate the effects of a 20-week exercise program 

on cardiometabolic and mental health in children with 

overweight or obesity. 

2. To examine the within-individual variability in the ef-

fects observed.  

3. To explore the exercise program fidelity with an in-

depth look at the physical behaviour changes occurring 

during the exercise implementation. 

Abbreviations in this page: 
GMV: grey matter volume 
IQ: intelligence quotient 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
RCT: randomized controlled trial 
ROI: region-of-interest 
SB: sedentary behaviour 
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“Measure what is measurable, and make measurable 

what is not so” 

Galileo Galilei 
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Research projects  

This Thesis is mainly derived from the ActiveBrains project (6 

out of the 11 studies and a systematic review were conducted under 

the umbrella of the ActiveBrains project), and is complemented with 

the MINISTOP project and a pilot study on accelerometer data col-

lection and processing methodology. Additionally, we conducted a 

software description article of the GGIR software (in which the PhD 

candidate is co-developer); and we led an international expert con-

sensus statement on data analytical approaches for accelerometer-

measured physical behaviours in epidemiological studies. 

The ActiveBrains project (Study I, V-VI, and VIII-XI) 

Study design 

The ActiveBrains project is a two-arm 

(1:1) RCT (NCT02295072) aimed to examine 

the effects of a 20-week PA program on brain 

structure and function, cognitive perfor-

mance, academic achievement, and physical 

and mental health indicators in children with 

overweight or obesity (Figure 7) [63]. Children from Granada 

(Spain) were recruited in the Endocrinology Unit of San Cecilio and 

Materno Infantil Hospitals, and additionally via schools, radio, and 

television advertising. A total of 100 children were targeted upon sta-

tistical power analysis based on the primary outcome of the project 

(i.e., brain imaging – hippocampus). Finally, 110 children were en-

rolled and randomized after the baseline assessment into exercise or 

control (wait-list) group. The assessments and intervention were 

phased in three waves for logistical reasons. The ActiveBrains pro-

ject was approved by the Ethics Committee on Human Research of 

the University of Granada. The Studies V, VI, VIII, IX, and X use the 

baseline data from the ActiveBrains project (cross-sectional studies), 

while the Study XI has a RCT design. 

Inclusion and exclusion criteria 

Eligible children were required: (i) to be 8.0 – 11.9 years old; 

(ii) to present overweight or obesity based on the sex-and-age spe-

cific international BMI standards (WOF) [64,65]; (iii) not to have 

any physical disabilities or neurological disorder that limits ex-

ercising; (iv) not to use medication that influence central nervous 

system functioning; (v) to be right-handed as measured by the Ed-

inburgh inventory (given the brain differences -primary outcome- in 

left- and right-handed individuals); (vi) not to have attention-defi-

cit hyperactivity disorder (ADHD) as measured with the ADHD rat-

ing scale; (vii) to be pre-pubertal according to Tanner stages, and in 

the case of girls, not to have started menstruation. 

Abbreviations in this page: 
ADHD: attention-deficit hyperac-
tivity disorder 
BMI: body mass index 
PA: physical activity 
RCT: randomized controlled trial 
SB: sedentary behaviour 
WOF: World Obesity Federation 

Figure 7 
The ActiveBrains project logo 
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Physical activity intervention 

The PA program was based on the public health guidelines on 

PA for children (http://www.health.gov/paguidelines/). Specifically, 

we offered 90-min sessions from Monday to Friday, recommended 

children to attend to a minimum of 3 sessions/week during 20 

weeks, and recommended to attend as many sessions as possible. 

Each session included a 10-min warm-up, 60 min of MVPA based on 

multi-games, 15-20 min of muscle- and bone-strengthening activi-

ties, and 5-10 min of cool-down stretching and relaxing activities. 

Each child wore a heart rate monitor in every session with 5 individ-

ualized intensity zones based on their previously-measured maxi-

mum heart rate (60-69%, 70-79%, 80-84%, 85-89%, and 90-100%). 

Our aim was to reach as much time as possible above their 80% of 

maximum heart rate. No dietary intervention was conducted, yet all 

participants (both control and exercise groups) received a booklet 

with healthy PA and dietary information. 

Measures 

A brief description of the measures from the ActiveBrains pro-

ject which are used in this thesis book is presented. More details on 

all the evaluations conducted can be found elsewhere [63]. Likewise, 

a more detailed definition of the data collection for each specific 

study is presented in the results section of this thesis book. 

Physical behaviours (explanatory/exposure variable) 

This thesis is not focused on a specific primary outcome, it is 

centred around physical behaviours (PA, SB, and sleep) as lifestyle 

modifiable exposure (or explanatory variable) and their relationship 

with an array of physical and brain health outcomes instead.  

For the physical behaviour assessment, participants were re-

quired to wear two accelerometers (ActiGraph GT3X+, Pensacola, 

FL, USA) for seven days (24 hours protocol) on the right hip and the 

non-dominant wrist. Children were instructed to only remove accel-

erometers for water activities (e.g., shower, swimming, etc.), and al-

ways at the same time. Concomitantly, the participants (assisted by 

their parents when needed) reported the time they went to bed and 

woke-up in a diary log every day.  

ActiGraph GT3X+ is a triaxial accelerometer with a dynamic 

range of ±6 g’s. Both hip- and wrist-worn accelerometers were ini-

tialized to capture and store accelerations at 100 Hz. The raw accel-

erations were then downloaded and converted to “.csv” format using 

the ActiLife v.6.13.3 (ActiGraph, Pensacola, FL, USA). Raw “.csv” files 

were imported to R software (v. 3.1.2, https://www.cran.r-project.org/) 

and processed using the GGIR package (v. 1.5-12, https://cran.r-pro-

ject.org/web/packages/GGIR/). Raw data were also processed in the 

ActiLife software to obtain activity counts in the vector magnitude 

(VMCounts, Euclidean Norm of the counts recorded in the three axes) 

Abbreviations in this page: 
MVPA: moderate-to-vigorous 
physical activity 
PA: physical activity 
SB: sedentary behaviour 
VMCounts: activity counts in 
the vector magnitude 

GGIR vignette (scan 
or click here) 
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and in the vertical axis (VACounts) using the normal filter developed 

by ActiGraph. Step counts were also derived from the ActiLife soft-

ware using the hip-worn accelerometer data. The processing meth-

ods in GGIR involved: (i) Auto-calibration of the data according to the 

local gravity [66]; (ii) detection of the non-wear time based on the 

raw acceleration of the three axes [67]. Briefly, each 15-min block 

was classified as non-wear time if the standard deviation (SD) of 2 

out of the 3 axes was lower than 13 mg during the surrounding 60-

min moving window, or if the value range for 2 out of the 3 axes was 

lower than 50 mg; (iii) detection of sustained abnormal high acceler-

ations, i.e., higher than 5.5 g; (iv) calculation of the Euclidean Norm 

Minus One G (ENMO) with negative values rounded to zero; (v) im-

portation of the VMCounts and VACounts calculated in the ActiLife 

software to the GGIR software; (vi) imputation of detected non-wear 

time and abnormal high accelerations by means of the acceleration 

for the rest of the recording period during the same time interval 

than the affected periods; (vii) identification of waking and sleeping 

hours using an automatized algorithm guided by the times reported 

by the participants [40]. Waking and sleeping hours were detected 

using data from the non-dominant wrist and detected times were 

then matched to the right hip data for each participant; and, (viii) Es-

timation of PA intensities and SB using different age-appropriate cut-

points [61,68–70]. 

Brain health outcomes 

The detailed methods of each outcome are defined in the re-

sults section. In brief, as indicators of brain health, the ActiveBrains 

project collected a complete array of outcomes. Magnetic resonance 

imaging (MRI) scans were used to assess the brain structure, specif-

ically the measures of GMV and total brain volume used in this thesis, 

among other outcomes. All images were collected with a 3.0 Tesla 

Siemens Magnetom Tim Trio scanner (Siemens Medical Solutions, 

Erlangen, Germany) with a 32-channel. MRI is considered a gold-

standard measure of the brain volumes. 

Academic achievement was assessed with the Spanish version 

of the Woodcock-Johnson III battery, which is a valid and reliable (in-

ternal consistency reliability coefficient > 0.9) measure of academic 

achievement in children [71]. Reading, language, mathematics, and 

sciences skills were assessed in individual tests lasting 100-120 min 

per child. Executive functions include a set of cognitive processes 

that are necessary for the cognitive control of behaviour. In Active-

Brains, the executive function domains measured were cognitive 

flexibility, inhibition, and working memory. Cognitive flexibility was 

assessed with the second and fourth conditions of the design fluency 

test (DFT); and with the third and fourth conditions of the trail mak-

ing test (TMT). Both the DFT and the TMT are valid and reliable for 

Abbreviations in this page: 
DFT: design fluency test 
ENMO: Euclidean Norm minus 1G  
GMV: grey matter volume 
MRI: magnetic resonance imag-
ing 
PA: physical activity 
SD: standard deviation 
TMT: trail making test  
VACounts: activity counts in the 
vertical axis 
VMCounts: activity counts in the 
vector magnitude 
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measuring cognitive flexibility in children [72,73]. Inhibition was as-

sessed with the Stroop test, which is a valid and reliable indicator 

[72–75]. Performance time for condition 3 (i.e., inhibiting reading by 

naming colour) minus condition 1 (i.e., colour naming) was used. To 

assess working memory, we used a modified version of the Delayed 

non-match-to-sample (DNMS) computerized task, which has been 

previously validated [76]. Response accuracy for the high-load con-

dition was used. Finally, IQ was assessed with the Spanish version of 

the Kaufman Brief Intelligence Test (K-BIT), which has been previ-

ously validated (coefficient α of 0.86-0.93) [77]. Crystallized and fluid 

intelligence components were assessed and summed to obtain the 

overall IQ score. 

Additionally, the psychological ill-being, well-being, and self-

perceptions components of mental health were assessed with valid 

self-reported questionnaires. Psychological ill-being included 

measures of stress (Children’s Daily Stress Inventory, scored from 0 

to 30) [78], anxiety (State-Trait Anxiety Inventory for Children, 

scored from 20 to 60) [79], depression (Children’s Depression Inven-

tory, scored from 0 to 54) [80], and negative affect (Positive and Neg-

ative Affect Schedule for Children, scored from 10 to 30) [81]. Other-

wise, psychological well-being included positive affect (Positive and 

Negative Affect Schedule for Children, scored from 10 to 30) [81], 

happiness (Subjective Happiness Scale, scored from 4 to 28) [82], 

and optimism (Life Orientation Test-Revised, scored from 6 to 30) 

[83]. And self-perceptions measures consisted of self-efficacy (Gen-

eral Self-Efficacy, scored from 10 to 40) [84], self-concept (Five-Fac-

tor Self-concept questionnaire, scored from 30 to 300) [85], and self-

esteem (Rosenberg Self-Esteem Scale, scored from 10 to 40) [86]. 

Physical health outcomes 

The cardiometabolic health was assessed via indicators of the 

four core components usually accepted in metabolic syndrome [87]. 

Abdominal obesity was represented by the waist circumference. 

Dyslipidaemia indicators included fasting LDL and HDL cholesterol, 

triglycerides and γ-glutamyl transferase (GGT), all derived from 

blood samples. Insulin resistance biomarkers were fasting insulin 

and glucose derived from the blood samples. Lastly, systolic and di-

astolic blood pressure were assessed in two different days and the 

lowest values were used in the analyses. 

For body composition, body weight and height were measured 

with a scale and a stadiometer (SECA, Hamburg, Germany) with par-

ticipants barefoot and wearing light underclothes. BMI was calcu-

lated as kg/m2. Whole-body fat mass and lean mass were measured 

via dual-energy X-ray absorptiometry (DXA, Discovery Horizon® 

DXA system, Hologic, Canada ULC). Fat/lean mass indices were cal-

culated as fat/lean mass in kilograms divided by height in meters 

Abbreviations in this page: 
DFT: design fluency test 
DNMS: delayed non-match-to-
sample 
DXA: dual-energy X-ray ab-
sorptiometry 
GGT: γ-glutamyl transferase 
HDL: high-density lipoprotein 
IQ: intelligence quotient 
K-BIT: Kaufman brief intelligence 
test 
LDL: low-density lipoprotein 
TMT: trail making test  
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squared (kg/m2). Visceral adipose tissue was also derived from the 

DXA measurement. 

Physical fitness components (i.e., CRF, speed-agility, and mus-

cular fitness) were assessed with the feasible, reliable, and valid tests 

for children included in the ALPHA fitness battery [88–90]. Specifi-

cally, CRF was assessed with the 20 m shuttle-run test. The number 

of completed laps and the VO2max in ml/kg/min were recorded [91]. 

Speed-agility fitness was assessed with the 4x10 m shuttle run test 

(seconds to complete the test). Muscular fitness with the handgrip 

strength and the standing long jump tests [63]. 

Confounders 

The main confounders used in this thesis are sex, biological 

maturation, and parental education. Biological maturation was as-

sessed with the peak height velocity from height and sitting height 

measurements using the Moore’s equations [92]. The peak height ve-

locity provides a continuous, accurate, and discriminant measure of 

maturational status [92]. Peak height velocity represents the differ-

ence (in years) between the chronological age and the age at peak 

height velocity (calculated from standing and sitting height). Paren-

tal education level was categorized as both of them, one of them, or 

neither of them reached university-level education. 

The MINISTOP study (Study III) 

Study design 

The Mobile-based intervention intended to stop obesity in pre-

schoolers (MINISTOP) study is a RCT (NCT02021786) that aimed to 

evaluate the effectiveness of a mobile-phone-based intervention to 

promote better body composition, dietary habits, and PA in healthy 

preschool-aged children [93–95] Specifically, this thesis includes 

data from a nested study within this trial that was conducted to eval-

uate the capacity of wrist-worn accelerometers (ActiGraph GT3X+, 

Pensacola, FL, USA) to predict free-living PAEE. Ethical approval was 

obtained from the Research and Ethics Committee (Stockholm, Swe-

den) and both parents provided informed consent. 

Inclusion and exclusion criteria 

To be included, parents must: (i) have a four-year-old child and 

live in the county of Östergötland (Sweden); (ii) have the possibility 

to have their child measured at baseline at 4.5 years ± 2 months of 

age; and (iii) be able to speak and read Swedish sufficiently well (at 

least one parent). Children diagnosed with neurological or endocrine 

diseases and children who have a parent suffering from a serious 

physical or psychological disease were excluded from the study. The 

nested validation study included forty parents and their child. 

Abbreviations in this page: 
BMI: body mass index 
CRF: cardiorespiratory fitness 
DXA: dual-energy X-ray absorp-
tiometry 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
RCT: randomized controlled trial 
VO2max: maximal oxygen con-
sumption 



Methods 

Page 66 of 385 

Measures 

Physical activity (explanatory variable) 

PA was monitored with the GT3X+ accelerometer placed on the 

non-dominant wrist. Participants were instructed to wear the accel-

erometer for the first seven days of the 14-day doubly-labelled water 

period (24-hours per day). Devices were initialized to collect data at 

50 Hz, as this sampling frequency is sufficient to capture wrist daily 

motion [96,97]. Auto-calibration of the acceleration signal, non-wear 

time detection and treatment was similar to the one performed in the 

ActiveBrains project (see section above). We derived several accel-

eration aggregation metrics from the ActiLife software (e.g., 

VMCounts) and from the GGIR software (e.g., ENMO). See more infor-

mation on the acceleration metrics derived in Results, Study V. 

Energy expenditure (outcome) 

The children’s TEE and total body water were measured with 

doubly-labelled water during 14 days. Each child was given an accu-

rately weighed dose of stable isotopes using 2H2O (enrichment 

99.9%) and H218O (enrichment 20%): 0.14 g 2H2O and 0.35 g H218O 

per kg of body weight. Urine samples were stored in glass vials with 

an internal aluminium-lined screw cap sealing at +4 ºC until sample 

collection was finished, after which they were stored at -20 ºC until 

analysis. 2H and 18O enrichments of dose and urine samples were an-

alysed (both pre and post dosing) using a Finnigan MAT Delta Plus 

Isotope-Ratio Mass Spectrometer (ThermoFinnigan, Gothenburg, 

Sweden). The quotient between the 2H dilution space (ND) and the 
18O dilution space (NO) was 1.039 ± 0.008 for the 39 children. CO2 

production was calculated according to the method by Davies et al. 

[98] assuming that 27.1% of the total water losses were fractionated. 

The Weir equation was applied to derive TEE from carbon dioxide 

production [99] assuming a food quotient of 0.85 [100]. Over the 14-

day measurement period, no major change in body weight was ob-

served (n=39; 0.07 ± 0.32 kg). We applied prediction equations based 

on weight [101] to estimate basal metabolic rate (BMR). Thereafter, 

PAEE was calculated as TEE multiplied by 0.9 minus BMR. This in-

cludes a reduction in TEE by 10% to adjust for energy expended due 

to dietary induced thermogenesis. 

Anthropometry and body composition (confounders) 

Body weight and height were measured with an electronic scale 

and stadiometer. Fat-free mass (kg) was calculated from total body 

water assuming that fat-free mass contains 76.4% water [102]. Fat 

mass (kg) was calculated as the difference between body weight and 

fat-free mass.  

Abbreviations in this page: 
BMR: basal metabolic rate 
ENMO: Euclidean Norm minus 1G 
ND: deuterium dilution space 
NO: 18O dilution space 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
TEE: total energy expenditure  
VMCounts: activity counts in the 
vector magnitude  
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Pilot study on accelerometry (Study IV) 

Study design 

We recruited a convenience sample composed of students and 

research personnel from the University of Granada, Spain. The study 

was carried out in two waves of 45 (23 women, 18-41 years old) and 

36 (10 women, 22-30 years old) young adults, respectively. Wave 1 

data were used to compare different acceleration metrics across 

body attachment sites (i.e., right hip, dominant wrist, and non-domi-

nant wrist). Wave 2 was used for cross-validation purposes and they 

only wore two accelerometers on dominant wrist and non-dominant 

wrist. This study was conducted according to the Declaration of Hel-

sinki and approved by the Ethics Committee on Human Research of 

the University of Granada. 

Measures 

Physical activity (accelerometer data collection) 

Participants wore the ActiGraph GT3X+ recording accelera-

tions at 100 Hz. Wave 1 participants wore three accelerometers: 

right hip and both wrists. Wave 2 participants wore two accelerom-

eters, one on each wrist. Raw accelerations were then downloaded 

(“.gt3x” files) and converted to “.csv” format using ActiLife v.6.13.3 

(ActiGraph, Pensacola, FL, USA). All participants wore devices for 

seven complete days, and were instructed to remove them all to-

gether for shower and water-based activities (e.g., swimming). Par-

ticipants were also encouraged to wear devices as much as possible, 

including sleeping periods. 

Auto-calibration of the acceleration signal, non-wear time de-

tection and treatment was similar to the one performed in the Active-

Brains project (see section above). We derived several acceleration 

metrics from the ActiLife software (e.g., VMCounts) and from the 

GGIR software (e.g., ENMO, LFENMO, MAD). See more information on 

the acceleration metrics derived in Results, Study IV. These acceler-

ation metrics have been often used the PA studies. 

Anthropometry (confounders) 

Participants reported their sex and age upon signing the in-

formed consent. Additionally, participants’ body weight and height 

were measured to the nearest 0.1 kg and 0.1 cm using an electronic 

scale (SECA 861, Hamburg, Germany) and a precision stadiometer 

(SECA 225, Hamburg, Germany). BMI was calculated as kg/m2. 

  

Abbreviations in this page: 
BMR: basal metabolic rate 
BMI: body mass index 
ENMO: Euclidean Norm minus 1G 
LFENMO: ENMO of the low-pass 
filtered raw accelerations 
MAD: mean amplitude deviation 
TEE: total energy expenditure  
VMCounts: activity counts in the 
vector magnitude  
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Summary of methods by study 

 Study Project Design 
N 
Age  
Sex 

Explanatory 
or exposure 
variable/s 

Explained or 
outcome varia-
ble/s 

S
E

C
T

IO
N

 I
 

I - 
Systematic re-

view 
235 studies -  

II - Descriptive - -  

III MINISTOP Cross-sectional 
39 
15.5±0.1 y/o 
18 girls 

PA 
TEE 
PAEE 

IV Pilot Cross-sectional 
78 
25.8±3.9 y/o 
33 women 

PA PA 

V ActiveBrains Cross-sectional 
104 
10.1±1.1 y/o 
43 girls 

PA 
SB 

PA 
SB 

VI ActiveBrains Cross-sectional 
105 
10.1±1.1 y/o 
43 girls 

Steps PA 

VII - Consensus - - - 

S
E

C
T

IO
N

 I
I 

VIII ActiveBrains Cross-sectional 
93 
10.0±1.1 y/o 
37 girls 

PA, SB GMV 

IX ActiveBrains Cross-sectional 
95 
10.0±1.1 y/o 
37 girls 

Activity-rest 
pattern 

GMV 
Academic 
achievement 
Executive func-
tion 
IQ 

X ActiveBrains Cross-sectional 
96 
10.0±1.1 y/o 
38 girls 

Sleep 

GMV 
Academic 
achievement 
Executive func-
tion 
IQ 

XI ActiveBrains RCT 
98 
10.0±1.1 y/o 
41 girls 

20-week PA 
program 

Cardiometabolic 
health  
Body composition 
Physical fitness 
Psychological ill-
being 
Psychological 
wellbeing  
Self-perceptions 

Table 2 
Summary of the methods 
used in each study  

Abbreviations in this page: 
GMV: grey matter volume 
IQ: intelligence quotient 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
RCT: randomized controlled 
trial 
SB: sedentary behaviour 
TEE: total energy expenditure 
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Abstract 

Background | Accelerometers are widely used to measure SB, PA, 

PAEE, and sleep-related behaviours, with the Acti-

Graph being the most frequently used brand by re-

searchers. However, data collection and processing 

criteria have evolved in a myriad of ways out of the 

need to answer unique research questions; as a re-

sult, there is no consensus.  

Aims | The purpose of this review was to: (i) compile and 

classify existing studies assessing SB, PA, PAEE, or 

sleep using the ActiGraph GT3X/+ through data col-

lection and processing criteria to improve data com-

parability; and (ii) review data collection and pro-

cessing criteria when using GT3X/+ and provide age-

specific practical considerations based on the valida-

tion/calibration studies identified. 

Methods | Two independent researchers conducted the search 

in PubMed and Web of Science. We included all origi-

nal studies in which the GT3X/+ was used in labora-

tory, controlled, or free-living conditions published 

from 1 January 2010 to the 31 December 2015. 

 Results | The present systematic review provides key infor-

mation about the following data collection and pro-

cessing criteria: placement, sampling frequency, fil-

ter, epoch length, non-wear time, what constitutes a 

valid day and a valid week, cut-points for SB and PA 

intensity classification, and algorithms to estimate 

PAEE and sleep-related behaviours. The information 

is organized by age group, since criteria are usually 

age-specific. 

Conclusion | This review will help researchers and practitioners to 

make better decisions before (i.e., device placement 

and sampling frequency) and after (i.e., data pro-

cessing criteria) data collection using the GT3X/+ ac-

celerometer, in order to obtain more valid and com-

parable data. 

 

 

PROSPERO registration number: CRD42016039991

Key Points 

Question 
What accelerometer data col-
lection and processing criteria 
are recommendable to esti-
mate SB and PA outcomes in 
each age group? 

Findings 
High discrepancies and lack of 
harmonization was noted. 
Practical considerations for 
every step of the accelerome-
ter data collection and pro-
cessing are provided based on 
existing literature. 

Meaning 
The tabulated data generated 
will facilitate comparisons be-
tween studies using the Acti-
Graph GT3X and aid in the se-
lection of the most appropri-
ate method to use for each 
specific research purpose. 

Abbreviations in this page: 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SB: sedentary behavior 
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Introduction 

Health benefits of PA across a person’s lifespan have been 

widely reported [3,4,103]. The use of accelerometers to assess time 

in SB and PA [104–107] has become an objective and feasible alter-

native to self-report methods such as questionnaires, which are char-

acterized by their poor reliability and validity, especially in younger 

populations [30–32]. Accelerometers are wearable devices which 

measure accelerations of the body segment to which the monitor is 

attached. The signal is usually filtered and pre-processed by the mon-

itor to obtain activity counts, i.e., accelerations due to body move-

ment. The amount and intensity of daily time in SB and PA, may be 

obtained by classifying activity counts accumulated in a specific time 

interval (epoch length) with a set of cut-points, i.e., intensity thresh-

olds for PA intensity classification [37,68,70,108,109]. PAEE or 

sleep-related behaviours may also be estimated by applying algo-

rithms to objectively-determined activity counts [38,39,110–113]. 

New methods to estimate these variables from raw acceleration sig-

nals (gravity units) instead of activity counts have been developed 

recently [61,114,115]. 

Among the commercially available brands, the ActiGraph (Pen-

sacola, FL, USA) accelerometers are the most frequently used by re-

searchers, accounting for >50% of published studies [41]. This re-

view only considered the latest generation of ActiGraph devices, i.e., 

GT3X, GT3X+ and wGT3X-BT (hereinafter referred to as GT3X/+). 

The continuous change in the features of these devices makes it dif-

ficult to compare data between studies. 

The first ActiGraph accelerometers available were uniaxial (i.e., 

they could only detect vertical axis [VA] accelerations) and conse-

quently cut-points and algorithms were developed to assess time in 

SB, PA intensity, PAEE and sleep-related behaviours from VA accel-

erations [37,39,113]. In mid-2009, ActiGraph released the triaxial 

GT3X which detected accelerations in three axes (i.e., vertical, medio-

lateral and antero-posterior axes). The transition from uniaxial to tri-

axial devices implied new calibration processes, and the algorithms 

developed for the VA were not applicable to VMCounts (i.e., the 

square root of the sum of squared activity counts from the 3 axes) 

[107,108,110,112,116–118]. 

Due to the extremely fast development in this field, there is an 

overwhelming amount of data collection and processing criteria de-

cisions, and there is no consensus about which approaches to use. 

Consequently, it is difficult for researchers and practitioners to make 

the right decisions about which criteria should be used in each situ-

ation. This is important as the chosen criteria have a huge impact on 

the outcome. In order to address this problem, some studies have 

Abbreviations in this page: 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SB: sedentary behavior 
VMCounts: activity counts in the 
vector magnitude 
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compared certain GT3X/+ outcomes estimated by different cut-

points and algorithms [104,119–121] in an attempt to recommend 

which decisions are the most accurate, yet this information is still 

scarce.  

It is important to note that algorithms validated in a specific age 

group, might not be valid for other age groups due to different PA 

patterns, so whenever possible, data collection and processing crite-

ria should be age-specific. Accelerometer methods can be grouped 

into two categories: data collection protocols, which are decisions 

that need to be made a priori such as device placement or sampling 

frequency; and data processing criteria, which involves decisions 

that can be made a posteriori such as filters, epoch length, non-wear 

time definition, cut-points and algorithms. The present review will 

address all of these criteria separately and specifically by age group. 

In this review we aimed to: 1) compile and classify existing studies 

assessing SB, PA, PAEE, or sleep using the ActiGraph GT3X/+ by data 

collection and processing criteria to improve data comparability and 

2) review data collection and processing criteria when using GT3X/+ 

and provide age-specific practical considerations based on the vali-

dation/calibration studies identified. Both objectives were ap-

proached separately for the following age groups: pre-schoolers, 

children/adolescents, adults and older adults. Although there is a 

large amount of information included in this review, we believe that 

it is useful for readers to have a single article that summarizes the 

most important accelerometer methods for each age group sepa-

rately. This will allow readers to go directly to a specific criterion for 

the age group they are interested in, (e.g., PAEE in pre-schoolers). In 

this review, we provide a section with examples of how the infor-

mation presented can be used in practical terms, as well as a table 

with practical considerations.  

Methods 

Study design 

The present review focuses on 11 key methodological issues re-

lated to GT3X/+ data collection and processing criteria: 1) device 

placement, 2) sampling frequency, 3) filter, 4) epoch length, 5) non-

wear time definition, 6) what constitutes a valid day and valid week, 

7) registration period, 8) time in SB and PA intensity classification, 

9) PAEE algorithms, 10) sleep algorithms, and 11) step counting. 

Available information was classified into two different types of stud-

ies: 1) any cross-sectional, longitudinal or intervention study, which 

used the GT3X/+ device and met the inclusion criteria indicated be-

low (objective 1); and 2) studies focused on validation, calibration or 

comparison of functions related to data collection or processing cri-

teria (objective 2). Therefore, the practical considerations provided 

Abbreviations in this page: 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SB: sedentary behavior 
 



Study I 

Page 83 of 385 

for each age group are based on the results from the validation/cali-

bration studies (see Table 3), while the rest of studies were only 

used to describe the most-frequently used decisions.  
Age group / criterion Pre-schoolers Children and ado-

lescents 
Adults Older adults 

Placement Hipa and wrist Hipa and wrist Hipa and wrist Hipa and wrist 

Sampling frequency 90-100 Hz 90-100 Hz 90-100 Hz 90-100 Hz 

Filterb Normal Normal Normal LFE 

Epoch lengthb 1-15 s 1-15 s 60 sc 60 sc 

Non-wear time definition Not clearc Not clearc Not clearc Choi et al. [122] 
algorithm 

Valid dayd  ≥ 10 h ≥ 10 h ≥ 10 h ≥ 10 h 

Valid week ≥ 4 days ≥ 4 days ≥ 4 days ≥ 4 days 

Registration period  24 h 24 h 24 h 24 h 

SB/PA intensity classificatione, f    

Dominant wrist No data found Crouter et al. [123] Staudenmayer 
et al. [115] 

No data found 

Non-dominant wrist Johansson et al. 
[124] (2-3 y) 

Hildebrand et al. [61] 
Chandler et al. [70] 

Hildebrand et 
al. [61] 

No data found 

Hip Costa et al. [125] 
(2-3 y) 
Jimmy et al. [126] 
(4-6 y) 

Hänggi et al. [108] (7-
11 y) 
Romanzini et al. [69] 
(12-19 y) 

Sasaki et al. 
[107] 

Aguilar-Farias 
et al. [116] 
Santos-Lozano 
et al. [117] 

PAEE algorithme     

Non-dominant wrist No data found Hildebrand et al. [61] Ellis et al. [127] No data found 

Hip Butte et al. [128] 
(2-3 y) 

Crouter et al. [112] 
(7-11 y) 

Hildebrand et 
al. [61] 

Santos-Lozano 
et al. [117] 

Sleep algorithme No data found Sadeh et al. [38] Sadeh et al. 
[38] (20-30 y) 
Cole et al. [39] 
(> 30 y) 

Cole et al. [39] 

Note: These recommendations should be considered with caution. We strongly recommend reading 
section 4 for an understanding of the specific considerations for each age group 

a There are no algorithms currently available to estimate sleep-related behaviours from data obtained 
from hip-worn devices 

b Criterion that could highly affect the output. In these cases, when estimations of PA, PAEE or sleep 
are the variables of interest, the same criterion as selected in the validation study is recommended. If 
acceleration metrics are the variables of interest (e.g., counts), the recommendation is provided in 
this table. 

Furthermore, we provide a summary of all data extracted from 

the validation/calibration papers included in this review by age 

group in Electronic Supplementary Material (ESM) S1. Inclusion 

and exclusion criteria and analytical methods were specified in ad-

vance and registered in the PROSPERO international database of sys-

tematic reviews (CRD42016039991) [129]. The study is conducted 

according to the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) Statement [130]. 

Search strategy 

We searched PubMed and Web of Science, for studies using the 

ActiGraph GT3X/+ model and classified the studies into the following 

age groups: pre-schoolers (2-5 years), children (6-11 years), adoles-

cents (12-18 years), adults (19-59 years) and older adults (≥60 

years). We combined (using the Boolean operator “OR”) the follow-

ing search terms: GT3X, GT3X+ and ActiGraph. Although, we wanted 

Table 3 
Summary of practical 
considerations by age 
group 

Abbreviations in this page: 
ESM: electronic supplementary 
material 
LFE: low-frequency extension 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
PRISMA: preferred reporting 
items for systematic reviews 
and meta-analyses 
SB: sedentary behaviour 

ESM 1 (scan or click here) 
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to limit the search to GT3X/+, the word ActiGraph was entered in the 

search because we found that some studies specified the brand (i.e., 

ActiGraph) instead of the model (i.e., GT3X/+) in the title/ab-

stract/keywords. Since the GT3X/+ models were launched in mid-

2009, we limited the dates of the search from the 1st January 2010 to 

the 31st December 2015 and conducted the final search on January 

3rd 2016. We contacted authors of those studies where the data pro-

cessing and collection information was unavailable in the published 

article. In a final step, we extended the search to the IEEE (Institute 

of Electrical and Electronics Engineers) Xplore database, in case we 

had missed any relevant studies. 

Inclusion and exclusion criteria 

We included all original studies (cross-sectional, longitudinal 

or intervention studies) in which the GT3X/+ was used in a labora-

tory, or under controlled or free-living conditions. Protocol studies, 

reviews, editorials and abstract or congress communications were 

excluded, as well as studies conducted in people with mobility prob-

lems or in periods of life in which mobility could have been markedly 

altered (e.g., pregnancy). 

 

Figure 8 
Flowchart of the literature search 
and study selection process.  
1Studies using accelerometers of other 
purposes (e.g., accelerometers attached to 
dogs). 
2Studies that included two age ranges 
were counted in both age groups. 
3Studies focused on validation, calibration 
or comparison of functions related to data 
collection or processing criteria. 
4All cross-sectional, longitudinal, or inter-
vention studies, which used the GT3X/+ 
device and met the inclusion criteria. 
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Two authors (JHM and CCS) independently read the articles 

and checked whether they met the inclusion/exclusion criteria. They 

obtained 76% agreement on the papers selected for the review be-

fore consensus and 100% agreement after discrepancies were re-

solved in a consensus meeting. Risk of bias assessment was also con-

ducted independently by JHM and CCS in order to assess the quality 

of studies (see ESM 2). 

Results  

A total of 940 articles were identified (Figure 8), of which 444 

were excluded after reading the title and abstract and 261 articles 

were additionally excluded after reading the full text and did not 

meet the inclusion/exclusion criteria stated above. Finally, a total of 

235 studies were considered eligible for the current systematic re-

view. Of them, 78 were validation/calibration studies. Methods and 

results of these validation/calibration studies are summarized in 

ESM 1. Detailed information about the methods and results for the 

rest of studies (i.e., those using GT3X/+ that were not validation/cal-

ibration studies) included in this review is available upon request.  

Reference 
Pre-schoolers 
(n=24)  
n (%) 

Children and 
adolescents 
(n=81) 
n (%) 

Adults 
(n=103) 
n (%) 

Older adults 
(n=51) 
n (%) 

Placement 

 Hip 22 (92) 73 (90) 87 (84) 44 (86) 
 Non-dominant wrist 2 (8) 6 (7) 8 (8) 5 (10) 
 Dominant wrist 0 (0) 1 (1) 6 (6) 5 (10) 
 Othersa 0 (0) 2 (2) 21 (20) 2 (4) 
 Not reported 0 (0) 5 (6) 6 (6) 0 (0) 

Sampling Frequency 

 30 Hz. 16 (67) 53 (65) 70 (68) 39 (76) 
 40 Hz. 0 (0) 0 (0) 2 (2) 0 (0) 
 50 Hz. 0 (0) 0 (0) 2 (2) 0 (0) 
 60 Hz. 2 (8) 2 (2) 6 (6) 2 (4) 
 70 Hz. 0 (0) 0 (0) 1 (1) 0 (0) 
 80 Hz. 1 (4) 6 (7) 9 (9) 5 (10) 
 90 Hz. 0 (0) 0 (0) 2 (2) 0 (0) 
 100 Hz. 1 (4) 4 (5) 6 (6) 1 (2) 
 Not reported 4 (17) 18 (23) 15 (15) 5 (10) 

Filter 

 Normal 8 (34) 14 (17) 25 (24) 6 (12) 
 LFE 2 (8) 11 (14) 15 (15) 6 (12) 
 Not reported 14 (58) 53 (65) 67 (65) 40 (80) 

Epoch length 

 1 s 1 (4) 8 (10) 15 (15) 6 (12) 
 2 s 0 (0) 1 (1) 2 (2) 0 (0) 
 3 s 0 (0) 1 (1) 0 (0) 0 (0) 
 5 s 6 (25) 6 (7) 1 (1) 0 (0) 
 10 s 0 (0) 16 (20) 6 (6) 1 (2) 
 15 s 13 (54) 28 (35) 8 (8) 3 (6) 
 20 s 0 (0) 0 (0) 0 (0) 1 (2) 
 30 s 1 (4) 3 (4) 0 (0) 0 (0) 
 45 s 0 (0) 1 (1) 0 (0) 0 (0) 
 60 s 6 (25) 17 (21) 52 (50) 38 (74) 
 Not reported 0 (0) 5 (6) 16 (16) 3 (6) 

Non-wear time definitionb 

 10-0-0 3 (13) 6 (7) 7 (7) 4 (8) 
 20-0-0 3 (13) 21 (26) 3 (3) 0 (0) 
 20-0-2 0 (0) 0 (0) 1 (1) 0 (0) 
 30-0-0 2 (8) 5 (6) 1 (1) 0 (0) 
 30-0-1 0 (0) 3 (4) 0 (0) 0 (0) 
 60-0-0 3 (13) 5 (6) 16 (16) 3 (6) 
 60-0-2 0 (0) 7 (9) 15 (15) 12 (24) 

Table 4 
Summary of the criteria used for 
data collection protocols and data 
processing from articles reviewed 
by age group (see ESM 1 for the 
criteria used by each of the studies 
listed in this table) 

ESM 1 (scan or click here) 

Abbreviations in this page: 
ESM: electronic supplementary ma-
terial 
LFE: Low-frequency extension filter 

ESM 2 (scan or click here) 
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Reference 
Pre-schoolers 
(n=24)  
n (%) 

Children and 
adolescents 
(n=81) 
n (%) 

Adults 
(n=103) 
n (%) 

Older adults 
(n=51) 
n (%) 

 60-30-2 0 (0) 0 (0) 0 (0) 1 (2) 
 90-0-0 0 (0) 1 (1) 5 (5) 1 (2) 
 90-0-2 0 (0) 0 (0) 3 (3) 2 (4) 
 90-30-2 0 (0) 0 (0) 2 (2) 14 (27) 
 120-0-0 0 (0) 0 (0) 1 (1) 0 (0) 
 180-0-0 0 (0) 0 (0) 0 (0) 1 (2) 
 Not reported 6 (25) 7 (9) 15 (15) 6 (12) 

Cut-points for SB (CPM and vector used) [original reference] 

 25 CPM VA [116] 0 (0) 0 (0) 1 (1) 1 (2) 
 50 CPM VA [131] 0 (0) 0 (0) 1 (1) 0 (0) 
 60 CPM VA [125] 1 (4) 0 (0) 0 (0) 0 (0) 

 
100 CPM VA [37,68,109,132–
138] 4 (17) 31 (38) 40 (39) 31 (61) 

 100 CPM VM 0 (0) 1 (1) 1 (1) 0 (0) 
 120 CPM VM [108] 0 (0) 2 (2) 0 (0) 0 (0) 
 148 CPM VA [139] 3 (13) 1 (1) 0 (0) 0 (0) 
 150 CPM VA [140] 0 (0) 2 (2) 5 (5) 1 (2) 
 150 CPM VM [131] 0 (0) 1 (1) 2 (2) 1 (2) 
 184 CPM VA [69] 0 (0) 1 (1) 0 (0) 0 (0) 
 200 CPM VA [131,141] 0 (0) 0 (0) 1 (1) 1 (2) 
 200 CPM VM [116] 0 (0) 0 (0) 1 (1) 2 (4) 
 240 CPM VA [128] 1 (4) 0 (0) 0 (0) 0 (0) 
 250 CPM VA [131] 0 (0) 0 (0) 1 (1) 0 (0) 
 274 CPM VA [142] 2 (8) 0 (0) 0 (0) 0 (0) 
 384 CPM VM [125] 1 (4) 0 (0) 0 (0) 0 (0) 
 500 CPM VA [143] 0 (0) 1 (1) 0 (0) 0 (0) 
 720 CPM VM [69] 0 (0) 1 (1) 0 (0) 0 (0) 
 796 CPM VA [144] 2 (8) 1 (1) 0 (0) 0 (0) 
 820 CPM VM [128] 1 (4) 0 (0) 0 (0) 0 (0) 
 1068 CPM VA [124] 1 (4) 0 (0) 0 (0) 0 (0) 
 1204 CPM VA [145] 2 (8) 0 (0) 0 (0) 0 (0) 
 1260 CPM VM [123] 0 (0) 1 (1) 0 (0) 0 (0) 
 1452 CPM VA [145] 2 (8) 0 (0) 0 (0) 0 (0) 
 1488 CPM VA [146] 2 (8) 0 (0) 0 (0) 0 (0) 
 1592 CPM VA [145] 3 (13) 0 (0) 0 (0) 0 (0) 
 1932 CPM VM [70] 0 (0) 1 (1) 0 (0) 0 (0) 
 2652 CPM VM [124] 2 (8) 0 (0) 0 (0) 0 (0) 
 3300 CPM VM [123] 0 (0) 1 (1) 0 (0) 0 (0) 
 3660 CPM VM [70] 0 (0) 1 (1) 0 (0) 0 (0) 

Cut-points for PA intensity classification [original reference] 

 Aguilar-Farías et al. [116] 0 (0) 0 (0) 1 (1) 3 (6) 
 Aittasalo et al. [147] 0 (0) 1 (1) 0 (0) 0 (0) 
 Andersen et al. [143] 0 (0) 1 (1) 0 (0) 0 (0) 
 Butte et al. [128] 1 (4) 0 (0) 0 (0) 0 (0) 
 Chandler et al. [70] 0 (0) 1 (1) 0 (0) 0 (0) 
 Copeland et al. [109] 0 (0) 0 (0) 0 (0) 9 (18) 
 Costa et al. [125] 1 (4) 0 (0) 0 (0) 0 (0) 
 Crouter et al. [123] 0 (0) 1 (1) 0 (0) 0 (0) 
 Davis et al. [141] 0 (0) 0 (0) 0 (0) 1 (2) 
 Evenson et al. [68] 8 (34) 36 (45) 0 (0) 0 (0) 
 Freedson et al. [37] 0 (0) 1 (1) 30 (29) 14 (27) 
 Freedson et al. [140] 0 (0) 8 (10) 0 (0) 0 (0) 
 Grydeland et al. [148] 0 (0) 1 (1) 0 (0) 0 (0) 
 Hänggi et al. [108] 0 (0) 2 (2) 0 (0) 0 (0) 
 Hildebrand et al. [61] 0 (0) 1 (1) 0 (0) 0 (0) 
 Jimmy et al. [126] 1 (4) 1 (1) 0 (0) 0 (0) 
 Johansson et al. [124] 2 (8) 0 (0) 0 (0) 0 (0) 
 Matthews et al. [149] 0 (0) 1 (1) 6 (6) 8 (16) 
 Mattocks et al. [150] 0 (0) 1 (1) 0 (0) 0 (0) 
 Metzger et al. [138] 0 (0) 0 (0) 3 (3) 1 (2) 
 Pate et al. [139] 4 (17) 1 (1) 0 (0) 0 (0) 
 Pruitt et al. [151] 0 (0) 0 (0) 0 (0) 1 (2) 
 Pulakka et al. [152] 2 (8) 0 (0) 0 (0) 0 (0) 
 Puyau et al. [144] 2 (8) 2 (2) 0 (0) 0 (0) 
 Reilly et al. [142] 3 (13) 0 (0) 0 (0) 0 (0) 
 Romanzini et al. [69] 0 (0) 1 (1) 0 (0) 0 (0) 
 Santos-Lozano et al. [117] 0 (0) 1 (1) 1 (1) 1 (2) 
 Sasaki et al. [107] 0 (0) 0 (0) 6 (6) 2 (4) 
 Sirard et al. [145] 3 (13) 0 (0) 0 (0) 0 (0) 
 Treuth et al. [134] 0 (0) 4 (5) 0 (0) 0 (0) 
 Troiano et al. [137] 0 (0) 0 (0) 8 (8) 4 (8) 
 Trost et al. [113] 0 (0) 2 (2) 0 (0) 0 (0) 
 Vähä-Ypyä et al. [153] 0 (0) 0 (0) 1 (1) 0 (0) 

Table 4 - continued 
Summary of the criteria used for 
data collection protocols and data 
processing from articles reviewed 
by age group (see ESM 1 for the 
criteria used by each of the stud-
ies listed in this table) 

Abbreviations in this page: 
CPM: counts per minute 
ESM: electronic supplementary 
material 
PA: physical activity 
VA: vertical axis 
VM: vector magnitude 
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Reference 
Pre-schoolers 
(n=24)  
n (%) 

Children and 
adolescents 
(n=81) 
n (%) 

Adults 
(n=103) 
n (%) 

Older adults 
(n=51) 
n (%) 

 Van Cauwenberghe et al. [146] 3 (13) 0 (0) 0 (0) 0 (0) 
 Vanhelst et al. [154] 0 (0) 1 (1) 0 (0) 0 (0) 
 Zhu et al. [155] 0 (0) 2 (2) 0 (0) 0 (0) 
 Zisko et al. [156] 0 (0) 0 (0) 0 (0) 1 (2) 

PAEE algorithms [original reference] 

 Butte et al. [128] 1 (1) 0 (0) 0 (0) 0 (0) 
 Crouter et al. [157] 0 (0) 1 (1) 0 (0) 0 (0) 
 Crouter et al. [158] 0 (0) 0 (0) 2 (2) 0 (0) 
 Crouter et al. [112] 0 (0) 3 (4) 0 (0) 0 (0) 
 Ellis et al. [118] 0 (0) 0 (0) 1 (1) 0 (0) 
 Evenson et al. [68] 0 (0) 1 (1) 0 (0) 0 (0) 
 Freedson et al. [140] 0 (0) 3 (4) 0 (0) 0 (0) 
 Hildebrand et al. [61] 0 (0) 1 (1) 0 (0) 0 (0) 
 Liu et al. [159] 0 (0) 1 (1) 0 (0) 0 (0) 
 Mattocks et al. [150] 0 (0) 1 (1) 0 (0) 0 (0) 
 Pate et al. [139] 1 (4) 0 (0) 0 (0) 0 (0) 
 Puyau et al. [144] 1 (4) 3 (4) 0 (0) 0 (0) 
 Santos-Lozano et al. [117] 0 (0) 1 (1) 1 (1) 1 (2) 
 Schmitz et al. [160] 0 (0) 1 (1) 0 (0) 0 (0) 
 Stec et al. [161] 0 (0) 0 (0) 1 (1) 0 (0) 
 Treuth et al. [134] 0 (0) 3 (4) 0 (0) 0 (0) 
 Trost et al. [113] 0 (0) 3 (4) 0 (0) 0 (0) 
 WET 0 (0) 1 (1) 1 (1) 1 (2) 
 WET + Freedson et al. [37] 0 (0) 1 (1) 3 (3) 2 (4) 
 WET + Sasaki et al. [107] 0 (0) 1 (1) 1 (1) 1 (2) 
 Zakeri et al. [162] 1 (4) 0 (0) 0 (0) 0 (0) 
 Zhu et al. [163] 0 (0) 1 (1) 0 (0) 0 (0) 

Sleep algorithm [original reference] 

 Barreira et al. [111] 0 (0) 1 (1) 0 (0) 0 (0) 
 Cole-Kripke et al. [39] 0 (0) 1 (1) 1 (1) 3 (6) 
 Sadeh et al. [38] 1 (4) 2 (2) 4 (4) 0 (0) 
 Tudor-Locke et al. [110] 0 (0) 4 (5) 0 (0) 0 (0) 

Note 1: Studies using several criteria have been considered in each criterion, thus, in these cases per-
centages do not have to sum to 100%. 
Note 2: Criteria used for the data collection and processing validated with other devices but have 
been applied to GT3X/+ data have been also considered. 
a Other placements used for different aims from physical PA classification, PAEE, or sleep estimation 
(e.g., PA type identification, light sensor validation). 
b Non-wear-time definition expressed as: minimum minutes of 0 CPM – minimum minutes for before 
and after the allowance windows – maximum of minutes of allowance. 

Forty-four percent (N=103) of the included studies were con-

ducted in adults (46% validation/calibration studies); 34% (N=81) 

in youth (30% validation/calibration studies); 22% (N=51) in older 

adults (11% validation/calibration studies); and 10% (N=24) in pre-

schoolers (13% validation/calibration studies).  

Studies including two or more age groups are summarized in 

both age group sections in this review. Table 4 presents the criteria 

used for data collection and processing by age group. A list of refer-

ences for each of the criteria is found in ESM 3. The information pro-

vided in Table 4 and ESM 3 allows researchers to make comparisons 

between studies that have used the same data collection and pro-

cessing criteria. 

Figure 9 shows the percentage of studies that did not report 

key methodological issues by age group. Fifteen to twenty percent of 

the studies reviewed did not report criteria such as sampling fre-

quency, epoch length and a non-wear time definition, and 60-80% of 

studies did not report information on the filter used.  

 

Table 4 – continued 
Summary of the criteria used for 
data collection protocols and data 
processing from articles reviewed 
by age group (see ESM 1 for the 
criteria used by each of the studies 
listed in this table) 

Abbreviations in this page: 
CPM: counts per minute 
ESM: electronic supplementary 
material 
METs: metabolic equivalents 
PAEE: physical activity-related en-
ergy expenditure 
WET: work energy theory 
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References 
Age 
group 

Aims (principal outcomes stud-
ied in italics) 

Main findings/conclusions 

Ellis et al. [118] Adults 

To compare GT3X/+ worn on 
right hip and non-dominant wrist, 
and the added value of heart rate 
data, for predicting PA type and 
PAEE estimation 

In estimating PAEE, both device positions pro-
duced comparable results. The wrist GT3X/+ 
was superior predicting activities with signifi-
cant arm movement, while the hip GT3X/+ was 
superior for predicting locomotion  

Fairclough et 
al. [114] 

Children 

To compare right hip and non-
dominant wrist compliance, and to 
compare PA derived from wrist 
and hip raw data 

Wrist placement was associated with superior 
compliance compared with the hip. Raw acceler-
ations were significantly higher for the wrist 
compared with the hip 

Hildebrand et 
al. [61] 

Children 
and 
adults 

To compare raw GT3X/+ output 
from right hip and non-dominant 
wrist and to develop PAEE equa-
tions for each placement 

The output from the wrist monitor was higher 
during more intense activities but similar or 
lower during SB activities. Hip PAEE equation 
showed a higher accuracy. 

Hjorth et al. 
[164] 

Children 
To compare GT3X/+ sleep scoring 
from hip and non-dominant wrist 
with existing algorithms  

Hip-worn and wrist-worn GT3X/+ cannot be 
used interchangeably for estimating sleep-re-
lated behaviours  

Ozemek et al. 
[165] 

Adults 

To test the reliability of GT3X+ 
placed on the hip, dominant wrist 
and ankle in measuring activity 
counts recorded by axis 1, 2, 3 and 
VM during daily living 

GT3X/+ worn on the hip, wrist and ankle 
showed a high test-retest agreement across all 
axes and VM. Lower variability in activity counts 
was observed in hip placement compared to 
wrist- or ankle-worn accelerometers 

Slater et al. 
[166] 

Adults 

To examine the GT3X/+ validity 
for sleep scoring from right hip 
and left wrist compared to poly-
somnography using the same al-
gorithm 

The wrist-worn GT3X+ provided more valid 
measures of sleep but with only moderate capa-
bility to detect periods of wake during the sleep 
period. With Sadeh’s algorithm[38] GTX3+ Acti-
graph worn on the hip does not provide valid or 
accurate measures of sleep 

Staudenmayer 
et al. [115] 

Adults 

To develop algorithms for domi-
nant wrist to estimate: METs-
hours, minutes in PA, minutes in SB 
vs not, and minutes in locomotion 
vs not, validate them against indi-
rect calorimetry and compare 
them against previous algorithms 

The wrist models, applied to 15 s epoch, esti-
mated METs better than a previously developed 
model that used CPM measured at the hip 

Stec et al. [161]  Adults 

To estimate the optimal place-
ment (right wrist, right hip or 
right ankle) to attach the GT3X/+ 
for PAEE estimation during re-
sistance exercise 

The hip-worn GT3X obtained better results for 
estimating PAEE in resistance exercise 

Tudor-Locke et 
al. [167] 

Adults 
To compare GT3X/+ step outputs 
obtained from right hip and non-
dominant wrist 

In lab conditions, hip detected more steps than 
wrist independently of the filter. In free-living, 
wrist produced higher step counts than hip. Hip 
step counts were more accurate than wrist in 
controlled conditions. 

Table 5 presents the studies that have compared the differ-

ences in several outcomes when the GT3X/+ device was simultane-

ously worn on the wrist and hip. The optimal place to attach the 

GT3X/+ should be chosen based on reliability, validity and compli-

ance. Table 6 shows the references for the studies sorted by age 

group and placement site that have developed time in SB and PA cut-

points, PAEE prediction equations, and sleep algorithms. Table 7 

shows the intensity cut-points used in the included studies together 

with the pre-processing criteria used in the study which developed 

each set of cut-points. Therefore, the practical considerations pro-

vided for each age group are based on the results from the valida-

tion/calibration studies (see Table 3). 

In the following sub-sections, we will focus only on information 

from validation/calibration studies presented in ESM 1. Device 

placement, sampling frequency, and valid day and valid week corre-

spond to data collection protocols (i.e., pre-processing stage) and the 

remaining criteria correspond to processing criteria (i.e., processing 

stage). 

Table 5 
Summary of studies comparing 
hip- and wrist-worn GT3X/+ 
accelerometers 

Abbreviations in this page: 
CPM: counts per minute 
ESM: electronic supplementary 
material 
METs: metabolic equivalents 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SB: sedentary behaviour 
VM: vector magnitude 
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Device placement 

Pre-schoolers 

In young pre-schoolers Johansson et al. [124] reported receiver 

operating characteristic area under the curve (ROC-AUC) data for in-

tensity thresholds between 0.88 to 0.98 using a left wrist mounted 

GT3X+. Similarly, a ROC-AUC of 0.90-0.94 was reported by Costa et 

al. [125] using a hip placement, suggesting high potential for both 

placements to correctly classify PA intensity in pre-schoolers. 

Children and adolescents 

A higher compliance for wrist-worn versus hip-worn devices 

has been reported in children/adolescents [114]. However, similar 

wear time was achieved in protocols using 24h waist-worn com-

pared to 24h wrist-worn accelerometers [168].  

In regards to cut-points to classify time in SB and PA intensity, 

non-dominant wrist placement achieved a lower ROC-AUC (0.64-

0.89) [70] compared to the dominant wrist (0.83-0.94) [123] and hip 

(>0.90) for all cut-points [69,108]. Furthermore, Hildebrand et al. 

[61] found a greater percentage of the explained variance when us-

ing algorithms from the hip compared to the wrist (78% for hip; 71% 

for wrist).  

Previously developed sleep algorithms for the wrist placement 

were tested on the hip and wrist by Hjorth et al. [164]. They obtained 

an classification accuracy between 86.6% and 89.9% for the algo-

rithms tested (developed with GT1M) [38,39] in hip compared to 

wrist measurement. Hip placement overestimated total sleep time 

compared to the wrist (60.1 vs. 73.8 min per day for wrist and hip, 

respectively). Finally, Tudor-Locke et al. [110] developed an algo-

rithm to identify bedtime for the hip-worn GT3X/+, and Barreira et 

al. [111] refined and validated these in a free-living environment 

against self-reported participant logs, where they obtained a non-sig-

nificant absolute difference of 9±36 min. 

Figure 9 
Percentage of the 235 included pa-
pers that did not report key meth-
odological issues, separated by age 
group. 

Abbreviations in this page: 
PA: physical activity 
ROC-AUC: receiver operating 
characteristic area under the 
curve 
SB: sedentary behaviour 
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Adults 

Minimal differences between contralateral hips were found for 

VMCounts (effect size: 0.016, p=0.619) and wear time (effect size: 

0.040, p=0.213) [136]. The reliability of the GT3X/+ attached to the 

hip, wrist and ankle was studied by Ozemek et al. [165], who found 

high correlations from 0.824 to 0.998 in VMCounts between pairs of 

devices under simulated activities of daily living.  

Staudenmayer et al. [115] demonstrated greater accuracy for 

PA classification when the device was placed on the wrist compared 

to previously developed cut-points with the accelerometer placed on 

the hip. Additionally, they found that newly-developed algorithms 

could also categorize behaviours in a lab setting (e.g., sitting, stand-

ing, riding in a vehicle, walking, and running) better for the wrist 

compared to the hip placement. Ellis et al. [118] achieved better per-

formance with a wrist model to predict household simulated activi-

ties, however, the hip model outperformed the wrist model on loco-

motion prediction (i.e., slow walk, brisk walk and jogging) as well as 

PAEE estimation. In contrast, Ellis et al. [127] and Hildebrand et al. 

[61] obtained a higher accuracy (5% more on average) and a larger 

explained variance (81% for hip vs. 75% for wrist), respectively for 

the hip compared to the wrist placement to classify PA type and in-

tensity. Stec et al. [161] found a significant correlation between 

VMCounts and TEE from hip but not from wrist worn accelerometers 

during resistance exercise (Pearson correlations for hip=0.50, 

p=0.005; and wrist=-0.25, p=0.18).  

In regards to step counting, Tudor-Locke et al. [167] found 

higher accuracy for step counting from hip compared to wrist de-

vices in controlled conditions against direct observation. No data 

about placement comparisons were found in adults for sleep-related 

behaviour estimations. 

Older adults 

The hip has been the most commonly used placement for stud-

ies in older adults. Only one study by Choi et al. [122] placed the GT3X 

on the dominant wrist to validate their non-wear time algorithm. 

However, we found no data comparing different device placement in 

this age group for any of the accelerometer outcomes.  

Sampling frequency 

Due to an insufficient number of studies this section data from 

all age groups are combined. GT3X records accelerations at a sam-

pling frequency of 30 Hz. However, with the release of GT3X+, the 

manufacturer allowed users to select the sampling frequency be-

tween 30 and 100 Hz. Brønd and Arvidsson [169] demonstrated that 

sampling frequency had an effect on activity counts (i.e., a difference 

of +90 CPM for a slow walk, +180 CPM for a fast walk, +103 CPM for 

Abbreviations in this page: 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
VMCounts: activity counts in the 
vector magnitude 
TEE: total energy expenditure 
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a slow run and +1601 CPM for a fast run at a sampling frequency of 

40 Hz compared to 30 Hz). Since the filtering process was developed 

for 30 Hz, sampling frequencies in multiples of 30 produce the most 

accurate estimates. Particularly, these authors [169] observed that 

30, 60 or 90 Hz produced similar VACounts whereas sampling fre-

quencies at 40, 50, 70, 80 or 100 Hz offset the filter resulting in an 

increased number of VACounts.  

Age group Hip Dominant wrist Non-dominant wrist 

Pre-schoolers VM VA VM VA VM VA 

Cut-points [125,126,128,1
52] 

[125,126,128,139,14
2,145,146,152] 

Not found Not found [124]a [124]a 

PAEE [128,162] [139] Not found Not found Not found Not found 
Sleep Not found Not found Not found Not found Not found Not found 

Children and 
adolescents 

VM VA VM VA VM VA 

Cut-points [61,69,108,117,
126,147] 

[68,69,148,150,154,
155,126,132–
134,137,140,143,14
4] 

[123] [123] [61,70] [70] 

PAEE [61,112,117,16
3] 

[68,112,113,134,140
,144,150,157] 

Not found Not found [61] Not found 

Sleep Not found [110,111] Not found [38] Not found [38] 

Adults VM VA VM VA VM VA 

Cut-points [107,117,153] [37,131,133,137,138
,149] 

[115]b Not found [61] Not found 

PAEE [61,107,117,11
8,161] 

[37,117,158] Not found Not found [61,118] Not found 

Sleep Not found Not found Not found [38,39] Not found [38,39] 

Older adults VM VA VM VA VM VA 

Cut-points [116,117,156] [109,116,117,133,13
7,138,141,151,156] 

Not found Not found Not found Not found 

PAEE [117] Not found Not found Not found Not found Not found 
Sleep Not found Not found Not found [39] Not found [39] 
a Cut-points developed on the left wrist 
b Algorithm developed with machine learning, not usual cut-points 

Valid day and valid week 

We cannot present the information in this section separately 

for each age group due to the lack of studies. As Toftager et al. [170] 

reported, increasing the requirements for what is considered a valid 

day (i.e., the number of hours per day) and a valid week (i.e., the num-

ber of valid days with valid data) led to a decrease in sample size and 

therefore the study’s power.  

In the National Health And Nutrition Examination Survey 

(NHANES) 2003-2006, where participants wore accelerometers dur-

ing waking hours, only 40%-70% of them achieved a minimum of 10 

hours/day of wear time for ≥6 days, while in the NHANES 2011-

2012, where participants were asked to wear the accelerometers 24 

hours/day, the wear time achieved was 21-22 hours/day for ≥6 days 

[171].  

Aadland et al. [135] examined how many days were needed to 

obtain an intraclass correlation coefficient (ICC) of 0.80 with differ-

ent hours per day wear time criteria (≥8 hours/day, ≥10 hours/day 

and ≥12 hours/day). ICCs for a single day did not differ much for all 

variables when the wear time criteria increased (i.e., ICCs=0.20-0.53 

for ≥8 hours/day, ICCs=0.21-0.53 for ≥10 hours/day, ICCs=0.23-0.52 

Table 6 
Studies developing cut-points for 
sedentary behaviour and physical 
activity intensity classification, 
PAEE, and sleep algorithms used in 
the articles reviewed and ordered by 
age group. 

Abbreviations in this page: 
CPM: counts per minute 
ICC: intraclass correlation coef-
ficient 
NHANES: National Health And 
Nutrition Examination Survey 
PAEE: physical activity-related 
energy expenditure 
VACounts: activity counts in 
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VA: vertical axis 
VM: vector magnitude 
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for ≥12 hours/day). The number of days needed for an ICC of 0.80 

decreased with a more demanding wear time criterion (from 8.3 to 

6.4 days for time in SB; from 4.4 to 3.7 days for LPA; and from 8.5 to 

7.0 days for MVPA, all adjusted for wear time). Although the registra-

tion period is usually one week, two weeks were analysed in the 

aforementioned study. Also, Donaldson et al. [172] reported that 4 

days of measurement would be comparable to one week for estimat-

ing time in SB (r2=0.91). 

Filter 

Pre-schoolers 

No data about the influence of the filter selected (i.e., normal vs. 

LFE) was found in pre-schoolers. 

Children and adolescents 

Hjorth et al. [164] used normal and LFE filters on GT3X+ data 

from hip mounted accelerometers during the night. Total activity 

counts were (on average) 2815 counts per night period higher with 

the LFE filter compared to the normal one. Assuming 8h of sleep, this 

means approximately 6 CPM more when the LFE filter is enabled. 

Therefore, total sleep time was 9 min per night higher with the nor-

mal filter compared to the LFE filter when using a hip mounted 

GT3X+.  

Adults 

Lyden et al. [173] found the normal filter more accurate com-

pared to the LFE filter to identify time in SB and breaks in SB with 

hip-placed GT3X against direct observation. Ried-Larsen et al. [174] 

and Cain et al. [175] observed less SB and more PA with the LFE filter 

enabled. Non-wear time estimation was similar between filters in the 

study published by Cain et al. [175]. For sleep-related behaviours, 

Cellini et al. [176] found similar results for total sleep time and sleep 

efficiency with both filters in a short sleeping time of 2 hours. The use 

of LFE filter increased the step count by an average of approximately 

6000 steps per day in free-living [167].  

Older adults 

Wanner et al. [177] observed a mean difference of +37.8±19.5 

CPM when enabling the LFE filter compared to the normal filter. 

Therefore, less time in SB and more time in all PA intensities were 

observed with the LFE filter due to the influence on activity counts. 

The normal filter appears to be more accurate than the LFE filter 

when compared with the NL-100 pedometer [178].  

 

 

Abbreviations in this page: 
CPM: counts per minute 
ICC: intraclass correlation co-
efficient 
LFE: low-frequency extension 
LPA: light physical activity 
MVPA: moderate-to-vigorous 
physical activity 
SB: sedentary behaviour 
 



Study I 

Page 93 of 385 

Epoch length 

Pre-schoolers 

We did not find any information on the influence of epoch 

length on accelerometer output in pre-schoolers. However, several 

studies used a 5 s epoch based on the belief that the activity pattern 

of very young children is intermittent and shorter epoch lengths 

might be suitable to capture very short bouts of movement [124–

126,179]. 

 

 
Table 7 
Cut-points for SB, LPA, MPA, VPA and VVPA activity used in the articles reviewed and ordered by age-group in which 
they were validated 
Age group / reference Placement Filter Epoch Axis SB  LPA MPA VPA VVPA 

Pre-schoolers          

Butte et al. [128]  Right hip Normal 60 s VA ≤ 240 2120-4449 - - ≥4450 
    VM ≤ 820 3908-6111 - - ≥6112 
Costa et al. [125] Right hip LFE 5 s VA ≤ 5 - ≥ 165 - - 
    VM ≤ 96.12 - ≥ 361.94 - - 
Jimmy et al. [126] Right hip Normal 5 s VA - - ≥ 133 134-193 194-233 
    VM - - ≥ 246 247-316 317-381 
Johansson et al. [124] Left wrist Normal 5 s VA ≤ 89 90-439 - ≥ 440 - 
    VM ≤ 221 222-729 - ≥ 730 - 
Pate et al. [139]a Right hip Not reported 15 s VA ≤ 37 38-419 420-841 ≥ 842 - 
Pulakka et al. [152]  Right hip Normal 15 s VA - - ≥ 35 - - 
    VM - - ≥ 208 - - 
Reilly et al. [142]a Right hip Not reported 60 s VA ≤ 274 - - - - 
Sirard et al. [145]a          
3 years old Right hip Not reported 15 s  VA ≤ 301 302-614 615-1230 ≥ 1231 - 
4 years old     ≤ 363 364-811 812-1234 ≥ 1235 - 
5 years old     ≤ 398 399-890 891-1254 ≥ 1255 - 
Van Cauwenberghe et al. 
[146]b 

Right hip Not reported 15 s VA ≤ 372 373-584 585-880 ≥ 881 - 

Children and adolescents 

Aittasalo et al. [147]b Hip Not reported 
Raw: 
100 Hz 

VM ≤26.9 mg 27-332 mg 332-558 mg ≥558 mg - 

Andersen et al. [143]a Hip Not reported 60 s VA ≤499 500-1999 2000-2999 3000-4499 4500-32767 
Chandler et al. [70] Non-dominant wrist Normal 5 s VA ≤ 161 162-529 530-1461 ≥ 1462 - 
    Axis 2 ≤ 132 133-445 446-998 ≥ 999 - 
    Axis 3 ≤ 113 114-372 373-776 ≥ 777 - 
    VM ≤ 305 306-817 818-1968 ≥ 1969 - 
Crouter et al. [123] 
(ROC analysis) 

Dominant wrist LFE 5 s VA ≤ 105 - 262-564 ≥ 565 - 

    VM ≤ 275 - 416-777 ≥ 778 - 
Crouter et al. [123] 
(regression analysis) 

Dominant wrist LFE 5 s VA ≤ 35 36-360 361-1129 ≥ 1130 - 

    VM ≤ 100 101-609 610-1809 ≥ 1810 - 
Freedson et al. [140]a Right hip Not reported 60 s VA ≤ 149 150-499 500-3999 4000-7599 ≥7600 
Grydeland et al. [148] Right hip LFE 60 s VA ≤ 100 101-2000 2001-6000 ≥ 6001 - 
Hänggi et al. [108] Right hip Normal 1 s VM ≤ 2 3-56 ≥56 - - 

Hildebrand et al. [61]b Right hip Not reported 
Raw: 60 
Hz. 

VM - ≤ 142 mg 142-464 mg ≥ 464 mg - 

 Non-dominant wrist Not reported   - ≤ 201 mg 201-707 mg ≥ 707 mg - 

Jimmy et al. [126] Right hip Normal 5 s VA - - - 
5 METs: 193 
6 METs: 233 

- 

    VM - - - 
5 METs: 316 
6 METs: 381 

- 

Matthews et al. [133]a Right hip Not reported 60 s VA ≤ 100 - - - - 
Mattocks et al. [150]a Right hip Not reported 60 s VA - - 3581-6129 ≥ 6130 - 
Puyau et al. [144]a Right hip Not reported 15 s VA ≤ 199 200-799 800-2049 ≥ 2050 - 
Ridgers et al. [132]b Right hip Not reported 60 s VA ≤ 100 - - - - 
Romanzini et al. [69] Hip Not reported 15 s VA ≤ 46 47-606 607-817 ≥ 818 - 
    VM ≤ 180 181-756 757-1111 1112 - 
Santos-Lozano et al. [117] Right hip Normal 60 s VM - - ≤ 2114 2115-6548 ≥ 11490 
Treuth et al. [134]a  Right hip Not reported 30 s VA ≤ 50 51-1499 1500-2600 > 2600 - 
 Right hip Not reported 60 s VA ≤ 100 101-2999 3000-5200 > 5200 - 
Troiano et al. [137] Right hip Not reported 60 s VA ≤ 100 101-2019 2020-5998 ≥5999 - 
Vanhelst et al. [154]b Hip Not reported 60 s VA ≤ 400 401-1900 1901-3918 ≥ 3919 - 
Zhu et al. et al. [155] Right hip Not reported 60 s VA - - 2860-3839 ≥ 3840 - 

Abbreviations in next page: 
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Table 7 – continued 
Cut-points for SB, LPA, MPA, VPA and VVPA activity used in the articles reviewed and ordered by age-group in which 
they were validated 

Age group / reference Placement Filter Epoch Axis SB  LPA MPA VPA VVPA 

Adults 

Freedson et al. [37]a Right hip Not reported 60 s VA ≤ 99 100-759 760-5724 5725-9498 ≥ 9499 

Hildebrand et al. [61]b Right hip Not reported 
Raw: 60 
Hz. 

VM - ≤ 69 mg 69-259 mg ≥ 260 mg - 

 Non-dominant wrist Not reported   - ≤ 101 mg 101-429 mg ≥ 430 mg - 
Kozey-Keadle et al. [131] Right hip LFE 60 s VA ≤ 150 - - - - 
Matthews et al. [180]a Right hip Not reported 60 s VA - - 760-5998 ≥ 5999 - 
Matthews et al. [133]a Right hip Not reported 60 s VA ≤ 100 - - - - 
Metzger et al. [138]a Right hip Not reported 60 s VA < 100 100-2019 - - - 
Santos-Lozano et al. [117] Right hip Normal 60 s VM - - ≤ 3208 3209-8565 ≥ 11593 
Sasaki et al. [107] Right hip Normal 60 s VM - ≤ 2690 2691-6166 6167-9642 ≥ 9643 
Troiano et al. [137]a Right hip NR 60 s VA ≤ 100 101-2019 2020-5998 ≥ 5998 - 

Older adults          

Aguilar-Farias et al. [116] Right hip LFE 1 s VA < 1 - - - - 
   15 s  ≤ 9 - - - - 
   60 s  ≤ 24 - - - - 
   1 s VM < 1 - - - - 
   15 s  ≤ 69 - - - - 
   60 s  ≤ 199 - - - - 
Copeland et al. [109]a Right hip Not reported 60 s VA ≤ 99 100-1040 ≥ 1040 - - 
Davis et al. [141]a Right hip Not reported 60 s VA ≤ 199 200-1999 2000-3999 ≥ 4000 - 
Kozey-Keadle et al. [131] Right hip LFE 60 s VA ≤ 150 - - - - 
Matthews et al. [133]a Right hip Not reported 60 s VA ≤ 100 - - - - 
Metzger et al. [138] Right hip LFE 60 s VA ≤ 149 150-2019 ≥ 2020 - - 
Pruitt et al. [151] Right hip Not reported 60 s VA - - - - - 
Santos-Lozano et al. [117] Right hip Normal 60 s VM - - ≤ 2751 2752- 9359 ≥9360 
Troiano et al. [137]a Right hip Not reported 60 s VA ≤ 100 101-2019 2020-5998 ≥ 5998 - 
Zisko et al. [156]          
Men Right hip Not reported 60 s  VA ≤ 55 56-266 267-1971 1972-3878 ≥ 3879 
    VM ≤ 610 611-1652 1653-3016 3017-4581 ≥ 4582 
Women    VA ≤ 59 60-212 213-1217 1218-3157 ≥ 3158 
    VM ≤ 464 465-1076 1077-2424 2425-4078 ≥ 4079 
a Cut-points developed with the 7164 or the GT1M model (ActiGraph, Pensacola, FL, USA) 
b Cut-points not expressed in counts, but in other units 

Children and adolescents 

Aibar et al. [181], compared the effect of different epoch lengths 

(3-60 s) on PA intensity, and found a progressive decrease in the time 

spent in MVPA intensity as the epoch length increased. Furthermore, 

they found that smaller epoch lengths increased the resolution of the 

measure, thus increasing the time spent in VPA intensity [181]. They 

suggested to use shorter epoch lengths (e.g., 3-15 s) in children. 

Adults 

No information on epoch length was found for adults.  

Older adults 

No information on epoch length was found for older adults. 

Non-wear time definition 

Pre-schoolers 

No information on non-wear time was found for pre-schoolers. 

Children and adolescents 

Toftager et al. [170] showed that the longer the non-wear time 

duration the greater the number of participants that were included 

in the analyses. Furthermore, as the non-wear time duration in-

creased the average CPM decreased (e.g., average PA level: 641 CPM 

with strings of 10 min of consecutive zeros compared to 570 CPM 
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with strings of 90 min of consecutive zeros) [170]. Since Toftager et 

al. [170] compared different non-wear time definitions without a cri-

terion, it is not possible to conclude which algorithm was more or 

less valid. 

Adults 

Peeters et al. [182] compared six different definitions of non-

wear time (i.e., 20, 60 and 90 min with and without allowance of 2 

min of low accelerations). It was observed that 20 min of 0 CPM with-

out allowing for interruptions resulted in a lower misclassification 

(5.9%) and a similar ROC-AUC (0.94) than 60 min (6.7%, ROC-

AUC=0.94) and 90 min (7.4%, ROC-AUC=0.93) [182]. However, in 

these conditions, more participants did not meet the non-wear time 

criteria (32 out of 34 participants, i.e., 6% sample loss) compared to 

60- or 90-min algorithms (33 and 34 out of 34 participants, i.e., 3% 

and 0% sample loss, respectively).  

Older adults 

Keadle et al. [120] compared the Troiano et al. algorithm [137], 

which uses a minimum of 60 min of 0 CPM with an allowance of 2 

min of interruptions, with the Choi et al. algorithm [183], which uses 

a minimum of 90 min of 0 CPM with the same allowance as the 

Troiano algorithm plus two 30 min windows of 0 CPM before and af-

ter that allowance. They concluded that the algorithm by Choi et al. 

[183] was the best to identify wear time compared with diary rec-

ords of the participants. The same conclusion was obtained in a later 

study by Choi et al. [122], especially when this algorithm was imple-

mented for wrist-worn accelerometers, because the wrist placement 

is more sensitive to detect non-wear time than the hip [122].  

Registration period: waking vs. 24-hours 

Due to an insufficient number of studies this section combines 

all age groups. Recent large scale studies such as NHANES (2011-

2012) and the International Study of Childhood Obesity, Lifestyle and 

Environment (ISCOLE) 2012-2013 [184] have used a 24-hour proto-

col (24h). Tudor-Locke et al. [168] found higher wear time compli-

ance with 24h protocols compared to waking hour protocols, with 

this finding being consistent across different countries.  

Sedentary behaviour and physical activity intensity classification 

Pre-schoolers 

Two studies comparing several cut-points developed from the 

VACounts from hip mounted devices were found [179,185]. Janssen 

et al. [185] supported the use of Evenson et al. [68] SB cut-point due 

to the higher classification accuracy compared to other cut-points 

[139,142,144,145,186], and recommended that the Pate et al. [139] 

cut-points are the best option for MVPA (all of them were developed 

with former models of ActiGraph). However, Kahan et al. [179] 
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observed, in a small sample size (n=12), that Sirard et al. [145] cut-

points showed the best agreement with direct observation for time 

in SB and MVPA compared to other cut-points [68,139,186] devel-

oped with former models of ActiGraph. 

Four studies developed cut-points for time in SB and PA inten-

sity for VMCounts from accelerometers worn on the hip 

[125,126,128,152]. Butte et al. [128] developed their cut-points us-

ing a 60 s epoch considering energy expenditure cut-points estab-

lished through smoothing splines and ROC curves. The cut-points de-

veloped by Costa et al. [125] used 5 and 15 s epochs and were vali-

dated against direct observation. Jimmy et al. [126] developed and 

validated their cut-points utilizing a 5 s epoch based on indirect cal-

orimetry. Pulakka et al. [152] developed one cut-point to differenti-

ate SB/LPA from MVPA (they did not differentiate MPA from VPA, as 

done in the aforementioned cut-points) and validated it against di-

rect observation. All of these studies obtained high ROC-AUC (0.89-

0.98 for all cut-points). 

Finally, Johansson et al. [124] was the only study that devel-

oped and validated cut-points for VMCounts from a wrist-worn ac-

celerometer against direct observation in young pre-schoolers (15-

36 months) obtaining a ROC-AUC of 0.89-0.98. 

Children and adolescents 

Zhu et al. [155] compared a set of cut-points for estimating time 

in SB and PA intensity developed using the VACounts, with the accel-

erometer worn on the hip in a sample of Chinese children. The au-

thors observed a better accuracy with the cut-points proposed by 

Evenson et al. [68], Vanhelst et al. [154] and those internally devel-

oped [155] than with the rest of the cut-points tested [140,144,150] 

(all these cut-points were developed with former models of Acti-

Graph). 

Five studies developed cut-points for VMCounts from the hip 

[69,108,126,187]. Peterson et al. [187] suggested that 150 CPM from 

hip mounted accelerations is the most accurate SB cut-point com-

pared with direct observation. Hänggi et al. [108] developed their 

cut-points using a 1 s epoch in comparison with indirect calorimetry 

and obtained a ROC-AUC of 0.96 for SB, LPA and MPA. These cut-

points [108] obtained better correlations with other brands of accel-

erometers than other VACounts-based cut-points [188]. Jimmy et al. 

[126] developed cut-points utilizing a 5 s epoch against indirect cal-

orimetry and attained a ROC-AUC ranging from 0.89 to 0.94 for all 

intensities. Romanzini et al. [69] validated cut-points using a 15 s 

epoch against indirect calorimetry and obtained a ROC-AUC of 0.93-

0.99. Finally, Santos-Lozano et al. [117] validated cut-points utilizing 

a 60 s epoch against indirect calorimetry and found the lowest ROC-

AUC (0.6-0.8). 
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VM cut-points from the wrist placement were developed in 

three studies [61,70,123]. Chandler et al. [70] validated cut-points 

for the non-dominant wrist using a 5 s epoch against direct observa-

tion and attained a ROC-AUC ranging between 0.64-0.89. A higher 

ROC-AUC was obtained by Crouter et al. [123] using cut-points for 

the dominant wrist which were developed in a 5 s epoch against in-

direct calorimetry (ROC-AUC of 0.83-0.94). It is important to high-

light that Crouter et al. [123] applied linear regression models to the 

dominant wrist and obtained non-significant differences between 

the accelerometer outputs and indirect calorimetry (mean biases 

ranged from 2.2% to 8.4% for all cut-points).  

Finally, we found two studies using metrics extracted directly 

from raw data instead of activity counts by ActiGraph. Aittasalo et al. 

[147] developed a method based on amplitude of accelerations from 

the hip’s raw accelerations. These cut-points were validated against 

heart rate monitoring using an ordinal logistic regression and 

showed a correlation coefficient of 0.97. However, these results must 

be interpreted carefully since only were walking and running at dif-

ferent intensities were used during the development of the intensity 

cut points. Hildebrand et al. [61] used a linear regression analysis to 

establish the relation between an acceleration metric based on raw 

data (i.e., ENMO) and energy expenditure measured through indirect 

calorimetry. Then, from the developed regression equations, they de-

fined two sets of cut-points for the hip and the non-dominant wrist. 

They obtained correctly classified values between 96-97% for SB and 

LPA, 33-55% for MPA and 68-80% for VPA. 

Adults 

Kozey-Keadle et al. [131] tested some VACounts-based cut-

points and determined that 150 CPM using the VACounts from hip 

accelerations was the most accurate SB cut-point compared with di-

rect observation. Santos-Lozano et al. [117] validated cut-points for 

PA intensity against indirect calorimetry and obtained a ROC-AUC 

between 0.6-0.8. Sasaki et al. [107] used a linear regression model to 

establish the relation between ActiGraph VMCounts from the hip and 

energy expenditure measured by indirect calorimetry. The mean dif-

ferences between the METs predicted by the cut-points derived from 

the regression model and the actual METs were -0.3, -0.4 and 0.7 at 

MPA, VPA and VVPA intensities respectively.  

Three studies developed cut-points from raw data metrics. 

Vähä-Ypyä et al. [153] developed an amplitude-domain method for 

raw hip accelerations. The cut-points were validated against heart 

rate monitoring and showed an excellent agreement (ROC-AUC=0.99 

for all cut-points), however, they were not used during free-living 

conditions. Hildebrand et al. [61] validated regression models for the 

hip and the non-dominant wrist against indirect calorimetry and 
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defined cut-points from the regression equations generated. They 

obtained correctly classified values between 93-96% for SB and LPA, 

54-59% for MPA and 89-92% for VPA. Finally, Staudenmayer et al. 

[115] developed a classifier for PA intensity based on decision trees 

for the dominant wrist and they obtained 75% of values correctly 

classified using indirect calorimetry. Within this context, they re-

ported preliminary results that their model performs well in a free-

living environment [115]. 

Older adults 

Keadle et al. [120] observed that cut-points using the VACounts 

or VMCounts are not comparable. Unfortunately, they could not re-

port which cut-points were the most accurate since they did not de-

termine a criterion to compare the outcomes [120]. Aguilar-Farias et 

al. [116] validated SB cut-points utilizing VMCounts acquired from 

the hip with 1, 15 and 60 s epochs against ActivPAL3TM (Pal Technol-

ogies Ltd., Glasgow, UK) and found a high classification accuracy 

(ROC-AUC of 0.82, 0.85 and 0.86 for 1, 15 and 60 s epochs respec-

tively). Santos-Lozano et al. [117] validated MPA, VPA and VVPA cut-

points against indirect calorimetry and obtained a ROC-AUC of 0.7 

for all intensities examined. 

Physical activity-related energy expenditure algorithms  

Ten studies that developed PAEE algorithms were found 

[61,107,112,117,118,128,161–163,185]. Due to an insufficient num-

ber of studies that used doubly labelled water or room calorimetry 

as criteria, this section combines age groups. Only two studies vali-

dated their algorithms against doubly labelled water or room calo-

rimetry in pre-schoolers. Butte et al. [128] developed cross-sectional 

time series and multivariate adaptive regression splines to predict 

PAEE using both GT3X+ and heart rate monitoring. They validated 

the algorithms under controlled conditions in room calorimetry and 

in free-living conditions utilizing doubly labelled water [128]. The 

multivariate adaptive regression splines obtained a better prediction 

of PAEE against room calorimetry, i.e., inter-method mean difference 

equal to 0.006±0.085 kcal/min, however, the cross-sectional time se-

ries model achieved a better prediction in free-living conditions, us-

ing doubly labelled water (mean difference 41±97 kcal/day) [128]. 

Zakeri et al. [162] used the same two statistical methods described 

above with GT3X/+ and heart rate monitoring. They obtained better 

prediction with the cross-sectional time series model against room 

calorimetry (i.e., 0.001±0.070 kcal/min), but they did not validate the 

method in a free-living environment [162]. All these studies were 

carried out with hip-worn GT3X/+. 

Abbreviations in this page: 
LPA: light physical activity 
MPA: moderate physical activity 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
ROC-AUC: receiver operating 
characteristic area under the 
curve 
SB: sedentary behaviour 
VACounts: activity counts in the 
vertical axis 
VMCounts: activity counts in the 
vector magnitude 
VPA: vigorous physical activity 
VVPA: very vigorous physical 
activity 
 



Study I 

Page 99 of 385 

Sleep-related behaviours 

Pre-schoolers 

We did not find any study comparing different sleep algorithms 

in this age group. Only Meredith-Jones et al. [189] used the Sadeh et 

al. [38] sleep algorithm to identify sleep time in pre-schoolers. How-

ever, this algorithm was developed in an older sample (10-25 years), 

and the results should be interpreted cautiously. 

Children and adolescents 

Hjorth et al. [164] compared the performance of existent sleep 

algorithms from the hip versus the non-dominant wrist placements. 

Despite the fact that these algorithms were developed for wrist ac-

celerations, they obtained good accuracy (86.6-89.9%) [38,39] at 

both placements; however, the hip-worn device overestimated total 

sleep time compared to the wrist (60.1-73.8 min per day). These find-

ings may be affected by the fact that bedtime was reported by partic-

ipants using diaries and not through an algorithm. 

Tudor-Locke et al. [110] developed an algorithm to detect 

bedtime for the hip-worn GT3X/+, and Barreira et al. [111] refined 

and validated it in a free-living environment against self-reported 

bedtime. They obtained a non-significant absolute difference of 9±36 

min of bedtime per night [111]. 

Adults 

Cellini et al. [176] found an accuracy of 82.8% for classifying 

epoch-by-epoch sleep or awake status against polysomnography 

(i.e., the gold standard to measure sleep patterns) using the Sadeh et 

al. [38] sleep algorithm. However, they found an overestimation of 

total sleep time (i.e., inter-method mean difference equal to 8.80 

minutes) and sleep efficiency (i.e., inter-method mean difference 

equal to 14.53%), as well as an underestimation of sleep onset la-

tency (ICC=0.56) and awakenings after sleep onset (ICC=0.54) dur-

ing a two-hour sleep protocol. Rosenberger et al. [190] observed a 

mean difference of 4 min of sleep time for the Sadeh et al. [38] sleep 

algorithm compared to the Z-machine (portable monitor to measure 

brain activity which is relatively comparable to polysomnography 

[191]). Equally, Slater et al. [166] reported good accuracy of the 

Sadeh et al. [38] algorithm to detect total sleep time and moderate 

validity for awakenings after sleep onset against polysomnography 

from the wrist, but not from the hip. Finally, Zinkhan et al. [192] 

tested the performance of the Cole et al. [39] algorithm for the hip, 

even though it was developed for wrist accelerations. They observed 

a limited agreement with total sleep time measured by polysomnog-

raphy (mean difference of 81.1 min per night). 
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Older adults 

No data about sleep algorithms were found in the papers re-

viewed for older adults. 

Step counting 

Only data on step counting estimated by ActiLife software are 

available in adults. Tudor-Locke et al. [167] found a higher accuracy 

for step counting from the hip mounted monitors over wrist moun-

ted ones under controlled conditions against direct observation. Un-

der free-living conditions, the wrist-worn accelerometer detected 

more steps than the hip-worn one independently of the filter used. 

See the Filter sections for more information about how different fil-

ters influence step counting [167]. 

Discussion 

The use of objective methods when assessing time in SB, PA, 

PAEE and sleep in various research settings has increased enor-

mously as indicated by the large number of articles included in this 

review. Accelerometry has several advantages over questionnaires 

and self-report methods [31,104], however data collection and pro-

cessing criteria have a large impact on the interpretation of the data. 

Thus, predetermined decisions about data collection and processing 

in relation to the study participants and the objective of the study are 

important when planning research in this area.  

A major finding of this review is that many of the studies did 

not report on key methodological issues. Therefore, data cannot be 

accurately compared between studies and readers may have difficul-

ties interpreting how various methodological decisions may have in-

fluenced the main findings/conclusions. We recommend that future 

studies should report the complete set of criteria included in the pre-

sent review in order to improve data comparability and reproduci-

bility.  

The next subsections provide practical considerations for every 

criterion based on the critical information extracted from the valida-

tion/calibration studies reviewed. 

Device placement 

Traditionally, cut-points to assess time in SB and PA variables, 

as well as PAEE estimates, were developed with the device placed on 

the hip, while algorithms to assess sleep-related behaviours were 

more commonly developed based on wrist accelerations. Ideally, re-

searchers may want to collect accelerometer data using a 24-hour 

protocol with one accelerometer attached to either the hip or the 

wrist and be able to estimate time in SB, PA and sleep-related behav-

iours. However, lack of validated algorithms in some age groups 

[61,70,110,111,115,123] preclude this.  

Abbreviations in this page: 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SB: sedentary behaviour 



Study I 

Page 101 of 385 

We decided not to differentiate between the right or left hip be-

cause no significant differences were found by Aadland et al. [136]. 

We consider that both the hip and the wrist are feasible places to at-

tach the GT3X/+. Better compliance for wrist compared to hip worn 

devices has been reported in children and adolescents [114], but 

similar wear time was found in large-scale studies in adults using hip 

and wrist placements [168]. We therefore cannot confirm the general 

belief supporting better compliance for wrist-worn devices. More 

studies are needed to investigate compliance differences between 

wrist- and hip-worn devices as well as the extent to which these dif-

ferences influence the validity and reliability of accelerometer out-

comes.  

There are only a few studies directly comparing two placement 

sites using the GT3X/+ and they have consistently shown more accu-

rate classification of time in SB and PA intensity as well as estimates 

of PAEE when the accelerometer was worn on the hip compared to 

the wrist [61,69,70,108,118,123,161]. However, one study found a 

better performance for the wrist-worn device for PA intensity classi-

fication [115], see Table 5. Step count also differs greatly depending 

on the device placement, i.e., more steps (>2500) were counted when 

wearing the accelerometer on the wrist compared to the hip in free-

living conditions [167]. When studied under controlled conditions, 

hip placement has shown more accurate step counting than wrist 

placement from a speed of 54 m/min and upwards (at lower speeds, 

accuracy was better in the wrist) [167]. The lower accuracy for the 

wrist-worn devices could be due to the fact that accelerations such 

as brushing teeth might be interpreted as steps when the device is 

placed on the wrist, but not on the hip, nevertheless, this is just a hy-

pothesis that needs to be confirmed by data under free-living condi-

tions.  

In regards to sleep algorithms, Hjorth et al. [164] compared the 

functioning of two algorithms applied to hip data against wrist data, 

finding an overestimation of the sleep time and a high accuracy (86.6 

and 89.9 for each algorithm) from the hip compared to the wrist. 

However, it is important to note that these investigators imputed 

sleep and wake time manually from logs kept by the participants. The 

use of logs by the participants might explain the high accuracy 

achieved using a wrist-developed sleep algorithm on the hip. 

Sampling frequency 

Our recommendation is to use the highest sampling frequency 

possible, as we cannot anticipate future data processing needs. How-

ever, given the issues associated with other sampling frequencies 

other than 30 Hz or its multiples as described in the Sampling fre-

quency section, sampling frequencies in multiples of 30 Hz seem to 

produce more accurate estimates when processing the signal using 
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the methods proposed by ActiGraph. Therefore, the most reasonable 

conclusion for the time being would be to use 90 Hz when research-

ers are using the manufacturer methods, and 100 Hz when research-

ers are filtering and processing the signal on their own.  

Valid day and valid week 

To ensure that data are representative of an entire day, it is nec-

essary to establish how many hours of wear time are required. It is 

also necessary to set how many valid days are needed to be repre-

sentative of the total assessment period, which is usually one week 

(7 complete days). Wear time criteria for a valid day depends on the 

registration period, i.e., waking hours or 24-hours. In studies in 

which the accelerometer is worn for 24-h periods to assess both PA 

and sleep-related behaviours, the number of hours required for a day 

to be considered valid has to be larger than studies in which the ac-

celerometer was taken off at night.  

Similarly, increasing requirements for a valid day and a valid 

week provides more reliable data (more information can be found in 

Table 7 from the study by Aadland et al. [135]), however, it results 

in greater sample loss. Our recommendation is to test different crite-

ria to get the best compromise between sample size (and therefore 

optimal statistical power) and reliability of the measure. However, a 

minimum of 4 days of valid data is recommended as was suggested 

in a previous systematic review [193]. 

Filter 

When movements (accelerations) occur at too low or high fre-

quencies, ActiGraph interprets that this acceleration might not be 

compatible with human movement and should therefore be excluded 

from the analyses (e.g., if someone is using a drill). The GT3X/+ fil-

tering process to exclude this kind of acceleration is implemented in 

the ActiLife software. This software allows users to choose between 

two different filters when processing the data: normal (default) and 

LFE filters.  

The algorithms for these filters are proprietary information. It 

is known that a normal filter detects accelerations from a frequency 

range of 0.25-2.5 Hz, while the LFE filter establishes a lower thresh-

old to capture slower movements; however, it is unknown exactly 

how much lower this threshold is. A weighting function is applied to 

the accelerations between the range of 0.25-2.5 Hz, so that the full 

weight (i.e., 1.0) is given to a frequency of acceleration of 0.75 Hz, and 

lower weighting is given to higher and lower movement frequencies 

progressively [194]. Accelerations at a frequency greater than 2.5 Hz 

are removed by the filter, although it is important to highlight that 

accelerations up to 3.4 Hz can be produced by the human body when 

performing PA at vigorous intensities when the device is attached to 

the hip (higher frequencies are achieved in the wrist) [195,196]. 
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Therefore, ActiGraph’s filtering process might remove accelerations 

associated with VPA, and consequently, minutes in VPA might be 

misclassified as MPA [169,197]. As the filter used has a large impact 

on the accelerometer outputs, it is alarming that 74% of the studies 

reviewed did not report this key information (Figure 9). 

 When selecting a set of cut-points or an algorithm to estimate 

a variable from activity counts, our recommendation is to select the 

same filter that was used in the validation study for the cut-points or 

algorithm employed (Table 7 shows the filters used in all the cut-

points identified). If cut-points or algorithms are not used, then re-

searchers can decide which filter to use, we suggest using the LFE 

filter when low movements are of greater importance (e.g., when an-

alysing time in SB, sleep or PA in older adults). From the studies dis-

cussed above, researchers and practitioners should be aware that en-

abling the LFE filter compared with the normal filter will result in 

decreased time in SB, greater time in PA at all intensities and an in-

crease in the number of steps per day.  

Epoch length 

Activity counts produced by filtering raw accelerations need to 

be summed into specific time intervals or epoch in order to estimate 

PAEE, time spent in SB, in various levels of PA intensity, as well as 

estimating sleep/wake state, and this is usually done by applying 

specific intensity cut-points and algorithms. 

Given that epoch length influences activity counts, it is im-

portant to use the same epoch length that was used in the validation 

study for the cut-points or algorithms (see Table 7). Epoch length 

should also be taken into account when comparing data from differ-

ent studies. In young people (from pre-schoolers to adolescents), 

shorter epochs (1-15 s) are recommended to capture short bouts of 

activity occurring frequently in these age groups. In adults and older 

adults there are currently no data comparing the effect of epoch 

length on the outcomes studied. However, our own unpublished data 

suggest that selecting a 1 s vs. a 60 s epoch length has a marked im-

pact on the accelerometer outcomes, i.e., +45-60min/day in MVPA 

using a 1 s compared to a 60 s epoch. This large impact on the accel-

erometer outputs warrants further research on this topic in order to 

obtain more comparable and accurate data. Considering sleep meas-

urements there is an overall consensus for using a 60 s epoch (prob-

ably due to the stable movement pattern during sleep), as all sleep 

algorithms have been validated using that epoch length 

[38,39,110,111]. 

Non-wear time definition 

In free-living studies, accelerometers are usually removed dur-

ing water-based activities e.g., swimming or showering and when 

sleeping (in some studies). As a result, individuals might forget to 
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wear the accelerometer for a day(s) or part of day. Consequently, 

non-wear time must be identified (e.g., by a diary or algorithms) and 

excluded from data before analysis. Otherwise, this time is likely cat-

egorized as SB time. Generally, algorithms to detect non-wear time 

consist of intervals of time with consecutive 0 CPM with or without 

an allowance of several minutes in which small accelerations are al-

lowed, with optional windows of 0 CPM before and after this allow-

ance. Toftager et al. [170] studied the effect of different non-wear 

time definitions and concluded that the most accurate algorithm 

might differ among subgroups of children/adolescents. For example, 

studies focused on overweight adolescents might need to set a longer 

time of consecutive 0 CPM, since they have higher SB that can be mis-

classified as non-wear time. 

More studies are needed to examine the accuracy of different 

non-wear time detection algorithms in all age groups. Based on the 

reviewed studies, we cannot recommend a non-wear time definition 

for pre-schoolers, children or adolescents. For adults, 20 min of con-

secutive 0 CPM without allowance showed the lowest misclassifica-

tion error; however, it may result in slightly more loss of data (6% of 

the sample size [182]). As the accuracy between 20 min and 60 min 

of consecutive 0 CPM was similar (i.e., the ROC-AUC was virtually 

identical=0.94), we suggest to use 60 min of consecutive 0 CPM with-

out allowing for interruptions in counts in this period for adults, to 

avoid the risk of misclassification of non-wear time as SB. In older 

adults, we recommend the Choi et al. algorithm [122], which consists 

of 90 min of 0 CPM with an allowance of 2 min of activity when it is 

placed between two 30 min windows of 0 CPM. This algorithm out-

performed other algorithms on the detection of non-wear time [122] 

compared with the non-wear time reported by participants. 

Registration period: waking vs. 24-hours 

In line with recent and large-scale studies [184], we suggest 

registration periods of 24h instead of waking hours (more recording 

time, therefore more valid data). This is mainly due to an interest in 

assessing sleep-related behaviours and better compliance. 

Sedentary behaviour and physical activity intensity classification 

Traditionally, time in SB and PA intensity have been estimated 

based on the number of activity counts accumulated in a certain pe-

riod (epoch length). Cut-points are the thresholds of activity counts 

used to categorize activity as SB, LPA, MPA, VPA or VVPA. Table 7 

presents the cut-point values (expressed as counts per time unit) 

that are currently available for SB, and for LPA, MPA, VPA and VVPA 

by age group. It is important to keep in mind that although the 

GT3X/+ is a triaxial accelerometer, the data are provided separately 

for the 3 axes plus the VM, so that it is still possible to use the data 
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registered only in the VA and apply it to the previously developed 

algorithms for such axis. 

When applying cut-points to a specific data set, it is recom-

mended to follow the same data collection and processing criteria 

which were used in the original validation/calibration study (see Ta-

ble 7). All derived intensity thresholds are influenced by the activi-

ties chosen when performing the calibration studies. Thus, it is im-

possible to recommend the most appropriate set of intensity thresh-

olds for free-living assessment. Also, different generations of Acti-

Graph devices have shown to be comparable under controlled condi-

tions [107,198], but not in a free-living environment 

[107,174,175,199]. This suggests that if a certain cut-point was de-

veloped, for instance using the VACounts from the GT1M, that cut-

points may not be used for data collected with the GT3X/+ VACounts, 

since they are not fully comparable. Therefore, our recommenda-

tions are based on cut-points developed only with GT3X/+ accel-

erometers. This review shows the need for future meta-analytic stud-

ies summarizing cut-points for each age group in order to obtain a 

set of cut-points with a wide range of activities influencing its devel-

opment. Finally, across the studies reviewed, we have observed a 

widely accepted criterion to define PA intensity in the studies vali-

dating cut-points against indirect calorimetry, i.e., 1-1.5 MET for SB, 

1.5-3 MET for LPA, 3-6 MET for MPA and > 6 MET for VPA. 

The criteria considered for cut-point recommendations are: 1) 

the cut-points cover the whole activity spectrum (i.e., SB, LPA, MPA 

and VPA), 2) calorimetry as an objective criterion is better than di-

rect observation; 3) for young populations, cut-points developed in 

short epochs; 4) the number and type of activities included in the 

study that derived the cut-points; and 5) results obtained in compar-

ison with the criterion. 

Pre-schoolers experience a rapid anatomical development and 

their patterns of PA change dramatically during the first years of life; 

therefore, the age of the sample is very important in pre-schoolers. 

Thus, for the hip placement we recommend Costa et al. [125] cut-

points for early pre-schoolers (2-3 years old) and Jimmy et al. [126] 

cut-points for older pre-schoolers (4-6 years old). They have been 

developed in short epochs which enables the devices to capture small 

bouts of VPA, which is typical for this age group, while obtaining high 

accuracy in their validation. For young pre-schoolers (15-36 months) 

using the wrist placement, we recommend Johansson et al. [124] cut-

points developed using a 5 s epoch because they obtained similar ac-

curacy to hip-developed cut-points. 

For children, we recommend to use the Hänggi et al. [108] cut-

points developed in 1 s epoch for the hip. For adolescents, the Ro-

manzini et al. [69] cut-points developed utilizing a 15 s epoch 
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appears appropriate. Both of these obtained excellent classification 

accuracy (ROC-AUC > 0.90 for all cut-points) and cover almost the 

whole spectrum of PA intensities. For the dominant wrist, and work-

ing with counts data, we recommend Crouter et al. [123] cut-points 

and for the non-dominant wrist Chandler et al. [70] cut-points. If a 

researcher is interested in working directly with raw data, Hilde-

brand et al. [61] cut-points seem to be the best options since they 

were validated against indirect calorimetry and they obtained rela-

tively high accuracy, except for MPA and VPA (33-80%).  

For adults, 150 CPM measured using the VACounts from hip ac-

celerations are the best option to estimate time in SB [131]. For PA 

intensity classification, we recommend Sasaki et al. [107] cut-points 

developed utilizing a linear regression equation. Staudenmayer et al. 

[115] and Hildebrand et al. [61] cut-points are the only alternative at 

the moment to estimate PA from the dominant and the non-dominant 

wrists respectively, considering that raw data metrics have to be 

used to apply them, not activity counts. 

For older adults, we only found the SB cut-points proposed by 

Aguilar-Farias et al. [116] and the PA cut-points by Santos-Lozano et 

al. [117]. By combining these cut-points we can assess the whole 

spectrum of PA levels, which is the only option at present. 

Physical activity-related energy expenditure algorithms  

PAEE can be estimated using algorithms applied to GT3X/+ 

data. Since the same movement can produce different energy ex-

penditure depending on the characteristics of the individuals, cau-

tion is advised when interpreting PAEE estimated from accelerome-

ters. It is worth highlighting that PAEE algorithms developed in a la-

boratory or a controlled setting are influenced by the activities se-

lected in the study, while only studies under free-living conditions 

using doubly labelled water as a criterion to test validity can actually 

measure PAEE. Thus, in this review we have only focused on studies 

using doubly labelled water and room calorimetry as a criterion. 

The criteria considered for PAEE algorithm recommendations 

were: 1) free-living studies are better than lab/controlled studies; 2) 

for young populations, algorithms developed in short epochs; 3) 

whether cross-validation was performed; and 4) results obtained in 

comparison with the criterion. 

Different generations of ActiGraph devices are not fully compa-

rable in free-living conditions [107,174,175,199], thus, our recom-

mendations are based on PAEE algorithms developed only with 

GT3X/+ accelerometers. PAEE has been expressed differently across 

studies which needs to be considered when choosing a suitable algo-

rithm. Overall, our conclusion is that more validation studies during 

free-living conditions utilizing doubly labelled water are needed in 

all age groups. 
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For pre-schoolers, we recommend to use the algorithm pro-

posed by Butte et al. [128] as it is the only one validated in free-living 

conditions against doubly labelled water and they obtained a high 

accuracy. There are no algorithms for wrist accelerations in this age 

group. Likewise, we do not recommend algorithms for the rest of age-

groups since none of them were developed using doubly labelled wa-

ter or room calorimetry as a criterion. 

Sleep-related behaviours 

The ActiGraph GT3X/+ can identify sleep-related behaviours 

from movement/non-movement patterns by applying sleep algo-

rithms to activity counts. The overall conclusion is that more studies 

developing and validating sleep algorithms for the wrist and the hip 

mounted ActiGraphs are needed in all age groups. However, based on 

the aforementioned information and the ages of the samples in the 

validation studies for sleep algorithms, we recommend use of the 

Barreira et al. [111] algorithm in children and adolescents when the 

accelerometer is attached to the hip to document bedtime that is not 

reported by the participants. Also, we recommend the Sadeh et al. 

[38] algorithm if it is placed on the wrist to score the sleep time and 

the rest of sleep-related behaviours. Moreover, we recommend the 

Sadeh et al. [38] algorithm for young adults (i.e., up to 30 years of 

age) and Cole-Kripke et al. [39] algorithm for older adults (i.e., >30 

years of age) (in both cases with the accelerometer placed on the 

wrist). 

Step counting 

We have reviewed studies using the default step counting func-

tion by ActiLife. In this regard, we recommend to use the normal fil-

ter when the step count is a variable of interest, as it has demon-

strated to be more comparable to other criterion devices than the 

LFE filter. 

Limitations and Strengths 

Several limitations need to be acknowledged. Studies with ear-

lier models than GT3X/+ (e.g., GT1M) have not been included in our 

review, so our recommendations are limited to the triaxial ActiGraph 

models (GT3X/+). Another limitation is that for certain age groups 

and for some accelerometer criteria analysed, the number of studies 

were small; therefore, the recommendation should be revisited when 

more studies on those topics are available. In addition, the field of 

accelerometry is rapidly developing and continuously changing. 

Therefore, reviews are needed every few years in order to update the 

recommendations provided in this review. Another major issue is 

that proprietary algorithms used by the manufacturer when pro-

cessing the data to obtain activity counts are unavailable to the public 

and these affect outputs. Future work using the raw acceleration 
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signal (i.e., before any filtering is applied) should overcome this prob-

lem. Finally, another limitation is that some of our recommendations 

are based on few studies and should be interpreted cautiously. Thus, 

further studies such as a formal meta-analysis may provide the most 

optimal intensity thresholds for the different intensity thresholds.  

The strengths of this review are: 1) the inclusion of a large num-

ber of studies, summarizing the methodologies used in each of them, 

which will allow for more accurate comparability of the data; 2) the 

separate sections for the validation/calibration studies in order to 

provide guidance and recommendations to researchers and practi-

tioners; 3) the inclusion of all age groups in one single review, which 

will allow researchers to find/read the information about the age 

group they are working with/interested in; and 4) the set of tables 

included in this review were developed to assist researchers in their 

decision making process (see the examples included in the Practical 

Implications section). 

Practical Implications 

This review will help researchers and practitioners to make 

better decisions when designing their study and processing the data 

from the GT3X/+ accelerometer in order to obtain the most accurate 

and comparable information. Here, we provide some hypothetical 

examples illustrating how the information presented in the tables in 

this review can be used. 

• A researcher intends to evaluate accelerometry in a new 

study and needs to know where to place the accelerometer. 

Table 5 summarizes the most important results obtained 

when comparing the outputs from the GT3X/+ attached to the 

hip versus the wrist and provides recommendations depend-

ing on the variables to be analysed by age group. 

• A researcher has collected accelerometry data and wishes to 

compare the data with those from other studies to generate 

an accurate and meaningful discussion. Table 4 lists the cri-

teria used for data collection protocols and data processing in 

studies. ESM 3 lists all articles that have been used for each of 

these criteria. 

• A researcher has collected accelerometry data with the device 

placed on the wrist (for example) and wishes to know which 

cut-points, PAEE or sleep algorithms can be applied to those 

data. Table 6 and Table 7 will help the researcher answer 

these questions. 

• A researcher has decided to apply a specific set of cut-points 

based on the characteristics of his/her sample but is uncer-

tain which exact setting was used in the original study (and is 

aware that it is recommended that the same settings be used 
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to ensure the cut-points are applied correctly to the new 

data). Table 7 lists all criteria needed to correctly apply these 

cut-points (i.e., placement, filter, vector and epoch). 

Conclusion 

We suggest that researchers who assess time in SB, PA, PAEE, 

sleep-related behaviours and/or steps using GT3X/+ select the spe-

cific placement, sampling frequency, filter, epoch length, non-wear 

time definition, valid days and valid week criteria, SB and PA inten-

sity classification, PAEE and sleep algorithms depending on the pop-

ulation’s age (i.e., pre-schoolers, children and adolescents, adults or 

older adults). Likewise, when selecting a specific cut-point or algo-

rithm, it is important to apply the same criteria as in the original val-

idation/calibration study. Moreover, this review has identified some 

issues in the studies using the GT3X/+ during the last 5 years, such 

as that many studies do not report all of the criteria used in their 

analyses (see Figure 9). Future studies are recommended to report 

the criteria as summarized in the present review.  

Although ideally researchers should select all the data collec-

tion and processing criteria before the assessment period, it is im-

portant to note that only the placement and sampling frequency cri-

teria have to be decided a priori (i.e., before the measurement pe-

riod), while the rest of processing decisions can be made a posteriori. 

This is important since new and better analytical methods might 

emerge after a study was planned, and they should be considered and 

tested, at least as sensitivity analyses. The preliminary evidence com-

paring wrist and hip placements seems to support the idea that a 

similar compliance can be achieved wearing the accelerometer on 

the wrist or on the hip, while wearing it on the hip might produce 

more accurate estimates of PAEE and better time in SB and PA inten-

sity classifications; however, these notions need to be confirmed or 

refuted in future studies. We recommend to record raw data for com-

plete days (i.e., 24h periods), so that collected data will have the max-

imum potential for future analyses. The summary tables presented 

in this systematic review will help researchers to make better deci-

sions on how to design and process the GT3X/+ data. 
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Abstract 

Background | Recent technological advances have transformed the 

research on PA initially based on questionnaire data 

to the most recent objective data from accelerome-

ters. The shift to availability of raw accelerations has 

increased measurement accuracy, transparency, and 

the potential for data harmonization. However, it has 

also shifted the need for considerable processing ex-

pertise to the researcher. Many users do not have this 

expertise. The R package GGIR has been made availa-

ble to all as a tool to convert multi-day high resolution 

raw accelerometer data from wearable movement 

sensors into meaningful evidence-based outcomes 

and insightful reports for the study of human daily PA 

and sleep. 

Aim | This paper aims to provide a one-stop overview of 

GGIR package, the papers underpinning the theory of 

GGIR, and how research contributes to the continued 

growth of the GGIR package. 

Results | The package includes a range of literature-supported 

methods to clean the data and provide day-by-day, as 

well as full recording, weekly, weekend, and weekday 

estimates of PA and sleep parameters. In addition, the 

package also comes with a shell function that enables 

the user to process a set of input files and produce csv 

summary reports with a single function call, ideal for 

users less proficient in R. GGIR has been used in over 

90 peer-reviewed scientific publications to date. 

Conclusion | The evolution of GGIR over time and widespread use 

across a range of research areas highlights the im-

portance of open source software development for 

the research community and advancing methods in 

physical behaviour research. 

Key Points 

Question 
Is there any alternative to 
closed commercial software 
for accelerometer data analy-
sis in the PA field? 

Findings 
The GGIR open-source soft-
ware is able to convert accel-
erometer raw data into mean-
ingful PA, SB, and sleep indica-
tors from several accelerome-
ter brands (ActiGraph, GENE-
Activ, Axivity, among others) 

Meaning 
The GGIR software presented 
in this paper facilitates the 
processing and extraction of 
insightful PA and sleep varia-
bles of the data collected with 
these so-called raw data accel-
erometers. 
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Introduction and motivation 

Human PA and sleep are popular areas of research because of 

their important role in health outcomes [10,200]. PA and sleep have 

traditionally been quantified with diaries and questionnaires, but 

wearable sensors have gained momentum since the 1990’s. In the be-

ginning, wearable movement sensors (i.e., accelerometers) typically 

performed onboard signal processing and only stored derived output 

to reduce battery consumption and memory requirements. However, 

following a general movement towards more transparent and open 

science and thanks to technological evolution towards smaller, 

cheaper and power efficient sensors, accelerometers now tend to 

store ‘raw’ data for offline processing and analysis. The data rec-

orded are typically expressed in gravitational acceleration (g) be-

cause this is the reference point for acceleration value calibration, re-

flecting both the movement and gravitational component [67]. How-

ever, this technological advance is counterbalanced by the large 

amount of data collected per measurement (typically 2·108 data 

points per week of measurement) and the necessity to process the 

data to obtain meaningful variables that can be used in standard sta-

tistical analysis and software. Many PA and sleep researchers do not 

have the expertise necessary to process and analyse raw accelerom-

eter data. The GGIR software presented in this paper facilitates the 

processing and extraction of insightful PA and sleep variables of the 

data collected with these so called raw data accelerometers from 

three widely used sensor brands [41]. The individual algorithms that 

are embedded in GGIR have been described across a number of pub-

lished papers. The fast advances in wearable sensor technology over 

the last decades comes with the price of mandatory development of 

scientific software to ensure a good valorisation of the newly availa-

ble sensors [201]. However, scientific software instruments need to 

be subjected to a peer review process as it is the case for other meth-

odological components (e.g., algorithms and study protocols). Previ-

ous publications related to GGIR focused on specific algorithms, such 

as sleep detection, and their validity. However, those publications did 

not focus on GGIR as a generic piece of scientific software that con-

nects all these algorithms and adds a range of essential extra func-

tionalities, e.g., time zone and daylight-saving time handling, to pro-

vide value to an entire research community far beyond the specifici-

ties of those studies. Therefore, this paper aims to provide a one-stop 

overview of GGIR package, the papers underpinning the theory of 

GGIR, and how research contributes to the continued growth of the 

GGIR package.  
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How open-source software, e.g., GGIR, can contribute 

to advances in the field of PA measurement 

GGIR contributes to scientific discovery by enabling research-

ers to study (human) PA and sleep using accelerometers without pre-

required programming expertise. GGIR is appropriate for use across 

a wide variety of study designs, e.g., variations in measurement du-

ration, in sample frequency, instructions given to the participant, and 

study populations.  

Applications of GGIR have been reported in over 90 peer re-

viewed journal publications since its first release in 2013, with 24 in 

2017 and 48 in 2018 based on looking up the citations to the key 

journal publications underlying GGIR. Additionally, nine methodo-

logical papers were written to motivate and evaluate parts of GGIR. 

Previous accelerometer software has been commercial (e.g., Actilife) 

and/or restricted to one brand of accelerometer (e.g., Actilife, GENE-

Activ PC combined with Excel macros). GGIR facilitates the pro-

cessing and analysis of data from three of the most widely used 

brands of research-grade movement sensors (GENEActiv by ActivIn-

sights Ltd, ActiGraph by Actigraph LLC, and Axivity by Axivity Ltd) 

using open-source generic brand agnostic methods, potentially 

providing a means for harmonization of data from large surveys 

globally [10]. Further, GGIR is continually updated to include innova-

tions developed by the software team and/or users expediting the 

application of novel analytics in research [66,202,203]. GGIR is very 

much a community driven development as testified by: the multiple 

contributors from both health research and technological back-

grounds; the fact that many publications that use GGIR are not co-

authored by the development team; the existence of a support and 

maintenance service by V. van Hees where GGIR-users can hire Vin-

cent's time as freelancer to help address specific needs from the user-

community (www.movementdata.nl). This service has fuelled a 

range of package upgrades, and is one of the possible ways to sustain 

open source software like GGIR, and; the availability of a user-forum 

to make it possible for users to reach out to each other (see Table 8). 

Previously, accelerometers were typically either used to assess 

waking PA or sleep and circadian rhythms, but rarely tailored for 

both research areas. The new generation of accelerometers, worn 

night and day, allows the measurement of both PA and sleep using 

the same tool. Moreover, in several studies such as UK Biobank [204], 

a sleep diary was not used to define a sleep window as commonly 

done in sleep research. The GGIR package allows differentiation of 

waking from sleep periods and provides sleep quality parameters. 

Using the GGIR package, the Colaus study reported better sleep effi-

ciency among those more physically active [205]. Several papers us-

ing UK Biobank data have now been published and show the 

GGIR publication list  
(scan or click here) 
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advantage of using accelerometer instead of questionnaire data to 

identify for example the genetics of sleep [206–208]. 

Current code version 1.6-7 

Permanent link to code/repos-
itory used of this code version 

https://github.com/wadpac/GGIR 

Legal Code License LGPL (≥ 2.0, < 3) 

Code versioning system used Git 

Software code languages, tools, 
and services used 

r, C++, Travis-CI 

Compilation requirements, op-
erating environments & de-
pendencies 

 64-bit operating system & R environment version 3.2.3 and up 
(64-bit) & R packages: MASS, signal, zoo, mmap, bitops, matlab, 
GENEAread, tuneR, testthat, covr, knitr, rmarkdown, data.table, 
Rcpp 

If available Link to developer 
documentation/manual 

https://cran.r-project.org/web/packages/GGIR/GGIR.pdf 

User forum https://groups.google.com/forum/#!forum/rpackageggir 

Works on Operating Systems Windows, Linux, and OSx 

Here are some further examples of research studies that were 

facilitated by the use of GGIR. Results from the Whitehall II study 

showed: 1) the association between PA and BMI was much stronger 

when using accelerometer data rather than questionnaire data [203], 

2) obese people with an unfavourable metabolic profile had a lower 

level of PA than those with a healthy metabolic profile, which was not 

evident when using questionnaire data [209], 3) the association be-

tween MPA and VPA and healthy ageing was evident whether the ac-

tivity was performed in short (<10 minutes) or long (≥10 minutes) 

bouts [210]. Results from the UK Biobank also showed: 1) people 

with cardiometabolic disease are less physically active and tend to 

engage more in SB that last more than 30 minutes [211], 2) short 

bursts of very high intensity PA are associated with better bone 

health in pre- and post-menopausal women [212]. 

A typical experimental setting 

Studies vary in size from a few dozen participants in clinical or 

methodological studies [213], a few thousand in epidemiological co-

horts [214,215], and a hundred thousand in biobanks like UK Bi-

obank [204]. The researcher configures an accelerometer with the 

desktop software supplied by the accelerometer manufacturer. Next, 

the accelerometer is given or sent to the participant who wears it on 

their wrist or other body location (depending on instructions) day 

and night for usually seven consecutive days, although different 

measurement periods have also been reported. After the period of 

wear, the participant returns the accelerometer either in person or 

by post. The data file is then downloaded with the same desktop soft-

ware from the accelerometer manufacturer. The file size typically 

ranges between 0.5 and 1.5 GB depending on specific format, sensor 

brand, and recording duration. GGIR can either run on a local com-

puter or integrated in parallel processing tasks on a computing clus-

ter when working with large numbers of datafiles. GGIR generates 

Table 8 
Key metadata on the current ver-
sion of GGIR 

Abbreviations in this page: 
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reports in csv-format that can then be loaded in the researcher’s pre-

ferred statistical software (e.g., R, SAS, SPSS, or Stata). 

Related work 

Software 

A few other software tools exist to work with multi-day raw ac-

celerometer data (Table 9). Actilife (ActiGraph, Pensacola, FL, USA) 

is a closed source commercial software designed for the accelerome-

ter hardware developed by the same company. The GENEActiv PC 

software by the developer of the GENEActiv (ActivInsights Ltd, Kim-

bolton, UK) in combination with freely available Excel macros (avail-

able from https://open.geneactiv.org) is designed for the accelerom-

eter hardware developed by the same company. GENEAclassify is an 

open-source R package primarily aimed at facilitating the segmenta-

tion and classification of accelerometer data produced by the GENE-

Aactiv accelerometer [216]. OMGui by Dan Jackson and colleagues 

(Open Movement, Newcastle University, UK) is an open source GUI 

implemented in C# and developed for the Open Source hardware 

AX3 [217]. In addition to the monitor’s own binary .CWA format, OM-

GUI can also create and load brand agnostic csv and audio WAVE file 

formats [218]. Pampro by Tom White (Cambridge, UK) is imple-

mented in Python, available on GitHub and designed to process data 

from multiple wearable sensor brands and data formats using meth-

odologies replicated from publications, including the publications 

describing parts of GGIR [219]. Pampro includes an Open Source li-

cense BiobankAccelerometerAnalysis [220] by Aiden Doherty (Ox-

ford, UK) and colleagues is an open source tool designed to provide a 

minim set of basic outcomes for the UK Biobank accelerometer data, 

utilizing some of the key algorithms from GGIR [204]. The Bi-

obankAccelerometerAnalysis software has recently been enhanced 

with activity type classification for Axivity AX3 .cwa accelerometer 

files [221]. 

Table 9 
Related software 

 GGIR Actilife 
GENEActiv PC + 
macros 

GENEAclassify OMGUI Pampro 
Biobank-Accelerom-
eter-Analysis 

Executable version online YES NO YES YES YES YES YES 

Source code available online YES NO 
NO, but YES for 
macros 

YES YES YES YES 

Open source software (OSS) 
license 

LGPL 
(copyleft)  
OSS license 

No OSS license NO OSS license 
GPL  
(copyleft) 
OSS license 

Custom  
(permissive)  
OSS license 

OSS license 
BSD 2-Clause License 
(permissive) 

Primary programming lan-
guage 

R Unknown Unknown R C# Python Java and Python 

Abbreviations in this page: 
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Literature 

The main publications underlying GGIR described: 1) the po-

tential of using wrist worn raw data accelerometers for estimating 

human daily energy expenditure [222], 2) how raw acceleration data 

can be meaningfully aggregated [67], 3) a method to calibrate the ac-

celeration signals based on the recording itself with no need for ad-

ditional data collection [66], 4) methods for sleep detection when the 

accelerometer is worn on the wrist with [40] and without [202] use 

of a sleep diary, and 5) comparisons with other research methods 

[212,214,223–225]. 

Software description 

Software architecture 

R package GGIR has been released with an Open Source LGPL 2 

license on CRAN the central repository for R packages since 2013 and 

on GitHub [www.github/wadpac/GGIR] since December 2016. GGIR 

can run on Windows, Linux, and OSx (this and additional key facts 

about GGIR are summarised in Table 8).  

The package comes with the following core functionalities: load 

data; extract signal metrics (also called signal features); detect when 

the sensor was not worn and impute these periods if requested by 

the researcher; detect the sleep period time window and sleep epi-

sodes within it; segment the data according to conventional heuristic 

threshold techniques; specify which parts of the recording should be 

considered based on the researchers knowledge about the study de-

sign (e.g., participant started wearing the accelerometer for a certain 

number of hours after starting the record); and finally to store con-

venient summary reports in csv and pdf format (Figure 10). 

The package is split in five parts that group functionalities in 

logical processing order and in line with how the package historically 

evolved. The parts are numbered from 1 to 5 and the corresponding 

function names refer to the part number: g.part1, g.part2, g.part3, 

g.part4, and g.part5. The parts should be executed sequentially with 

milestone data automatically being stored in between parts to facili-

tate re-processing parts without having to go back to the original raw 

input data. One shell function allows for interacting with the five 

parts and all underlying functionalities from one central point: 

g.shell.GGIR. The shell function takes all arguments from the five 

parts mentioned above. In this way, the users can interact with GGIR 

from one single function call to function g.shell.GGIR and easily share 

their call to allow for replicating the analysis on a different dataset. 

The duration of GGIR depends on computer specifications, input ar-

guments, and data characteristics. Part 1 (g.part1) is the most time 

consuming taking up at least 80% of the processing time and lasting 
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around 10 minutes when applied to a 7-day data file using GGIR’s de-

fault argument settings. 

 
The code builds a folder structure with a depth of two to store 

the milestone data per participant in .RData files (including collec-

tions of data.frame and vector objects) and the analysis reports per 

dataset (see Figure 10). The analysis reports are in .csv format to 

give the user the flexibility to process their quantitative results in 

other statistical or data processing environments. There are many 

variables stored in the reports, an introduction to these variables can 

be found in the package vignette, while a more elaborate discussion 

is found in the package manual. 

In GitHub the code is supported by continuous integration with 

Travis-CI (https://travis-ci.org/wadpac/GGIR). Starting in 2017 we 

have adopted the habit of writing unit tests, but as it was not done 

before 2017 not all parts of the code are covered by tests yet and cur-

rent test coverage is 63%. In addition to unit tests, the development 

Figure 10 
Overview of main steps and 
output in GGIR workflow 

GGIR manual  
(scan or click here) 
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has typically gone in close collaboration with GGIR end-users who 

checked code validity by close examination of the package output. 

We have created one video to introduce GGIR and a second video to 

provide a visual summary of how GGIR is typically used.  

Software dependencies 

Most of the code is written in R, with a small part in C++ needed 

for reading the binary data from the AX3 accelerometer brand using 

R package Rcpp as a dependency [226]. R packages bitops and matlab 

are used to enable reading the binary data from the Genea accel-

erometer (the non-commercial precursor to the GENEActiv, Unilever 

Discover, UK). Dependencies are R packages GENEAread and mmap, 

which are used for reading GENEActiv accelerometer binary data. Fi-

nally, R package tuneR [227] is used to read wav format data, which 

is an optional export format for AX3 accelerometer data. The R pack-

age signal is used for frequency filtering [228], R package zoo is used 

for calculating a rolling median, sum and mean [229], and R package 

data.table is used at some steps to efficiently handle large amounts 

of tabular data.  

Software functionalities 

Part 1 (g.part1) 

The g.part1 function searches the specified data directory re-

cursively for files that could possibly represent acceleration data. 

Next, it automatically detects which accelerometer brand the file be-

longs to, the data format in which it is stored (.csv, .bin, .cwa, .wav), 

and extracts the file header using appropriate functions. Next, func-

tion g.calibrate is used to investigate calibration error which results 

in proposed correction coefficients as motivated and described in 

van Hees et al. 2014 [66]. Then, metrics essential for sensor wear de-

tection, PA and sleep analysis are extracted from the raw data. Here, 

the user can choose one or multiple aggregation metrics out of a col-

lection of most common metrics, e.g., ENMO, and control the window 

size over which the metrics are calculated. Additionally, a standard 

set of metrics is extracted per long time window (default 15 minutes) 

which are needed for the detection of accelerometer non-wear. The 

data loading and metric extraction takes place in approximately 24-

hour blocks since putting the full file content in computer memory 

may not always be possible. The data window size is modifiable in 

case the 24-hour blocks are still too large. Additionally, the code eval-

uates available memory throughout the processing and shortens the 

window by 20% when available memory is getting too low. At the 

end of part 1 the signal metrics are stored as milestone data in an 

RData file (using a filename corresponding to the input accelerome-

ter data file). For most of the analysis we use POSIX format for 

timestamps, which is the default in R, but for the exported time series 

Abbreviations in this page: 
ENMO: Euclidean norm minus 1G 
PA: physical activity 

GGIR introduction video  
(scan or click here) 

GGIR visual summary  
(scan or click here) 
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we transform these to ISO8601 format to facilitate usage in other 

software environments. Further, GGIR takes into account day saving 

time and time zone. The user is expected to explicitly provide time 

zone of the recording, this to avoid confusion about where the exper-

iments took place, which may not always be the time zone of the ma-

chine on which the analyses are run, or the default time zone as-

sumed by GGIR (UTC: Europe/London). 

Part 2 (g.part2) 

As part of g.part2 function g.impute takes the milestone output 

from g.part1, optionally identifies unreliable signal sections (e.g., 

monitor not worn or signal clips near its extreme) and replaces these 

sections by imputed values (average of same time point on all other 

days of the measurement). Then, function g.analyse performs a de-

scriptive analysis of the output and summarizes it per measurement, 

per day of measurement and conveniently per day type (i.e., week-

days and weekend days separately) as well as per segment(s) of each 

day (specified by user with argument qwindow). For example, if 

qwindow has value ‘c(0,9,12,17,24)’ the summaries will be derived 

for the time windows 0:00-24:00, 0:00-9:00, 9:00-12:00, 12:00-

17:00, and 17:00-24:00. This could for instance be useful in research 

on the level of PA during specific segments of the day in children and 

workplace interventions in adults. Examples of summaries gener-

ated per time segment are time spent in specific acceleration magni-

tude ranges (bins), average acceleration metric value, and the timing 

of the least and most active five-hour window of the day (number of 

hours can be set by user). The user can also provide important 

knowledge about the experimental design, which is accounted for 

when generating the descriptive summaries, e.g., instruct GGIR to ig-

nore the first hour of the measurement or all data before the first and 

after the last midnight of the recording. In addition, the descriptive 

summaries take into account the quality of the measurement. For ex-

ample, the user can specify the necessary minimum number of valid 

hours per day. Days with fewer valid hours of data will be ignored in 

the person level descriptive summaries. 

The reason why g.part1 and g.part2 are not merged is because 

g.part1 takes much longer to run and involves only minor decisions 

of interest to the PA or sleep researcher. Function g.part2 on the 

other hand is relatively fast and comes with all the decisions that di-

rectly impact on the variables that are of interest to the researcher. 

Therefore, the user may want to run g.part1 overnight or on a com-

puting cluster, while g.part2 can then be the main playground for re-

search.  

Part 3 and 4 (g.part3 and g.part4) 

The functions g.part3 and g.part4 provide functionality for es-

timating sleep when the accelerometer was worn on the wrist as 

Abbreviations in this page: 
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described in van Hees et al. [40,202]. Although these functions can be 

applied to accelerometer data from any wear location, currently no 

scientific literature exists to support the interpretation for attach-

ment locations other than the wrist. In short, g.part3 detects time ep-

isodes with a sustained lack of change in arm angle, which are re-

ferred to as sustained inactivity bouts. The user can configure the pa-

rameters used for this and can specify multiple parameter values to 

facilitate comparisons. The g.part3 function only generates mile-

stone data to facilitate the work done in g.part4. Output from g.part3 

for example includes the start and end times of the sustained inactiv-

ity bouts, and estimated start and end of the sleep period time win-

dow. Then, the g.part4 function gives the user the option to either use 

a sleep diary or to rely on the estimated sleep period time window 

from g.part3 [202]. Another option is to specify a general time win-

dow when individuals within the study population are assumed to be 

in bed, which is probably more naïve and primarily implemented for 

reference purposes. Sustained inactivity bouts that occur within the 

sleep period time window are considered sleep episodes, and sus-

tained inactivity bouts outside the sleep period time window are con-

sidered rest, potential nap period, or undetected short episodes of 

monitor non-wear time. Further, g.part4 offers the user the option to 

exclude the first and last night. Both g.part3 and g.part4 store a rec-

ord of the amount of available valid and invalid data per night, and 

an indicator of whether sleep diary data was available for each spe-

cific night used. To facilitate a relatively quick inspection, sleep de-

tection plots of the classification are exported as pdf files. To facili-

tate identifying obvious mistakes in sleep diary data g.part4 provides 

the option to visualise the differences between accelerometer-based 

estimates and sleep diary; this was for example used in van Hees et 

al [40] to identify a dozen of problematic nights out of 27000 nights 

(Figure 11, panel A).  

Part 5 (g.part5) 

The g.part5 function takes the output from g.part2 and g.part4 

to describe time spent in 16 time use classes, composed of: night-

time or daytime behaviour; sustained inactive or sleep, other inac-

tive, LPA, MPA, or VPA behaviour, and; un-bouted, short, medium or 

long bouts of behaviour. The number of 16 classes is the default, this 

can be adjusted. Next, the time series of epoch level classes are seg-

mented by day based on one or both available definitions of a day: 1) 

From waking up to waking up the next day, which means that a full 

night of sleep is included per day and that the duration of days vary, 

or 2) From midnight to midnight which equals a calendar day, mean-

ing that a night of sleep is likely to be split between days. In the latter 

definition days are by default assumed to end at midnight, but the 

user also has the option to change the hour on which the day ends. 
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From these daily segments g.part5 calculates the time spent in these 

classes, the number of occurrences of these classes, and the average 

acceleration within the classes.  

The thresholds to describe level of PA level intensity (LPA, 

MPA, and VPA) have their origin in energy expenditure research, but 

in GGIR these levels should be interpreted as thresholds to mark 

ranges in acceleration values. However, if the user specifies the 

thresholds wisely he/she may be able to interpret the levels as indi-

cators of energy metabolism. The concept of behavioural bouts may 

also need clarification: g.part5 calculates the total time spent in be-

havioural bouts, which is a time segment that meets user-specified 

criteria on the range of acceleration, the percentage of time during 

which those criteria on the range need to be met, and the maximum 

duration of breaks allowed to define a bout. The user selects one of 

four metrics for bout calculation using argument bout.metric. This 

functionality overlaps somewhat with g.part2 which also calculates 

time spent in bouts, but g.part5 does it in a much more advanced way 

with also attention to inactivity bouts, LPA bouts, as well as un-

bouted behaviour and sleep. All this information is stored in csv files 

and visual summaries are stored in pdf files (Figure 11, panels B and 

C). The g.part5 function offers the user a large freedom to explore 

multiple parameters simultaneously (thresholds, minimal and maxi-

mal bout durations and percentage criteria to define a bout) result-

ing in potentially hundreds or even thousands of output variables to 

enable the study of physical behaviour. 

 

Figure 11 
Visual output reported by GGIR.  
A) Rest and sleep detected from accelera-
tion features and sleep diary (g.part4). 
B) Bar plots with information on key 
physical activity and sleep variables 
(g.part5). 
C) Visual summary of the physical activity 
and sleep patterns (g.part5). 
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Impact 

The main value of GGIR is that it offers a broad set of function-

alities ranging from data quality handling to 24hours/7days time use 

characterization of PA and sleep utilizing literature supported meth-

ods and is study population agnostic making it suitable for a wide 

range of research areas. GGIR can be operated without significant 

prior programming expertise. 

At the same time, the user experiences freedom in the specifi-

cation of input arguments and the selection of output variables. Be-

ing fully open source, GGIR can be adapted and extended according 

to the needs of the respective research project. GGIR is currently be-

ing used by the PA and sleep research communities, with over 90 

peer-reviewed journal papers published using the software since 

2013, with the number published per year increasing rapidly.  

By facilitating analysis of raw accelerometer data, GGIR enables 

the analysis of objective measures of PA and sleep and encourages 

raw data accelerometers to be used more readily in research studies 

that aim to understand the importance of PA and sleep for human 

health. Moving away from closed commercial accelerometer soft-

ware and self-report questionnaires to assess PA and sleep will im-

prove knowledge, allowing better translation in public health recom-

mendations. 

Conclusion 

Most of the knowledge on PA and sleep comes from studies us-

ing questionnaire data or, more recently, proprietary PA metrics gen-

erated using commercial software. With the rapid advancement in 

technology over recent decades, raw acceleration movement sensors 

can now be used in large scale studies. However, the data they gen-

erate are not straightforward to analyse. GGIR provides a tool for re-

searchers to derive variables that characterize PA and sleep assessed 

in an objective manner. In addition, as the code is open source, it can 

be used in part or as a whole making it flexible to research needs. It 

further facilitates a reproducible analysis of the raw data which is 

key to generating conclusions in clinical and observational research 

settings. Previously, widely used software packages for analysing ac-

celerometer data have been proprietary and there has been little op-

portunity for most researchers to feed into how they can be devel-

oped. This demonstrates the importance of open source software de-

velopment for the research community and for the advancement of 

methods in physical behaviour research.

Abbreviations in this page: 
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Abstract 

Background | Given that PAEE is the most malleable component of 

TEE, any researcher and health care professional 

dealing with energy balance and PA is interested in 

accurate estimations of PAEE. Accelerometer could 

provide such estimates. To the best of our knowledge, 

no study has compared the performance of Acti-

Graph’s activity counts and alternate summary met-

rics in the assessment of free-living TEE and PAEE. 

Aims | To assess the capacity of different acceleration met-

rics from wrist accelerations to estimate TEE and 

PAEE using doubly labelled water in preschool chil-

dren. 

Methods | Thirty-nine pre-schoolers (5.5 T 0.1 yr) were in-

cluded. TEE was measured using doubly labelled wa-

ter during 14 d, and PAEE was then calculated using 

a predicted basal metabolic rate. Participants wore a 

wGT3X-BT accelerometer on their nondominant 

wrist for ≥5 d. We derived the following metrics from 

raw accelerations: VMCounts and LFECounts; and al-

ternate summary metrics, such as ENMO, Euclidian 

norm of the high-pass-filtered accelerations (HFEN), 

the bandpass-filtered accelerations, the HFEN plus 

Euclidean norm of low-pass filtered accelerations mi-

nus 1g (HFEN+) and the mean amplitude deviation 

(MAD). 

 Results | Alternate summary metrics explained a larger pro-

portion of the variance in TEE and PAEE than Acti-

Graph’s activity counts (counts, 7–8 and 25% of TEE 

and PAEE; alternate summary metrics, 13%–16% 

and 35%–39% of TEE and PAEE). Adjustments for 

body weight and height resulted in an explanation 

of51% of PAEE by ENMO. All of the metrics adjusted 

for fat mass and fat-free mass explained up to 84% 

and 67% of TEE and PAEE, respectively. 

Conclusion | ENMO and the other alternate summary metrics ex-

plained more of the variance in TEE and PAEE than 

the ActiGraph’s activity counts in 5-yr-old children, 

suggesting further exploration of these variables in 

studies on physical activity and energy expenditure 

in pre-schoolers. Our results need confirmation in 

other populations with wider age groups and varying 

body compositions. 

Key Points 

Question 
What is the capacity of wrist-
worn accelerometers to esti-
mate TEE and PAEE in pre-
schoolers? 

Findings 
Open-source metrics ex-
plained more variance of TEE 
and PAEE than activity counts. 
The prediction capacity was 
moderate for the metrics, and 
high when body composition 
variables were added to the 
models 

Meaning 
Any researcher or practitioner 
interested in the energy bal-
ance in pre-schooler may con-
sider wrist-worn accelerome-
ters as a proxy to TEE and 
PAEE  

Abbreviations in this page: 
ENMO: Euclidean norm minus 1G 
HFEN: high-pass filtered Euclidean 
norm 
HFEN+: HFEN plus the Euclidean 
norm minus 1G 
LFECounts: activity counts with 
the low-frequency extension filter 
in the vector magnitude 
MAD: mean amplitude deviation  
PA: physical activity 
PAEE: physical activity-related en-
ergy expenditure 
TEE: total energy expenditure 





Study III 

Page 135 of 385 

Introduction  

Energy imbalance generated by high-calorie intakes and low 

PAEE has led the current population to an obesity epidemic, which 

has caused an array of health consequences throughout the lifespan 

[230]. Furthermore, given that PAEE is the most malleable compo-

nent of TEE, any researcher and health care professional dealing with 

energy balance and PA is interested in accurate estimations of PAEE. 

Doubly labelled water is the gold-standard method to assess TEE and 

PAEE, but its high cost makes it unfeasible in large populations [231]. 

Instead, accelerometers, which are widely available and less expen-

sive, allow for the measurement of PA with the potential to assess 

PAEE [41,61,94,232–235].  

Previous studies have shown poor estimations of TEE and 

PAEE using accelerometers, only explaining between 14-31% of the 

variation in PAEE in preschool aged children [95,234,235]. Methods 

proposed to improve these estimations include: (i) the combination 

of heart rate monitoring with accelerometers, which does not seem 

to improve estimations when using comparable acceleration metrics 

[236,237] or (ii) the inclusion of body composition measures in the 

models, which has substantially improved accelerometer estima-

tions of free-living TEE and PAEE [95,234].  

The increasing use of accelerometers in epidemiological stud-

ies has resulted in a myriad of ways to collect and process accelerom-

eter data [233]. In regards to data collection, the majority of studies 

have attached accelerometers to the hip or waist looking for a proxi-

mal placement to the body’s centre of gravity. However, some large-

scale studies such as the NHANES and the UK biobank have placed 

accelerometers on the wrist due to the belief it promotes a higher 

wear compliance [171,233], which makes the study of wrist place-

ment to estimate TEE and PAEE a matter of interest. In regards to 

data processing, previous studies usually processed raw accelera-

tions using manufacturer proprietary filters to obtain activity counts 

or steps [95,235,238]. These manufacturer-processed counts and 

steps are not comparable between devices [175,199], halting the 

progression of the accelerometer estimates of PA and PAEE. New de-

vices store raw accelerations, which has made it possible to obtain 

alternative acceleration metrics to activity counts and steps using 

open-source filtering methods [67,147]. Although these new metrics 

(hereinafter referred to as alternate summary metrics) seem to be 

comparable across certain devices, they are not necessarily compa-

rable [225,239]. For example, Rowlands et al. suggested that the Acti-

Graph GT9X raw accelerations are slightly lower than other brands, 

although more research is needed to confirm this [225].  

To the best of our knowledge, no study has compared the per-

formance of ActiGraph’s activity counts and alternate summary 

Abbreviations in this page: 
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metrics in the assessment of free-living TEE and PAEE. Thus, the pur-

pose of the present study was to assess the capacity of the Acti-

Graph’s activity counts and alternate summary metrics from wrist 

accelerations to estimate TEE and PAEE assessed with doubly la-

belled water. For this purpose, we utilized data collected in the MIN-

ISTOP trial [95,240] with data on energy metabolism and 24-hour 

wrist accelerations in five-year-olds.  

Methods 

Participants and study design 

This validation study was conducted in forty parent and child 

dyads participating in the MINISTOP trial [240]. These 40 parents 

and children were recruited at the follow-up measurement at 5.5 

years of age [94,95]. More information about the project is published 

elsewhere [94,95]. One child did not fulfill the wearing time criteria 

for the ActiGraph (i.e., ≥ 16 hours/day for ≥ 4 days) and thus this 

analysis includes 39 preschool children. The Research and Ethics 

Committee, Stockholm, Sweden approved the study and informed 

consent was collected from both parents (2013/1607-31/5; 

2013/2250-32). The MINISTOP study is registered as a clinical trial 

(https://clinicaltrials.gov/ct2/show/NCT02021786). 

  
 All (n=39) Boys (n=21) Girls (n=18) 

Physical characteristics          

 Age (years) 5.5 ± 0.1 5.5 ± 0.2 5.5 ± 0.1 

 Height (kg) 114.2 ± 4.5 115.0 ± 5.4 113.3 ± 3.1 

 Weight (cm) 20.5 ± 4.3 20.6 ± 4.3 20.3 ± 4.3 

 BMI (kg/m2) 15.6 ± 2.3 15.5 ± 2.0 15.7 ± 2.6 

BMI categoriesa (n, %)          

 Normal weight 36 (92%) 19 (90%) 17 (94%) 

 Overweight 1 (3%) 1 (5%) 0 (0%) 

 Obese 2 (5%) 1 (5%) 1 (6%) 

 Fat mass (kg) 5.4 ± 2.7 5.1 ± 2.5 5.9 ± 3.0 

 Fat-free mas (kg) 15.1 ± 2.0 15.6 ± 2.1 14.5 ± 1.7 

Energy expenditure           

 
TEE (kJ/24h) 6030 ± 691 6272 ± 720 5749 ± 548 

 
PAEEb (kJ/24h) 1460 ± 436 1560 ± 447 1343 ± 405 

 
BMR (kJ/24h) 3967 ± 402 4084 ± 406 3831 ± 361 

 
Physical activity level 1.52 ± 0.12 1.54 ± 0.12 1.50 ± 0.12 

Acceleration metrics          

 
Valid days 7.5 ± 1.1 7.3 ± 1.2 7.8 ± 1.1 

 
Non-wear time (min/day) 7.7 ± 14.2 8.6 ± 17.4 6.6 ± 9.5 

 
VMCounts (counts/5s) 218.3 ± 38.0 218.3 ± 44.2 218.3 ± 30.4 

 
LFECounts (counts/5s) 225.8 ± 38.4 225.6 ± 44.7 226.0 ± 30.7 

 
ENMO (mg) 47.3 ± 11.9 50.5 ± 13.8 43.5 ± 8.1 

 
BFEN (mg) 161.3 ± 25.2 163.6 ± 29.3 158.5 ± 19.9 

 
HFEN (mg) 162.5 ± 25.3 165.0 ± 29.4 159.6 ± 19.9 

 
HFEN+ (mg) 150.9 ± 25.7 155.0 ± 30.2 146.1 ± 18.7 

 MAD (mg) 61.0 ± 12.9 63.9 ± 15.0 57.7 ± 9.3 

Data are presented as mean ± SD 
a Cole et al. [64] reference standards were used to classify the participants into weight status groups. 
b PAEE was calculated as TEE multiplied by 0.9 minus BMR to correct for dietary induced thermo-
genesis (commonly assumed to correspond to 10 % of TEE) 

Abbreviations in this page: 
BFEN: band-pass filtered Euclid-
ean norm  
BMR: basal metabolic rate 
ENMO: Euclidean norm minus 1G 
HFEN: high-pass filtered Euclid-
ean norm 
HFEN+: HFEN plus the Euclidean 
norm minus 1G 
LFECounts: activity counts with 
the low-frequency extension fil-
ter in the vector magnitude 
MAD: mean amplitude deviation  
MINISTOP: Mobile-based INter-
vention Intended to STop Obe-
sity in Pre-schoolers 
PAEE: physical activity-related 
energy expenditure 
SD: standard deviation 
TEE: total energy expenditure 
VMCounts: Activity counts in the 
vector magnitude 

Table 10 
Descriptive characteristics 
of participants  
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Body composition and energy expenditure estimation  

The children’s TEE and total body water were measured with 

doubly labelled water during 14 days. Details on the dosing of doubly 

labelled water, collection of urine samples before and after the dose, 

analyses of isotopic enrichments using isotope ratio mass spectrom-

etry and calculation of carbon dioxide and total body water have 

been provided previously [94,95]. The Weir equation was applied to 

derive TEE from carbon dioxide production [99] assuming a food 

quotient of 0.85 [100]. For this study sample (n=39), the quotient be-

tween the ND and the NO was 1.039 ± 0.008. Fat-free mass was calcu-

lated from total body water assuming that fat-free mass contains 

76.4% water [102]. Thereafter, fat mass was calculated as the differ-

ence between body weight and fat-free mass. Over the 14-day meas-

urement period, no major change in body weight was observed 

(n=39; 0.07 ± 0.32 kg). We applied prediction equations based on 

weight [101] to estimate BMR. Thereafter, PAEE was calculated as 

TEE multiplied by 0.9 minus BMR. This includes a reduction in TEE 

by 10% to adjust for energy expended due to dietary induced ther-

mogenesis. 

Accelerometer data processing 

PA was monitored with the wGT3X-BT accelerometer (Acti-

Graph, Pensacola, FL, USA) placed on the non-dominant wrist. Partic-

ipants were instructed to wear the ActiGraph for the first 7 days of 

the 14-day doubly labelled water period (24-hours per day); how-

ever, some of them wore the accelerometer for more than 7 days, and 

thus, all available data were used. Devices were initialized to collect 

data at 50 Hz, as this sampling frequency is sufficient to capture wrist 

daily motion [96,97]. In order to remove the influence of gravita-

tional acceleration and noise from the raw accelerations, we ex-

tracted the acceleration metrics as described below. We derived 

VMCounts and LFECounts from the ActiLife 6.2.0 software (Acti-

Graph, Pensacola, FL, USA) over 5 second epochs. Simultaneously, we 

used the GGIR package v. 1.6-12 (https://cran.r-pro-

ject.org/web/packages/GGIR/) implemented in the R software 

(http://cran.r-project.org) to automatically export the following al-

ternate summary metrics: ENMO, Euclidean Norm Minus One G (i.e., 

√𝑥2 +  𝑦2 +  𝑧2 – 1 g) with negative values rounded to zero after 

auto-calibration of the raw accelerations [67]; BFEN, Euclidean norm 

of the band-pass frequency filtered accelerations on the auto-cali-

brated raw accelerations with cut-off frequencies of 0.2 and 15 Hz 

[67]; HFEN, Euclidean norm of the high-pass frequency filtered accel-

erations on the auto-calibrated raw accelerations with a cut-off fre-

quency of 0.2 Hz [67]; HFEN+, HFEN plus ENMO from the low-pass 

filtered accelerations [67]; MAD, mean amplitude deviation, i.e., 

Abbreviations in this page: 
BFEN: band-pass filtered Euclid-
ean norm  
BMR: basal metabolic rate 
ENMO: Euclidean norm minus 1G 
HFEN: high-pass filtered Euclid-
ean norm 
HFEN+: HFEN plus the Euclidean 
norm minus 1G 
LFECounts: activity counts with 
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ter in the vector magnitude  
MAD: mean amplitude deviation  
PAEE: physical activity-related 
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TEE: total energy expenditure 
VMCounts: activity counts in the 
vector magnitude 
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mean distance of the data points for the mean of the epoch using the 

Euclidean norm of the auto-calibrated raw accelerations [147].  

The code of the GGIR package was modified in order to apply 

the same methods to all of the derived metrics (including ActiGraph’s 

activity counts and alternate summary metrics), e.g., same treatment 

of non-wear time, detection of waking and sleeping hours, etc. For 

more information about the processing methods, see ESM 4. The 

code is available at https://github.com/jhmigueles/MIN-

ISTOP_data_processing.  

Statistical analyses 

Descriptive characteristics of the different metrics were calcu-

lated by descriptive or frequency analyses. Linear regression anal-

yses were used to determine the amount of variation in TEE and 

PAEE explained by the different acceleration mean metrics (i.e., daily 

average 5-second epochs values) and in combination with body com-

position measures to estimate TEE and PAEE (i.e., identical models 

for each of the metrics). Body composition outcomes used in previ-

ous literature were included in the present study [234,241,242]. 

The out-of-sample performance of the developed equations 

was studied using a 13-fold cross-validation approach, which has 

demonstrated to out-perform the leave-one-out cross-validation 

when it is applied to linear regression models [243]. Briefly, we ran-

domly split the sample into 13 groups of 3 participants each. Then, to 

calculate the estimated TEE and PAEE for each participant, we used 

the linear regression equation developed with those participants not 

belonging to this group (i.e., the 36 remaining participants after ex-

cluding one group of 3 participants). Mean differences between the 

measured TEE and PAEE with doubly labelled water and the esti-

mated TEE and PAEE from the cross-validated equations were com-

pared using independent t-tests. Bias and root mean square error 

(rMSE) of the estimations from the cross-validated equations were 

also calculated. Finally, we performed Bland-Altman plots to exam-

ine the agreement between the measured TEE and PAEE with doubly 

labelled water and the estimated TEE and PAEE from the cross-vali-

dated equations [244]. According to this method, predicted PAEE mi-

nus measured PAEE (y-axis) was plotted against the average of the 

predicted and measured PAEE (x-axis) for all 39 children. The mean 

difference as well as the limits of agreement (±2SD) were then calcu-

lated. To test for a trend within methods (i.e., whether the magnitude 

of the error changes across the x-axis) a linear regression model was 

fitted between the x and y axis. The same procedure was repeated for 

TEE.  

All analyses were performed in R software v. 3.4.1. Statistical 

significance was defined as p<0.05. 

Abbreviations in this page: 
ESM: electronic supplementary 
material 
PAEE: physical activity-related 
energy expenditure 
rMSE: root mean square error 
SD: standard deviation 
TEE: total energy expenditure 
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Results 

Age, anthropometric characteristics, energy expenditure and 

acceleration metrics are presented in Table 10 as means and SDs. 

For the 39 participants, 3 recorded valid data for 10 days, 3 for 9 

days, 12 for 8 days, 15 for 7 days, 5 for 6 days and 1 for 5 days. There-

fore, 97% of the sample had ≥6 days. 

Table 11 and Table 12 show the performance and the regres-

sion equations of the acceleration metrics adjusted for body compo-

sition measures to estimate TEE and PAEE, respectively. For TEE, al-

ternate summary metrics as unique predictors explained 13-16% 

and ActiGraph’s activity counts explained 7-8% of the variance. For 

PAEE, alternate summary metrics explained 35-39% and ActiGraph’s 

activity counts 25% of the variance. Among alternate summary met-

rics, ENMO and MAD provided slightly higher proportions of the ex-

plained variance in TEE and PAEE in most of the models. Adjust-

ments for body composition measures considerably improved the 

estimations of TEE compared to the acceleration metrics alone, i.e., 

explained variance in TEE increased up to 67-76% for body weight 

and height and 81-84% for fat mass and fat-free mass. Likewise, ex-

plained variance in PAEE increased up to 31-51% adjusting for body 

weight and height and 64-67% for fat mass and fat-free mass. Models 

using fat mass and fat-free mass as covariates explained similar pro-

portions of the variance of TEE and PAEE for all of the acceleration 

metrics (81-84% in TEE and 64-67% in PAEE).  

Covariates 
Metric 

Equations to estimate TEE (kJ/day) 
Adj. 

r2 

Standard 
error of the 
estimation 

P 
model 

Unadjusted     
 VMCounts  kJ/day = 4773.93 + 5.75·VMCounts*  0.08 663.8 0.050 

 LFECounts  kJ/day = 4749.83 + 5.67·LFECounts  0.07 664.2 0.051 

 ENMO kJ/day = 4844.85 + 25.06·ENMO** 0.16 631.2 0.006 

 BFEN kJ/day = 4321.63 + 10.59·BFEN*  0.13 645.4 0.015 

 HFEN  kJ/day = 4310.10 + 10.58·HFEN*  0.13 645.0 0.015 

 HFEN+  kJ/day = 4372.53 + 10.98·(HFEN+)**  0.14 638.9 0.010 

 MAD  kJ/day = 4663.06 + 22.41·MAD**  0.15 635.5 0.011 

Height (H) + Weight (W)    

 VMCounts  kJ/day = -6689.20 + 5.27·VMCounts** + 30.02·W + 95.9·H*** 0.67 397.2 <0.001 

 LFECounts  kJ/day = -6729.48 + 5.2·LFECounts** + 29.87·W + 96.07·H*** 0.67 397.4 <0.001 

 ENMO kJ/day = -5690.9 + 24.27·ENMO*** + 42.54·W* + 84.93·H*** 0.76 339.5 <0.001 

 BFEN kJ/day = -6564.66 + 9.92·BFEN*** + 36.77·W + 89.66·H*** 0.74 368.2 <0.001 

 HFEN  kJ/day = -6573.15 + 9.94·HFEN*** + 36.9·W + 89.59·H*** 0.72 367.0 <0.001 

 HFEN+  kJ/day = -6491.85 + 10.56·(HFEN+)*** + 38.3·W + 88.81·H*** 0.74 352.4 <0.001 

 MAD  kJ/day = -5719.85 + 21.07·MAD*** + 42.60·W + 83.98·H*** 0.74 354.6 <0.001 

Fat mass (FM) + fat-free mass (FFM)    

 VMCounts  kJ/day = 271.88 + 4.48·VMCounts** - 47.87·FM* + 334.76·FFM*** 0.81 297.6 <0.001 

 LFECounts  kJ/day = 248.18 + 4.42·LFECounts** - 48.05·FM* + 334.99·FFM*** 0.81 297.7 <0.001 

 ENMO kJ/day = 678.26 + 18.04·ENMO*** – 25.8·FM + 307.97·FFM*** 0.84 277.1 <0.001 

 BFEN kJ/day = 118.18 + 7.87·BFEN*** – 37.01·FM + 321.62·FFM*** 0.83 282.7 <0.001 

 HFEN  kJ/day = 110.06 + 7.88·HFEN*** – 36.73·FM + 321.32·FFM*** 0.83 281.9 <0.001 

 HFEN+  kJ/day = 216.74 + 8.12·(HFEN+)*** – 32.63·FM + 316.41·FFM*** 0.84 277.3 <0.001 

 MAD  kJ/day = 524.22 + 15.93·MAD*** – 28.79·FM + 311.33·FFM*** 0.83 282.3 <0.001 

*P < 0.05 
**P < 0.01 
***P < 0.001 

Table 11 
Linear regression models to 
assess the TEE estimation 
validity of each metric ad-
justed for body composition 
estimates 

Abbreviations in this page: 
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MAD: mean amplitude deviation  
PAEE: physical activity-related 
energy expenditure 
SD: standard deviation 
TEE: total energy expenditure 
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Covariates 
Metric 

Equations to estimate TEE (kJ/day) 
Adj. 

r2 

Standard 
error of the 
estimation 

P 
model 

Unadjusted     
 VMCounts  kJ/day = 4773.93 + 5.75·VMCounts*  0.08 663.8 0.050 

 LFECounts  kJ/day = 4749.83 + 5.67·LFECounts  0.07 664.2 0.051 

 ENMO kJ/day = 4844.85 + 25.06·ENMO** 0.16 631.2 0.006 

 BFEN kJ/day = 4321.63 + 10.59·BFEN*  0.13 645.4 0.015 

 HFEN  kJ/day = 4310.10 + 10.58·HFEN*  0.13 645.0 0.015 

 HFEN+  kJ/day = 4372.53 + 10.98·(HFEN+)**  0.14 638.9 0.010 

 MAD  kJ/day = 4663.06 + 22.41·MAD**  0.15 635.5 0.011 

Height (H) + Weight (W)    

 VMCounts  kJ/day = -6689.20 + 5.27·VMCounts** + 30.02·W + 95.9·H*** 0.67 397.2 <0.001 

 LFECounts  kJ/day = -6729.48 + 5.2·LFECounts** + 29.87·W + 96.07·H*** 0.67 397.4 <0.001 

 ENMO kJ/day = -5690.9 + 24.27·ENMO*** + 42.54·W* + 84.93·H*** 0.76 339.5 <0.001 

 BFEN kJ/day = -6564.66 + 9.92·BFEN*** + 36.77·W + 89.66·H*** 0.74 368.2 <0.001 

 HFEN  kJ/day = -6573.15 + 9.94·HFEN*** + 36.9·W + 89.59·H*** 0.72 367.0 <0.001 

 HFEN+  kJ/day = -6491.85 + 10.56·(HFEN+)*** + 38.3·W + 88.81·H*** 0.74 352.4 <0.001 

 MAD  kJ/day = -5719.85 + 21.07·MAD*** + 42.60·W + 83.98·H*** 0.74 354.6 <0.001 

Fat mass (FM) + fat-free mass (FFM)    

 VMCounts  kJ/day = 271.88 + 4.48·VMCounts** - 47.87·FM* + 334.76·FFM*** 0.81 297.6 <0.001 

 LFECounts  kJ/day = 248.18 + 4.42·LFECounts** - 48.05·FM* + 334.99·FFM*** 0.81 297.7 <0.001 

 ENMO kJ/day = 678.26 + 18.04·ENMO*** – 25.8·FM + 307.97·FFM*** 0.84 277.1 <0.001 

 BFEN kJ/day = 118.18 + 7.87·BFEN*** – 37.01·FM + 321.62·FFM*** 0.83 282.7 <0.001 

 HFEN  kJ/day = 110.06 + 7.88·HFEN*** – 36.73·FM + 321.32·FFM*** 0.83 281.9 <0.001 

 HFEN+  kJ/day = 216.74 + 8.12·(HFEN+)*** – 32.63·FM + 316.41·FFM*** 0.84 277.3 <0.001 

 MAD  kJ/day = 524.22 + 15.93·MAD*** – 28.79·FM + 311.33·FFM*** 0.83 282.3 <0.001 

*P < 0.05 
**P < 0.01 
***P < 0.001 

In exploratory analyses, we additionally tested a model using 

fat mass, fat-free mass and height as covariates that resulted in 

poorer estimations than that of the fat mass and fat-free mass models 

presented. Finally, since adjustments for age and sex did not improve 

the estimation capacity of the models, they were not used in any of 

our regression models (data not shown). 

On average, estimations of TEE and PAEE from the 13-fold 

cross-validated equations were not significantly different to the TEE 

and PAEE assessed using doubly labelled water (Table 13). Figure 

12 shows the Bland-Altman plots using VMCounts and ENMO models 

as an example. Inverse associations were observed in the Bland-Alt-

man plots for all of the metrics (r = -0.36 to -0.53, p = 0.001-0.02, see 

Figure 12). 

Discussion 

The main findings of this study were: 1) alternate summary 

metrics (i.e., ENMO, BFEN, HFEN, HFEN+ and MAD) explained a larger 

proportion of the variance in TEE (+2-12%) and PAEE (+1-20%) 

than ActiGraph’s activity counts (i.e., VMCounts and LFECounts) 

from the wrist-worn wGT3X-BT accelerometer in pre-schoolers; 2) 

Equations combining acceleration metrics and body composition 

measures explained up to 84% and 67% of the variation in TEE and 

PAEE, respectively; and 3) Our cross-validation developed equations 

produced a non-biased assessment of TEE and PAEE compared to the 

Table 12 
Linear regression models to 
assess the PAEE estimation 
validity of each metric ad-
justed for body composition 
estimates 

Abbreviations in this page: 
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SD: standard deviation 
TEE: total energy expenditure 
VMCounts: activity counts in the 
vector magnitude 
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doubly labelled water method, although we suggest to cross-validate 

the developed equations in other samples to confirm these findings. 

Among the alternate summary metrics, ENMO and MAD provided 

slightly higher proportions of the variance explained in TEE and 

PAEE in most of the models. This together with the fact that ENMO 

and MAD are easier to calculate and interpret since they do not use 

frequency filters and have a unit of measurement (i.e., G’s) suggest a 

need of further exploration of these variables in studies on PA and 

PAEE in pre-schoolers.  
 TEE estimation (kJ/day)  PAEE estimation (kJ/day) 
Covariates 

Metric 
Bias P valuesa rMSE  Bias P valuesa rMSE 

Unadjusted        
 VMCounts  -11.22 0.920 682.83  -4.10 0.948 382.66 

 LFECounts  -10.96 0.922 683.01  -4.07 0.948 383.00 

 ENMO -16.00 0.881 657.48  0.22 0.997 340.52 

 BFEN -15.06 0.891 670.23  -3.48 0.952 353.79 

 HFEN  -14.95 0.891 669.79  -3.42 0.953 353.04 

 HFEN+  -14.50 0.894 664.76  -2.45 0.965 346.13 

 MAD  -15.39 0.887 661.37  -2.61 0.963 346.16 

Height + Weight        

 VMCounts  28.35 0.700 451.37  25.72 0.663 361.95 

 LFECounts  28.62 0.698 452.32  25.94 0.661 362.59 

 ENMO 26.06 0.661 364.13  21.54 0.666 306.36 

 BFEN 23.38 0.725 406.86  21.03 0.693 326.47 

 HFEN  23.61 0.722 406.22  21.21 0.690 326.08 

 HFEN+  25.29 0.689 387.31  22.12 0.667 315.71 

 MAD  25.46 0.689 390.39  22.18 0.675 324.91 

Fat mass + fat-free mass      

 VMCounts  -17.74 0.731 315.89  -4.08 0.925 266.25 

 LFECounts  -17.40 0.736 315.80  -3.77 0.931 266.28 

 ENMO -9.07 0.849 292.24  -0.48 0.991 261.42 

 BFEN -15.65 0.748 299.71  -3.04 0.942 255.62 

 HFEN  -15.15 0.756 298.40  -2.62 0.950 255.12 

 HFEN+  -9.96 0.832 288.02  0.93 0.982 254.60 

 MAD  -11.36 0.812 293.04  -0.78 0.985 263.66 

a p-values from paired t-tests 

Similar to previous studies [95,222,234,235], we found an im-

provement in the estimation of TEE and PAEE when body size and 

composition measures are used as covariates (i.e., body weight, 

height, fat mass and fat-free mass). As expected, since the muscle 

mass in fat-free mass is a major determinant of energy expenditure, 

the highest proportion of the variance in TEE and PAEE was ex-

plained when adding body composition measures. For some of our 

models, fat mass was independently associated with PAEE and TEE. 

This observation may seem intriguing, however, it agrees with pre-

vious findings in children aged 1.5 years [234], and supports further 

investigations of associations between body composition and energy 

metabolism in pre-schoolers. It is also important to note that the use 

of ENMO together with body weight and height explained as much as 

half of the variance in PAEE. Although this finding needs confirma-

tion in populations with wider ranges of age and BMI, it suggests that 

there may be a potential in the future to use acceleration metrics like 

Table 13 
Bias, 95% CIs and rMSE from com-
parisons between the estimated 
TEE and PAEE from the cross-vali-
dated equations and the measured 
TEE and PAEE with doubly labelled 
water 
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ENMO in combination with simple anthropometrics for larger stud-

ies intended to estimate free-living PAEE as an alternative method to 

doubly labelled water. 

Previous studies in pre-schoolers estimating energy expendi-

ture from accelerometers have used different devices and wear 

placements, i.e., hip and chest [128,234,235]. Butte et al. used cross-

sectional time series and multivariate adaptive regression splines to 

estimate TEE from the Actiheart (Camntech Limited, 

http://www.camntech.com) and the ActiGraph GT3X+ and body 

composition measures [128]. They found a rMSE of 105 and 139 

kcal/day using hip VMCounts, heart rate, steps, sex, age, height and 

weight for the estimation of TEE, for the cross-sectional time series 

and the multivariate adaptive regression splines models, respec-

tively. Accordingly, our models adjusted for weight and height pro-

duced a rMSE ranging from 356 to 439 kJ/day for ENMO and 

LFECounts respectively (~ 85 to 105 kcal/day) for the estimation of 

TEE. Sijtsma et al. [235] found 31% of the PAEE variance explained 

by CPM as a unique predictor from the Tracmor accelerometer 

(Philips DirectLife, Amsterdam, the Netherlands). Our results 

showed slightly higher proportions of the PAEE explained variance 

from alternate summary metrics (i.e., 36-39%) and lower from the 

ActiGraph’s activity counts (i.e., 28%). It is important to note that ac-

tivity count metrics are brand-dependent, so the counts from the 

Tracmor are not the same metric as the VMCounts and LFECounts 

used in this study. In regards to TEE, Sijtsma et al. [235] found that 

activity counts from the Tracmor adjusted for body weight and 

height (among other confounders) could predict 29% of the varia-

tion. The models in the present study adjusted for body weight and 

height are able to predict 67-74% of the variation in TEE for all of the 

acceleration metrics. Henriksson et al. [234] used the chest-worn 

Actiheart and they found that 76% of the variance in TEE could be 

explained by activity counts, fat mass and fat-free mass in children 

aged 1.5-3 years old. Our wrist-based models explained between 81-

83% of the variance in TEE when adjusted for the same body compo-

sition measures. These results show that previous findings regarding 

the hip-worn accelerometers out-performing the wrist-worn accel-

erometers in laboratory conditions [245] might not follow the same 

trend in a free-living setting. Although we cannot directly compare 

the performance of hip- versus wrist-worn accelerometers since we 

only used the latter placement. Wrist accelerations reflect arm move-

ments, so they could improve the detection of upper-body move-

ments compared with hip accelerations, explaining the observed dif-

ference between the laboratory and free-living settings. Further, the 

comparisons with previous literature should be interpreted with 

caution since differences in age and body composition variability. 
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To the best of our knowledge, only three studies have assessed 

the performance of wrist-worn accelerometers to estimate free-liv-

ing energy expenditure in any age group [67,95,222]. Firstly, Van 

Hees et al. [67,222] found that between 26 and 36% of the variation 

in PAEE could be explained by different alternate summary metrics 

(i.e., ENMO, BFEN, HFEN and HFEN+) calculated from a wrist-worn 

accelerometer and adjusted for body weight in non-pregnant 

women. This is in concordance with our results in pre-schoolers, i.e., 

we found that between 33-37% of the variance in PAEE was ex-

plained from the same alternate summary metrics and body weight 

(data not shown). Secondly, we extend our previous findings in five-

year-old children [95] to also include alternate summary metrics in 

addition to LFEcounts. In this context it is relevant to note that our 

previous results regarding LFECounts in these same participants 

[95] have been slightly improved from 24 to 28% of the variance ex-

plained in PAEE due to new decisions regarding the data processing 

of the raw accelerations. These decisions included: (i) the clipping 

score (i.e., abnormally sustained high accelerations due to malfunc-

tioning of the devices -see ESM 4) was calculated to detect malfunc-

tioning devices, (ii) non-wear time and the clipping score have been 

imputed by means of the rest of the recording days during the same 

time window since this procedure has shown to be better for the pre-

diction of PAEE in adult women [222], (iii) we analysed all available 

days with enough wearing data in the present study while the num-

ber of days was restricted to 7 in the previous study [95], and (iv) 

one participant has been excluded from the present analyses for not 

meeting the inclusion criteria (i.e., 16 hours of valid data per day for 

at least 4 measurement days). We decided to change these pro-

cessing criteria on the basis of the findings from recent studies 

Figure 12 
Example of Bland-Altman plots for 
the agreement between the esti-
mated PAEE and the measured 
PAEE with doubly labelled water 
using the cross-validated equa-
tions from VMCounts and ENMO 
metrics (waking hours models). 
Regression equations: A) y = -0.47x + 1456; 
r = -0.63; p <0.001; B) y = -0.49x + 1460; r = 
-0.53; p < 0.001; C) y = -0.37x + 1482; r = -
0.41; p = 0.009; D) y = - 0.41x + 1480; r = -
0.36; p = 0.02.  
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[67,222] and to apply the same procedures to all of the acceleration 

metrics included.  

The 13-fold cross-validation performed in this study to test the 

out-of-sample performance of the developed equations showed no 

difference between TEE and PAEE assessed using doubly labelled 

water, as well as a relatively low rMSE compared to a previous study 

[235]. However, rMSE is not small enough to ensure a good predic-

tion at an individual level and researchers should be cautious about 

that. Bland-Altman plots indicated a tendency that the accelerometer 

overestimated low energy expenditure (PAEE and TEE) values while 

corresponding high values were underestimated. Cross-validation of 

these equations in different samples should be performed in order to 

confirm the out-of-sample performance of these equations. Further-

more, other models for instance utilizing machine learning, are wor-

thy to be tested in future studies in order to evaluate if they may im-

prove the estimation capacity of these equations.  

In regards to the epoch-by-epoch analyses, estimation of PAEE 

with VMCounts is lower than the ENMO estimations at high intensi-

ties (see Figure S1, ESM 5), which can explain the higher perfor-

mance of the alternate summary metrics over ActiGraph’s activity 

counts in this study. The unique difference between these models is 

the processing technique used to derive VMCounts and ENMO, i.e., 

raw accelerations are processed in different ways to remove gravity 

acceleration and noise from the signal without affecting the acceler-

ations produced by body movement (i.e., PA). ActiGraph applies a 

band-pass frequency filter from 0.05 to 2.5 Hz, whilst the alternate 

summary metrics either do not use a frequency filter (i.e., ENMO and 

MAD) [67,147] or place the high bound at 15 Hz (i.e., BFEN) [67]. Fur-

thermore, although it has been found that accelerometers worn on 

the wrist during walking and running on a treadmill do not plateau, 

the authors hypothesized that the lack of a predominant plane of 

movement in this location during ambulatory behaviours could ex-

plain this [246]. However, it could be possible that the higher com-

plexity in the free-living movement of the human wrist produces 

movements up to 23 Hz in a same plane [96]. In this scenario, the 

band-pass filtering used to obtain activity counts would remove high 

wrist accelerations. Therefore, raw accelerations processing should 

be specific for the body placement where the device has been at-

tached to. It is important to highlight that data collected with sam-

pling frequencies different than 30, 60 or 90 Hz can cause issues 

when converting the raw data to activity counts by ActiGraph. There-

fore, our models could be affected by this, so caution is needed when 

interpreting the information from our VMCounts and LFECounts 

models. It is also important to note that this epoch-by-epoch estima-

tion has been performed with the unique objective of finding an 
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explanation for the differences found across acceleration metrics, 

therefore, these equations should never be used to estimate energy 

expenditure at an epoch level for describing PA patterns. 

The practical implications of this study should be highlighted. 

We provide information showing that, if possible, alternate summary 

metrics should be used since they explain a larger amount of the var-

iation in PAEE and TEE. Furthermore, we provide different equations 

for the estimation of TEE and PAEE in five-year-old children (Table 

11 and Table 12). All this information may be useful to researchers 

when investigating associations between PA, energy expenditure 

and energy balance, body composition and various health outcomes 

in preschool children. The use of different acceleration metrics and 

body composition measures ease the implementation of these equa-

tions in different scenarios, i.e., depending on the availability of col-

lected information. Additionally, it is important to note that the GGIR 

package used to process the raw accelerations in this study is an open 

source software to automatically process the raw signal from the 

most used research-grade devices, i.e., ActiGraph, Geneactiv (GEN; 

GeneActive, ActiveInsights, Kimbolton, Cambridgeshire, United King-

dom) and Axivity (Axivity Ltd, UK). Caution is needed when compar-

ing these metrics across devices since we cannot confirm that they 

are fully comparable [225]. Thus, the acceleration metrics used in 

this study can be easily calculated without high technical expertise. 

The generalizability of our findings also deserves some com-

ments. Children in this nested validation study were not different in 

terms of weight, height, fat mass and fat-free mass (mean and SD) 

from the complete cohort studied in the MINISTOP study. Likewise, 

our participants can be considered fairly representative of Swedish 

populations in comparison with standard representative weight and 

height values [247], as well as in terms of fat mass and fat-free mass 

when compared with British reference data in children [248]. Thus, 

our children covered a wide range in weight, height and body com-

position, which agrees with Swedish children in general. However, 

our sample only included five-year-olds and primarily normal-

weight children (only two were classified as obese). This limits gen-

eralizability beyond the age of five years and to obese children. Fur-

thermore, our findings need confirmation including a formal cross-

validation of our equations in another population which should in-

clude a wider age range and more obese children.  

There are some limitations that need to be acknowledged. First 

of all, BMR was predicted to calculate PAEE and it could be argued 

that the use of body weight to predict BMR could increase the corre-

lation in the regression models for the estimation of PAEE. We find 

this unlikely as body weight explained only a small fraction of PAEE 

(r2 < 0.001, p = 0.904). Additionally, the protocol for the 

Abbreviations in this page: 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SD: standard deviation 
TEE: total energy expenditure 



Study III 

Page 146 of 385 

accelerometer data collection and the doubly labelled water protocol 

was not time consistent. Accelerometers were worn during 5-10 

days whilst the doubly labelled water protocol required 14 days to 

ensure the maximum accuracy [249]. We replicated the analysis us-

ing only the doubly labelled water of the first 7 days to test whether 

the time difference could affect our findings. The results were similar 

for both TEE and PAEE (results not shown), which is probably due to 

the fact that day-to-day variation in TEE is small [250]. Although av-

erage TEE and PAEE were not different from reference TEE and 

PAEE, caution is advised when interpreting individual estimations 

from these equations. Finally, a formal cross-validation in a different 

sample is needed to confirm the current findings. Otherwise, our 

study has several strengths. First and foremost is the use of the gold-

standard measure of TEE through doubly labelled water. Further-

more, we used and compared several methods to process the accel-

erometer raw signals in order to study how different acceleration 

metrics are related to TEE and PAEE. Finally, the high compliance for 

the accelerometer protocol allowed for a relevant representation of 

the PA patterns (i.e., 97% of the sample had ≥6 valid days).  

Conclusion 

In conclusion, a higher performance to predict PAEE and TEE 

was observed for the alternate summary metrics (i.e., ENMO, BFEN, 

HFEN, HFEN+ and MAD) versus ActiGraph’s counts, especially for the 

model including ENMO, body weight and height, which explained a 

relatively high proportion of the variance in PAEE (i.e., 50%). Further 

exploration of these variables in studies on PA and energy expendi-

ture are warranted. Altogether, acceleration metrics from the wrist 

in combination with body composition measures explained up to 

84% of the variance in TEE and 67% of the variation in PAEE after 

adjustments for body weight and height. Although confirmation of 

these findings in other populations is still needed, the results suggest 

that wrist-worn accelerometers have the potential to assess free-liv-

ing TEE and PAEE in combination with body composition measures 

in pre-schoolers. 
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Abstract 

Background | Large epidemiological studies that use accelerome-

ters for physical behaviour and sleep assessment dif-

fer in the location of the accelerometer attachment 

and the signal aggregation metric chosen. 

Aims | This study aimed to assess the comparability of accel-

eration metrics between commonly-used body-at-

tachment locations for 24 hours, waking and sleeping 

hours, and to test comparability of PA cut-points be-

tween dominant and non-dominant wrist. 

Methods | Forty-five young adults (23 women, 18–41 years) 

were included and GT3X+ accelerometers were 

placed on their right hip, dominant, and non-domi-

nant wrist for 7 days. We derived ENMO, Low-pass 

filtered ENMO (LFENMO), MAD and VMCounts over 

5-second epochs from the raw accelerations. Metric 

values were compared using a correlation analysis, 

and by plotting the differences by time of the day. 

Results | Cut points for the dominant wrist were derived using 

Lin’s concordance correlation coefficient optimiza-

tion in a grid of possible thresholds, using the non- 

dominant wrist estimates as reference. They were 

cross-validated in a separate sample (N = 36, 10 

women, 22–30 years). Shared variances between 

pairs of acceleration metrics varied across sites and 

metric pairs (range in r2: 0.19–0.97, all p < 0.01), sug-

gesting that some sites and metrics are associated, 

and others are not. We observed higher metric values 

in dominant vs. non-dominant wrist, thus, we devel-

oped cut points for dominant wrist based on ENMO to 

classify SB (<50 mg), LPA (50–110 mg), MPA (110–

440 mg) and VPA (≥440 mg). 

Conclusion | Our findings suggest differences between dominant 

and non-dominant wrist, and we proposed new cut 

points to attenuate these differences. ENMO and 

LFENMO were the most similar metrics, and they 

showed good comparability with MAD. However, 

counts were not comparable with ENMO, LFENMO 

and MAD. 

Key Points 

Question 
How comparable are different 
acceleration metrics for the 
assessment of PA, SB, and 
sleep across common body at-
tachment sites? 

Findings 
ENMO and LFENMO were the 
most similar metrics, and they 
showed good comparability 
with MAD. However, counts 
were not comparable with 
ENMO, LFENMO and MAD 

Meaning 
Our findings suggest differ-
ences in the PA measured 
from dominant and non-domi-
nant wrist, and we proposed 
new cut points for the domi-
nant wrist to attenuate these 
differences. Also, similar pat-
terns can be identified by dif-
ferent acceleration metrics, 
which should be considered 
for studies comparability, re-
producibility, and harmoniza-
tion. 

Abbreviations in this page: 
ENMO: Euclidean norm minus 1G 
LFENMO: ENMO of the low-pass 
filtered raw accelerations 
LPA: light physical activity 
MAD: mean amplitude deviation 
MPA: moderate physical activity 
PA: physical activity 
SB: sedentary behaviour 
VMCounts: activity counts in the 
vector magnitude 
VPA: vigorous physical activity 

 





Study IV 

Page 155 of 385 

Introduction 

Physical behaviours occurring during the 24 hours of the day 

consist of PA, SB and sleep. These three behaviours are of major pub-

lic health interest due to their well-documented influence on health 

[8,10,251,252]. Objective methods to assess free-living PA range 

from cost-efficient tools such as pedometers to relatively expensive 

multi-sensor devices, e.g., Actiheart [253]. Accelerometers provide a 

balance of cost and feasibility and have been increasingly used in 

large epidemiological cohorts [254,255], for example in the Women’s 

Health Study (WHS) and the NHANES, the UK Biobank, and the IS-

COLE which collected data worldwide. Furthermore, accelerometers 

have been validated for the estimation of PA [61,69,70], SB 

[62,116,256] and sleep [38,40,257]. However, accelerometer utiliza-

tion requires data collection and processing decisions which could 

affect the final estimations [233].  

Data collection decisions start with the selection of the most ap-

propriate anatomical location to attach the accelerometer [233]. Hip 

and wrist are the most frequently selected locations [233], and both 

have been demonstrated to be valid locations for classifying PA in-

tensities and SB [61,69,70,233], as well as to assess sleep 

[38,40,257]. However, it is unclear how much the accelerometer out-

come measures vary between body sites. Previous studies have 

found high correlations (i.e., ICCs > 0.9) between acceleration values 

from both wrists [258] with slightly lower values in the non-domi-

nant wrist, although non-significantly different from the dominant 

wrist [259,260]. Likewise, moderate-to-high correlations between 

acceleration values from either wrist and the hip have been reported 

(i.e., r coefficients between 0.7 and 0.9) [260,261]. These studies had 

a focus on PA and SB (i.e., waking hours) and did not report associa-

tions during sleeping hours. Furthermore, cut points to estimate PA 

have been proposed for the non-dominant wrist [61,62] and hip 

[61,62,107] in adults, but not for the dominant wrist. Therefore, 

studies where accelerometers were placed on the dominant wrist do 

not have specific cut points proposed for their data, for instance the 

UK Biobank [204]. 

Data processing aims to remove the gravitational component 

and noise from the raw signal, in order to obtain an acceleration sig-

nal aggregation metric (from herein acceleration metric) intended to 

reflect body movement [67]. For example, acceleration metrics in-

clude ENMO [67], ENMO of the low-pass filtered raw accelerations 

(LFENMO) [204], MAD [147,262] as well as manufacturer-specific 

metrics such as VMCounts, among others (see definitions of these ac-

celeration metrics in Table 14). To our knowledge, these accelera-

tion metrics have not previously been compared to each other in the 

same study. Comparing these metrics using data from hip, dominant 
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wrist and non-dominant wrist and focusing on different periods of 

the day (i.e., 24 hours, waking and sleeping hours) could benefit re-

searchers interested in either PA, SB and/or sleep. 

 Moreover, the movement pattern identified throughout the 

day by each of these metrics (i.e., acceleration metric values through-

out the day) and the data from different body attachment sites may 

be useful to describe PA [263]. Only one study has investigated dif-

ferences in movement patterns identified from hip, dominant wrist 

and non-dominant wrist [259]. This study only analysed VMCounts 

during waking hours in a sample of older adults [259]. The draw-

backs of using brand-dependent VMCounts have been described (e.g., 

precludes comparison across studies, complicates the interpretation 

of results, summarizes raw data which may minimize their potential) 

[264], as well as the importance of moving forward with open-source 

derived metrics from raw accelerometer data [265,266]. Therefore, 

the present study aimed to: 1) study the comparability between dif-

ferent acceleration metrics across right hip, dominant wrist and non-

dominant wrist attachment sites during different periods of the day 

(i.e., 24 hours, waking and sleeping hours); and 2) use previously es-

tablished cut points for accelerations measured at the non-dominant 

wrist [61,62] to develop and cross-validate cut points in a separate 

sample for accelerations measured at the dominant wrist in a sample 

of young adults. 
Acceleration metric Frequency filter Definition 

ENMO None 
Euclidean norm minus one g of the raw accelerations, with 
resulting negative values rounded to zero and then averaged 
over 5 s epochs. 

LFENMO Low-pass 
Euclidean norm minus one g of the low-pass filtered raw ac-
celerations with resulting negative values rounded to zero 
(Butterworth 4th order filter; ꞷ = 20 Hz). 

MAD None 
Euclidean norm of each raw acceleration data point minus 
the mean of its correspondent 5 s epoch. 

VMCounts Band-pass 
Counts are obtained by using a band-pass frequency filter to 
the raw signal (by default: ꞷ0=0.025 Hz, ꞷ1=2.5 Hz). The rest 
of information is mostly unknown. 

 

Methods 

Study design and participants 

The present cross-sectional study analysed free-living data 

from a convenience sample composed of students and research per-

sonnel from the University of Granada, Spain. The study was carried 

out in two waves of 45 (23 women, 18-41 years old) and 36 (10 

women, 22-30 years old) young adults, respectively. Wave 1 (cut-

point calibration sample) was used to compare different acceleration 

metrics across body attachment sites and to develop cut points for 

the dominant wrist that are consistent with the only set of cut points 

proposed to estimate PA intensity from the non-dominant wrist in 

adults to date [61,62]. Wave 2 (cut-point cross-validation sample) 

data were used to cross-validate the new set of cut points in a 

Table 14 
Brief description of the  
acceleration metrics 
included 
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different sample of participants with similar characteristics. All par-

ticipants were informed of the purpose of the study and written in-

formed consent was obtained. This study was conducted according 

to the Declaration of Helsinki and approved by the Ethics Committee 

on Human Research of the University of Granada and the study was 

approved by the institutional review board of the University of Pitts-

burgh and National Institute on Aging. 

 Cut-point calibration sample  Cut-point cross-validation samplea 

 

All 
(N = 42) 

Men 
(N = 19) 

Women 
(N = 23) 

 
All 

(N = 36) 
Men 

(N = 26) 
Women 
(N = 10) 

Age (years) 27.3 (5.3) 27.2 (5.9) 27.4 (4.9)  24.3 (1.9) 24.4 (2.3) 24.1 (1.1) 
Weight (kg) 67.8 (12.1) 78.3 (8.5) 59.1 (6.3)  70.3 (14.2) 77.0 (13.1) 58.3 (5.1) 
Height (cm) 171.0 (8.3) 178.0 (1.7) 165.1 (5.2)  172.3 (9.7) 177.0 (7.8) 163.8 (6.6) 
BMI (kg/m2) 23.0 (2.6) 24.6 (1.7) 21.7 (2.5)  23.5 (3.6) 24.5 (3.8) 21.8 (2.5) 

Acceleration  
metrics  

24 hours 
Waking 
hours 

Sleeping 
hours  

24 hours 
Waking 
hours 

Sleeping 
hours 

Wear time (h/day)        
Right hip 23.9 (0.3) 17.2 (0.7) 6.7 (0.7)  - - - 
Dom. wrist 24.0 (0.2) 17.0 (0.7) 6.9 (0.6)  23.7 (1.3) 16.2 (1.7) 7.5 (1.8) 
Non-dom. wrist 24.0 (0.2) 17.0 (0.7) 7.0 (0.6)  23.6 (1.4) 16.2 (1.4) 7.4 (1.5) 

ENMO (mg)        
Right hip 16.0 (5.6) 21.4 (7.7) 2.4 (1.3)  - - - 
Dom. wrist 33.9 (7.6) 46.5 (10.6) 3.0 (1.5)  31.7 (14.0) 43.1 (13.8) 3.5 (2.3) 
Non-dom. wrist 31.3 (6.8) 43.1 (9.9) 3.2 (1.4)  29.9 (12.9) 40.7 (12.8) 4.4 (4.8) 

LFENMO (mg)        
Right hip 12.1 (4.7) 16.0 (6.4) 2.1 (1.1)  - - - 
Dom. wrist 26.4 (6.4) 36.1 (8.9) 2.5 (1.2)  - - - 
Non-dom. wrist 24.9 (5.9) 34.3 (8.6) 2.6 (1.2)  - - - 

MAD (mg)        
Right hip 24.4 (6.9) 33.4 (9.4) 1.5 (1.7)  - - - 
Dom. wrist 48.4 (8.9) 67.0 (12.2) 2.8 (2.2)  - - - 
Non-dom. wrist 44.2 (8.5) 61.4 (12.0) 2.9 (2.1)  - - - 

VMCounts/5s        
Right hip 41.4 (9.9) 56.3 (13.6) 3.6 (3.0)  - - - 
Dom. wrist 176.9 (31.8) 242.6 (43.2) 14.6 (8.9)  - - - 
Non-dom. wrist 164.9 (29.3) 226.7 (41.6) 15.0 (7.8)  - - - 

Data are presented as mean (SD) 
aCut-point cross-validation sample data was only used to cross-validated cut points for dominant 
wrist based on ENMO, so they did not wear hip-worn accelerometers and only ENMO was derived. 

Procedures 

Participants’ body weight and height were measured to the 

nearest 0.1 kg and 0.1 cm using an electronic scale (SECA 861, Ham-

burg, Germany) and a precision stadiometer (SECA 225, Hamburg, 

Germany). We calculated BMI as mass (kg) / height2 (m2). Partici-

pants were instructed to wear accelerometers (ActiGraph GT3X+, 

Pensacola, FL, USA) for seven complete days (24 hours per day). Cut-

point calibration sample participants wore three accelerometers 

placed on the right hip, dominant wrist and non-dominant wrist. Cut-

point cross-validation sample participants wore accelerometers on 

both wrists. All participants were instructed to remove the accel-

erometers during bathing and showering, to always wear and re-

move all of the accelerometers at the same time, and to keep a diary 

of the times they went to bed and got off the bed every day.  

Accelerometers 

ActiGraph GT3X+ is a triaxial accelerometer with a dynamic 

range of +/- 6 G. Accelerometers were initialized to capture and store 

accelerations at 100 Hz. Raw accelerations were then downloaded 

Table 15 
Descriptive characteristics of 
participants 
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(“.gt3x” files) and converted to “.csv” format using ActiLife v.6.13.3 

(ActiGraph, Pensacola, FL, USA).  

Data processing  

Raw “.gt3x” files were loaded in the ActiLife software to export 

raw data in .csv format and to obtain VMCounts over 5 s epochs using 

the software’s default filter (ꞷ0=0.025 Hz, ꞷ1=2.5 Hz). Next, raw 

“.csv” files were processed using the GGIR software (version 1.6-0, 

https://cran.r-project.org/web/packages/GGIR/) [67,200]. The pro-

cessing methods of GGIR involved: 1) Auto-calibration of the data ac-

cording to the local gravity [66]; 2) calculation of ENMO, LFENMO 

and MAD and inclusion of the previously obtained VMCounts over 5 

seconds epochs (Table 14) to participant datasets to follow the same 

non-wear time calculation and processing decisions than the rest of 

the acceleration metrics; 3) detection of the non-wear time based on 

the raw acceleration from the three axes using a validated algorithm 

[67], briefly, each 15-min block was classified as non-wear time if the 

SD of 2 out of the 3 axes was lower than 13 mg during the surround-

ing 60-min moving window or if the value range for 2 out of the 3 

axes was lower than 50 mg; 4) detection of sustained abnormal high 

accelerations, i.e., higher than 5.5 g; 5) imputation of detected non-

wear time and abnormal high accelerations by means of the acceler-

ation for the rest of the recording period during the same time inter-

val than the affected periods; and 6) separation of waking and sleep-

ing hours using a validated algorithm on the non-dominant wrist 

data and guided by logged timestamps by participants [40]. Logged 

times were 9 min (95% confidence intervals [CI95%]: -6 to 25 min) 

earlier and 17 min (CI95%: 2 to 32 min) later than accelerometer de-

tected times for sleep onset and wake-up times, respectively. Finally, 

waking and sleeping hours detected from the non-dominant wrist 

were applied to the hip and dominant wrist measurements of each 

participant. All participants with at least 4 days with ≥16 hours wear-

ing accelerometers were included in the analyses. 

Data analysis 

SB and time spent in each PA intensity (i.e., LPA, MPA and VPA) 

were estimated from the ENMO metric from the dominant wrist and 

non-dominant wrist-worn accelerometer data. Hildebrand et al.’s 

[61,62] ENMO cut points developed for the non-dominant wrist were 

applied to the dominant wrist and non-dominant wrist data. Addi-

tionally, we calculated the same variables using the validated cut 

points incremented by 5 and 10 mg [61,62] for the dominant wrist 

data only. Daily means of the acceleration metrics for 24 hours, wak-

ing hours and sleeping hours, as well as estimations of time spent in 

SB and PA intensity levels from the wrist-worn accelerometers were 

included in the analyses.  

Abbreviations in this page: 
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Statistics 

Descriptive statistics were calculated as means and SDs. We 

used linear regressions to study the associations between the differ-

ent acceleration metrics (i.e., ENMO, LFENMO, MAD and VMCounts) 

calculated from the same and different body attachment sites (i.e., 

right hip, dominant wrist and non-dominant wrist) (i.e., aim 1). 

In order to study whether acceleration metrics identify a differ-

ent movement pattern over the day (i.e., aim 2), we plotted 30-min 

averages of acceleration metrics across body attachment sites. As 

each acceleration metric has a different unit of measurement, we 

used z-scores when different acceleration metrics appeared in the 

same plot. Furthermore, we performed a curve analysis using statis-

tical parametric mapping (SPM) [267] to compare accelerations from 

dominant and non-dominant wrists throughout the day. Acceleration 

data over the day were depicted as curves. These acceleration curves 

produced throughout the day are highly variable between individu-

als due to several factors (e.g., lifestyle, working schedule). To mini-

mize this high variability and allow for a comparison of the curves, 

we sorted accelerations produced every day per participant in an in-

creasing order. Therefore, all of the curves start with the periods of 

the day when activity was low (e.g., sleep, SB activities…) and finish 

with the periods of the day with the highest intensity activities, inde-

pendently of the moment of the day when they occurred. T-tests 

were used to determine significant differences between the curves 

for dominant and non-dominant wrists. SPM involved 4 steps to com-

pute the t-test analysis: 1) computing the value of a test statistic at 

each point in the normalized time series; 2) estimating temporal 

smoothness on the basis of the average temporal gradient; 3) an 

equally smooth random process is performed to compute the value 

of the test statistics above which only α = 5% of the data would be 

expected to reach; 4) computing the probability that specific su-

prathreshold regions could have resulted from an equivalently 

smooth random process. 

Finally, the Lin’s concordance correlation coefficient (LCCC), 

two sample t-tests and mean absolute percent error (MAPE) were 

used to study the agreement between SB time and time spent in each 

PA intensity derived from non-dominant wrist with validated cut 

points (reference) and all cut points used for dominant wrist (see 

Data processing section) (i.e., aim 3). 

Cut-point selection was made following these criteria: 1) clos-

est VPA estimation if any; 2) closest MPA estimation if any (the upper 

threshold is already defined in step 1); 3) closest LPA estimation if 

any (the upper threshold is already defined in step 2). When two or 

more thresholds provided similar results, we tried to respect the 

original distance between the previously-established thresholds for 
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non-dominant wrist [61,62]. The closest thresholds were selected 

based on mean differences, LCCC and MAPE. Then, the selected cut 

points were cross-validated using data from the cut-point cross-val-

idation sample. All analyses were performed in R v.3.4.1 

(https://cran.r-project.org/). The significance level was P < 0.05. 

Results  

Descriptive characteristics of participants 

Out of the 45 participants from the cut-point calibration sam-

ple, three were excluded from the analyses for either not having ac-

cumulated enough wear time (n = 2) or having mis-placed the domi-

nant wrist and non-dominant accelerometers for ≥ 1 day (n = 1). All 

of the cut-point cross-validation sample participants were included 

in the cross-validation analyses (i.e., aim 3). Descriptive characteris-

tics of the included participants, as well as acceleration metric values 

for each body attachment site (i.e., right hip, dominant wrist and non-

dominant wrists) across periods of the day (i.e., 24 hours, waking 

hours and sleeping hours) are presented in Table 15. Since wear 

time was high and practically the same for the right hip, dominant 

wrist and non-dominant wrist accelerometers, we did not delete un-

matched non-wear time across accelerometers.  

Comparison of each acceleration metric across body attachment sites 

Table 3 presents the shared variances for every acceleration 

metric across different body attachment sites, i.e., hip, dominant 

wrist and non-dominant wrist. Overall, shared variance between 

wrists (r2 between 0.56 [CI95%: 0.33 – 0.74] and 0.94 [CI95%: 0.89 – 

0.97]) was higher than shared variance between any of the wrists 

and the hip (r2 between 0.21 [CI95%: 0.03 – 0.45] and 0.88 [CI95%: 0.78 

– 0.93]) for all the metrics analysed.  
  ENMO LFENMO MAD VMCounts 

24 hours     

Right hip vs. Dominant wrist 0.37** 0.28* 0.68** 0.40** 

Right hip vs. Non-dominant wrist 0.34** 0.25* 0.77** 0.43** 

Dominant vs. Non-dominant wrist 0.79** 0.78** 0.86** 0.71** 

Waking hours     

Right hip vs. Dominant wrist 0.37** 0.31** 0.66** 0.38** 

Right hip vs. Non-dominant wrist 0.35** 0.28* 0.75** 0.42** 

Dominant vs. Non-dominant wrist 0.79** 0.79** 0.86** 0.70** 

Sleeping hours     

Right hip vs. Dominant wrist 0.37** 0.21* 0.88** 0.75** 

Right hip vs. Non-dominant wrist 0.39** 0.27* 0.88** 0.69** 

Dominant vs. Non-dominant wrist 0.67** 0.56** 0.94** 0.92** 

* P < 0.01 

** P < 0.001 

Figure 13 shows that acceleration values (for all of the metrics) 

for the wrists are higher than for the hip, with the highest values 

reached in the dominant wrist. Although the PA pattern seemed to be 

concordant for dominant wrist and non-dominant wrists, SPM anal-

ysis showed significant differences (p < 0.001) between the 50th and 

Table 16 
Shared variance (r2) for each 
acceleration metric across 
different body attachment 
sites (i.e., hip, dominant and 
non-dominant wrists). 
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the 90th percentile of the accelerations produced (when accelera-

tions start to increase, indicating periods of PA, see Figure 14). In 

regards to the PA pattern identified from hip, besides recording 

lower values, peaks of activity were not totally concordant with those 

identified by the wrists.  

 

Comparison of acceleration metrics derived from the same body at-

tachment site 

Table 4 shows the shared variances (r2) between pair of accel-

eration metrics derived from the same body attachment site and pe-

riod of the day (i.e., 24 hours, waking and sleeping hours). ENMO and 

LFENMO were the metrics which presented the highest shared vari-

ances among all of the metrics included (r2 ranged from 0.95 [CI95%: 

0.90 – 0.97] to 0.97 [CI95%: 0.93 – 0.98] for all locations and moments 

of the day). The lowest shared variances were found between 

LFENMO and VMCounts (r2 = 0.19 [CI95%: 0.02 – 0.42]), and for 

LFENMO and MAD during sleeping hours for the hip (r2 = 0.21 [CI95%: 

0.03 – 0.45]). For the rest of the metrics, in general, they presented 

higher r2 values during waking hours (r2 between 0.38 [CI95%: 0.11 – 

0.57] and 0.92 [CI95%: 0.85 – 0.96]) than during sleeping hours (r2 

between 0.32 [CI95%: 0.10 – 0.55] and 0.79 [CI95%: 0.65 – 0.88]). A 

graphical comparison of all of the acceleration metrics for each body 

attachment site can be found in Figure 15. While ENMO, LFENMO 

and MAD were describing almost the same movement pattern when 

derived from the same attachment site, VMCounts were more dis-

cordant in some periods of the day (e.g., between 9 and 11 am, 

VMCounts did not detect a peak of activity identified by the rest of 

the metrics in all of the placements, Figure 15). 

 

Figure 13 
Means of ENMO (Panel A), LFENMO 
(Panel B), MAD (Panel C) and 
Counts (Panel D) over 30-min peri-
ods for the hip, dominant and non-
dominant wrist. 
Each data point is the average for this time 
interval for all participants from the cut-
point calibration sample (n = 42). 
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ENMO 
vs. 

LFENMO 

ENMO 
vs. 

MAD 

ENMO 
vs. 

VMCounts 

LFENMO 
vs. 

MAD 

LFENMO 
vs. 

VMCounts 

MAD 
vs. 

VMCounts 

24 hours       

Right hip 0.97** 0.72** 0.46** 0.59** 0.34** 0.81** 
Dominant wrist 0.96** 0.91** 0.55** 0.86** 0.51** 0.66** 
Non-dominant wrist 0.97** 0.87** 0.49** 0.82** 0.47** 0.56** 

Waking hours       

Right hip 0.97** 0.74** 0.48** 0.62** 0.38** 0.81** 
Dominant wrist 0.97** 0.92** 0.54** 0.87** 0.51** 0.64** 
Non-dominant wrist 0.97** 0.89** 0.52** 0.85** 0.51** 0.57** 

Sleeping hours       

Right hip 0.95** 0.42** 0.32** 0.21** 0.19* 0.54** 
Dominant wrist 0.97** 0.75** 0.44** 0.59** 0.37** 0.47** 
Non-dominant wrist 0.97** 0.79** 0.42** 0.66** 0.37** 0.44** 

* P < 0.01 
** P < 0.001 

Cut-point replication 

As the shared variance between ENMO derived from the domi-

nant and non-dominant wrist was fairly high during waking hours (r2 

= 0.79 [CI95%: 0.65 – 0.88], Table 4), and the movement pattern over 

the day identified was very similar for both wrists (Figure 13), we 

replicated the cut points validated by Hildebrand et al. in the non-

dominant wrist [61,62] using dominant wrist ENMO values (Table 

5). After considering the criteria defined to select the new cut points, 

we found that the closest estimation between wrists was achieved 

with 50, 110 and 440 mg to classify SB and LPA, MPA and VPA, re-

spectively. Criteria were: 1) closest VPA estimation if any, no thresh-

old was selected since all of them were equally comparable; 2) clos-

est MPA estimation if any, 110-430 mg, 110-435 mg and 110-440 mg 

provided similar results, so 110-440 mg was selected to respect the 

distance between previously-established cut points (i.e., 100-430 

mg); 3) closest light PA estimation considering the upper threshold 

defined in step 2 (i.e., 110 mg). This selection of cut points was cross-

validated using data from the wave 2; estimations were not signifi-

cantly different between wrists for any of the intensities and showed 

high LCCCs (0.85-0.92) and low MAPEs (0.67-14.29%). 

Discussion 

Main findings 

The main findings of this study were: (i) the dominant wrist 

showed systematically higher acceleration metric values than the 

non-dominant wrist, which were translated into different SB time 

and PA estimations when using the same cut points; ii) dominant and 

non-dominant wrist based estimations of PA became comparable by 

modifying the validated cut points, which was confirmed in a cross-

validation sample; (iii) non-dominant and dominant wrist accelera-

tion metrics shared a higher proportion of variance than between the 

hip and either wrist, while MAD was the metric with the highest 

shared variances across body attachment sites; (iv) overall, the met-

rics ENMO, LFENMO and MAD shared higher proportions of variance 

Table 17 
Shared variance (r2) between 
different acceleration metrics 
derived from the same body 
attachment site (N = 42). 
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than any of these metrics with VMCounts, especially when the met-

rics were derived from the wrist-worn accelerometers; (v) the move-

ment pattern identified throughout the day was visually equivalent 

for any given acceleration metric (e.g., ENMO) from the dominant 

wrist and non-dominant wrist, and was also similar when comparing 

either wrist with the hip and across acceleration metrics derived 

from the same body site (with the exception of VMCounts). Alto-

gether, these findings demonstrate the extent to which different fac-

tors related to data collection (e.g., anatomical wear location) and 

processing procedures (e.g., different acceleration metrics) could 

modify the final PA, SB time, and sleep estimations. 

 

Figure 14 
Comparison of means of ENMO 
(Panel A), LFENMO (Panel B), 
MAD (Panel C) and Counts 
(Panel D) sorted in an increas-
ing order between dominant 
and non-dominant wrist. 
Each data point is the average for all 
participants from the cut-point calibra-
tion sample (N = 42). 
ENMO: Euclidean norm minus 1 g with 
negative values rounded to zero; 
LFENMO: Euclidean norm minus 1 g of 
the low-pass filtered raw accelerations 
with negative values rounded to zero; 
MAD: Mean amplitude deviation 

Abbreviations in this page: 
ENMO: Euclidean norm minus 1G 
LFENMO: ENMO of the low-pass 
filtered raw accelerations 
MAD: mean amplitude deviation 
PA: physical activity 
SB: sedentary behaviour 
VMCounts: activity counts in the 
vector magnitude 



Study IV 

Page 164 of 385 

Comparison of each acceleration metric across body sites 

Comparisons between each metric derived from different body 

attachment sites add important knowledge to the field. Studies at-

taching accelerometers to the hip (e.g., WHS [268], NHANES 2003-

2004 or ISCOLE), to the dominant wrist (e.g., UK Biobank), and to the 

non-dominant wrist (e.g., NHANES 2012-2013, and Whitehall II 

Study [214]) could reach conflicting conclusions in regards to PA, SB 

time, and/or sleep outcomes. This study quantifies these potential 

differences. Accordingly with previous evidence [258], our findings 

show higher associations between the dominant and non-dominant 

wrists than between either wrist and the hip for all the metrics in-

cluded. Comparison of acceleration metrics across the body attach-

ment sites revealed higher shared variances for MAD compared with 

the rest of the metrics. Furthermore, comparisons between the dom-

inant wrist vs. hip, and the non-dominant wrist vs. hip were similar 

for all of the metrics included, as occurred in a previous study in 

adults [260]. In regards to the movement pattern throughout the day, 

we observed almost identical patterns between the dominant and 

non-dominant wrists (with slightly lower values for the non-domi-

nant wrist). To a lesser extent, hip movement pattern was similar to 

those from wrists. This suggests that the relationship between the 

dominant and non-dominant wrist accelerations is linear, which is 

also supported by a previous study in adults [258]. This implies that 

activities across the day should be captured similarly by all sites, es-

pecially between the dominant and non-dominant wrist. 

Comparison of acceleration metrics derived from the same body at-

tachment site 

 
 

Figure 15 
Means of ENMO, LFENMO, MAD 
and VMCounts, over 30-min peri-
ods for non-dominant wrist 
(Panel A), dominant wrist (Panel 
B) and hip (Panel C). 
Each data point is the average for this 
time interval for all participants from the 
cut-point calibration sample (N = 42). 
ENMO: Euclidean norm minus 1 g with 
negative values rounded to zero; 
LFENMO: Euclidean norm minus 1 g of 
the low-pass filtered raw accelerations 
with negative values rounded to zero; 
MAD: Mean amplitude deviation. 
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Mean (SD) non-
dominant wrist 
(min/day) 

Mean (SD) dom-
inant wrist 
(min/day) LCCC 

Mean diff. 
[95% CI] 
(min)b MAPE 

Cut-points translation     

SB time thresholds (mg)     

45a 769 (69) 744 (71) 0.86 -25 [-55 to 6] 3.25% 

50 - 766 (69) 0.92 -3 [-33 to 27] 0.39% 

55 - 786 (67) 0.90 17 [-13 to 46] 2.21% 

LPA thresholds (mg)     

45-100a 147 (29) 161 (34) 0.84 14 [0 to 28] 9.52% 

45-105 - 170 (37) 0.73 23 [9 to 37] 15.65% 

45-110 - 179 (38) 0.63 31 [17 to 46] 21.09% 
50-100 - 139 (30) 0.91 -8 [-21 to 5] 5.44% 

50-105 - 148 (33) 0.93 1 [-12 to 15] 0.68% 

50-110 - 157 (34) 0.89 9 [-4 to 23] 6.12% 

55-100 - 120 (27) 0.62 -27 [-40 to -15] 18.37% 

55-105 - 129 (29) 0.78 -19 [-31 to -6] 12.93% 

55-110 - 137 (31) 0.88 -10 [-23 to 3] 6.80% 

MPA thresholds (mg)     

100-430a 104 (28) 120 (30) 0.72 16 [3 to 28] 15.38% 
100-435 - 120 (30) 0.72 14 [0 to 28] 13.46% 

100-440 - 120 (30) 0.72 16 [4 to 29] 15.38% 

105-430 - 111 (28) 0.82 7 [-5 to 19] 6.73% 
105-435 - 111 (28) 0.81 7 [-5 to 19] 6.73% 

105-440 - 111 (28) 0.81 7 [-5 to 19] 6.73% 
110-430 - 103 (26) 0.84 -1 [-13 to 10] 0.96% 

110-435 - 103 (26) 0.84 -1 [-13 to 11] 0.96% 

110-440 - 103 (26) 0.84 -1 [-13 to 11] 0.96% 

VPA thresholds (mg)     

430a 9 (7) 9 (7) 0.95 0 [-3, 3] 0% 
435 - 9 (7) 0.95 0 [-3, 3] 0% 

440 - 9 (7) 0.95 0 [-3, 3] 0% 

Cross-validation      

SB  750 (78)c 755 (94)d 0.85 5 [-36, 45] 0.67% 
LPA 134 (34)c 133 (36)d 0.89 -2 [-18, 15] 1.49% 

MPA 103 (44)c 97 (44)d 0.92 -6 [-26, 15] 5.82% 

VPA 7 (7)c 7 (7)d 0.90 1 [-2, 4] 14.29% 

Cut-point selection (values presented in bold) was made following these criteria: 1) closest VPA esti-
mation if any, no threshold is selected since all of them were equally comparable; 2) closest MPA es-
timation if any, 110-430 mg, 110-435 mg and 110-440 mg provided similar results, so 110-440 mg 
was selected to respect the distance between previously-established cut points (i.e., 100-430 mg); 3) 
closest light PA estimation considering the upper threshold defined in step 2 (i.e., 110 mg). 
Bold text indicates the cut-point selection based on the criteria defined above. 
a Indicates original cut points validated in non-dominant wrist [61,62]. 
b Dominant wrist minus non-dominant wrist. 
c Derived with the original cut points validated in non-dominant wrist, i.e., 45/100/430 [61,62]. 
d Derived with the cut points proposed in the present study for dominant wrist, i.e., 50/110/440. 
 

Our findings show moderate to high associations between pairs 

of acceleration metrics derived from the same body attachment site. 

Likewise, previous findings by van Hees et al. [67] reported moder-

ate to high shared variances between ENMO and other acceleration 

metrics (r2 from 0.46 to 0.95) not included in the present study. Also 

in concordance with van Hees et al.’s study [67] in adults, our find-

ings show stronger associations between pairs of metrics with none 

or minimal filtering (ENMO, LFENMO and MAD) than the compari-

sons of any of these metrics with VMCounts, which may be explained 

by the application of a frequency filter to the raw signal. We also 

found that the movement pattern identified throughout the day was 

visually similar for ENMO, LFENMO and MAD, while VMCounts did 

not identify some peaks of movement detected by the rest of the met-

rics. The current study complements the study by van Hees et al. [67] 

by using 24 hours of accelerometer recording for both the hip (only 

waking hours in the previous study) and both wrists, as well as in-

cluding different acceleration metrics for comparison, i.e., LFENMO, 

Table 18  
Cut-point translation from previ-
ously proposed non-dominant 
wrist cut points for dominant 
wrist ENMO 
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MAD and ActiGraph’s VMCounts [67,147,153,204]. Furthermore, 

pairwise comparisons of acceleration metrics showed better agree-

ment during waking hours than during sleeping hours in all the body 

attachment sites. However, it is important to note that absolute val-

ues of all acceleration metrics are lower during sleeping hours, which 

could produce these lower shared variances even when the absolute 

differences are rather small (see descriptive values in Table 2). To 

the best of our knowledge, this is the first study providing this com-

parison stratified by waking and sleeping hours.  

Cut-points replication 

The fact that there are only cut points available to assess PA and 

SB time from the non-dominant wrist makes their application to data 

from the dominant wrist controversial. Indeed, differences found be-

tween acceleration curves from the dominant and non-dominant 

wrists indicate the need to propose new cut points for the dominant 

wrist. Accordingly, we detected 25 min/day less of SB time, 14 

min/day more of LPA, 16 min/day more of MPA and similar estima-

tions of VPA using the original cut points (i.e., for non-dominant 

wrist) in data collected from the dominant wrist. The linearity in the 

association between wrists (i.e., consistent movement pattern de-

tected from both the dominant and non-dominant wrists) make it 

possible to adapt cut points developed for one of the wrists to the 

other by applying slightly different new cut points. This strategy has 

been used previously by Rowlands et al. to replicate hip-based MVPA 

cut points using non-dominant wrist data [223]. In the present study, 

we develop cut points for the dominant wrist using previously vali-

dated cut points for the non-dominant wrist as reference [61,62]; 

and then, we cross-validated these newly developed cut points in a 

different sample. Estimations from previously validated cut points 

on the non-dominant wrist and their translation to the dominant 

wrist were almost equal and highly correlated. The cut points we 

propose in this study for the dominant wrist could help to obtain 

equivalent and comparable estimations of PA between studies using 

the dominant wrist with studies using the non-dominant wrist.  

This study complements existing information by using a long-

term measurement (7 days) for these comparisons since previous 

studies used 1-day measurements [258,260]. Furthermore, our strat-

ified analyses for waking and sleeping hours allow an understanding 

of how acceleration metrics agree or disagree for PA, SB time and 

sleep-related estimations. Notably, our 24-hour-based comparisons 

across body attachment sites and acceleration metrics are similar to 

waking-hour-based comparisons. 

This study has practical implications for studies using the same 

acceleration metric, but attaching accelerometers to different body 

sites or vice versa. Furthermore, accelerometers are not only used to 
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estimate PA and SB time, but also to assess sleep. Researchers fo-

cused on any of these behaviours can benefit from the comparisons 

presented in this study across acceleration metrics and body attach-

ment sites during waking and sleeping hours, since these associa-

tions were different depending on the period of the day analysed. Fi-

nally, this study provides information to quantify methodological 

discrepancies across studies, as it provides cut points to get similar 

PA estimations from dominant wrist and non-dominant wrist. We 

suggest these cut points are used to obtain comparable estimations 

across studies. Differences found between sites and acceleration 

metrics do not constitute different associations between SB, PA, 

and/or sleep outcomes with health parameters. Whether associa-

tions with health parameters differ depending on data collection and 

processing decisions should be studied by future research. 

The main limitation of this study is the lack of a criterion that 

would allow us to assess the accuracy of each acceleration metric in 

the measurement of PA and/or sleep. Likewise, the lack of an energy 

expenditure measure precludes us from deriving cut points for dom-

inant wrist against a criterion. Thus, although our derived cut points 

may be of great value to identify PA from the dominant wrist, these 

cut points should be tested against an energy expenditure measure 

in future studies. Another limitation is the use of a convenience sam-

ple and all analyses were only carried out with data from one accel-

erometer brand (ActiGraph GT3X+), which could limit the generali-

zation of our findings to other devices [269,270], or even to different 

generations of the same brand [174]. Strengths of the present study 

were: 1) the fact that we used consistent data processing techniques 

with all the metrics (e.g., same calculation of non-wear time or wak-

ing and sleeping hours detection) which allow for a direct compari-

son between metrics and body attachment sites; and 2) the fact that 

our participants reached high wear times, allowing for a complete 

range of daily living accelerations. 

Conclusion 

In conclusion, our findings suggest higher acceleration metric 

values in the dominant wrist compared with the non-dominant wrist. 

These differences could be attenuated by applying the new set of cut 

points provided in this manuscript. Furthermore, ENMO and 

LFENMO were the metrics that compared the best, and to some ex-

tent, they also showed good comparability with MAD for daily aver-

age values and for the movement pattern identified throughout the 

day. However, VMCounts were demonstrated to be less comparable 

to the previously-mentioned metrics. Future studies should test 

which of these metrics and body locations are the best to accurately 

capture PA against a criterion (e.g., calorimetry). 
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Abstract 

Background | Accelerometers are the method of preference to as-

sess PA in research at the moment. The rapid devel-

opment of calibration studies has resulted in a num-

ber of cut-points to quantify time spent in SB and PA 

intensities in children. Information on the compara-

bility between cut-points is limited.  

Aims | This study aimed to compare estimations of SB and 

time spent in PA intensities in children with over-

weight or obesity across different age-appropriate 

cut-points based on different body-worn attachment 

sites and acceleration metrics. 

Methods | A total of 104 overweight/obese children (10.1 ± 1.1 

years old, 43 girls) concurrently wore ActiGraph 

GT3X+ accelerometers on their right hip and non-

dominant wrist for 7 days (24 hours). ENMO, VA-

Counts, and VMCounts were derived. We calculated 

estimates of SB and LPA, MPA, VPA, and MVPA using 

different published cut-points for children. The prev-

alence of children meeting the recommended 60 

min/d of MVPA was calculated. 

Results | The time spent in SB and the different PA intensities 

largely differed across cut-points based on different 

attachment sites and acceleration metrics (i.e., SB = 

11-252 min/d; LPA = 10-217 min/d; MPA = 1-48 

min/d; VPA = 1-35 min/d; MVPA = 4-66 min/d). Con-

sequently, the prevalence of children meeting the rec-

ommended 60 min/d of MVPA varied from 8% to 

96% of the study sample. 

Conclusion | The present study provides a comprehensive com-

parison between available cut-points for different at-

tachment and acceleration metrics in children. Fur-

thermore, our data clearly show that it is not possible 

(and probably will never be) to know the prevalence 

of meeting the PA guidelines based on accelerometer 

data since apparent differences range from almost 

zero to nearly everyone meeting the guidelines. 

Key Points 

Question 
Do the use of different cut-
points substantially affect PA 
and SB estimations? 

Findings 
Large differences were found, 
independently of the body at-
tachment site and the acceler-
ation metric used 

Meaning 
The prevalence of physical in-
activity drastically differed 
across cut-points from nearly 
none to nearly everyone meet-
ing the public health recom-
mendations on PA 

Abbreviations in this page: 
ENMO: Euclidean norm minus 1 G 
LPA: light physical activity 
MPA: moderate physical activity 
MVPA: moderate-to-vigorous 
physical activity 
PA: physical activity 
SB: sedentary behaviour 
VACounts: activity counts in the 
vertical axis 
VMCounts: activity counts in the 
vector magnitude 
VPA: vigorous physical activity 

 





Study V 

Page 175 of 385 

Introduction 

Accurate and objective estimations of daily time in SB and PA 

are important to estimate the prevalence of populations meeting the 

current PA guidelines, to assess the success of interventions aiming 

to increase PA in specific populations, to explore population activity 

trends, and to quantify the dose-response impact of SB and PA on 

health [254]. Accelerometers are feasible tools to objectively assess 

time in SB and PA in large-scale studies, but their utilization requires 

standardized data collection (e.g., attachment site) and processing 

criteria (e.g., how to filter the raw accelerations), both demonstrating 

a high potential to affect the estimation of PA [233]. Additionally, 

protocols and methods vary largely across studies which aims to de-

velop cut-points (e.g., differences in the exercise protocols or the 

measurement of energy expenditure), resulting in differences in the 

identification and application of cut-points, i.e., intensity thresholds 

for SB and PA intensity classification. Since SB refers to any waking 

behaviour in a reclining posture with requires low related energy ex-

penditure [19], it is important to note that SB time estimations based 

on cut-points are limited because they are not able to detect changes 

in posture. Many authors have called for a harmonization of data col-

lection, processing criteria, and selection of cut-points to assess SB 

time and PA in order to gain comparability between studies 

[233,271,272]. This harmonization would be of special interest to 

compare data across studies, especially when the populations as-

sessed are similar. To date, such harmonization and consensus is not 

available. 

Data collection decisions include selecting a device, the body 

attachment site (i.e., hip or wrist in the majority of studies) and the 

sampling frequency for the recording (usually between 30-100 Hz) 

[233]. The traditional hip attachment site is being replaced with a 

wrist location by some consumer-grade manufacturers (e.g., FitBit, 

Polar, Garmin, or Up) and by large-scale studies, such as the US 

NHANES and the UK Biobank. This strategy was undertaken as an ef-

fort to obtain a higher wear compliance [94,171,233]. Both hip and 

wrist attachment sites have been validated for classifying PA inten-

sities [61,69,70,233], and are potentially able to assess energy ex-

penditure during free-living conditions in different populations 

[95,222], yet due to differences in the protocols used in cut-point val-

idation studies it is unknown how well measures from the hip and 

wrist compare to each other. 

The main purpose of processing criteria is to get a clean esti-

mate of body accelerations by removing gravity acceleration and 

noise from the acceleration signal. The first commercially available 

accelerometers coerced researchers into using the manufacturer’s 

activity counts (i.e., accelerations due to body movement) from the 

Abbreviations in this page: 
NHANES: National Health And 
Nutrition Examination Survey 
PA: physical activity 
SB: sedentary behavior 
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VA or VM derived from proprietary algorithms. These activity counts 

were hardly comparable between devices, or even between different 

models from the same manufacturer [175,199]. However, contempo-

rary accelerometers are capable of storing high-frequency raw accel-

erations, which are highly comparable between frequently used re-

search-grade devices (i.e., ActiGraph, GENEActiv, and Axivity) [273]. 

In the last five years, researchers have published open source meth-

ods to process raw accelerations in order to obtain alternative accel-

eration metrics to activity counts [67,147]. ENMO is now widely used 

and has shown a high agreement between brands [225,273], facili-

tating data harmonization across studies. 

As the process of harmonizing data collection and processing 

criteria proceeds, it is important to study how different body attach-

ment sites, acceleration metrics, and cut-points affect the final esti-

mations of SB and PA intensities. Rowlands et al. reported a moder-

ate agreement between MVPA estimates derived using different cut-

points based on ENMO from wrist accelerations and classical activity 

counts thresholds based on hip-worn devices [223]. In contrast, 

other studies comparing cut-points developed independently for dif-

ferent attachment sites and acceleration metrics have reported large 

differences across MVPA estimates in adolescents [271] and adults 

[272]. Although there is an increasing interest in the study of SB and 

LPA [274], previous studies have only focused on MVPA. 

Therefore, there is a need to better understand how data col-

lection, processing criteria, and cut-points influence estimations of 

SB and PA in different populations, including children and those clas-

sified as overweight or obese. Thus, this study aimed to examine how 

cut-points relative to different attachment sites and acceleration 

metrics affect the final estimations of SB and PA in children with 

overweight or obesity. 

Methods 

The present cross-sectional study analysed data from the base-

line assessment of the ActiveBrains Project (http://profith.ugr.es/ac-

tivebrains). A detailed description of the study design and methods 

has been published elsewhere [63]. Briefly, ActiveBrains is a RCT in-

tended to examine the effect of a 20-week PA intervention on brain 

structure, function, cognitive performance, academic achievement, 

and physical and mental health outcomes in overweight or obese 

children [63]. A total of 110 overweight or obese children (classified 

based on the WOF cut-points [64,65]) were recruited from Granada 

(Spain). A final sample of 104 children (10.1 ± 1.1 years of age, 41% 

girls) met the accelerometry inclusion criteria (more details below). 

The data were collected between November 2014 and February 

2016. We informed the parents or legal guardians about the purpose 

Abbreviations in this page: 
ENMO: Euclidean norm minus 1G 
LPA: light physical activity 
MVPA: moderate-to-vigorous 
physical activity 
PA: physical activity 
RCT: randomized controlled trial 
SB: sedentary behavior 
VA: vertical axis 
VM: vector magnitude 
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of the study, and we obtained written informed parental consent. The 

ActiveBrains project was approved by the Human Research Ethics 

Committee of the University of Granada, and was registered as a clin-

ical trial (NCT02295072, http://clinicaltrials.gov). 

The participants’ anthropometry, SB, and PA were assessed as 

part of the protocol of the ActiveBrains project [63]. Briefly, we meas-

ured the body weight and height to the nearest 0.1 kg and 0.1 cm us-

ing an electronic scale (SECA 861, Hamburg, Germany) and a preci-

sion stadiometer (SECA 225, Hamburg, Germany), respectively. BMI 

was calculated as kg/m2. The participants were also required to con-

currently wear two accelerometers (ActiGraph GT3X+, Pensacola, FL, 

USA) for 7 complete days (24 hours): one on the right hip and the 

other on the non-dominant wrist. The participants were instructed 

to wear the accelerometers as many hours as possible and to remove 

them only for water activities (i.e., shower or swimming), and both 

at the same time. Concomitantly, the participants reported the time 

they went to bed and woke-up in a diary log throughout the study.  

References 
Attachment 
site 

Acceleration 
metric 

Epoch 
length SB/LPA  LPA/MPA MPA/VPA 

Hildebrand et al. 
Hip ENMO 

5 sec 63 mg 143 mg 465 mg 

Hildebrand et al. Wrist ENMO 5 sec 36 mg 201 mg 707 mg 
Hänggi et al. Hip VMCounts 1 sec 3 counts 56 c - 
Romanzini et al. Hip VMCounts 15 sec 180 counts 757 counts 1112 counts 
Chandler et al. Wrist VMCounts 5 sec 305 counts 818 counts 1969 counts 
Evenson et al. Hip VACounts 15 sec 25 counts 574 counts 1003 counts 

ActiGraph GT3X+ is a triaxial accelerometer with a dynamic 

range of +/- 6 G. Both hip- and wrist-worn accelerometers were ini-

tialized to capture and store accelerations at 100 Hz. The raw accel-

erations were then downloaded and converted to “.csv” format using 

ActiLife v.6.13.3 (ActiGraph, Pensacola, FL, USA). Raw “.csv” files 

were imported to R software (v. 3.1.2, https://www.cran.r-project.org/) 

and processed using the GGIR package (v. 1.5-12, https://cran.r-pro-

ject.org/web/packages/GGIR/). They were also imported and pro-

cessed in the ActiLife software (ActiGraph, Pensacola, FL, USA) to ob-

tain VMCounts and VACounts using the normal filter developed by 

ActiGraph. The processing methods involved: 1) Auto-calibration of 

the data according to the local gravity [66]. 2) Detection of the non-

wear time based on the raw acceleration of the three axes [67]. 

Briefly, each 15-min block was classified as non-wear time if the SD 

of 2 out of the 3 axes was lower than 13 mg during the surrounding 

60-min moving window, or if the value range for 2 out of the 3 axes 

was lower than 50 mg. 3) Detection of sustained abnormal high ac-

celerations, i.e., higher than 5.5 g. 4) Calculation of the ENMO. 5) Im-

portation of the VMCounts and VACounts “.csv” files to R to follow the 

same processing criteria than ENMO. 6) Imputation of detected non-

wear time and abnormal high accelerations by means of the acceler-

ation for the rest of the recording period during the same time inter-

val than the affected periods. 7) Identification of waking and sleeping 

Abbreviations in this page: 
ENMO: Euclidean norm minus 1G 
PA: physical activity 
SB: sedentary behavior 
SD: standard deviation 
VACounts: activity counts in the 
vertical axis 
VMCounts: activity counts in the 
vector magnitude 

GGIR vignette  
(scan or click here) 

Table 19 
Children’s age-appropriate 
cut-points for the estimation of 
SB and PA intensities 
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hours using an automatized algorithm guided by the times reported 

by the participants [40]. Waking and sleeping hours were detected 

using data from the non-dominant wrist and detected times were 

then matched to the right hip data for each participant. And, 8) Esti-

mation of SB and PA intensities using different age-appropriate cut-

points for ENMO, VMCounts, and VACounts as detailed in Table 19. 

Mean daily SB and PA intensity levels were then calculated as: 

(mean of valid weekdays*5 + mean of valid weekend days*2) / 7. The 

participants were excluded from the analyses if they recorded less 

than 4 valid days (i.e., ≥ 16 hours/day), including at least 1 weekend 

day. Out of the 110 participants, 4 children recorded less than 4 days 

of valid wearing time, 1 accelerometer attached to the non-dominant 

wrist malfunctioned, and 1 participant was excluded for having mean 

acceleration values during nights between 6-9 SDs above the group 

mean. Thus, a final sample of 104 participants was included in the 

present study. 
    All (n=104) Boys (n=61) Girls (n=43) P sex 

Anthropometry           
 Age (years) 10.1 ± 1.1 10.2 ± 1.2 9.9 ± 1.1 0.248 
 Weight (kg) 56.2 ± 10.8 56.8 ± 10.7 55.4 ± 11.1 0.533 
 Height (cm) 144.3 ± 8.3 144.9 ± 7.9 143.6 ± 8.9 0.443 
 BMI (kg/m2) 26.8 ± 3.5 26.9 ± 3.6 26.7 ± 3.5 0.766 

Wearing time during waking hours           

 Hip device (hours/day) 15.0 ± 0.6 15.1 ± 0.6 15.0 ± 0.6 0.569 
 Wrist device (hours/day) 14.8 ± 0.6 14.8 ± 0.5 14.8 ± 0.6 0.926 

SB (min/day)           
 Hip ENMO Hildebrand 817.4 ± 44.7 811.1 ± 42.9 826.3 ± 46.2 0.093 
 Wrist ENMO Hildebrand 565.1 ± 56.4 560.5 ± 56.3 571.6 ± 56.5 0.327 
 Hip VMCounts Hänggi 639.1 ± 64.8 634.4 ± 58.3 645.5 ± 73.1 0.412 
 Hip VMCounts Romanzini 628.3 ± 68.2 623.9 ± 65.7 634.5 ± 71.8 0.445 
 Wrist VMCounts Chandler 576.4 ± 53.9 577.4 ± 54.7 575.1 ± 53.3 0.828 

 Hip VACounts Evenson 600.6 ± 70.1 593.0 ± 69.7 611.1 ± 69.9 0.198 

LPA (min/day)           
 Hip ENMO Hildebrand 65.8 ± 15.8 68.4 ± 15.6 62.1 ± 15.5 0.043 
 Wrist ENMO Hildebrand 282.7 ± 38.5 279.3 ± 37.1 287.4 ± 40.3 0.298 
 Hip VMCounts Hänggi 176.9 ± 38.0 175.0 ± 33.3 179.5 ± 44.1 0.579 
 Hip VMCounts Romanzini 198.2 ± 41.5 193.6 ± 39.4 204.5 ± 44.0 0.197 
 Wrist VMCounts Chandler 239.0 ± 29.5 235.4 ± 29.2 244.0 ± 29.6 0.144 

 Hip VACounts Evenson 273.1 ± 52.1 276.4 ± 52.0 268.5 ± 52.5 0.452 

MPA (min/day)           
 Hip ENMO Hildebrand 32.9 ± 13.9 37.5 ± 14.7 26.5 ± 9.6 <0.001 
 Wrist ENMO Hildebrand 47.5 ± 17.4 54.2 ± 18.4 38.1 ± 10.2 <0.001 
 Hip VMCounts Romanzini 53.8 ± 14.4 57.9 ± 14.8 48.0 ± 11.7 <0.001 
 Wrist VMCounts Chandler 81.2 ± 20.1 83.3 ± 22.7 78.4 ± 15.8 0.201 

 Hip VACounts Evenson 33.8 ± 11.5 37.9 ± 12.2 28.2 ± 7.4 <0.001 

VPA (min/day)           
 Hip ENMO Hildebrand 3.0 ± 2.0 3.7 ± 2.1 2.1 ± 1.4 <0.001 
 Wrist ENMO Hildebrand 7.6 ± 4.4 9.4 ± 4.5 5.0 ± 2.7 <0.001 
 Hip VMCounts Romanzini 37.9 ± 16.1 44.2 ± 16.5 29.1 ± 10.6 <0.001 
 Wrist VMCounts Chandler 6.2 ± 3.6 7.4 ± 3.7 4.6 ± 2.7 <0.001 

 Hip VACounts Evenson 10.7 ± 6.7 12.4 ± 7.6 8.3 ± 4.4 0.001 

MVPA time (min/day)           
 Hip ENMO Hildebrand 36.0 ± 15.3 41.2 ± 16.1 28.6 ± 10.6 <0.001 
 Wrist ENMO Hildebrand 55.1 ± 21.0 63.7 ± 22.0 43.1 ± 11.9 <0.001 
 Hip VMCounts Hänggi 102.4 ± 26.8 110.6 ± 26.4 90.9 ± 23.1 <0.001 
 Hip VMCounts Romanzini 91.7 ± 28.2 102.1 ± 28.7 77.1 ± 20.0 <0.001 
 Wrist VMCounts Chandler 87.5 ± 22.5 90.6 ± 25.4 83.0 ± 16.9 0.071 
 Hip VACounts Evenson 44.5 ± 16.7 50.2 ± 18.1 36.6 ± 10.3 <0.001 

Data are presented as mean ± SD. Statistically significant values are shown in bold. 
 

Descriptive statistics were calculated as means and SDs. The 

time estimates of SB, LPA, MPA, VPA, and MVPA were compared be-

tween each pair of estimations (i.e., estimations from each pair of cut-

Table 20 
Anthropometry, SB, and PA 
characteristics of participants 

Abbreviations in this page: 
ANOVA: analysis of variance 
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points) using repeated measures analysis of variance (ANOVA). Ad-

ditionally, we inspected the distributions of the time spent in MVPA 

and the prevalence of the study sample meeting the PA guidelines 

(i.e., at least 60 min/day of MVPA) [8] using different cut-points. All 

analyses were performed in R. Overall, the significance level was set 

at p<0.05 for all the analyses; however, in order to account for mul-

tiple comparisons, significant differences at p<0.01 were interpreted 

as statistically meaningful. 

Results 

The anthropometric characteristics, the time spent in SB, and 

the various PA intensities (calculated using the different cut-points) 

are reported in Table 20. 

The comparisons between SB and PA intensities estimated 

from the different cut-points are graphically presented in Figure 16. 

The differences expressed in min/day between different cut-point 

estimates are shown in Table 21. Nearly every pairwise comparison 

was significantly different (all p < 0.05) (exceptions are shown in Ta-

ble 21). Overall, the various mean daily estimations differed be-

tween 11-252 min/day for SB, 10-217 min/day for LPA, 1-48 

min/day for MPA, 1-35 min/day for VPA, and 4-66 min/day for 

MVPA. 

Figure 17 presents the time distributions spent in MVPA for 

the different cut-points examined. Overall, this figure shows that cut-

points based on VMCounts produced higher MVPA time compared to 

those estimations based on ENMO or VACounts, independently of the 

attachment site (as reported in Table 21). 

 
Figure 18 shows that the sample prevalence meeting the rec-

ommended 60 min/day of MVPA per day ranged from 8% to 96% 

depending on the cut-points applied to the data. Overall, the preva-

lence of meeting the PA guidelines was higher for boys than for girls 

using all cut-points except for the Chandler et al. [70] cut-points (i.e., 

90% of the boys versus 95% of the girls met the PA guidelines, ac-

cordingly). 

Figure 16 
Mean daily time spent (min) and 
SDs (error bars) in SB and PA 
intensities considering different 
attachment sites and metrics. 
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Discussion 

The primary purpose of this study was to provide a clear pic-

ture of which cut-points are more and less comparable in free-living 

conditions in children with overweight or obesity, including tradi-

tional (e.g., Evenson cut-points based on VACounts [68]) and recently 

developed (e.g., Hildebrand cut-points based on ENMO [61,62], Ro-

manzini [69] and Chandler [70] cut-points based on VMCounts) cut-

points, and when the accelerometer was attached to the hip and 

wrist. Contrary to what could have been expected, all cut-points 

based on VMCounts produced significantly higher estimations of 

time spent in MVPA than ENMO and VACounts cut-points, regardless 

of the attachment site. To our knowledge, this is the first study inves-

tigating differences across accelerometer-based estimations of SB 

and PA intensities using a complete set of available cut-points, run-

ning from the most traditionally used cut-points for VACounts de-

tected from a hip attachment, i.e., the Evenson et al. [68] cut-points, 

to the newly developed cut-points for ENMO [61,62] and VMCounts 

[69,70,108] from both hip and non-dominant wrist attachments. 
Table 21 
T-tests for the comparison between SB, LPA, MPA, VPA, and MVPA calculated from different cut-points. 
  SB (min/day) LPA (min/day) MPA (min/day) VPA (min/day) MVPA (min/day) 
  Difference (95%CI) Difference (95%CI) Difference (95%CI) Difference (95%CI) Difference (95%CI) 

Hip vs. hip      

ENMOHildebrand - VMCountsHänggi 178 (163 to 194)** -111 (-119 to -103)**   -66 (-72 to -60)** 
ENMOHildebrand - VMCountsRomanzini 189 (173 to 204)** -132 (-141 to -124)** -21 (-25 to -17)** -35 (-38 to -32)** -56 (-62 to -49)** 
ENMOHildebrand - VACountsEvenson 217 (201 to 233)** -207 (-218 to -197)** -1 (-4 to 3) -8 (-9 to -6)** -9 (-13 to -4)** 
VMCountsRomanzini - VMCountsHänggi -11 (-29 to 8) 21 (10 to 32)**   -11 (-18 to -3)** 
VMCountsRomanzini - VACountsEvenson 28 (9 to 46)* -75 (-88 to -62)** 20 (16 to 23)** 27 (24 to 31)** 47 (41 to 54)** 
VMCountsHänggi - VACountsEvenson 38 (20 to 57)** -96 (-109 to -84)**   58 (52 to 64)** 

Wrist vs. wrist      

VMCountsChandler - ENMOHildebrand 11 (-4 to 26) -44 (-53 to -34)** 34 (29 to 39)** -1 (-2 to 0)* 32 (26 to 38)** 

Hip vs. wrist      

ENMOHildebrand - ENMOHildebrand 252 (238 to 266)** -217 (-225 to -209)** -15 (-19 to -10)** -5 (-6 to -4)** -19 (-24 to -14)** 
VMCountsHänggi - VMCountsChandler 63 (46 to 79)** -62 (-71 to -53)**   15 (8 to 22)** 
VMCountsRomanzini - VMCountsChandler 52 (35 to 69)** -41 (-51 to -31)** -27 (-32 to -23)** 32 (28 to 35)** 4 (-3 to 11) 
ENMOHildebrand - VMCountsChandler -241 (-255 to -227)** -173 (-180 to -167)** -48 (-53 to -44)** -3 (-4 to -2)** -52 (-57 to- 46)** 
VMCountsHänggi - ENMOHildebrand 74 (57 to 91)** -106 (-116 to -95)**   47 (41 to 54)** 
VMCountsRomanzini - ENMOHildebrand 63 (46 to 80)** -85 (-95 to -74)** 6 (2 to 11)* 30 (27 to 34)** 37 (30 to 43)** 
VACountsEvenson - ENMOHildebrand 35 (18 to 53)** -10 (-22 to 3) -14 (-18 to -10)** 3 (2 to 5)** -11 (-16 to -5)** 
VACountsEvenson - VMCountsChandler 24 (7 to 41)* 34 (22 to 46)** -47 (-52 to -43)** 4 (3 to 6)** -43 (-48 to -37)** 

Data are presented as mean differences and 95% of CI.  
Hildebrand et al. [61,62], Hänggi et al. [108], Romanzini et al. [69], Chandler et al. [70], and Evenson et al. [68]. 
* P < 0.05  
** P < 0.01 

Since the selection of the different data collection and pro-

cessing criteria are known to affect SB and PA intensity estimations 

[233], we applied cut-points specifically developed for the two dif-

ferent attachment sites for use in children. We also followed the same 

processing criteria (i.e., same acceleration metric and epoch length) 

as originally used in validation studies. In agreement with recent 

studies [272,275], our results confirm non-comparable estimates of 

the time spent in MVPA when using different data collection and pro-

cessing criteria. However, the present study expands upon this 

knowledge by additionally comparing estimates of SB and a complete 

range of PA intensities in a sample of overweight or obese children. 
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Each of these metrics also displayed non-comparable estimates with 

large differences between cut-points (see Table 21 and Figure 16). 

Hildebrand et al. [61,62] developed two sets of cut-points in the same 

sample to get similar estimations of SB and PA intensities from the 

hip and the non-dominant wrist. In contrast, herein the estimations 

for SB and PA for all intensities varied greatly when using the Hilde-

brand et al. cut-points [61,62] for hip and wrist. This inconsistent re-

sult agrees with the Smith et al. findings [271], who reported differ-

ent estimations derived from two sets of cut-points developed in the 

same sample and differing only in the acceleration metrics (i.e., VA-

Counts and VMCounts). Our results, together with those from Smith 

et al. [271], confirm that cut-points from different attachment sites 

or different acceleration metrics that are comparable in a certain 

sample could largely differ in others as a result of population-specific 

features, which may contribute to these differences in SB and PA es-

timations. 

 
Rowlands et al. [223] looked for ENMO-based cut-points from 

the non-dominant wrist which could replicate the traditional PA es-

timations from the Evenson et al. [68] cut-points (applied to VA-

Counts from the hip). Specifically, they reported moderate agree-

ment (ICC = 0.76) and 2 min/day more of MVPA when applying a cut-

point of 250 mg for ENMO from wrist compared to the Evenson et al. 

[68] cut-point. Accordingly, we used a lower cut-point for MVPA for 

ENMO wrist (i.e., 200 mg – validated by Hildebrand et al. [61]) and 

detected 15 min/day more of MVPA from ENMO wrist compared 

with the Evenson et al. [68] cut-point on hip. Thus, higher values of 

MVPA can be expected when using the cut-point by Hildebrand et al. 

[61] for ENMO wrist compared to the MVPA threshold by Evenson et 

al. [68] for VACounts hip. A more comparable threshold to identify 

MVPA from ENMO wrist could be 250 mg [223]. 

Taking these findings into consideration, the selection of cut-

points to estimate PA intensities with accelerometers is a major ob-

stacle to overcome in objective monitoring since different cut-points 

could lead to wildly discrepant conclusions. For example, in our 

Figure 17 
Distributions of the time spent 
in MVPA intensity (min/day) 
estimated with different cut-
points. 
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sample, the prevalence of boys meeting the 60 min/day of MVPA was 

higher than that for girls for all the cut-points except for the Chandler 

et al. [70] cut-points, for which the prevalence was higher in girls 

than in boys, i.e., 95% vs. 90%. Likewise, Figure 18 shows large dif-

ferences in the prevalence of our sample meeting the PA guidelines 

(i.e., from 8% to 96%), so the fundamental query regarding the prev-

alence of the population achieving healthful levels of PA is still unre-

solved. In this regard, Leinonen et al.[276] found moderate-to-high 

agreement between different methods to classify adults meeting the 

PA guidelines. It is important to consider that PA guidelines have 

been developed predominantly using self-reported data, thus, these 

estimations should be considered with caution. Several authors have 

proposed reporting PA using a full range of different accelerometer 

data collection and processing criteria until a consensus is reached 

[271,272]. However, this is not practical since reporting different and 

multifactor methodologies could require long explanations and high 

technical expertise from readers to understand these nuanced incon-

sistencies. Data pooling and reanalysing raw accelerometer data may 

be a solution to overcome processing criteria inconsistencies and 

have been successfully applied (e.g., International Children’s Accel-

erometry Database [ICAD]). 

Although estimations of SB and PA intensities are easily under-

standable for the general population, we suggest that all studies us-

ing accelerometers should also report other PA indicators which are 

not influenced by cut-points, e.g., mean of the acceleration metric per 

day. As a first step to achieve this, we suggest using research-derived 

metrics, such as ENMO, which provides a valid estimate of free-living 

PA from hip and wrist attachments [61,62,67]. Furthermore, in con-

trast to traditional activity counts, such metrics enable comparability 

between devices [269,273] and they may be easier to interpret since 

the acceleration is expressed using a SI unit (i.e., mg). In fact, ENMO 

can be easily implemented in epidemiological studies using the GGIR 

software implemented in R (https://cran.r-project.org/web/pack-

ages/GGIR/). Studies providing normative values for these accelera-

tion metrics will ease the interpretation of findings in the PA meas-

urement field. Furthermore, these normative values could help to 

identify acceleration values corresponding to meeting the PA guide-

lines, which could help to obtain a direct measure unaffected by the 

limitations shown by the cut-points. 

Some limitations with this study should be acknowledged: 1) 

the sample analysed herein was composed of overweight or obese 

children, and the results may not be generalizable to other popula-

tions; 2) the current study did not have a criterion measure for com-

parison that would allow us to assess the accuracy of each set of cut-

points; and, 3) we used 90 accelerometers randomly placed in either 

Abbreviations in this page: 
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hip or wrist. It could be hypothesized that the use of different accel-

erometer units is a source of error for the measurement. However, 

ActiGraph GT3X devices have shown to provide reliable estimations 

[165], so we assume this source of error is likely to be very small in 

this study. Furthermore, all the estimates are derived from the same 

recordings, in case there is a device-related error, this error would 

be constant in all the estimates presented, and so, it is unlikely this 

will affect the findings. In contrast, this study’s advantages are 1) the 

use of consistent data processing techniques with all the acceleration 

metrics (i.e., same calculation of non-wear time, waking and sleeping 

hours, which allow for a direct comparison between attachment 

sites, and acceleration metrics); and, 2) that the participants 

achieved high wearing time compliance, enabling the collection of a 

complete range of daily living accelerations. 

 
In conclusion, this study shows large discrepancies in the time 

spent in SB and PA intensities across cut-points relative to different 

body attachment sites and acceleration metrics in overweight or 

obese children. Furthermore, we provide a comprehensive compari-

son between available cut-points in order to better understand 

which cut-points provide comparable results and which ones not. 

Also, our data clearly showed that it is not currently possible to know 

the prevalence of a population meeting the PA guidelines based on 

accelerometer data, with differences from nearly none to nearly eve-

ryone meeting the guidelines. Although currently elusive, data har-

monization and consensus are essential to comparatively measure 

and communicate objectively monitored time in SB and various PA 

intensities across different studies. 

Perspectives 

In the present study, we provide a comprehensive overview on 

the comparability of available cut-points for the classification of SB, 

LPA, MPA, VPA and MVPA from different accelerometer attachment 

sites and acceleration metrics in children. This overview allows re-

searchers to know how comparable are their findings with other 

published studies, for example, it can be expected that SB derived 

Figure 18 
Prevalence of children meeting the 
PA guidelines (i.e., ≥60 min/day of 
MVPA) according to different cut-
points  
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from Hänggi et al. [108] and Romanzini et al. [69] cut-points is com-

parable, but large differences can also be expected for LPA classified 

using the same cut-points. The general belief that PA estimations 

from wrist-worn accelerometers provide higher values than those 

from hip-worn accelerometers is not supported by the current study. 

Other factors such as the acceleration metric used, and the cut-points 

themselves seem to have a higher influence in the final estimations 

than the accelerometer attachment site. Therefore, our results con-

firm previous studies and extend their findings to a different sample 

(children with overweight or obesity) and by using a complete set of 

published cut-points for this population. Data pooling and harmoni-

zation should be performed, as well as meta-analyses using data from 

cut-points validation studies to propose a consensual set of cut-

points to be used in different settings/projects. 
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Abstract 

Background | Best-practice early interventions to increase PA in 

children with overweight and obesity should be both 

feasible and evidence based. Walking is a basic hu-

man movement pattern that is practical, cost-effec-

tive, and does not require complex movement skills. 

However, there is still a need to investigate how much 

walking—as a proportion of total PA level—is per-

formed by children who are overweight and obese in 

order to determine its utility as a public health strat-

egy.  

Aims | This study aimed to (i) investigate the proportion of 

overall PA indicators that are explained by step-

based metrics and (ii) study step accumulation pat-

terns relative to achievement of public health recom-

mendations in children with overweight and obesity. 

Methods | A total of 105 children with overweight or obesity 

(mean 10.1 years of age [SD 1.1]; 43 girls) wore hip-

worn accelerometers for 7 days. PA volumes were de-

rived using the daily average of VACounts per 15 sec-

onds, categorized using standard cut points for light-

moderate-vigorous PA (LMVPA) and MVPA. Derived 

step-based metrics included volume (steps/day), 

time in cadence bands, and peak 1-minute, 30-mi-

nute, and 60-minute cadences. 

Results | Steps per day explained 66%, 40%, and 74% of vari-

ance for counts per 15 seconds, LMVPA, and MVPA, 

respectively. The variance explained was increased 

up to 80%, 92%, and 77% by including specific ca-

dence bands and peak cadences. Children meeting the 

WHO recommendation of 60 minutes per day of 

MVPA spent less time at zero cadence and more time 

in cadence bands representing sporadic movement to 

brisk walking (i.e., 20-119 steps/min) than their less-

active peers. 

Conclusion | Step-based metrics, including steps per day and vari-

ous cadence-based metrics, seem to capture a large 

proportion of PA for children who are overweight 

and obese. Step-based metrics could be useful in dis-

criminating between those children who do or do not 

achieve MVPA recommendations. 

Key Points 

Question 
Are step-based metrics 
enough to describe the overall 
PA in children with over-
weight or obesity? 

Findings 
Step-based metrics, including 
steps per day and various ca-
dence-based metrics, seem to 
capture a large proportion of 
PA for children with over-
weight or obesity 

Meaning 
Step-based metrics could be 
useful in discriminating be-
tween those children who do 
or do not achieve MVPA rec-
ommendations. 

Abbreviations in this page: 
LMVPA: light-moderate-vigorous 
physical activity 
MVPA: moderate-to-vigorous 
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Introduction 

Decreased PA is associated with increased risk of non-com-

municable diseases [277–279] and is responsible for approximately 

9% of premature mortality [10]. Worldwide PA deficits 

[9,278,280,281], and inequalities between countries in PA levels 

[282] require effective counter-active strategies, especially in popu-

lations at risk such as people with overweight and obesity. For exam-

ple, evidence [283,284] suggests that low levels of PA initiated in 

childhood and perpetuated in adulthood set up adults with over-

weight or obesity for an increased array of comorbidities during 

their life span [230]. Best practice early interventions should be both 

feasible and evidence-based. Walking is a basic human movement 

pattern that is practical, cost-effective and does not require complex 

movement skills. Thus, focusing on ambulatory activity could be the 

most accessible strategy to increase PA levels in children with over-

weight or obesity [285], who do not engage frequently in sports 

[286] and present poorer movement skills than normal weight chil-

dren [287]. However, there is still a need to investigate how much 

ambulatory activity is performed by children with overweight or 

obesity (as proportion of total PA level) in order to determine its util-

ity as a public health strategy. Information on what type of PA chil-

dren with overweight or obesity are more likely to perform could 

help to plan more effective public health strategies, since intervening 

on a behaviour which is frequently occurring (e.g., walking) would 

have a greater impact than generating a new behaviour. 

The ability to study health-related influences of PA has ad-

vanced in parallel with the increased use of accelerometer-based 

wearable technologies [41]. Accelerometers are capable of detecting 

human movement, but are primarily sensitive to ambulatory activity, 

the most common form of PA performed by adults [34,35]. However, 

children’s movement patterns may be more variable and less is 

known about how predominant ambulatory activity, primarily walk-

ing, is relative to other types of PA behaviours. Time-stamped accel-

erometers are capable of detecting step-based metrics, including a 

tally of step accumulation over the day (i.e., volume [steps/day]), the 

time spent in incremental cadence bands (e.g., time spent walking at 

80-99 steps/min) and/or peak 1-, 30- and 60-min cadence indices 

(i.e., average steps/min of the highest 1, 30 or 60 non-consecutive 

minutes in a day, respectively) [288–290]. Collectively, these metrics 

are referred to hereafter as step-based metrics. 

Therefore, this study aimed to: 1) investigate the proportion of 

overall PA that is explained by ambulatory activity (i.e., step-based 

metrics) in children with overweight or obesity; and 2) study step-

based patterns relative to PA guidelines achievement in children 

with overweight or obesity. 

Abbreviations in this page: 
PA: physical activity 
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Methods 

Study design and participants 

The present cross-sectional analysis included data collected 

during the baseline assessment of the ActiveBrains project [291]. A 

detailed description of the study design, inclusion criteria and meth-

ods has been published elsewhere [63]. Briefly, ActiveBrains is a RCT 

intended to examine the effect of a 20-week PA intervention on brain 

structure, brain function, cognitive performance, academic achieve-

ment and physical and mental health outcomes in children with over-

weight or obesity [63]. A total of 110 children (8.5-11 years old) with 

overweight or obesity, defined according to the WOF cut points 

[64,65], were recruited from Granada, Spain. Data were collected 

from November 2014 to February 2016. Parents or legal guardians 

were informed of the purpose of the study and written informed pa-

rental consents were obtained. The ActiveBrains project was ap-

proved by the Human Research Ethics Committee of the University 

of Granada, and was registered as a clinical trial (NCT02295072).  
    All (n=105) Boys (n=62) Girls (n=43) P sex 
 Age (years) 10.1 ± 1.1 10.2 ± 1.2 9.9 ± 1.1 0.24 

Anthropometry     
 Weight (kg) 56.6 ± 11.1 57.4 ± 11.1 55.4 ± 11.1 0.38 
 Height (cm) 144.4 ± 8.3 145.0 ± 7.8 143.6 ± 8.9 0.41 
 BMI (kg/m2) 26.9 ± 3.7 27.1 ± 3.9 26.7 ± 3.5 0.53 

Awake and wear time     

 Awake time (min/day) 919.6 ± 31.5 921.3 ± 28.7 917.0 ± 35.2 0.51 

 Wear time during waking (min/day) 903.1 ± 35.3 905.1 ± 32.7 900.4 ± 39.0 0.52 

SB and PA intensities     
 SB (min/day) 600.8 ± 69.6 593.6 ± 69.1 611.1 ± 69.9 0.21 
 LPA (min/day) 273.2 ± 51.7 276.4 ± 51.2 268.5 ± 52.5 0.44 
 MPA (min/day) 34.0 ± 11.6 37.9 ± 12.4 28.2 ± 7.4 <0.001 
 VPA (min/day) 10.7 ± 6.7 12.3 ± 7.5 8.3 ± 4.4 <0.001 

 MVPA (min/day) 44.7 ± 16.8 50.3 ± 18.2 36.6 ± 10.3 <0.001 

Step-based metrics     
 Volume (steps/day) 8676.8 ± 2202.9 9257.6 ± 2431.9 7836.9 ± 1485.4 <0.001 
 Peak 60 min (steps/min) 63.7 ± 13.6 66.3 ± 14.4 59.8 ± 11.4 0.01 
 Peak 30 min (steps/min) 78.0 ± 14.5 79.7 ± 15.2 75.4 ± 13.2 0.12 
 Peak 1 min (steps/min) 111.5 ± 13.3 111.2 ± 13.3 111.8 ± 13.3 0.82 

Time spent at different cadence bands     
 Time at zero cadence (min/day) 346.6 ± 78.1 343.0 ± 79.5 351.7 ± 76.7 0.58 
 Incidental movement (min/day) 439.0 ± 63.4 434.9 ± 62.2 444.8 ± 65.4 0.44 
 Sporadic movement (min/day) 71.9 ± 18.2 73.5 ± 19.1 69.7 ± 16.8 0.28 
 Purposeful movement (min/day) 27.5 ± 9.2 30.3 ± 9.8 23.6 ± 6.6 <0.001 
 Slow walking (min/day) 15.9 ± 7.9 18.6 ± 8.5 12.0 ± 4.6 <0.001 
 Medium walking (min/day) 10.2 ± 6.2 11.8 ± 7.0 8.0 ± 3.8 <0.001 
 Brisk walking (min/day) 6.6 ± 6.0 7.4 ± 7.0 5.5 ± 4.0 0.08 

 Faster walking (min/day) 1.6 ± 2.6 1.8 ± 2.7 1.3 ± 2.3 0.33 

Data are presented as mean ± SD. 
Cadence bands represented are the following: incidental movement is 1-19 steps/min, sporadic move-
ment is 20-39 steps/min, purposeful movement is 40-59 steps/min, slow walking is 60-79 steps/min, 
medium walking is 80-99 steps/min, brisk walking is 100-119 steps/min and faster walking is ≥ 120 
steps/min. 

Procedures 

As part of the protocol of the ActiveBrains project [63], body 

weight and height were measured to the nearest 0.1 kg and 0.1 cm 

using an electronic scale (SECA 861, Hamburg, Germany) and a 

Table 22 
Anthropometry, SB, time-based 
PA metrics, and step-based met-
rics of children with overweight 
or obesity. 
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precision stadiometer (SECA 225, Hamburg, Germany), respectively. 

BMI (kg/m2) was calculated. Overweight and obesity were classified 

based on the cutoffs of the WOF [64]. 

Participants’ overall PA and step-based metrics were measured 

with an accelerometer (ActiGraph GT3X+, Pensacola, FL, USA) worn 

on their right hip for 7 complete days (24 hours wear-time protocol). 

Participants were encouraged to wear the accelerometers as many 

hours as possible and only remove them for water activities (i.e., 

shower or swimming). Concurrently, participants logged in a diary 

for the 7 days the time they went to bed and woke-up. All participants 

with at least 4 days (including 1 weekend day) with ≥ 16 hours of 

accelerometer wear time were included in the analyses (n=105).  

Data reduction 

Raw “.gt3x” files (100 Hz) were loaded and processed with the 

ActiLife software to obtain activity counts (i.e., metric intended to 

capture body movement) accumulated in the VA over 15 second 

epochs and steps accumulation over 60 second epochs using the de-

fault filter developed by ActiGraph. Non-wear time was detected 

based on the raw acceleration values of the three axes using a previ-

ously published algorithm [67]. Briefly, each 15-min block was clas-

sified as non-wear time if the SD of two out of the three axes was 

lower than 13 mg during the surrounding 60-min moving window, 

or if the mean acceleration for two out of the three axes was lower 

than 50 mg. Likewise, sustained abnormally high accelerations (i.e., 

higher than 5.5 g; assumed to be related to device malfunction) were 

detected and labelled as non-wear time. The identified non-wear 

time (including sustained abnormally high accelerations) was im-

puted with the mean acceleration value for the corresponding time 

period over the remaining days of recording. Sleeping hours were 

identified using an automated algorithm guided by participants’ 

logged times [40] and excluded from analyses. Non-wear time and 

sleeping hours identification were performed using functions in-

cluded in the R package GGIR (https://cran.r-project.org/web/pack-

ages/GGIR/) [67]. 

Each 15 second epoch was classified into SB time or time at dif-

ferent PA intensities using the activity count cut-points developed by 

Evenson et al. [68]. Specifically, these were: SB (≤ 25 VACounts/15s), 

LPA (26-573 VACounts/15s), MPA (574-1002 VACounts/15s), and 

VPA (≥ 1003 VACounts/15s). Daily average acceleration (VA-

Counts/15s), time spent at light-moderate-vigorous PA (LMVPA; > 

25 VACounts/15s) and time at MVPA intensity (> 573 VA-

Counts/15s) were included in the analyses as indicators of overall 

PA. Daily average acceleration (VACounts/15s) and MVPA are indi-

cators commonly used to represent overall PA [95,292,293]. LMVPA 

was also included following the recommendations of the 2018 
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Physical Activity Guidelines Advisory Committee Scientific Report 

which acknowledge the importance of any kind of PA for health [51]. 

Furthermore, LPA could be a stimulus worthy to consider in children 

with overweight or obesity since they usually engage insufficient 

MVPA. 

 
Total ambulatory activity volume was derived as the number of 

steps/day. Furthermore, ambulatory activity cadence patterns were 

estimated as described previously for adults [294] and children 

[289]. Briefly, cadences were organized into bands of approximately 

20 step/minute increments. These cadence bands has been previ-

ously associated with the next behavioural descriptors: incidental 

movement (1-19 steps/min), sporadic movement (20-39 

steps/min), purposeful movement (40-59 steps/min), slow walking 

(60-79 steps/min), medium walking (80-99 steps/min), brisk walk-

ing (100-119 steps/min), and faster walking (≥ 120 steps/min). 

Time spent in each one of these bands, as well as time at zero ca-

dence, were computed. In addition, the peak 60-min, peak 30-min 

and peak 1-min cadences were computed by rank ordering each par-

ticipants’ data for each day and then computing the average 

steps/min for the top 60, 30 and 1 min, respectively. The ActiGraph 

GT3X+ is valid for counting step [167,295] and its identified cadence 

bands have been used to describe cadence patterns in large cohorts 

[289]. Mean daily VACounts/15s, SB time, time-based and step-based 

metrics were then calculated as: (mean of available weekdays*5 + 

mean of available weekend days*2) / 7. 

Data analyses 

Descriptive characteristics of participants were presented as 

means and SDs. We used simple linear regression models to study 

the proportion of overall PA indicators explained by each step-based 

metric, and stepwise regression models to study the proportion 

Figure 19 
Proportion of variance (r2) in 
overall PA indicators which is 
explained independently by 
each step-based metric. 
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explained by using several step-based metrics as predictors. First, 

the variable which explained the highest proportion of the outcome 

variance was introduced. Then, those variables which significantly 

increased the proportion of variance explained were introduced. If 

any of the variables presented a variance inflation factor above 

seven, it was excluded from the model. Time at zero cadence was not 

included in these models since it represents inactivity. In addition, 

we identified those participants who achieved the WHO PA recom-

mendations for this age-group [8], i.e., at least 60 min/day of MVPA. 

Two sample T-tests were then used to compare time spent in differ-

ent cadence bands and the peak 60-min, the peak 30-min and the 

peak 1-min cadences of children who accomplished the PA recom-

mendations compared with their peers who did not. All analyses 

were performed in R (https://cran.r-project.org/). The significance 

level was set at P < 0.05. 

Results  

Descriptive characteristics  

Table 22 presents anthropometric characteristics, SB, LPA, 

MPA and VPA, as well as step-based metrics for all participants strat-

ified by sex.  

ESM 6 (Table S1) shows the same descriptive characteristics 

stratified by weight status group (i.e., overweight, mild obesity, se-

vere obesity and morbid obesity). 

 

Proportion of total physical activity explained by step-based metrics 

Figure 19 depicts the proportion of variance in indicators of 

overall PA (i.e., VACounts/15s, LMVPA and MVPA) that each step-

based metric explained (r2) in separate linear regression models (i.e., 

simple linear regression with each step-based metric as predictor 

and overall PA metric as outcome). Among the step-based metrics, 

steps/day explained the highest proportion of VACounts/15s and 

MVPA (i.e., 66% and 74%, respectively), while time at 1-19 

steps/min explained the highest proportion of LMVPA (i.e., 52%). 

Overall, peak cadence indicators explained a lower proportion of the 

Figure 20 
Proportion of variance (r2) in 
overall physical activity indicators 
(i.e., VACounts/15s, LMVPA and 
MVPA), which is explained by 
combination of step-based metrics 
(calculated using stepwise linear 
regressions). 
All predictors presented variance inflation 
factors < 6 in the selected models. 
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variance than steps/day in overall PA indicators. Likewise, the 

shorter time intervals used to calculate the specific peak cadence in-

dicator, the lower explanation capacity of the metric, which is to be 

expected given the shorter time frame represented (i.e., 60-min > 30-

min > 1-min).  

Cadence patterns according to physical activity guidelines 

Out of the 105 children, 20 achieved the recommended amount 

of MVPA (i.e., ≥ 60 min/day). Children who performed < 60 min/day 

of MVPA also had significantly higher values for time at zero cadence 

(P = 0.004) and less time in cadence bands from 20 to 120 steps/min, 

compared with those who performed 60 min/day or more of MVPA 

(all P < 0.02) (Figure 21). Likewise, peak 60-min, peak 30-min and 

peak 1-min cadences were higher in children who achieved the 60 

min/day of MVPA. 

 
Specifically, participants had to walk around 11000 steps/day 

to achieve the recommended dose of MVPA (Figure 22, panel A). 

Likewise, they had to spend 105 min/day walking at 20-39 

steps/min, 40 min/day at 40-59 steps/min, 25 min/day at 60-79 

steps/min, 19 min/day at 80-99 steps/min, 18 min/day at 100-120 

steps/min or 10 min/day above 120 steps/min (Figure 22, panel B). 

Finally, their peak cadences had to be higher than 140 steps/min for 

peak 1-min, 100 steps/min for peak 30-min or 80 steps/min for peak 

60-min (Figure 22, panel C). 

Discussion 

The main findings of this study are: 1) steps/day and the 1-19 

steps/min cadence band explained the greatest amount of overall PA 

Figure 21 
Time spent in each cadence band 
(panel A) and peak cadences (panel 
B) across children meeting or not 
the physical activity guidelines (i.e., 
at least 60 minutes of MVPA per 
day). 
Error bars represent SDs.  
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(i.e., VACounts/15s [66%], LMVPA [52%] and MVPA [74%]) in chil-

dren with overweight or obesity. The proportion of variance ex-

plained was further improved (by up to 77-92%) by adding other 

step-based metrics to the models; and, 2) cadence-based step pat-

terns significantly differed between those children with overweight 

or obesity who achieved the PA recommendations compared with 

those who did not. Together, these findings seem to point out ambu-

latory activity as a major source of PA in children with overweight or 

obesity, as it has been previously reported in adults [34,35]. Further 

studies with larger and more representative samples should corrob-

orate this finding. This finding can be leveraged to design appropri-

ate PA interventions (i.e., by investigating the amount of walking at a 

certain intensity needed to meet PA recommendations) as a strategy 

to lower lifespan health risks in this vulnerable population. 

 
Steps/day and the 1-19 steps/min cadence band were the best 

explanatory factors of overall PA. Specifically, more than half of the 

variation in overall PA could be explained by either steps/day or the 

1-19 steps/min cadence band in children with overweight or obesity, 

depending on the overall PA indicator regressed (i.e., 66% for VA-

Counts/15s [steps/day], 52% for LMVPA [1-19 steps/min] and 74% 

for MVPA [steps/day]). Furthermore, all of the stepwise models in-

cluded steps/day to estimate either VACounts/15s, LMVPA or MVPA. 

Accordingly, our sample was active for 5.3 hours/day (i.e., LMVPA), 

during which they spent around 2.2 hours/day in ambulatory activ-

ity (i.e., from sporadic movement to faster cadences). This presumes 

around 40% of the time spent in LMVPA, which is similar to the esti-

mation obtained to predict LMVPA from steps/day (i.e., 40%).  

However, steps/day was not the only important factor in the 

prediction of overall PA indicators. Information regarding step accu-

mulation pattern increased the prediction capacity up to 80%, 92% 

Figure 22 
Linear regression lines (and 95% 
confidence intervals [shaded areas]) 
for the association between MVPA 
and step-based metrics, i.e., step vol-
ume (panel A), cadence bands (panel 
B) and peak cadences (panel C). 
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and 77%, for VACounts/15s, LMVPA and MVPA, respectively. These 

findings support the concept of also considering stepping rate, which 

has been associated with health-related intensity levels in children 

[290] in addition to steps/day. The fact that LMVPA explanation in-

creased substantially (i.e., from 40% to 92%) by including more met-

rics in the stepwise models is noteworthy. This suggests that consid-

ering both steps/day and certain cadence bands we can explain 

around 90% of their active minutes. However, MVPA explanation 

only increased from 74% to 77%, which means that almost all infor-

mation on MVPA is already provided by steps/day. Together, it 

seems clear that step-based metrics are more powerful to explain 

light-intensity PA than higher intensities. 

To this end, Tudor-Locke et al. found that walking at 115 

steps/min requires an energy expenditure of approximately 4 METs 

(i.e., MPA intensity for children) in 9-11-year-old children, measured 

while walking on a treadmill [296]. However, the cadence-intensity 

relationship observed under laboratory-controlled conditions may 

not be generalizable to free-living data from children with over-

weight or obesity. Likewise, caution is advised since measurement 

tools differed between studies (i.e., direct observation vs. accelerom-

eters). We observed around 34 min/day classified as MPA intensity 

by Evenson et al. cut-points [68], and, in turn, around only 2 ± 3 

min/day accumulated at a cadence > 115 steps/min, which is indica-

tive of MVPA intensity in this age group as measured in lab condi-

tions [296]. A source for this difference could be the epoch length 

used to derive MPA [233], i.e., 15 seconds for Evenson et al. cut-

points and 60 s for time spent above 100 steps/min. Estimations 

based on Evenson cut-points could be able to capture short bouts of 

MPA up to 15 seconds, while step-based estimations of MPA are lim-

ited to those bouts lasting at least 1 minute. We decided to use 60 s 

epochs for cadence to maintain consistency with previous studies, to 

ease comparability of findings and because there are no studies ex-

amining the cadence measured in 15 s epochs and intensity to date 

(making more difficult to interpret the findings). It could be also ar-

gued that most of the MPA performed by our sample was not related 

to ambulatory activity, which seems unlikely because step-based 

metrics explained almost 80% of the variance in MVPA. We must also 

acknowledge that metabolic intensity is indirectly inferred from de-

tected movement signals and is not a clear indicator of metabolic 

cost, so there are likely to be measurement differences attributable 

to differential definitions. Therefore, further research is needed to 

understand how free-living cadence bands relate to energy expendi-

ture and accelerometer signals. 

Peak cadence indices and cadence bands have been previously 

used as proxy indicators for ambulatory activity intensity and 
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pattern, respectively, in children [289] and adults [294,297]. In con-

gruence with Barreira et al. [289], we found that most of the day was 

spent in low intensity or SB. Specifically, we found around 10 

hours/day of SB time using Evenson et al. [68] cut-points, or, in re-

gards to step-based metrics, a time at zero cadence value of 5.8 

hours/day and 7.3 hours/day in incidental movements (1-19 

steps/min). Barreira et al. reported similar step accumulation pat-

terns in 6-11-year-old children from the US NHANES 2005-2006. No-

tably, only 38% of the NHANES population-based sample had over-

weight or obesity [289]. In contrast, our sample of children who had 

overweight or obesity accumulated more time at zero cadence and 

also time in incidental movements (1-19 steps/min), and less time in 

cadence bands from sporadic movement to faster walking (20-120 

steps/min). Likewise, differences in accelerometer models, study de-

sign and socio-environmental context should be considered when 

comparing these studies.  

According to the Evenson et al. cut-points definition of MVPA 

[68], 20 children (i.e., 19%) from our sample met the PA recommen-

dation of at least 60 min/day of MVPA [8]. This finding should be in-

terpreted with caution since quantification of time-based PA with ac-

celerometers is notoriously challenging and is dependent on a vari-

ety of data collection and processing decisions [233], including those 

related to selecting appropriate analytical cut-points [266]. We have 

previously reported that changing cut points can derive extremely 

different estimations of the proportion of children meeting PA rec-

ommendations in this sample [266]. It is also important to consider 

that PA recommendations are mainly based on self-reported data, 

which could bias interpretation over objective data. Additionally, 

when compared to normative values from NHANES 2005-2006 

[298], our sample can be considered “below average” for steps/day 

for 8-9 years old children (i.e., 7,647-9,398 steps/day) or “average” 

for 10-11 year-olds (i.e., 8,504-10,066 steps/day). Likewise, our 

sample presented “below average” values for peak 60-min cadence 

(i.e., 62-71 steps/min). Nevertheless, a large proportion of the count-

based MVPA performed was related to step-based metrics, which 

suggests that limited ambulatory behaviours could be responsible of 

the low prevalence of children meeting the PA recommendations. 

Furthermore, we found significant differences in ambulatory activity 

intensity (i.e., time spent in almost every band cadence was signifi-

cantly different) between those who met and did not meet the PA 

recommendations. Specifically, children who met the recommenda-

tions spent around 55 min/day less in time at zero cadence, 17 

min/day more in sporadic movement (20-39 steps/min), 14 

min/day more in purposeful movement (40-59 steps/min), 13 

min/day more in slow walking (60-79 steps/min), 8 min/day more 
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in medium walking (80-99 steps/min) and 5 min/day more in brisk 

walking (100-119 steps/min). Additionally, peak 1-min, peak 30-min 

and peak 60-min cadences seem to be able to discern between chil-

dren achieving or not the recommended dose of MVPA per day (i.e., 

60 min/day). 

Findings of this study have several practical implications to 

consider. For example: 1) as a large proportion of overall PA identi-

fied by accelerometers is explained by step-based metrics in children 

with overweight or obesity, these measures could be used to de-

scribe and compare PA patterns in this population; 2) it could be as-

sumed that increasing ambulatory activity volume and intensity is a 

feasible form of PA which can increase the chances of meeting PA 

recommendations in this population. This is especially important to 

consider as ambulatory activity is a feasible PA strategy that may 

lead to several health benefits, for example, improved body compo-

sition and mental health, in children with overweight or obesity 

[299–301]. Notably, walking does not require complex movement 

skills and so, can be performed with most populations, including chil-

dren with overweight or obesity who frequently do not engage in 

sports because of their low physical competence [287]. 

Several limitations should be acknowledged. First and fore-

most, accelerometer measurements of PA are influenced by a variety 

of data collection and processing decisions [233]. This means that it 

cannot be considered a gold-standard for overall PA measurement 

and that changes in the quantification of PA could change the findings 

observed in the present study. However, we were as consistent as 

possible regarding the measurement of both overall PA and step-

based metrics. Both outcomes come from the same hip-worn accel-

erometer and cut-points used are based on the VA acceleration, 

which is consistent with the ActiGraph procedures to detect steps. 

This would reduce the methodological inconsistencies between the 

overall PA and the step-based metrics estimations, which, in turn, can 

be considered as a strength of the present study. Note that epoch 

length discrepancies between count-based and step-based metrics 

may be partially responsible of the differences observed. However, 

our findings should be interpreted with caution since overall PA re-

fers to accelerometer-determined PA (which is not a gold-standard 

and could ignore certain activities such as swimming). Note that 

step-based metrics derived from pedometers could vary the findings 

from this study and their relationship with overall PA should be in-

vestigated. Likewise, another strength to highlight is that we are fo-

cusing on a population who may benefit greatly from increases in 

ambulatory activity; for example, this study demonstrates that they 

could have substantially increased chances of meeting PA recom-

mendations by only focusing on ambulatory activity. 
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Conclusion 

In conclusion, step-based metrics including steps/day and var-

ious cadence-based intensity indicators seem to capture the majority 

of PA in children with overweight or obesity. Step-based metrics 

could be useful for discriminating between those children who do or 

do not achieve MVPA recommendations. Further studies should test 

whether step-based metrics derived from pedometers are similarly 

useful for that purpose.
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Abstract 

 Background | Research on the interrelationships between PA, SB 

and sleep (collectively defined as physical behav-

iours) has given birth to the field of ‘physical behav-

iour epidemiology’. Each of these physical behaviours 

has been associated with health in epidemiological 

studies, but their co-dependency and interactions in 

relation with health need to be further explored and 

accounted for in data analysis. Modern accelerome-

ters present the major advantage of capturing contin-

uous movement through the day; which, in turn, 

comes with the intrinsic challenge of how to best uti-

lize the richness of the data collected. In the past few 

years, statistical procedures first applied in other sci-

entific fields have been applied to physical behaviour 

epidemiology. A comprehensive description, discus-

sion, and consensus regarding the strengths and lim-

itations of analytical approaches used in the field of 

‘physical behaviour epidemiology’ will help research-

ers decide which approach to use in different situa-

tions.  

Aims | Thus, we aimed to provide a comprehensive descrip-

tion and discussion on: 1) the analytical approaches 

(i.e., from generation to statistical modelling of de-

scriptors) currently used in the scientific literature 

on physical behaviour, highlighting their strengths 

and limitations and providing practical recommenda-

tions on their use; and 2) current gaps and future re-

search directions around the analysis and use of ac-

celerometer data. 

Methods | In this context, a scientific Workshop entitled “Inter-

national Workshop: A focus on statistical methods to 

analyse accelerometer-measured physical activity” 

followed by an Expert Meeting, were held in Granada 

on October 21st and 22nd 2019, respectively. These 

events brought together an international panel of re-

searchers with expertise on the above topics. 

Impact | Advances in analytical approaches to accelerometer-

determined physical behaviours in epidemiological 

studies are expected to influence the interpretation of 

current and future evidence and ultimately impact on 

future physical behaviour guidelines. 

Key Points 

Question 

What accelerometer data de-

scriptors and statistical model 

should be used to the study of 

physical behaviours and health 

associations? 

Findings 

A comprehensive description of 

the accelerometer data de-

scriptors and statistical proce-

dures most-frequently used in 

the field is provided 

Meaning 

Researchers can follow the deci-

sion tree diagram included in 

this article for some guidance in 

the decision of the analytical ap-

proach 

Abbreviations in this page: 
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Introduction 

Interrelationships between PA, SB and sleep, collectively de-

scribed as physical behaviours [14], have drawn the attention of 

many researchers worldwide, unifying previously separated re-

search fields into ‘physical behaviour epidemiology’. Traditionally, 

self-report methods have been used for physical behaviour research 

and subsequent guidelines. Accelerometers (movement sensors) are 

increasingly being used in physical behaviour research, but no con-

sensus exists in the literature on how to use the time series produced 

by these sensors when examining associations (either cross-sec-

tional or longitudinal) between physical behaviour and health out-

comes. The data-analytical approach to link physical behaviour ex-

posure with health outcomes usually includes these steps: 1) the re-

duction of the acceleration time series into meaningful descriptors of 

physical behaviours; 2) the adequate mathematical treatment of 

these descriptors if needed; and 3) the selection of a statistical model 

to investigate the epidemiological associations of physical behav-

iours with health. 

In this context, a meeting titled “International Workshop: A fo-

cus on statistical methods to analyse accelerometer-measured phys-

ical activity” was held in Granada on October 21st-22nd 2019. This 

event brought together an international panel of researchers with ex-

pertise in the analysis of data collected with accelerometers, in order 

to have a comprehensive and constructive discussion about the 

strengths and limitations of currently used analytical approaches. 

The present article aims to provide a comprehensive description and 

discussion on: 1) the most-frequently used analytical approaches 

(i.e., from descriptors to statistical modelling) currently used in the 

field, highlighting their strengths and limitations and providing prac-

tical recommendations on their use; and 2) current gaps and future 

research directions around the analysis and use of accelerometer 

data in physical behaviour epidemiology. This article focuses on 

modelling physical behaviours as exposure variables and health in-

dicators as outcomes. Our focus is on PA, although we also consider 

SB and sleep given their interrelationships with PA. Data collection 

protocol decisions are outside the focus of this document. However, 

it is important to note that decisions on the accelerometer body at-

tachment site [233,302], number of days recorded [303], treatment 

of weekdays and weekend days [15,304], seasonality [305], among 

others, affect the validity of accelerometer data as a measure of a per-

son’s typical physical behaviours. For example, regarding the body 

attachment site, hip-worn accelerometers have typically been more 

accurate than wrist-worn accelerometers at classifying PA intensity 

[68], although new algorithms have reached good validity with wrist-

worn accelerometer data [61]; sleep assessment seems to be more 
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feasible from wrist-worn accelerometer data [38,40]; and recently, 

methods to classify PA types have been greatly improved using thigh-

worn accelerometers [36]. A recent consensus report discussed best 

practices on these decisions [306].  

Overview of descriptors and statistical procedures 

currently used 

Accelerometer data descriptors 

Modern accelerometers collect raw accelerations (measured in 

G’s) at sample frequencies typically varying from 30 to 100 Hz. As an 

example, raw data from a thigh-worn accelerometer is presented in 

Figure 23. This raw signal is usually filtered and aggregated to re-

move the gravitational acceleration and the noise effects on the sig-

nal [67]. Examples of common accelerometer data aggregation met-

rics are activity counts (brand-specific and proprietary aggregation 

metrics), ENMO, MAD, Monitor Independent Motion Summary 

(MIMS) units, or Activity Index, among others (hereinafter we refer 

collectively to them as ‘acceleration metrics’). With regard to MIMS 

it should be noted that the claim that it is accelerometer brand inde-

pendent has so far not been demonstrated, only sensor from the Acti-

graph brand were used in the study by Dinesh and colleagues [307]. 

Further, no evidence exists that other metrics like MAD and AI0 are 

not brand independent. MIMS applies a narrow frequency filter by 

which its potential lack of sensitivity to differences in the monitor 

comes at the cost of lower sensitivity to movements in the low- and 

high frequency range.  

 

Abbreviations in this page: 
ENMO: Euclidean Norm Minus 1G 
MAD: mean amplitude deviation 
MIMS: Monitor Independent Mo-
tion Summary 
PA: physical activity 
SB: sedentary behaviour 

Figure 23 
Sample raw accelerometer data 
recording from a thigh-worn 
accelerometer. Accelerometer 
model: Axivity AX3, sampling 
frequency: 30 Hz, body attach-
ment site: thigh; 24h/day re-
cording protocol. 
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In-depth discussions about the influence that these aggregation 

metrics on the final estimates have been published elsewhere 

[67,153,233,302]; we focus our discussion on the conversion of such 

acceleration metrics to descriptors at a day or person level. Table 23 

presents a brief description and example references on the de-

scriptors included in this section. Given the numerous versions of ac-

celerometer data descriptors presented in the literature, we decided 

to focus on those descriptors representative of PA volume, type, and 

intensity since they are the most frequently-used in public health 

guidelines. 

Descriptor Brief description  Examples 

Average acceleration 
Arithmetic average of the processed acceleration throughout 
the measurement period or per day. 

[274,292,308] 

Time-use behaviours 

Estimates of time spent in physical activity intensities (e.g., 
LPA, MPA, VPA), types (e.g., walking, running, cycling), or SB, 
optionally expressed in bouted and un-bouted behaviour. 
These estimates can be derived with heuristic methods or ma-
chine learning. 

[266,274,309] 

Intensity spectrum 

The intensity spectrum is an extension of cut-points which at-
tempts to provide a much more detailed description of the 
physical activity intensity pattern. Instead of using cut-points 
representative of SB, LPA, MPA or VPA, the cut-points are ar-
bitrarily selected to obtain a wider range of intensity bins. 

[310,311] 

Intensity gradient 
The intensity gradient describes the negative curvilinear rela-
tionship between physical activity intensity and the time ac-
cumulated at that intensity during the 24 h day. 

[292,308] 

MX metrics 
The acceleration above which a person’s most active X 
minutes/time (MX) are accumulated, to focus on a person’s 
most active periods of the day. 

[312] 

Acceleration functions 

Description of the accelerometer data with a function rather 
than with a scalar. Functions seek a more detailed description 
of the accelerometer data without making a priori assump-
tions. 

[313–315] 

   

Average acceleration 

Average acceleration over a 24 h period is directly derived from 

the processed acceleration and can be used as a proxy for total daily 

PAEE [316]. This single estimate indicates the overall activity level 

and/or the volume of activity. It is usually expressed in mg or a man-

ufacturer-provided acceleration metric (usually counts). Average ac-

celeration usually has a moderate correlation with PAEE (r ~ 0.3-

0.5), which can be improved by considering body weight, body com-

position, and activity type in the models [200,237]. Given that the 

correlation is not high, it is often used as a direct measure of move-

ment, without making inferences about PAEE. 

Time-use descriptors 

Various descriptors quantify the daily time spent in a set of be-

haviours, e.g., time spent in certain activity intensities (e.g., LPA, 

MPA, or VPA) or types (e.g., sitting, standing, walking). In this regard, 

cut-points represented one of the first developed and most fre-

quently used methods for assessing the time spent in SB and in LPA, 

Abbreviations in this page: 
LPA: light physical activity 
MPA: moderate physical activity 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SB: sedentary behaviour 
VPA: vigorous physical activity 

Table 23 
Description of accelerometer-
based descriptors of physical 
behaviours 



Study VII 

Page 214 of 385 

MPA, and VPA using the acceleration metric [37]. The identified lin-

ear association between acceleration and energy expenditure was 

used to determine cut-points based on standard METs thresholds 

(e.g., SB, ≤1.5; LPA, >1.5 and <3.0; MPA, ≥3.0 and <6.0; VPA, ≥6.0 

[317]). Figure 24 graphically represents a cut-point-based classifi-

cation of the acceleration recorded during one day without any defi-

nition of bouts. Cut-points can be derived with standard statistical 

procedures such as linear regression or ROC curves, which assume a 

linear relationship between magnitude of acceleration and METs. 

However, non-linear approaches have also been used. Otherwise, 

classification of activity types usually relies on thresholds applied to 

the device angle variability, usually from thigh- or wrist-placed ac-

celerometers [36,40]. Similarly, thresholds have been applied to ac-

celeration metrics and accelerometer angles to detect sleep from the 

accelerometer signal [38–40]. More sophisticated models have used 

the acceleration signal to detect whether the activity performed is lo-

comotion or not, and then applied specific regression models for 

each activity type (locomotion vs. not locomotion) [158]. Machine 

learning methods have gained momentum to classify both activity in-

tensities and types from an accelerometer time series [318]. Classi-

fying behaviours or estimating energy expenditure using a super-

vised machine learning approach requires data labelled with ‘true’ 

intensity or type (as measured with indirect calorimetry or heart rate 

monitors, among others) [115,118,127,221,319], which is used to it-

eratively improve classification/estimation. Alternatively, unsuper-

vised machine learning methods can be used to define “states” in the 

accelerometer signal pattern that can be interpreted as specific be-

haviours [320].  

 

Abbreviations in this page: 
LPA: light physical activity 
MET: metabolic equivalent 
MPA: moderate physical activity 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
ROC: receiver operating charac-
teristic 
SB: sedentary behaviour 
VPA: vigorous physical activity 

Figure 24 
Graphical representation of cut-
point-based metrics without 
bout-specification. Accelerome-
ter model: ActiGraph GT3X+, 
sampling frequency: 100 Hz, 
body attachment site: hip; only 
awake time represented. 
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Independently of the method used, these descriptors estimate 

daily time devoted to a specific behaviour. Descriptors of time spent 

in different PA intensities were first developed to assess objectively 

the information gained from questionnaire data (the source of most 

knowledge on the benefits of PA). Use of these time estimates in re-

cent research has confirmed the benefits of PA for health and demon-

strated stronger effects of PA than observed with self-report [321]. 

Intensity spectrum 

The intensity spectrum is also quantified as daily time spent in 

certain categories, so it is a time-use descriptor. Specifically, time ac-

celeration metric signal over time is classified based on increasing 

acceleration bins (e.g., time spent from 0-50, 50-100, 100-150, […] 

counts or mg). Thus, the intensity spectrum uses a wider range of 

narrower equally-sized bins for increased resolution of the data 

[311]. The definition of the bin size is arbitrary, might not directly 

relate to PAEE and does not make any assumption on the behaviour 

underlying the intensity bin (its purpose is purely descriptive). It can 

also be regarded as a discretisation of a functional representation of 

the intensity distribution. The idea behind this approach is to avoid 

exaggerated aggregation of data (into only 3-4 categories) leading to 

loss of information. Thus, the number of bins should be large enough 

to incorporate all essential features in the accelerometer signal.  

Intensity gradient 

The intensity gradient describes the negative curvilinear shape 

of the intensity spectrum (i.e., the higher the intensity the less time 

spent at this intensity) [308]. The regression coefficient from a linear 

regression of time spent in an intensity bin on intensity, both on a 

logarithmic scale, is used as a scalar descriptor of this curvilinear re-

lationship. It is always negative, reflecting the drop-in time accumu-

lated as intensity increases; a more negative (lower) gradient reflects 

a steeper drop 

with a large pro-

portion of time ac-

cumulated at 

lower intensities, 

while a less nega-

tive (higher) gradi-

ent reflects a shal-

lower drop with 

time accumulated 

at higher intensi-

ties (Figure 25). 

 

Abbreviations in this page: 
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Figure 25 
Example of intensity gradients 
from different participants with 
a similar average acceleration 
but discordant intensity distri-
bution (i.e., intensity gradient). 
Accelerometer model: ActiGraph 
GT3X+, sampling frequency: 100 
Hz, body attachment site: non-
dominant wrist. 
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MX metrics - acceleration values corresponding to a set of percentiles 

Time-use descriptors were based on the time accumulated in a 

series of a priori defined behaviours/bins. An alternative is to turn 

this approach on its head and describe the acceleration intensity dis-

tribution in terms of standardized periods of time or fractions of the 

24 h day (percentiles). The acceleration for each epoch during the 

day is ranked in descending order to obtain the acceleration above 

which the person’s most active X (MX) minutes are accumulated 

[308]. Therefore, instead of reporting the minutes above a given ac-

celeration threshold, the minimum acceleration achieved for a given 

duration is reported (the unit of measurement is often mg or counts). 

MX, where X refers to the duration, e.g. M30, refers to the minimum 

acceleration for the most active 30 min (~percentile 98th) of the day. 

The active minutes may be accumulated in any way across the day. 

For example, if a child had an M60 value of 230 mg, the child accu-

mulated 60 min of PA at accelerations (intensity) greater than 230 

mg across the day. Similarly, the periods with the lowest recorded 

activity can be defined. 

 A range of MX metrics covering short to long time durations 

can be used to aid interpretation of the volume and intensity of the 

24 h profile of physical activity. Using the MX metrics facilitates in-

terpretation in terms of time spent in indicative activities (e.g., brisk 

walking) or above cut-points for different intensities of activity, e.g., 

MVPA or VPA. Plotting a broad range of MX variables on a radar plot 

illustrates the intensity and volume of the 24h activity profile (Fig-

ure 26), facilitating e.g., translation of results from analyses investi-

gating the relative contributions of average acceleration and inten-

sity gradient to markers of health, and/or comparisons between and 

within groups. For example, the M120, M60, M45, M30, M15, M10, 

M5 and M2 illustrate the more active periods of the day, while M8h 

refers to the most active 8 h of the day.  

 

Abbreviations in this page: 
IG: intensity gradient 
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Figure 26 
MX metrics example from two 
participants with similar average 
acceleration but different inten-
sity gradient. Accelerometer 
model: ActiGraph GT9X, sampling 
frequency: 100 Hz, body attach-
ment site: non-dominant wrist. 
Adapted from Rowlands et al. 
[312] with the permission from 
the publisher. 
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Acceleration functions 

While the abovementioned descriptors are represented by sca-

lar numbers, acceleration can also be described using a function. For 

example, the intensity gradient (described above) can be defined by 

its function instead of only reporting the beta coefficient. Other func-

tions of interest could be the acceleration over time of the day [322] 

or the acceleration distribution (Figure 27) [315]. Acceleration func-

tions seek a more detailed description of behaviours without making 

a priori assumptions. For example, while time in light activities as-

sumes that all of the data between two cut-points (e.g. 0.05 to 0.10 g) 

relates similarly to health outcomes, analysis of acceleration func-

tions could detect that a group tend to do more activities at acceler-

ation less than 0.05mg or more activities at acceleration above 0.07g. 

 

Indicators of movement behaviour patterns and quality 

All the above-mentioned descriptors are time-based (time-use 

behaviours and intensity spectrum) or acceleration-based (average 

acceleration, MX metrics, acceleration functions) descriptors. That is, 

they either measure time in a given behaviour or acceleration in a 

certain time interval. Other descriptors of movement behaviour 

quality and patterns can be obtained thanks to the time-stamped 

data derived from accelerometers. Time-stamped accelerometer 

data can be used to derive certain characteristics of the PA and SB 

patterns throughout the day, such as the time accumulation in bouts 

of PA intensities or types. Time-stamped data also provides insight 

on timing of behaviours, domain (school/work or leisure), and circa-

dian rhythmicity. For example, fragmentation of PA and sleep, sed-

entary breaks, intradaily variability (IV), interdaily stability (IS), 

sleep efficiency, or waking periods after sleep onset are frequently 

used in the field to assess the quality and patterns of PA, SB, and 

sleep. 

Mathematical treatment  

This section focuses on mathematical treatments to account for 

the specific singularities of the descriptors presented above. Time-

Figure 27 
Sample of accelerometer-based 
distribution as a function of ac-
celeration and time. Accelerome-
ter model: GeneActiv, sampling 
frequency: 85.7 Hz, body attach-
ment site: non-dominant wrist; 
24h/day recording protocol 

Abbreviations in this page: 
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use behaviours and the intensity spectrum consist of a set of compo-

nents that represent parts of some finite total. This total may be ex-

plicit (e.g., complete 24-hour data) or it may arise through interpre-

tation of the data as proportions (e.g., waking day data). Therefore, 

these descriptors can be considered as compositional data. Each part 

is called a component and the proportional distribution is called 

composition. So, for a composition with i components: 

∑ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑖 = 1 =  100% = 𝑊ℎ𝑜𝑙𝑒  

 
Compositional data analysis is an approach to analyse compo-

sitional data. Its birth is often attributed to Pearson’s paper on spu-

rious forms of correlation in ratio data [323]. Arguably the father of 

compositional data analysis is John Aitchison, who developed com-

prehensive statistical frameworks to deal with compositional data 

[324]. Compositional data analysis is an established branch of statis-

tics and has been used in many fields of research such as geosciences, 

nutrition, the study of the microbiome and gene sequencing. In the 

last five years, it has been applied in the field of ‘physical behaviour 

epidemiology’ to study the association between daily time use and 

health (Figure 28) [325–327]. 

Figure 28 
Overall number of publications 
using accelerometer-determined 
PA (panel A) and number of pub-
lications using compositional 
data transformations from incep-
tion to December 31st, 2019. 
Search syntax introduced in the Web of 
Science: Panel A: ((((("physical activity")) 
OR "sedentary")) AND ((acceleromet*) 
OR actigraph*)); Panel B: ((((("physical 
activity")) OR "sedentary")) AND ((accel-
eromet*) OR actigraph*) AND ("composi-
tional data analysis")). 
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Compositional data transformation 

Time-use descriptors of physical behaviours are by nature 

compositional when they describe a time or energy budget (Figure 

29). Hence the sum of time spent in each behaviour will be the period 

of interest (24 hours, waking period, week, wear time) and the pro-

portions will sum to 100% of this period. In this example, the com-

position is made of four components over 24 hours: sleep, SB, LPA 

and MVPA. 

𝑡𝑠𝑙𝑒𝑒𝑝 + 𝑡𝑆𝐵 + 𝑡𝐿𝑃𝐴 + 𝑡𝑀𝑉𝑃𝐴 = 24 ℎ𝑜𝑢𝑟𝑠 

This is also true if we consider part of the day, such as the com-

position of movement behaviours during the waking day. Though 

waking hours are typically not fixed, we can still carry out a compo-

sitional data analysis of the proportions. 

𝑡𝑆𝐵 + 𝑡𝐿𝑃𝐴 + 𝑡𝑀𝑉𝑃𝐴 = 𝑤𝑎𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 

 
A composition can have an unlimited number of parts that can 

be defined by intensity band, activity type, context information or a 

combination of those, provided they are mutually exclusive. As a con-

sequence of the fact they describe mutually exclusive components of 

a time or energy budget, each part only contains relative information 

rather than an absolute value and, then, the interpretation of compo-

sitional data is in terms of relative time spent in the different behav-

iours. If the data is regarded as a composition; mathematical trans-

formation of the data is required prior to introducing the variables in 

a statistical model. For some applications, the absolute time may be 

important, in which case it would not be appropriate to apply the 

compositional transformation.  

Compositional data transformations are simple and rely on log-

arithmic transformations. The purpose of this transformation is to 

resolve the difficulties around co-dependency and spurious 

Abbreviations in this page: 
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Figure 29 
Visualization of the compo-
sitional nature of physical 
behaviour data 
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correlation associated with the compositional nature of these de-

scriptors. Statistical models can, therefore, be adjusted for all physi-

cal behaviour components without incurring perfect collinearity. 

Specifically, the data transformations that have been used so far in 

‘physical behaviour epidemiology’ are the centred log ratio 

[328,329] and the isometric-log ratio [326,330–332]. Using the cen-

tred log ratio, each component is centred according to the mean log-

arithm of all the components [324], which is mathematically ex-

pressed as: 

𝑧𝑖 =  ln 
𝑡𝑖

√∏ 𝑡𝑗
𝐷
𝑗=1

𝐷
 with i indicating each component  

The sum of the D (number of components) centred log ratio-

transformed variables is 0. This fixed sum means they are singular, 

and cannot be used in regression models. However, we can apply an 

additional transformation to the components to obtain a D-1 dimen-

sional space without this constraint. This is referred to as the isomet-

ric log ratio-transformation when the new space uses an orthonor-

mal basis. There are multiple such bases, however the most common 

approach in physical behaviour epidemiology research is shown be-

low (e.g., SB, LPA, MVPA and sleep): 

𝑧𝑆𝐵 = (𝑧1: √
3
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Thus, the isometric log ratio produces a set of coordinates for 

each component (i.e., z1, z2 and z3 in each component of the example 

above) that should be introduced together as covariates in any sta-

tistical model (see below considerations on the statistical model se-

lection). The main difficulty associated with these transformations is 

in interpreting the results; this is a problem similar to (for example) 

in standard linear regression when a variable is log-transformed. For 

compositional data, a solution is to find an appropriate graphical rep-

resentation of the results, keeping in mind the co-dependence of the 

parts and using model predictions rather deriving the estimate di-

rectly from model coefficients. Another difficulty arising from these 

mathematical transformations is related to having zeros or values 

close to zero in any of the components. This can happen in certain 

populations which may not perform VPA or even MVPA. Considering 
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very low values in a composition could lead to spurious correlations 

[333], usually, these values are either ignored in the analysis or im-

puted to stabilize the models [326].  

Statistical modelling 

The third and last step of the analytical process relates to the 

decisions on how to model the associations between the selected de-

scriptor(s) (with or without mathematical transformations) and 

health. As far back as the 1950’s [2,334], many studies have investi-

gated the epidemiological associations of physical behaviours with 

health outcomes. The use of accelerometers confirmed some of these 

associations, and allowed a better characterisation of the dose-re-

sponse curve overcoming the cognitive biases of self-reports. How-

ever, most studies have solely focused on basic descriptors of one be-

haviour in isolation (e.g., MVPA). Out of the 11,765 publications iden-

tified in a search in the Web of Science on physical activity and accel-

erometers (Figure 28, Panel A), only 125 studies explored the inter-

dependencies among physical behaviours using isotemporal substi-

tution models, multivariate pattern analysis or functional data anal-

ysis (Figure 30) [335]. This consensus group believes that now is the 

right time to move to more detailed and informative studies on the 

combined effects and interactions across physical behaviours on 

health outcomes. Table 24 contains a brief definition of each of the 

statistical models described in this section. 

Statistical model  Brief description  Examples 

Standard regression modelling 

Traditional models establishing the relationship 
between a set of explanatory variables and an out-
come (i.e., health outcome). Exposure is usually 
limited to a single time use behaviour. Interpreta-
tion is in terms of increasing time in one behav-
iour.  

[336,337] 

Isotemporal substitution model  

Isotemporal substitution models examine the the-
oretical effects of displacing a fixed duration of 
time between behaviours. Given the fixed and fi-
nite duration of a day, increasing time in one 
movement behaviour (e.g., LPA) will result in a net 
equal and opposite change in other movement be-
haviours (e.g., SB). Interpretation is in terms of 
substituting one behaviour for other behaviours.  

[338,339] 

Multivariate Pattern Analysis  

A regression approach/analysis that can handle an 
unlimited number of multicollinear explanatory 
variables by using latent variable modelling. Mod-
els are cross-validated to optimize predictive abil-
ity. Interpretation is based on the complete pattern 
of associations among the explanatory variables in 
relation to the outcome. 

[328,340–343] 

Functional data analysis  

Functional data analysis is an extension of scalar 
regression where the exposure or outcome is de-
fined as a function rather than a scalar variable. 
The function can describe the full distribution of 
intensity of acceleration or the time-series of accel-
eration over the day. The function can be included 
in standard regression analysis through dimen-
sional reduction techniques. Interpretation is in 
terms of certain accelerometer trace shapes.  

[210,314,322,34
4,345] 

Machine learning 

ML entails a broad range of techniques to auto-
mate the learning of high-dimensional and/or non-
linear patterns in data with predictive ability (su-
pervised machine learning) or data reduction (un-
supervised machine learning) as its core priority. 

[346–348] 

Abbreviations in this page: 
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Table 24 
Brief description of approaches 
to analyse associations between 
physical behaviours and health 
outcomes. 
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Standard regression modelling  

Standard regression is the most frequently used statistical 

model in the field, often including the physical behaviour descriptor 

as a continuous exposure variable in a linear, logistic or Cox regres-

sion (depending on the outcome of interest). Standard linear regres-

sion models are interpreted in terms of the (theoretical) effect of in-

creasing the explanatory variable on the outcome, under a linear re-

lationship. Standard linear regression models are usually adjusted 

for the covariates that could influence the association of interest. 

Highly correlated explanatory variables result in multicollinearity, 

which is a phenomenon in which redundant information carried by 

predictors leads to erratic estimation of the models [349]. 

Standard regression models can also be used with composi-

tional ILR-transformed descriptors, which may eliminate that part of 

the collinearity which arises from the fixed sum (or closure) con-

straint [326,327]. In this case, the model coefficients are interpreted 

in terms of time replacements across behaviours. For example, the 

estimate for the z1 coordinate of the zSB equation presented above 

represents the effect of increasing SB while proportionally reducing 

the time in LPA, MVPA and sleep. The dose-response association be-

tween a specific behaviour and the health outcome is assumed to be 

logarithmic (curvilinear) using compositionally-transformed de-

scriptors. Likewise, the regression model predictions (using compo-

sitional data) can be used to estimate the time replacement between 

pairs of behaviours (e.g., reallocating time from SB to MVPA). This 

results in a similar interpretation to the isotemporal substitution 

models. When examining longitudinal associations, advanced regres-

sion models (e.g., survival analysis using Cox regression) may be 

used with either absolute descriptors [274,321,350] or composition-

ally transformed descriptors [331]. 

Figure 30 
Number of publications using 
some of the approaches de-
scribed in the present document 
from inception to December 31st, 
2019. 
Search syntax introduced in the Web of 
Science: isotemporal substitution models: 
((((("physical activity")) OR "sedentary")) 
AND ((acceleromet*) OR actigraph*) AND 
("isotemporal substitution")); multivari-
ate pattern analysis: ((((("physical activ-
ity")) OR "sedentary")) AND ((accel-
eromet*) OR actigraph*) AND ("Physical 
activity signature" OR "multivariate pat-
tern analysis")); functional data analysis: 
((((("physical activity")) OR "sedentary")) 
AND ((acceleromet*) OR actigraph*) AND 
("Physical activity signature" OR "func-
tional data analysis")). 

Abbreviations in this page: 
LPA: light physical activity 
MVPA: moderate-to-vigorous 
physical activity 
SB: sedentary behaviour 
 



Study VII 

Page 223 of 385 

Isotemporal substitution models  

The isotemporal substitution modelling framework considers 

potential outcomes of increasing one behaviour at the expense of an-

other and whether the strength of the association is dependent on 

the behaviour being displaced. Isotemporal substitution models are 

standard regressions in which all-but-one of the time-use behaviours 

are introduced as the exposure (together with the pertinent covari-

ates) and the health outcome is the dependent variable. These mod-

els examine the estimated effects of replacing time spent in one be-

haviour (the missing behaviour in the model) with an equal amount 

of time spent in another, while keeping monitor wear time constant. 

They do so by dropping the behaviour of interest from the model 

(otherwise, the model would suffer from perfect collinearity). The 

linear effects of the pair-wise reallocations are then estimated from 

the model coefficients. Similar interpretations of time replacement 

between pairs of behaviours can be obtained from applying standard 

linear regression over compositional data. 

Multivariate pattern analysis 

Multivariate pattern analysis can handle completely collinear 

explanatory variables by combining the data into orthogonal latent 

variables [351]. Thereby, this method tackles collinearity as a dimen-

sion reduction problem, rather than a data transformation (as com-

positional data analysis does). Multivariate pattern analysis is espe-

cially well-suited to analyse a wide range of collinear descriptors, 

such as the intensity spectrum, without requiring any data transfor-

mation [310,311], although transformations can be done to make 

distributions within bins more normal and linearly associated with 

the outcome. Another important feature is that the models are opti-

mized for predictive ability by Monte-Carlo resampling whereby half 

of the data are repeatedly used for modelling and half for prediction 

[340]. In this way, the optimal number of latent variables can be de-

termined and only relevant features in the descriptor retained.  

Multivariate pattern analysis uses partial least squares regres-

sion modelling [351], or other latent-variable regression models 

[342], to determine the multivariate association pattern. Partial least 

square regression decomposes the explanatory variables into or-

thogonal linear combinations (partial least square components), 

while simultaneously maximizing the covariance with the outcome 

variable. Similar procedures to reduce the data can be observed in 

factor analysis, principal component analysis, or joint and individual 

variance explained models [352]. Multivariate pattern analysis dif-

fers from these others by creating components that maximize the co-

variation with the outcome, not internally among the explanatory 

variables. Joint and individual variance explained models seek to 

maximize the variance explained across explanatory variables 

Abbreviations in this page: 
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assuming that they come from different dimensions (e.g., PA, sleep, 

and circadian rhythms) and improving the within and between di-

mension representation [352]. The procedure for obtaining the mul-

tivariate patterns is completely data-driven, with no assumptions on 

variable distributions or degree of collinearity among variables. Se-

lectivity ratios are calculated to express and rank each single explan-

atory variables’ association with the outcome [353,354]. The selec-

tivity ratio represents each explanatory variable’s ratio of explained 

to residual variance in relation to the outcome (Figure 31). By re-

placing residual variance with total variance in the denominator, a 

straight-forward measure of explained variance can be obtained 

[343]. Multivariate pattern analysis has been applied with time-use 

descriptors and intensity spectrum in both their absolute scale and 

with the compositional centred log ratio transformation [328]. Since 

multivariate pattern analysis can handle singular data (e.g., CLR-

transformed data), the isometric log ratio transformation is not nec-

essary if modelling compositional data.  

 

Functional data analysis 

Functional data analysis is an extension of standard regression 

analysis where the exposure or the outcome (or both) is a function 

instead of a scalar [344,355,356]. In physical behaviour epidemiol-

ogy, the rationale of functional data analysis in the context of accel-

erometer data comes from the availability of moment-by-moment 

acceleration data allowing the use of the entire range of accelera-

tions, whatever the aggregated metric used (e.g., counts, ENMO, 

MAD) [313,314]. The acceleration functions described in above can 

be used in functional data analysis. A first step often consists in 

Abbreviations in this page: 
ENMO: Euclidean norm minus 1G 
MAD: mean amplitude deviation 
PA: physical activity 

Figure 31 
Multivariate pattern analysis ex-
ample. Accelerometer model: 
ActiGraph GT3X+, sampling fre-
quency: 30 Hz, body attachment 
site: right hip; awake time re-
cording protocol. Selectivity ratio 
represents the explained-to-total 
outcome variance ratio. Taken 
from Aadland et al. [328] with 
permission from the publisher 



Study VII 

Page 225 of 385 

smoothing the function of interest so that the smoothed function can 

then be used in functional data analysis, although some approaches 

do not smooth the data at subject level and rather pool the data 

across subjects to avoid the loss of information from the accelerom-

eter signal. For example, when the interest is in the distribution of 

acceleration over time of the day, one can reduce data into 10 minute 

epochs as the objective is to assess when individuals are more or less 

active at each time of the day [357]. When the function of interest is 

the acceleration density distribution, Gaussian Kernel smoothing 

methods can be used (Figure 32) [358]. In that case, careful atten-

tion should be given to the number and place of nodes for accelera-

tion values: a higher number of nodes should be present in the accel-

eration range where most of the time is spent. Then, the smoothed 

function of interest can be used for further analysis as an outcome 

variable (Function-on-scalar analysis), an exposure (Scalar-on-func-

tion analysis), or both (Function-on-function analysis) using func-

tional data analysis regression techniques. 

 

Machine learning for epidemiological analysis 

Machine learning methods provide a broad range of techniques 

to identify patterns in data. Although it has been increasingly used to 

derive descriptors from raw accelerometer data [318], machine 

learning has rarely been applied to the study of the associations of 

accelerometer data descriptors (examples of machine learning for 

health association analysis using physical behaviour data include 

[347,348]). As machine learning methods typically emphasise pre-

diction or data reduction, they are most often relevant for hypothesis 

generation and data exploration. While there is no clear distinction 

between conventional statistical methods and machine learning, 

there is typically a different emphasis, and so they can be difficult to 

apply directly to problems requiring statistical inference. Bi et al. dis-

cuss possible epidemiologic applications of a wide range of machine 

learning methods in detail [346]. Examples of machine learning 

methods which could be applied to health association analysis using 

accelerometer data include Decision Trees/ Random Forests, Sup-

port Vector Machines and Neural Networks. 

Figure 32 
Smooth mean and interquartile 
acceleration density function  
Red curve represents the mean 
density function of the study 
population and the grey area the 
interquartile range. 
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Analytical approaches: discussion and practical 

considerations 

This section describes and discusses the different analytical ap-

proaches’ applicability in various situations, including the combina-

tion of accelerometer descriptors and statistical models with and 

without mathematical (compositional) transformation. We provide 

practical considerations in relation to (1) how informative each ana-

lytical approach is for public health messaging and (2) what context 

or type of research question is more appropriate for the use of each 

analytical approach. Additionally, the performance of these ap-

proaches in relation to potential risks of closure or collinearity, rela-

tionship assumptions between physical behaviours and health out-

comes, and their interpretation for public health guidelines are pre-

sented in Table 25. 
Table 25. Summary of analytical approaches (including descriptor, mathematical transformation and statistical model) 
strengths and limitations in relation to closure, collinearity, relation-shape assumptions and interpretation relative to 
public health guidelines. 

Descriptor 
Composi-
tional 
transform 

Statistical 
modelling 

Risk of 
closurea? 

Risk of col-
linearity? 

Handles 
closure? 

Handles col-
linearity? 

Relationship 
assumptions 

Allow investiga-
tion of longitu-
dinal associa-
tions (e.g., Cox 
regression) 

Interpretation 
relative to 
guidelines? 
(e.g., 150 
min/week of 
MVPA) 

Average ac-
celeration 

No Standard No No 
- - 

Linear Yes No 

Time-use 
descriptors 

No Standard Yes Yes No No Linear Yes Yes 

Yes Standard Yes Yes Yes In partb Log-linear Yes Yes 

No ISO Yes Yes Yes No Linear Yes Yes 

No MPA Yes Yes No No Linear 
Not at the mo-
ment 

Yes 

Yes MPA Yes Yes Yes Yes Log-Linear 
Not at the mo-
ment 

Yes 

Intensity 
spectrum 

No Standard Yes Yes No No Linear Yes Yesc 

Yes Standard Yes Yes Yes In partb Log-linear Yes Yesc 

No ISO Yes Yes Yes No Linear Yes Yesc 

No MPA Yes Yes No No Linear 
Not at the mo-
ment 

Yesc 

Yes MPA Yes Yes Yes Yes Log-linear 
Not at the mo-
ment 

Yesc 

Intensity 
gradient 

No Standard No No - - Linear Yes No 

No FDA No No - - 
Fewer assump-
tions than 
other models 

Yes Yesd 

MX metrics 
No Standard Yes Yes No No Linear Yes Yesc 

No MPA Yes Yes No Yes Linear 
Not at the mo-
ment 

Yesc 

Other accel-
eration 
functions 

No FDA No No - - 
Fewer assump-
tions than 
other models 

Yes Yesd 

aClosure refers to whether a certain descriptor is a specific part of the daily time constraint (i.e., it is measured in time per day). 
bIndicates that it solves the collinearity due to the closure, but collinearity can still exist across the CoDA-transformed variables. 
cIndicates that the interpretation is made through a post-hoc application of validated cut-points to identify the PA intensity (e.g., MVPA). 
Indicates that more work is needed on the interpretation of functional data analysis, an example can be found elsewhere [315]. 
ISO: isotemporal substitution models; MPA: multivariate pattern analysis; FDA: functional data analysis; ML: machine learning. 

Average acceleration and standard regression 

The average acceleration provides the simplest estimate of the 

overall movement and the simplest proxy for total daily PAEE. 
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However, it usually has only moderate correlations (with total daily 

PAEE), so we do not recommend average acceleration as a direct es-

timator of PAEE. Statistical interpretation of findings using standard 

linear regression is straightforward since there is a single variable 

representing the overall activity volume. Thus, co-dependence with 

other explanatory variables is not usually a concern with average ac-

celeration. This consensus group believes the average acceleration is 

useful as a covariate to remove the confounding effect of overall PA 

in a given association analysis, or as the main exposure in cases 

where it explains a large proportion of the PAEE in a certain cohort. 

Beyond this, the average acceleration on its own is not very informa-

tive relative to the associations of specific physical behaviours with 

health outcomes, limiting its applicability for public health messag-

ing. A recent study has proposed the minimum clinically informative 

difference for average acceleration derived from wrist-worn accel-

erometers [359], which may ease the interpretation of this de-

scriptor, but further studies are needed in this regard. Nevertheless, 

the average acceleration may be the best descriptor to test the “move 

more” message reported in several guidelines. 

Time-use behaviours or intensity spectrum and standard linear regression 

Among the time-use descriptors, time spent in PA intensities is 

the most frequently-used in the field of ‘physical behaviour epidemi-

ology’, while PA types have gained momentum in the last years. 

These descriptors are often introduced in standard linear regression 

models to test the association of time spent in a certain behaviour 

with health outcomes. It is useful for comparing estimates with other 

cohorts that have already used this approach. The intensity spectrum 

is an extension of PA intensities with higher resolution and without 

assumptions on energy bands. Therefore, we discuss their usefulness 

in the analytical approaches together. When using time-use behav-

iours, it is important to consider requirements for bouts in these be-

haviours. We observe that there is no consensus in the literature on 

how a bout should be calculated, including the definition of accepta-

ble grace period and the definition of the minimum and maximum 

duration. However, usually we see 30-min bouts are used for SB and 

10-min bouts for MVPA often allowing short time intervals outside 

the behaviour of interest [360]. It is unclear how much these choices 

are driven by a desire for harmonisation, by public health guidelines, 

or by evidence.  

Time-use behaviours (or intensity spectrum) are co-dependent 

on each other and standard linear regression does not handle closure 

and collinearity among explanatory variables. Therefore, when using 

time-use behaviours or the intensity spectrum, standard linear re-

gression adjusted for all physical behaviour components may show 

multicollinearity between variables [349]. Variance inflation factors 
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are frequently used to quantify multicollinearity in linear regression 

models. However, variance inflation factors are unable to explain in-

consistencies between standard linear regression models sequen-

tially excluding a behaviour from the explanatory variables [327]. 

Therefore, it has been suggested that variance inflation factors are 

not an acceptable diagnostic indicator for the interdependency be-

tween time-use descriptors [327]. Additionally, standard linear re-

gression assumes linearity in the association, while PA intensities are 

known generally not to be linearly related to health outcomes. This 

consensus group recommends moving forward to other analytical 

approaches more suitable for studying the co-dependencies among 

the time-use behaviours. In this regard, transforming the time-use 

behaviours using the compositional data isometric log ratio transfor-

mation has been suggested. Using the isometric log ratio transfor-

mation, each variable indicates the time spent in a given behaviour 

(e.g., MVPA) relative to the time spent in the rest of behaviours of the 

composition (e.g., SB, LPA and sleep time). In other words, it quanti-

fies the effect of increasing the time in a behaviour while proportion-

ally reducing the time in the rest of behaviours included. Pair-wise 

reallocation of time can also be interpreted from standard regression 

predictions on specific time compositions arising from hypothetical 

reallocations of time rather than from regression coefficients (as it is 

done in isotemporal substitution models). Although indicators on 

data quality cannot be analysed compositionally, they can be used as 

covariates in the models [361]. Once the variables have been trans-

formed, the co-dependency among the time-use descriptors relative 

to their time closure is already solved (i.e., it accounts for the reallo-

cation of time among variables). It is however important to consider 

that the transformed variables can still be collinear, and collinearity 

should be investigated because standard linear regression cannot 

handle collinearity, regardless of its source. This is especially prob-

lematic when analysing the intensity spectrum since it provides a 

wide range of variables (usually more than 10) that are highly corre-

lated, even if using isomeric log ratio-transformed variables [328]. 

This consensus group believes the field of ‘physical behaviour 

epidemiology’ should move to studying the combined effects and in-

teractions of physical behaviours on health. Using isometric log ratio-

transformed time-use behaviours and standard regression would be 

a feasible alternative to study the combined effects and interactions 

of physical behaviours on health [326,327]. Additionally, this ap-

proach would be informative for public health messaging by investi-

gating what combinations of behaviours (considering every behav-

iour that occurs in the day) are more beneficial for health. Clustering 

groups of people based on their behaviours is also an alternative to 

investigate the interactions between behaviours. However, 
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compositional data analysis means it is possible to study the varia-

bles on a continuous scale (which carries more information than 

comparing groups with certain characteristics) while accounting for 

the interdependencies between them. Otherwise, the use of standard 

regression models to analyse the intensity spectrum variables (ei-

ther transformed or not) is not recommended because of the high 

risk of collinearity issues in the transformed variables [328]. Other 

statistical models should be used for this purpose. An advantage of 

standard regression models is that they can be used with more ad-

vanced regression models to investigate longitudinal associations, 

either with absolute [274,321,350] physical behaviour data or with 

compositional transformations [331]. As a challenge, standard re-

gression models with compositional data may need appropriate 

graphical representation of the results to interpret the magnitude of 

the association, keeping in mind the co-dependence of the parts and 

using model predictions rather than deriving the result directly from 

model coefficients. 

Time-use behaviours or intensity spectrum and isotemporal substitu-

tion models 

Isotemporal substitution modelling carries forward the main 

limitations of the standard linear regression, that is, it cannot handle 

multicollinearity and it assumes linearity of physical behaviours with 

health (as the magnitude of the association is derived from regres-

sion coefficients). These important limitations preclude us from rec-

ommending the use of isotemporal models with time-use de-

scriptors. However, it is important to note that this approach pro-

vides broadly similar findings to compositional isometric log ratio 

transformation of time-use behaviours and standard regression 

[362]. Public health messaging can be complemented with infor-

mation on the effect of reallocating the daily time across behaviours 

(either with isotemporal substitution models or with standard re-

gression over compositional data). The intensity spectrum has not 

been analysed with isotemporal substitution models at this time. We 

do not recommend such an analysis since the large number of varia-

bles in the intensity spectrum would complicate the analysis and in-

terpretation. 

Time-use behaviours or intensity spectrum and multivariate pattern 

analysis 

Multivariate pattern analysis provides an alternative approach 

that fully handles the collinearity among explanatory variables using 

latent variable modelling. As such, collinearity is approached as a di-

mension reduction problem in which the parts of the explanatory 

variable that share more variance with the outcome are retained for 

the model. Multivariate pattern analysis does not directly quantify 

the effect of reallocation of time across behaviours on health, but it 
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rather describes the pattern of associations for the behaviours with 

the outcome accounting for the correlated structure of the data. 

Therefore, the associations with health are interpreted for each de-

scriptor (each PA intensity or bin in the intensity spectrum) consid-

ering its co-dependency with the rest, but without quantifying time 

exchange between descriptors. A limitation of this analytical ap-

proach is that partial least squares regression models cannot be ad-

justed as usual. If covariates are included in the partial least squares 

model, they will contribute their shared variance with PA and the 

outcome (and possibly stabilize the model), but the association be-

tween PA and the outcome will not be independent of the covariates. 

The association pattern for PA will in many cases be similar, but the 

model fit (explained variance) will differ if covariates are associated 

with the outcome. Aadland et al. proposed to obtain residuals for the 

outcome from a linear regression model including confounders as ex-

planatory variables, prior to entering the outcome variable in the PLS 

model [310,311,328]. This challenge is particularly important for the 

analysis of categorical or time-dependent outcomes (e.g., mortality).  

Likewise, time-use behaviours or the intensity spectrum could 

be transformed as compositional data before introducing them in the 

model. Since multivariate pattern analysis can handle singular data, 

the use of isometric coordinates is not necessary. Aadland et al. re-

cently compared the use of raw and centred log ratio-transformed 

time-use and intensity spectrum descriptors with respect to associa-

tions with metabolic health using multivariate pattern analysis 

[328]. While associations appeared to differ substantially, the inter-

pretation of associations, considering the absolute and relative inter-

pretation, were partly equivalent. However, the interpretation of the 

centred log ratio-transformed variables may not be very informative 

for public health messaging as they represent the effect of time ex-

change from the geometric mean of the descriptor distribution to a 

specific descriptor (e.g., MVPA or any intensity spectrum bin).  

The main strength of multivariate pattern analysis is that it can 

fully handle collinearity among explanatory variables by reducing 

the dimensions of the descriptors and keeping only the parts which 

share more variance with the outcome. Other similar alternatives 

that try to reduce dimensionality of the data while retaining relevant 

information by increasing covariance among descriptors include fac-

tor analysis, principal component analysis, or joint and individual 

variance explained models [352]. Thus, this consensus group recom-

mends considering this approach to analyse many explanatory vari-

ables (e.g., intensity spectrum, MX metrics) in relation to health 

[363]. Since the intensity spectrum variables and the MX metrics are 

strongly correlated [328], and therefore do not contribute uniquely 

to explain the outcome, multivariate pattern analysis is more 
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meaningful than other approaches to overcome these potential col-

linearity issues. For example, Aadland et al. used an intensity spec-

trum composed of 16 bins to study the association of the PA intensity 

pattern with metabolic health in children [311]. There is no clear rec-

ommendation on the number of bins (or number of explanatory var-

iables) to generate for this analytical approach, though previous 

studies have used from 16 (uniaxial data) [311] to 102 (triaxial data) 

[310] intensity bins. Resolution may influence the relationship with 

the outcome and depend on the sample characteristics; thus, further 

research is needed.  

Intensity gradient and standard regression 

The intensity gradient was developed to: 1) capture the entire 

intensity distribution, 2) avoid the reliance on calibration protocols 

(that are, by nature, population and protocol-specific) and 3) provide 

information that complements the average acceleration. The latter 

enables the intensity gradient to be used alongside average acceler-

ation to more fully describe the 24 h movement profile by capturing 

both the volume and intensity of PA. This means the intensity gradi-

ent and average acceleration can be used together in standard linear 

regression models to investigate independent, additive and interac-

tive associations of volume and intensity of PA with health. Other-

wise, it does not allow direct estimation of the population attainment 

of current public health guidelines on physical behaviours. Since the 

intensity gradient is not affected by any kind of cut-points (which 

usually depend on the population characteristics), its use is also rec-

ommended for surveillance and to compare PA differences across 

populations without making assumptions on their PAEE.  

Intensity gradient or intensity distribution and functional data analysis 

Although the intensity gradient can be summarised in a scalar 

(using the linear regression coefficient between time and intensity 

both on the logarithmic scale), its defining function can be directly 

used in functional data analysis. Likewise, the acceleration distribu-

tion over time of the day or the acceleration density can be defined 

by a function and used in functional data analysis. Any of these accel-

eration functions can be used as an explanatory variable in regres-

sion models such as linear [314], logistic or Cox regression models, 

using scalar-on-function data analysis [344]. For example, in the case 

of the acceleration density function as explanatory variable, the as-

sociation with the event of interest is described along the accelera-

tion range [314]. This shows acceleration sections that are associ-

ated with the outcome of interest by accounting for the full distribu-

tion of acceleration, allowing identification of cut-point above which 

proportion of time spent above this acceleration cut-point is associ-

ated with the outcome of interest. Once acceleration above or below 

which an association with the outcome of interest is found, it is 
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possible to estimate differences (odds ratio or hazard ratio depend-

ing on the regression model) in the outcome of interest by allocating 

time below this cut-point to time above this cut-point [315]. 

This analytical approach is not affected by multicollinearity 

since it handles the data continuity instead of using several reduced 

variables. Once the association of certain acceleration intensities or 

patterns with health is described, functional data analysis can also 

test the effects of reallocation time from sections of the acceleration 

range to other sections relevant for health; thus, it can also consider 

the closure of the data. Another advantage is that functional data 

analysis models relax the assumptions of linearity in particular be-

haviours made by other statistical models by not splitting the contin-

uous acceleration into categories. Likewise, functional data models 

can detect the sections of the accelerometer data that are important 

for (i.e., associated with) a certain health outcome. Among its main 

limitations, the acceleration functions included usually carry much 

information that is not relevant for the outcome, but it is considered 

in the analysis. However, its main drawback is the difficulty in trans-

lating the findings into useful and straightforward public health mes-

sages. Investigation of how to make the conclusions of functional 

data analysis relevant for public health guidelines is highly encour-

aged by this consensus group (see [315] for an example). 

MX metrics and standard regression 

A major advantage of using the MX metrics is that the analysis 

is not affected by cut-points assumptions on energy expenditure, 

while cut-points may be post-hoc applied to ease the public health 

messaging. For example, if the M60 of a child is 230 mg, this can be 

compared to an MVPA cut-point, e.g., 200 mg [61], showing that the 

child is meeting the 60 min daily MVPA recommendation. However, 

if compared to a more stringent 250 mg MVPA cut-point, the child 

does not quite reach the recommendation. An advantage of this ap-

proach is that the intensity of physical activity for the specified dura-

tion is captured regardless of how inactive a person is - no one scores 

zero. This makes it particularly suited to describing the physical ac-

tivity of less active populations where an intensity cut-point may 

never be exceeded. Regarding statistical modelling, as with time-use 

descriptors or the intensity spectrum, the MX metrics are usually de-

scribed for a wide range of variables as explained in the ‘MX metrics’ 

section. These MX metrics are likely to be co-dependent as they are 

time-use descriptors. This co-dependency may result in multicollin-

earity in the standard linear regression models. Likewise, whether 

several MX metrics are derived from the accelerometer recording to 

describe the PA pattern, each MX metric would carry partial and rel-

ative information on the pattern. Thus, a compositional transfor-

mation of the MX metrics would also be interesting when using 
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standard linear regression models, although this approach has not 

been tested at the time. 

The MX metrics provide novel information on PA patterns that 

should be further investigated. The fact that analyses using these 

metrics are cut-point free could be important for surveillance and 

comparisons across populations with different characteristics. It is 

also noteworthy that the post-hoc implementation of cut-points al-

low those individuals meeting the pertinent public health guidelines 

to be identified. 

MX metrics and multivariate pattern analysis 

The usefulness of the MX metrics with multivariate pattern 

analysis has not been investigated yet. However, since one of the lim-

itations of the MX metrics with standard linear regression is the col-

linearity among the explanatory variables, multivariate pattern anal-

ysis could provide new insights by reducing the dimension of the ex-

planatory variables and overcoming the collinearity. 

Multiple descriptors and machine learning 

Machine learning describes a broad range of techniques to au-

tomate finding patterns in data with a focus on predictive ability (su-

pervised machine learning) or data reduction (unsupervised ma-

chine learning). Although machine learning methods have been 

widely applied to derive accelerometer descriptors [318], they have 

rarely been applied to the study of associations of accelerometer data 

descriptors with health [348]. Different machine learning ap-

proaches have different strengths and limitations. In general, 

strengths of machine learning methods for health association analy-

sis include their usefulness for data-driven hypothesis generation, 

their capacity to handle multi-dimensional data, their ability to find 

non-linear patterns, and the possibility of training a model in one da-

taset and updating it in another. However, it can be difficult to inter-

pret how results are obtained and their significance for public health 

guidelines. Machine learning methods can also be data-hungry and 

computationally intensive. Overfitting and sensitivity to (potentially 

unknown) biases in the training data are risks.  

In some ways, multivariate pattern analyses and the other di-

mension reduction methods can be considered machine learning 

methods. However, as machine learning represents a broad range of 

methods, with individual strengths and drawbacks, general state-

ments about usefulness and relevance in physical behaviour epide-

miology should not be made before a wider range of these methods 

have been applied and tested in this field. The Transparent Reporting 

of a multivariable prediction model for Individual Prognosis Or Diag-

nosis (TRIPOD) Initiative developed a set of recommendations for 

the reporting of studies developing, validating, or updating a 
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machine learning-based prediction models for diagnostic or prog-

nostic purposes [364]. 

 

Future research directions 

The international workshop held in Granada (“International 

Workshop: A focus on analytical methods to analyse accelerometer-

measured physical activity”), as well as the later expert meeting and 

the work developed in the following months by this author group, 

has initiated a discussion on analytical approaches, and their useful-

ness for developing public health guidelines. In 2008, the American 

public health guidelines on PA recommended 150 min/week of 

MVPA in adults and older adults, and 60 min/day of MVPA in children 

as beneficial PA levels to improve health [7], which was also recom-

mended by other national agencies and by more recent international 

Figure 33 
The GRANADA consensus decision 
tree and research question exam-
ples to assist in the selection of an 
analytical approach in the field of 
“physical behaviour epidemiology” 
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guidelines (https://www.who.int/publications-detail/global-ac-

tion-plan-on-physical-activity-2018%E2%80%932030). Further 

studies have extensively confirmed this recommendation. We pro-

pose future research directions based on the research gaps identi-

fied, i.e., the uncertainty regarding the accelerometer data de-

scriptors to use and about what analytical approaches best suit given 

research questions. The authors of this consensus article agree that 

investigations determining associations between physical behav-

iours and health should be extended to understand the interplay of 

‘physical behaviours’ in their relationship with health. Measurement 

and processing capacity are now richer than when these guidelines 

were developed, thus, the field would benefit from further infor-

mation on how different intensities and types of PA interact to im-

prove health. At the same time, the focus on translation of findings to 

meaningful information for interpretation in practice cannot be lost 

when using advanced analytical models. The main implications for 

the analysis of accelerometer data proposed and agreed by the au-

thors of this consensus manuscript are presented below. 

Short-term agenda 

• Clear communication on the rationale for the use and limita-

tions of each analytical approach in studies is important for a 

meaningful interpretation of the findings. Practical recom-

mendations for this are provided above and a decision tree 

was developed (Figure 33) to assist researchers with deci-

sion making. 

• Investigation of the associations of physical behaviours with 

health using different analytical approaches is encouraged. In 

an ideal world, the field of physical behaviour epidemiology 

needs to draw consistent conclusions independently of the 

applied analytical approach. To do so, clear reporting on the 

interpretation of findings derived from each analytical ap-

proach is crucial to understand ‘a priori’ inconsistencies 

across methods and consider their results in a proper manner. 

Triangulation of results from different analytical approaches 

is currently the best solution to quantify the associations of 

physical behaviours with health outcomes. Additionally, using 

the best-suited analytical approaches for a given research 

question is crucial (see Figure 33). 

• Some accelerometer data descriptors include a wide range of 

variables. However, very few studies report adjusting for mul-

tiple testing in their analyses. Methods to adjust for multiple 

testing should be applied when the number of comparisons 

requires it. 

• Machine learning-based approaches for diagnostic/prognos-

tic purposes (associations with health outcomes) are worth 
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implementing in the field, although they have been barely ex-

plored so far. We encourage their use and a transparent re-

porting of the resulting tools by following the TRIPOD initia-

tive checklist. 

• Translating study findings to meaningful information for 

guidelines and practitioners should always be a priority. Ac-

curate reporting of study findings, interpretation, and practi-

cal implications is highly encouraged. 

Long-term agenda 

• How to conveniently adjust for confounders in multivariate 

pattern analysis should be investigated and its application 

should be extended to time-dependent outcomes (e.g., sur-

vival analysis with mortality outcomes). 

• Further efforts are needed in order to translate functional 

data analysis and other advanced analytical approaches out-

puts into meaningful information for public health guidelines 

and practitioners.  

• It will be a matter of interest in the future to evaluate whether 

the information gathered from these metrics and approaches 

can result in complementary information for public health 

guidelines. Such complementary information may result in 

more specific recommendations for certain health outcomes 

or populations, or even in their implementation at population 

level through movement sensors using evidence-based goals 

on PA intensity, duration, timing or type among others. 

Conclusions 

Authors from this group agreed on a number of consensus 

points and research needs which are relevant for physical behaviour 

epidemiology (see Box 1). This consensus article will increase re-

searchers’ understanding of different analytical approaches (from 

generation of accelerometer data descriptors to the examination of 

health associations) that have been used in recent epidemiological 

studies of physical behaviours. Furthermore, this article and the de-

cision tree provided aims to assist researchers with the selection of 

analytical approaches based on their research questions and availa-

ble data. This will ultimately have an impact on the scientific evi-

dence and, therefore, on future public health guidelines on physical 

behaviours. Additionally, short- and long-term agendas are defined 

to promote best practices for data analysis and reporting in ‘physical 

behaviour epidemiology’. 

Abbreviations in this page: 
MVPA: moderate-to-vigorous 
physical activity 
PA: physical activity 
SB: sedentary behaviour 
TRIPOD: Transparent Report-
ing of a multivariable predic-
tion model for Individual Prog-
nosis Or Diagnosis 

Box 1. Consensus points 

from the GRANADA report 

1.The study of the association 

between physical behaviours 

(i.e., PA, SB and sleep) and 

health should move to a more 

thorough investigation of the 

interactions and co-dependen-

cies between different behav-

iours (or physical activity in-

tensities) and health. Several 

analytical approaches are pro-

vided in this consensus docu-

ment, although none of them is 

free from limitations. 

2.We recommend investigating 

more detailed physical activity 

intensities than the typically 

studied (i.e., SB and MVPA). 

Examples include light physi-

cal activity of different intensi-

ties or the more fine-grained 

intensity bands as described in 

this document. 

3.Public health guidelines on 

physical behaviours should 

acknowledge that behaviours 

are co-dependent and this may 

affect the guidelines as tradi-

tionally understood. 

4.Further investigation in func-

tional data analysis and ma-

chine learning is needed con-

cerning the associations of 

physical behaviours with 

health. 

5.There is not a gold-standard 

able to test which analytical 

approach is the best for a given 

research question. Thus, we 

cannot make a strong recom-

mendation on a single analyti-

cal approach. Instead, we pro-

vide some practical recom-

mendations to select analytical 

approaches well-suited for a 

given research question. Trian-

gulation across findings from 

different analytical approaches 

is currently the best solution. 
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Abstract 

Background | Previous studies have not specifically investigated 

the association between SB, PA, and hippocampal 

GMV in paediatric obesity. Children with overweight 

or obesity engage in more SB, perform less PA, and 

present poorer brain health.  

Aims | This study investigated PA and SB in relation to hip-

pocampal GMV in paediatric overweight/obesity. 

Methods | Ninety-three children (10 ± 1 year) were classified as 

overweight, obesity type I, or type II-III. PA was as-

sessed with non-dominant wrist accelerometers. 

GMV was acquired by MRI. 

 Results | Neither PA nor SB associated with GMV in the hippo-

campus in the whole sample (p > 0.05). However, we 

found some evidence of moderation by weight status 

(p < 0.150). MVPA (MVPA) positively associated with 

GMV in the right hippocampus in obesity type I (B = 

5.62, p = 0.017), which remained when considering 

SB, LPA, and sleep using compositional data (γ = 

375.3, p = 0.04). Compositional models also depicted 

a negative association of SB relative to the remaining 

behaviours with GMV in the right hippocampus in 

overweight (γ = -1838.4, p = 0.038). Reallocating 20 

min/day of SB to MVPA was associated with 100 mm3 

GMV in the right hippocampus in obesity type I. Mul-

tivariate pattern analysis showed a negative-to-posi-

tive association pattern between PA of increasing in-

tensity and GMV in the right hippocampus in obesity 

type II-III. 

Conclusion | Our findings support that reducing SB and increasing 

MVPA are associated with greater GMV in the right 

hippocampus in paediatric overweight/obesity. Fur-

ther studies should corroborate our findings.

Key Points 

Question 
Are PA and SB associated with 
GMV in the hippocampus in 
children with overweight or 
obesity? 

Findings 
Our findings indicate that PA 
and SB were not associated 
with GMV in the hippocampus 
in children with overweight or 
obesity. However, some evi-
dence of moderation by 
weight status in the associa-
tions 

Meaning 
Reducing SB and engaging in 
more MVPA by 20 min/day 
was associated with present-
ing 100 mm3 of GMV in the 
right hippocampus in children 
with obesity type I. 
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Introduction  

Improving brain health during childhood is important to en-

hance brain development, achieve academic goals, and improve cog-

nition [51]. Within the brain, the hippocampus is crucial for short- 

and long-term memory [56,57], being a determinant of academic 

success and cognition in children [54,365]. Furthermore, the hippo-

campus presents a high degree of plasticity [366,367] (i.e., its capac-

ity to change and reorganize in response to internal and/or external 

influences) [368]. Among the processes related to this plasticity, neu-

rogenesis and angiogenesis can stimulate changes in the GMV. GMV 

in the hippocampus can be amplified by a variety of lifestyle factors 

[58]; among them, aerobic exercise has been widely investigated 

[55,368,369]. Aerobic exercise consists in structured and organized 

PA sessions aimed to improve aerobic fitness. Aerobic fitness is the 

integrated ability of the organism systems to perform PA, and it is a 

powerful marker of health in children [23]. Otherwise, PA stands for 

any movement produced by skeletal muscles which increases the 

BMR [8]. 

Aerobic fitness is associated with GMV in the hippocampus of 

children [54,55,370], which makes PA a potential resource to target 

hippocampal GMV. However, associations of PA with GMV in the hip-

pocampus are inconclusive [370,371]. Herting et al. used a whole-

brain approach to test associations between self-reported PA and 

GMV in 34 male adolescents [371]. Higher self-reported PA was as-

sociated with greater GMV in the right pericalcarine, right cuneus, 

and left precuneus, but it was not associated with GMV in the hippo-

campus [371]. However, self-report measures of PA are limited be-

cause of their low accuracy and social desirability bias, especially in 

youth [32]. To overcome these limitations, Ruotsalainen et al. used 

accelerometers to assess PA but found no association with GMV in 

the hippocampus in 60 adolescents [370]. They reduced the accel-

erometer data into MVPA [370], while other PA intensities remain 

unstudied. Likewise, SB time, defined as awake time spent sitting or 

reclining with low energy requirement [19], has not been studied in 

relation to GMV in the hippocampus of children to the best of our 

knowledge. 

Accelerometer-determined SB and PA data have certain fea-

tures that should be considered. PA is usually monitored for seven 

days, for which the information is averaged to obtain daily estimates 

of SB, LPA, and MVPA together with sleep time [233]. This results in 

a set of interdependent (i.e., multicollinear) variables as they are con-

strained to 24 h (i.e., sleep + SB + LPA + MVPA = 24 h). In other words, 

increasing time in any of these behaviours would reduce the time in 

at least one of the others, a characteristic usually referred to as 
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‘closure’ [326,327]. Multicollinearity and closure have not been ap-

propriately handled in previous studies on the association between 

SB, PA, and GMV in the hippocampus of children [370,371]. Thus, 

studies using appropriate analytical approaches are needed to study 

the association between PA and SB with GMV in the hippocampus in 

children. The rate of hippocampal neurogenesis sharply declines 

during childhood and continues to decline during adulthood [372]. 

Therefore, it is crucial to find strategies to stimulate GMV in the hip-

pocampus at young ages to ensure future healthy brains. Promoting 

PA is a promising strategy which needs further study.  

Previous studies have not specifically investigated the associa-

tion between SB, PA, and hippocampal GMV in pediatric obesity. Chil-

dren with overweight or obesity engage in more SB [373], perform 

less PA [373], and present poorer brain health [374]. Thus, the study 

of the associations between PA and hippocampal GMV in children 

with overweight or obesity could provide meaningful information for 

public health messaging, as well as to appropriately design interven-

tions targeting both physical and brain health in pediatric obesity. 

Therefore, this study aims to investigate associations of objectively 

measured SB and PA with GMV in the hippocampus using analytical 

approaches able to deal with the closed structure and strong multi-

collinearity of data obtained from accelerometry in children with 

overweight or obesity. Based on previous research on aerobic exer-

cise [55,368,369], we hypothesized that lower SB and higher PA 

would associate with greater hippocampal GMV in children with 

overweight or obesity. 

Material and methods 

Participants and study design 

We used baseline data from the ActiveBrains project (Identi-

fier: NCT02295072) [63] collected from November 2014 to February 

2016 in Granada (Spain). Initially, 110 children enrolled in the Ac-

tiveBrains project. Those with valid accelerometer and brain data at 

baseline were included in this cross-sectional analysis (n = 93, 10 ± 

1 years of age, 37 girls). More information about the study can be 

found elsewhere [63]. Briefly, all participants met the inclusion cri-

teria: 1) overweight or obesity based on the WOF cut-off points 

[64,65]; 2) 8–11 years old; 3) no physical disabilities or neurological 

disorders that affect physical performance; and 4) in the case of fe-

males, were not menstruating at the time of the baseline assessment.  

Parents or legal guardians were informed of the purpose of the 

study and provided written informed consent. The ActiveBrains pro-

ject was approved by the Ethics Committee on Human Research of 

the University of Granada. 
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Accelerometer data collection and processing 

Accelerometer data collection and processing criteria are de-

scribed elsewhere [266,302]. In brief, participants were required to 

wear accelerometers ActiGraph GT3X+ (ActiGraph, Pensacola, FL, 

USA) on their non-dominant wrist for 7 consecutive days, and to 

complete a sleep log with information on time to bed and time out of 

bed every day. Parents were suggested to supervise their children in 

the fulfillment of the sleep logs. Accelerometers were initialized to 

record accelerations at 100 Hz with a dynamic range of ±6 G. Raw 

accelerations were downloaded via the ActiLife v.6.13.3 software 

(ActiGraph, Pensacola, FL, USA) and processed in the R package GGIR 

(v.1.5.12) [67,200]. Non-wear time and abnormal high accelerations 

related to malfunctioning of the accelerometers were imputed by av-

erage acceleration during the same time interval from the rest of the 

days [67]. Sleep time was identified using an automated algorithm 

guided by the time reported by the participants [40,202]. Finally, SB 

(<35 mg) and intensity-specific PA (LPA: 35–200 mg; MVPA: >200 

mg) were calculated using previously-proposed acceleration thresh-

olds for the non-dominant wrist in children [61,62]. Additionally, the 

intensity spectrum was defined using time spent in 33 acceleration 

bands of increasing intensity by 25 mg (i.e., time spent in 0–25 mg, 

25–50 mg, 50–75 mg, and so on). Only awake time was used to cal-

culate the intensity spectrum variables since sleep and SB can occur 

at similar acceleration bands, which would confound the interpreta-

tion of findings. The average daily values of time spent in each cate-

gory were calculated as: (weekdays x 5 + weekends x 2) / 7. The par-

ticipants were excluded if they recorded less than 4 valid days (≥16 

h/day), including at least 1 weekend day [233]. 

  
All 

(n = 93, 37 girls) 
Overweight 

(n = 23, 9 girls) 
Obesity I 

(n = 41, 15 girls) 
Obesity II-III 

(n = 29, 13 girls) 

Age (years) 10.01 (1.12) 10.13 (1.08) 10.29 (1.04) 9.51 (1.14) 

Peak height velocity (years) -2.31 (0.97) -2.36 (1.04) -2.1 (0.93) -2.58 (0.91) 

Weight (kg) 55.67 (10.69) 46.32 (7.30) 56.92 (9.63) 61.74 (9.31) 

Height (cm) 143.95 (8.10) 142.16 (8.80) 146.59 (7.78) 141.84 (7.08) 

BMI (kg/m2) 26.74 (3.63) 22.64 (1.41) 26.26 (2.06) 30.68 (2.36) 

Total brain volume (mm3) 1202.1 (106.67) 1210.0 (99.41) 1221.0 (94.93) 1169.5 (122.50) 

Parental university level, %    

Neither parent 68 57 59 90 

One parent 16 17 22 7 

Both parents 16 26 19 3 

Grey matter volume     

Left hippocampus (mm3) 3468.73 (371.48) 
3387.17 
(348.96) 

3572.49 (346.4) 3386.71 (397.67) 

Right hippocampus (mm3) 3597.99 (382.49) 
3568.46 
(420.35) 

3709.9 (354.77) 3463.19 (352.41) 

Physical activity      

SB (min/day) 561.39 (60.85) 534.25 (71.12) 559.35 (50.59) 585.78 (57.52) 

LPA (min/day) 275.36 (39.75) 277.85 (40.42) 273.16 (43.31) 276.49 (34.83) 

MVPA (min/day) 54.61 (20.91) 61.76 (26.79) 53.84 (19.66) 50.05 (16) 

Data are presented as mean (SD) or percentages.  

Table 26 
Descriptive characteristics of 
participants. 

Abbreviations in this page: 
BMI: body mass index 
LPA: light physical activity 
MVPA: moderate-to-vigorous 
physical activity 
PA: physical activity 
SB: sedentary behavior 
SD: standard deviation 



Study VIII 

Page 250 of 385 

Magnetic resonance imaging data acquisition and processing 

All images were collected on a 3.0 Tesla Siemens Magnetom 

Tim Trio scanner (Siemens Medical Solutions, Erlangen, Germany) 

with a 32-channel head coil. High-resolution, T1-weighted images 

were acquired using a 3D MPRAGE (magnetization-prepared rapid 

gradient-echo) protocol. The acquisition parameters were the fol-

lowing: repetition time = 2300 ms; echo time = 3.1 ms; inversion time 

= 900 ms; flip angle = 9°; field of view = 256 × 256; acquisition matrix 

= 320 × 320, 208 slices; resolution = 0.8 × 0.8 × 0.8 mm; and scan 

duration = 6 min and 34 s.  

Hippocampal volumetric analyses were conducted using 

FMRIB’s Software Library (FSL) version 5.0.7. (FMRIB analysis 

group, Oxford, UK). Specifically, we used FMRIB’s Integrated Regis-

tration and Segmentation Tool (FIRST) in FSL. FIRST is a semi-auto-

mated model-based subcortical segmentation tool which uses the 

Bayesian framework from shape and appearance models obtained 

from manually segmented images from the Centre for Morphometric 

Analysis, Massachusetts General Hospital (Boston, MA, USA) [375]. 

Briefly, FIRST runs a two-stage affine registration to a standard space 

template (i.e., Montreal Neurological Institute -MNI- space) using 12 

degrees of freedom and uses a subcortical mask to exclude voxels 

outside the subcortical regions. Second, subcortical regions, includ-

ing the hippocampus, are segmented for both hemispheres sepa-

rately. Manual volumetric region labels are parameterized as surface 

meshes and modelled as a point distribution model. In addition, the 

hippocampus segmentation from FIRST was then split based on the 

centre of gravity of the region into anterior and posterior sub-regions 

for each hemisphere separately. This resulted in separate anterior 

and posterior hippocampal segmentation for each participant, for 

each hemisphere [376,377]. The final segmentations were visually 

inspected for quality. The volume of each region was obtained from 

FIRST in mm3.  

Confounders 

Participants’ body mass, height, peak height velocity, and pa-

rental education level were obtained as part of the protocol of the 

ActiveBrains project [63]. Weight and height were measured twice 

consecutively with an electronic scale (SECA 861, Hamburg, Ger-

many) and a stadiometer (SECA 225, Hamburg, Germany), respec-

tively, and averaged values were used in analyses. BMI was calcu-

lated as weight (kg) divided by squared height (m2). Children were 

classified as having overweight, obesity type I, and obesity type II–III 

using the sex- and age-specific BMI cut-offs proposed by the WOF 

[64,65]. Peak height velocity was derived from standing or seated 

height as a continuous measure of maturational status using the 

Moore et al. equations: for boys, –8.13 + (0.007 × (age × seated 
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height)); for girls, –7.71 + (0.004 × (age × height)) [92]. Parents re-

ported their highest completed level of education. Parental education 

level was categorized as both of them, one of them, or neither of them 

reaching university-level education. Total brain volume was derived 

from FreeSurfer software version 5.3.0 (Laboratory for Computa-

tional Neuroimaging, Athinoula A. Martinos Center for Biomedical 

Imaging, Harvard Medical School, Boston MA, USA) as the sum of to-

tal white matter volume and total GMV. 

Statistics 

Participants’ descriptive characteristics were summarized as 

mean and SD or percentages. Bivariate correlations among PA and 

SB indicators and between these variables and GMV in the right and 

left hippocampi were performed. Then, associations of PA and SB 

(explanatory/independent variables) with GMV in the hippocampus 

(outcome/dependent variable) were analysed using different analyt-

ical approaches (i.e., multiple standard linear regression using abso-

lute and compositional data and multivariate pattern analysis with 

absolute data). After testing the potential confounding effect on the 

associations, the same set of confounders was accounted for in all 

analyses (i.e., sex, peak height velocity, parental education level, and 

total brain volume). Interactions between weight status (i.e., over-

weight, obesity type I, or obesity type II–III) and PA were tested be-

cause of the moderator effect shown in previous studies [55,378]. Us-

ing multiple linear regression with absolute data, a moderation effect 

was found in the association of LPA and MVPA with GMV in the right 

hippocampus (p < 0.15). Thus, the analysis was stratified by obesity 

category. The analytical approaches were implemented as follows. 

Multiple linear regression models using absolute PA and SB 

data were performed to compare associations with previously-pub-

lished findings. Separate models were performed for each PA inten-

sity and SB. Findings from these models should be interpreted as in-

crementing time spent in a behaviour in isolation (i.e., without con-

sidering the remaining behaviours). 

Multiple linear regression with compositional data [326,327] 

was used to study the relative association of PA and SB with GMV in 

the hippocampus. Compositional data analysis accounts for the rela-

tive nature of physical behaviour by quantifying the effect of incre-

menting time in each behaviour by reducing the time spent in the rest 

(i.e., closure). Since time exchange can also occur with sleep time, de-

tected sleep period time (i.e., time from going to bed to waking up) 

was included in compositional analyses. Isometric log-ratios were 

firstly calculated and then introduced in multiple linear regression 

models as previously proposed [326] (see ESM 7 for a detailed ex-

planation of the models). Gamma (γ) coefficients with their respec-

tive 95% interval inform of the strength and direction of the 
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association. For an accurate estimation of the effect size, isotemporal 

substitution plots were computed to investigate the effect of increas-

ing LPA and MVPA in the detriment of SB. Findings from composi-

tional models should be interpreted as incrementing time spent in a 

behaviour relative to time spent in the remaining behaviours (or 

pair-wise time exchange between behaviours in the reallocation 

plots).  

 
Multivariate pattern analysis with absolute PA and SB data was 

used to further understand the associations depicted by previous 

models. Partial least squares regression was performed since it can 

handle completely collinear variables through the use of latent mod-

elling [311,353]. Models were cross-validated using Monte Carlo 

resampling [379] with 1000 repetitions by repeatedly and randomly 

keeping 50% of the subjects as an external validation set. For each 

validated partial least square regression model, a single predictive 

component was subsequently calculated through target projection 

[342,353] to express all the predictive variance in the PA intensity 

spectrum related to GMV in the hippocampus in a single intensity 

vector. Selectivity ratios with 95% confidence intervals were ob-

tained as the ratio of this explained predictive variance to the total 

variance for each PA intensity variable [310]; see ESM 7 for an in-

depth description of selectivity ratio interpretation. Briefly, the se-

lectivity ratio has a range of −1 to 1 and the negative or positive sign 

informs the direction of the association with the outcome. Associa-

tions from the partial least square regression should be interpreted 

as each intensity variable’s importance for predicting the outcome, 

while simultaneously taking into account all intensity bands in one 

joint model. Thus, the model provides the total association pattern 

between PA intensity and hippocampal GMV. 

Figure 34 
Regression non-standardized B co-
efficients and 95% CIs (i.e., error 
bars) for the association of SB, LPA, 
and MVPA with GMV in the hippo-
campus adjusted for sex, peak 
height velocity, parental university 
level, and total brain volume. 
* P < 0.05 
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All analyses were performed in R (v. 3.6.2), except for the mul-

tivariate pattern analysis, which was performed in Sirius v.11.0 (Pat-

tern Recognition Systems AS, Norway). 

Results 

Participants’ sociodemographic and anthropometric character-

istics, hippocampal GMV, PA, and SB are reported in Table 26. Chil-

dren spent around 39% of the day in SB, 19% in LPA, and 4% in 

MVPA, with the remaining 38% spent in bed. SB increased and MVPA 

decreased with more adverse weight status, while LPA was relatively 

constant across weight status groups. SB, LPA, and MVPA were cor-

related in this study sample (r ranging from 0.3 to 0.5, p < 0.001; ESM 

8, Table S1).  

 
Bivariate correlations of PA and SB with GMV in the left and 

right hippocampi stratified by weight status are presented in the sup-

plementary material (ESM 8, Table S2). Non-standardized beta co-

efficients with their respective 95% confidence intervals from the 

multiple linear regression models with absolute PA and SB data are 

shown in Figure 34. Overall, neither SB nor PA were associated with 

GMV in the left or right hippocampi in the whole study sample (n = 

93, p > 0.05). Separate analyses in weight status groups depicted that 

MVPA was positively associated with GMV in the right hippocampus 

in children with obesity type I (n = 41, p = 0.017).  

Figure 35 shows γ coefficients from compositional models 

with their respective 95% confidence intervals. The γ coefficients 

represent the direction and strength of association between the iso-

metric log-ratio (this is, the association of each behaviour relative to 

the remaining behaviours) and GMV in the left and right hippocampi. 

Consistent with the standard multiple regression models, SB and PA 

Figure 35 
Compositional models γ coefficients 
and 95% confidence intervals (i.e., 
error bars) for the association of SB, 
LPA, and MVPA with GMV in the 
hippocampus adjusted for sex, peak 
height velocity, parental university 
level, and total brain volume. 
Each bar represents the association of the 
pertinent behavior (e.g., SB) relative to the 
remaining behaviors (e.g., LPA, MVPA, and 
sleep) with GMV in the hippocampus.  
* P < 0.05 
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were not associated with either left or right hippocampi in the whole 

sample (n = 93, p > 0.05). The association of MVPA relative to SB, LPA, 

and sleep with GMV in the right hippocampus was significant in the 

sub-sample of children with obesity type I (n = 41, p = 0.040). Like-

wise, SB relative to LPA, MVPA, and sleep was negatively associated 

with GMV in the right hippocampus in children with overweight (n = 

23, p = 0.038). MVPA was not associated with GMV in the sub-sample 

of children with obesity type II–III using compositional models.  

The hypothetical effect of increasing either LPA or MVPA in the 

detriment of SB on GMV in the right hippocampus is presented in Fig-

ure 36. The subsample of children with obesity type I presented a 

significant positive effect of reallocating time from SB into MVPA on 

GMV in the right hippocampus. Since neither SB nor PA were associ-

ated with GMV in the left hippocampus (Figure 35), isotemporal re-

allocations were not depicted for this region.  

Finally, a multivariate pattern analysis with partial least 

squares regression was performed to investigate the association of 

the absolute PA pattern with GMV in the hippocampus. Similar to 

previous analyses, the PA pattern was not associated with GMV in the 

hippocampus in the whole sample. Regarding the stratified analyses 

for weight status, we found that the absolute PA pattern was associ-

ated with GMV in the right hippocampus in those children with obe-

sity type II–III (Figure 37). Negative selectivity ratios were found 

with low acceleration bands (representative of SB and LPA), while 

positive selectivity ratios were observed in high acceleration bands 

(indicators of MVPA). The most negative association was found in the 

acceleration band of 25–50 mg, which is an indicator of SB (selectiv-

ity ratio = –0.855, which means this band explains ~85% of the 30% 

explained by the latent components, i.e., ~25%), while the most pos-

itive was found in the 350–375 mg band, an indicator of MPA (selec-

tivity ratio = 0.404). No associations were found in other weight 

groups with the left or the right hippocampi using multivariate pat-

tern analysis. 

Discussion 

The main finding of this study was the lack of association be-

tween SB, LPA, and MVPA with hippocampal GMV in children with 

overweight or obesity. This lack of association persisted after per-

forming the compositional data analysis and multivariate pattern 

analysis models, which take into account the relative nature and clo-

sure characteristics of the accelerometer-determined SB and PA 

data. SB, LPA, and MVPA were correlated in this study sample, which 

confirms our decisions on using analytical approaches to handle this 

co-dependency. Further studies using these analytical approaches 

will corroborate our findings. Nonetheless, we found that 
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associations were potentially moderated by weight status, which 

could be hiding any association in certain weight groups; thus, we 

performed separate analyses for weight status categories (i.e., over-

weight, obesity type I, and obesity type II–III). In this regard, we 

found a positive association of MVPA with GMV in the right hippo-

campus in children with obesity type I (using multiple regression 

with standard and compositional data) and in obesity type II–III (us-

ing multivariate pattern analysis). Likewise, we found that longer 

time in SB relative to LPA, MVPA, and sleep was associated with 

lower GMV in the right hippocampus in children with overweight 

(only in compositional data models). Otherwise, neither of the anal-

yses performed depicted significant associations between PA or SB 

with GMV in the left hippocampus. 

 
Relative to the moderation effect by weight status, it should be 

considered that our sample sizes in each subgroup are limited and 

these findings should be cautiously interpreted. We used the WOF 

categories [64,65] because: 1) they have been extensively related to 

both physical [380] and brain health [378]; and 2) these cut-off 

points were developed as sex- and age-specific in pediatric ages to 

connect at the age of 18 years with the adults BMI worldwide ac-

cepted cut-off points (i.e., 25 for overweight, 30 for obesity type I, and 

≥35 for obesity type II–III). A previous study described a moderation 

effect of weight status on the acute effects of walking on memory in 

children [381]. Specifically, they found a single bout of walking to be 

effective in children with overweight or obesity to substantially im-

prove word recognition memory performance, while it was not effec-

tive in children with normal weight [381]. The authors proposed cir-

culating inflammatory markers to be tested as responsible for this 

moderation effect. In brief, obesity is characterized by an unhealthy 

Figure 36 
Effect of reallocating time from SB 
to LPA (Panels A, B, and C) and to 
MVPA (Panels D, E, and F) on the 
association with GMV in the right 
hippocampus using compositional 
models. 
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inflammatory response and PA has demonstrated higher anti-inflam-

matory and neuroprotective effects in obesity-induced brain inflam-

mation [382–386]. Based on this, it would be expected that a larger 

association of PA with GMV in the hippocampus as the weight status 

is worse, but we did not find this linear trend. In this regard, further 

studies with larger sample sizes should deeply study this moderation 

effect with larger sample sizes. 

Relative to our separate analyses for weight status groups, PA 

appears to be positively associated with GMV in the right hippocam-

pus. Equally significant, we found that using appropriate analytical 

approaches to account for the data singularities of accelerometer-de-

termined PA (i.e., closure and multicollinearity) is needed to eluci-

date the pattern of associations. In this regard, it appeared to be a 

negative non-adjusted association between MVPA and GMV in the 

left hippocampus in obesity type II–III (ESM 8, Table S2), which dis-

appeared in compositional models and turned positive in multivari-

ate pattern analysis. Since sample sizes were relatively small in our 

analyses, we could be under-powered to detect small-to-medium as-

sociations, so there is a risk of spurious associations in our findings. 

Therefore, further appropriately-powered studies should corrobo-

rate and extend our findings. The associations differed between ana-

lytical approaches. The compositional data analysis found an associ-

ation with obesity type I and the multivariate pattern analysis with 

obesity type II–III. In this regard, compositional analysis is inter-

preted in terms of increasing a behaviour in exchange with others; 

thus, we found that increasing MVPA relative to decreases in SB, LPA, 

and sleep was positively associated with GMV in the right hippocam-

pus in obesity type I. Otherwise, the multivariate pattern analysis is 

interpreted in terms of absolute changes in a certain behaviour fully 

considering multicollinearity among PA intensities. In this sense, we 

found that MVPA is positively associated with GMV in the right hip-

pocampus in obesity type II–III. Our models with compositional data 

required the inclusion of three extra covariates to account for the rel-

ative nature of the data, which could imply that even larger sample 

sizes are needed to investigate associations with compositional mod-

els. The multivariate pattern analysis fully considers multicollinear-

ity among PA variables and it is less affected by sample size, which 

could explain why the MVPA association was found using this ap-

proach in obesity type II–III even with its limited sample size. We do 

not have a large enough sample size to elucidate why associations 

differed across analytical approaches; thus, we suggest considering 

these associations with caution. Additionally, we call for further stud-

ies with larger sample sizes to apply these analytical approaches (i.e., 

compositional data analysis and multivariate pattern analysis) that 
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are more suitable than standard linear regression to accelerometer-

determined PA and SB data. 

Hippocampal plasticity across the lifespan has been previously 

confirmed [366,367]. However, the rate of hippocampal neurogene-

sis sharply declines during childhood and continues to decline during 

adulthood [372]. Thus, it is crucial to find strategies to stimulate hip-

pocampal plasticity at young ages to ensure future healthy brains. 

Aerobic fitness is among the factors associated with hippocampal 

GMV [54,55,370], which makes PA a potential resource to target hip-

pocampal GMV. In this study, we found lower SB and higher MVPA to 

be associated with the GMV in the right hippocampus in children 

with overweight, but no associations were found for the left hippo-

campus. Although both left and right hippocampi are related to epi-

sodic memory in humans, they have differential functions with the 

left being involved in verbal and linguistic memory and the right in 

non-verbal and visuospatial memory [387,388]. Hippocampal struc-

tures do not follow similar maturational trajectories [389]. It is plau-

sible that the left and the right hippocampi show differential plastic-

ity, especially in youths’ developing brains, which could explain why 

we found associations only with the right hippocampus. Therefore, it 

seems that reducing SB and incrementing the time devoted to PA 

may be advised to stimulate higher GMV in the hippocampus in chil-

dren with obesity type I. However, since we cannot conclude that a 

causal relationship exists, further RCTs that are appropriately pow-

ered to test the moderating role of weight status should be carried 

out.  

 
We decided to focus our analyses on the hippocampus given 

that it is a brain region highly sensitive to PA in older populations 

[24,376]. Thus far, evidence in youths is limited with only two previ-

ous studies investigating the relationship of PA with GMV in 

Figure 37 
Association pattern of the PA 
spectrum with GMV in the right 
hippocampus in children with 
obesity type II–III. 
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adolescents [370,371]. None of these studies directly focused on the 

hippocampus, but rather used a whole-brain approach [371] or re-

gional analyses [370] and did not find associations between PA and 

GMV in the hippocampus. These studies presented several limita-

tions such as the use of self-reported tools to estimate PA [371], the 

reduction of PA data into one single variable (i.e., MVPA), hardly rep-

resentative of the whole PA pattern [370,371], and the use of stand-

ard analytical approaches to test associations without considering 

the singularities of PA data (i.e., closure and multicollinearity) 

[370,371]. Furthermore, both studies had relatively small sample 

sizes (i.e., 34 and 60 participants) and were focused on adolescence, 

a period in which hippocampal neurogenesis might not be sensitive 

to external factors [372], such as PA or SB. This study overcomes pre-

vious limitations by using accelerometers to estimate PA, SB, and 

sleep. Considering the singularities of PA data with appropriate ana-

lytical approaches [311,326] applied in a sample of nearly a hundred 

children, our findings support the general public health recommen-

dations on reducing SB and increasing PA to benefit brain health, spe-

cifically GMV in the right hippocampus. The overweight or obesity 

condition of our sample is important since these children usually 

have poorer physical and brain health profiles [374], thus, the study 

of potential interventions to improve their health status is a global 

need. In this regard, and similar to some previous studies [55,378], 

we found a potential moderator effect of weight status on the associ-

ation between PA and GMV in the hippocampus that should be fur-

ther corroborated with larger sample sizes. No less important is the 

fact that MVPA was associated in obesity type I using compositional 

analysis, and in obesity type II using multivariate pattern analysis. 

Although a moderation effect of weight status has been previously 

reported [55,378], it would be expected that the magnitude of the as-

sociation increases as does the weight status [381]. The lack of this 

increasing size of the association could be partly explained because 

of our limited sample size (n = 23 and 29, respectively), which should 

be corroborated with further well-powered studies. Although previ-

ous studies failed at finding an association between PA and GMV in 

children [370,371], the positive association of aerobic fitness and 

GMV in several brain regions (including the hippocampus) has been 

widely reported in children [54,55,370]. Aerobic fitness could be an 

indicator of PA level since it is linearly associated with MVPA (stand-

ardized β around 0.3–0.4, p < 0.01 in this specific sample) [390]; 

however, the direct study of the behaviour (i.e., PA and SB) is im-

portant for public health for various reasons: first, aerobic fitness is 

partially explained by genetic factors, which are not modifiable by 

PA; second, although PA is effective at improving aerobic fitness, 

there could be other physiological changes related to health 
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behaviour (PA) but not to aerobic fitness; third, the interpretation 

and applicability of aerobic fitness to public health is not straightfor-

ward (i.e., the general population is not familiar with the interpreta-

tion of aerobic fitness values, nor with the strategies that should be 

followed to increase aerobic fitness); and fourth, in contrast, 

knowledge on how much time should be spent in certain activity 

types/intensities to improve brain health is more easily understand-

able by the general population. As an example, in our sub-sample of 

children with obesity type I, reallocating 20 min/day from SB to 

MVPA was associated with 100 mm3 (3%) increase in grey matter in 

the right hippocampus.  

The main limitations of this study were: the cross-sectional de-

sign of the study, which does not allow causal interpretation of find-

ings; although our study involves a larger sample size than previous 

studies, even more powerful studies are needed to confirm or con-

trast our findings; and sample sizes in the weight groups were asym-

metric. We could have used the median split or terciles to match sam-

ple sizes but decided to use evidence-based and standard cut-offs. On 

the other hand, strengths of this study include: the use of accelerom-

eters to objectively assess PA, SB, and sleep; the inclusion of sleep in 

compositional models to test its relative effect on the associations of 

PA and SB with GMV in the hippocampus; the use of MRI for the quan-

tification of GMV in the hippocampus; the use of modern analytical 

approaches to analyse accelerometer data, which allows appropriate 

conclusions by handling the PA data singularities (i.e., closure and 

multicollinearity); and the focus on children with overweight or obe-

sity, which is a harmful condition for both physical and brain health 

in children. 

Conclusions 

Our findings indicate that PA and SB were not associated with 

GMV in the hippocampus in children with overweight or obesity. 

However, we found some evidence of moderation by weight status in 

the associations, so that reducing SB and engaging in more MVPA 

were associated with greater GMV in the right hippocampus. Specifi-

cally, reallocating 20 min/day from SB to MVPA would be associated 

with 100 mm3 more GMV in the right hippocampus in children with 

obesity type I. We performed an in-depth data analysis by using com-

positional data and multivariate pattern analysis on accelerometer-

determined PA data. These findings should be further confirmed by 

future studies.
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Abstract 

Background | Children with overweight/obesity have poorer sleep 

and smaller GMV than normal-weight children. No 

studies have investigated the associations of objec-

tively-assessed sleep and GMV in children with over-

weight or obesity, or their implications for academic 

and cognitive outcomes.  

Aims | To explore the associations of sleep behaviours with 

GMV in the whole brain and particularly the hippo-

campus as a region of interest independent of SB and 

PA; and to assess whether GMV in the associated re-

gions was related to academic achievement, execu-

tive function and IQ.  

Methods | Ninety-six children with overweight or obesity (10 ± 

1 year) were included. Sleep behaviours were as-

sessed with accelerometers. GMV was acquired by 

magnetic resonance imaging. Academic achievement, 

executive function and IQ were assessed with sepa-

rate tests. Analyses were adjusted for sex, peak height 

velocity and parent education as well as SB and PA. 

Results | Earlier wake time, less time in bed, WASO and WASO 

occurrences were associated with higher GMV in 

eight cortical brain regions (k:56-448, P's < .001). 

Longer total sleep time, higher sleep efficiency and 

less WASO time were associated with higher GMV in 

the right hippocampus (β:0.187-0.220, P's < .05). The 

inferior temporal, fusiform, supramarginal, and post-

central gyri, the superior parietal cortex, precuneus 

and hippocampus associated with academic achieve-

ment and/or IQ. Associations remained after adjust-

ments for SB and PA. 

Conclusion | Sleep behaviours are associated with GMV in multiple 

cortical regions including the right hippocampus in 

children with overweight or obesity, which in turn, 

were associated with academic achievement and IQ.

Key Points 

Question 
Is sleep associated with GMV 
in children with overweight or 
obesity? 

Findings 
Sleep behaviours are associ-
ated with GMV in cortical and 
subcortical regions, including 
the hippocampus in children 
with overweight or obesity. 

Meaning 
These associations appeared 
to imply positive effects on 
children’s academic achieve-
ment and IQ, but not on execu-
tive function. 

Abbreviations in this page: 
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Introduction 

Childhood academic achievement and cognition are affected by 

insufficient sleep duration (i.e., <8h), a public health concern re-

ported worldwide [391,392]. GMV is a measure of the volume of tis-

sue in the brain region being examined. It represents all tissue prop-

erties contained in grey matter including vasculature, glial cells, and 

neuronal cell bodies. GMV contributes to the process of information 

in the brain. Further, greater GMV in the developing brain is posi-

tively associated with brain health outcomes such as academic 

achievement or cognition [54], being a crucial characteristic for chil-

dren to success in school and in general life. Likewise, several studies 

have reported that sleep behaviours, i.e., those behaviours related to 

sleep that can be measured in free-living conditions, such as total 

sleep time or total bed time, are associated with academic achieve-

ment [393–396], executive function [397,398] and IQ [399]. The 

study of the sleep behaviours and their associations with GMV could 

provide insights into the mechanisms underlying these associations. 

To date, previous research suggests a positive link between sleep be-

haviours and GMV in several cortical regions in 14-year-old adoles-

cents [400] and with the hippocampal GMV in 5-18-year-olds[401]. 

Special attention should be paid to the hippocampus, which is im-

portant for memory consolidation during sleeping [402,403].  

Most of the previous findings on the relationship between sleep 

behaviours and academic achievement, executive function and IQ 

have focused on sleep onset and wake-up timing and total sleep time. 

In this regard, later sleep onset and wake-up times are associated 

with lower GMV in cortical regions [400] and poorer school grade 

average [395,400], as well as mathematics, reading and social sci-

ences [396,404]. Total sleep time showed a small effect on school 

grade average [394]. Previous studies hypothesized impaired atten-

tion during school hours to explain the link between reduced sleep 

and poorer academic achievement [393,400]. Likewise, previous 

studies have found modest associations between later sleep onset, 

shorter total sleep time, and lower sleep quality with poorer execu-

tive function in adolescents [397] and young adults [398], i.e., cogni-

tive flexibility, inhibition and working memory [405,406]. Lastly, 

sleeping more than 8 hours seems to be associated with higher IQ in 

male adolescents [399]. 

It is noteworthy that previous research derives timing and du-

ration variables from self-reported sleep onset and wake-up times 

(i.e., asking participants what time they go to bed and wake on aver-

age) [400,401]. Self-report methods have been found to be influ-

enced by subjective inaccuracies and social desirability [31,407,408]. 

As an example, total sleep time has been usually derived from the 
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difference between sleep onset and wake-up times reported, which 

would indicate total bedtime rather than total sleep time. Thus, pre-

vious findings based on self-reported information should be comple-

mented using objective assessments. Several algorithms have 

demonstrated that wrist-worn accelerometers can provide valid as-

sessment of sleep behaviours [38,40,202]. Another important limita-

tion of previous studies is the use of school grades as indicator of ac-

ademic achievement [400], which are affected by teachers’ subjectiv-

ity and inter-school variability [409]. The use of accelerometer-de-

rived sleep behaviours and standardized tests for the measurement 

of academic achievement are needed to investigate sleep associa-

tions with academic achievement.  

Children with overweight or obesity have been characterized 

as having poorer sleep behaviours [410] and smaller GMV than chil-

dren with a normal weight [374]. Furthermore, these children are of-

ten involved longer in SB and insufficient PA [411], which may also 

be associated with poorer sleep behaviours [51,412]. SB and PA be-

haviours coexist with sleep in the 24-hour cycle. All these behaviours 

can potentially affect each other, since increasing the time spent in 

one would reduce the time devoted to another or others of the re-

maining behaviours. Therefore, when studying associations between 

sleep behaviours and GMV, it is crucial to study the potential influ-

ence of SB and PA behaviours on these associations. This scenario 

requires investigation on sleep behaviours and GMV, academic 

achievement, and cognition in children with overweight or obesity, 

as well as how SB and PA may influence these relationships.  

Therefore, this study explored: 1) the associations of sleep be-

haviours with GMV in children with overweight or obesity using a 

whole-brain volumetric approach, as well as the specific associations 

between sleep behaviours and GMV in the hippocampus using a ROI 

approach, independently of SB and PA; and, 2) whether GMV in those 

regions associated with sleep behaviours are also related to aca-

demic achievement, executive function, and IQ. To our knowledge, 

there is not a clear hypothesis guiding which brain regions might un-

derlie the association of sleep with academic achievement, executive 

function, or IQ. However, a main candidate could be the hippocampus 

[401–403]. Thus, we chose to use a whole-brain approach and fur-

ther investigate the specific association with the hippocampus using 

a ROI approach. Based on previous research [393–398,413], we hy-

pothesized that sleep behaviours would be associated with GMV, and 

that GMV in some of these regions would be associated with aca-

demic achievement, executive function and/or IQ. 

Abbreviations in this page: 
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Methods 

Participants and study design 

This study used baseline data from the ActiveBrains project 

(http://profith.ugr.es/activebrains). Of the 110 children who en-

rolled, 96 provided valid accelerometry and brain data at baseline 

(10 ± 1 years, 38 girls) and were included in this cross-sectional 

study. Since the ActiveBrains project is a RCT aimed to find effects of 

exercise on brain, cognition and academic achievement in children 

with overweight or obesity, the sample size was primarily calculated 

to detect medium changes in brain outcomes after the intervention 

[63]. The detailed rationale and inclusion criteria are described else-

where [63]. Briefly, inclusion criteria included: 1) overweight or obe-

sity based on the WOF cut-off points [64,65]; 2) eight to eleven years 

old; 3) no physical disabilities or neurological disorders that affect 

physical performance; and, 4) in the case of females, not to have 

started menstruation at the time of the baseline assessment. Data 

were collected from 2014 to 2016 in Granada (Spain) in three differ-

ent waves evaluated during the months of November, December, Jan-

uary and February (always during school time in the three waves). 

Parents were informed of the purpose of the study and parental writ-

ten informed consent was obtained. The ActiveBrains project was ap-

proved by the Ethics Committee on Human Research of the Univer-

sity of Granada. 

Sleep behaviours, sedentary behaviour and physical activity 

Participants wore accelerometers ActiGraph GT3X+ (Acti-

Graph, Pensacola, FL, USA) on their non-dominant wrist for 7 consec-

utive days and reported information on time to go to bed and time to 

get off the bed every day. Raw accelerations were downloaded via 

the ActiLife v.6.13.3 software (ActiGraph, Pensacola, FL, USA) and 

processed in the R package GGIR [200] (v. 1.5.12, 

https://www.cran.r-project.org/). Detailed information on accel-

erometer data processing can be found elsewhere [266]. Identifica-

tion of sleep onset and wake-up times were determined by an autom-

atized algorithm guided by participants’ reported times[40]. First, 

the algorithm examined potential sleep occurrences (i.e., at least 5 

minutes with low variability in arm angle, i.e., <5 degrees) through-

out the 24 hours. Next, the first and last epochs classified as sleep 

after and before the reported times were considered the definitive 

sleep onset and wake-up times. Finally, the algorithm developed by 

Sadeh et al. [38] was applied within the bedtime defined to classify 

every 1-min epoch as ‘asleep’ or ‘awake’. Sleep behaviours included 

indicators of sleep timing (i.e., wake-up time and sleep onset), total 

time in bed, total sleep time and sleep patterns (i.e., sleep efficiency, 

wakening after sleep onset [WASO] time and number of WASO). 

Abbreviations in this page: 
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Total bedtime is the time difference between wake-up and sleep on-

set times. Total sleep time represents the sum of all minutes classi-

fied as sleep within total bedtime. Sleep efficiency is the percentage 

of time classified as sleep over the total bedtime. Cut points for the 

non-dominant wrist proposed by Hildebrand et al. [61,62] were used 

to classify SB, LPA and MVPA. A total of 104 met the pre-requisite of 

recording 4 valid days (i.e., ≥ 16 hours/day); including at least 3 

weekdays and 1 weekend day were required. Specifically, to consider 

a day valid, participants should accumulate 2/3 of the waking hours 

and 2/3 of night hours as wear time and altogether accumulate at 

least 16 hours of wear time. Sleep-related variables, SB, LPA and 

MVPA daily values were averaged as follows: ((school-day average * 

5) + (weekend day average * 2)) / 7. 

Magnetic resonance imaging  

All images were collected with a 3.0 Tesla Siemens Magnetom 

Tim Trio scanner (Siemens Medical Solutions, Erlangen, Germany) 

with a 32-channel head coil. High-resolution, T1-weighted images 

were acquired using a 3D MPRAGE protocol. The acquisition param-

eters were the following: repetition time = 2,300 ms; echo time = 3.1 

ms; inversion time = 900 ms; flip angle = 9º; field of view = 256 x 256; 

acquisition matrix = 320 x 320, 208 slices; resolution = 0.8 x 0.8 x 0.8 

mm; and scan duration = 6 min and 34 s. 
    All (N=96) Boys (N=58) Girls (N=38) 

Physical characteristics, mean (SD)          

 Age (years) 10.02 ± 1.13 10.16 ± 1.15 9.79 ± 1.09 
 Peak height velocity (years) -2.3 ± 0.96 -2.65 ± 0.79 -1.77 ± 0.96 
 BMI (z-Score) 3.04 ± 0.89 3.17 ± 0.99 2.82 ± 0.65 

Parent education university level, %          
 Neither parent 66 72 58 
 One parent 17 16 18 
 Both parents 17 12 24 

PA, mean (SD)          
 SB (min/day) 561.07 ± 60.09 553.46 ± 60.32 572.7 ± 58.62 
 LPA (min/day) 275.85 ± 39.3 271.39 ± 38.42 282.65 ± 40.17 
 MVPA (min/day) 54.94 ± 20.8 62.01 ± 22.05 43.86 ± 12.36 

Sleep behaviours, mean (SD)          
 Wake time (hh:mm) 08:07 ± 00:34 08:05 ± 00:33 08:10 ± 00:36 
 Sleep onset time (hh:mm) 23:02 ± 00:40 23:01 ± 00:41 23:04 ± 00:38 
 Total time in bed (min/day) 527.24 ± 31.87 526.14 ± 33.55 528.93 ± 29.49 
 Total sleep time (min/day) 457.78 ± 34.91 455.39 ± 32.42 461.42 ± 38.58 
 Sleep efficiency (%) 84.53 ± 4.92 84.01 ± 4.39 85.34 ± 5.6 
 WASO time (min/day) 77.14 ± 23.8 79.92 ± 20.51 72.89 ± 27.85 
 Number of WASO (nr.) 23.4 ± 4.43 24.04 ± 4.08 22.42 ± 4.81 
 Valid days (nr.) 6.95 ± 0.4 6.97 ± 0.49 6.92 ± 0.35 

Academic achievement, mean (SD)          
 Reading (standard score) 108.17 ± 13.13 108.31 ± 11.17 107.95 ± 15.83 
 Mathematics (standard score) 101.8 ± 10.79 102.45 ± 11.42 100.82 ± 9.81 
 Writing (standard score) 113.6 ± 12.86 112.66 ± 12.02 115.05 ± 14.1 
 Academic skills (standard score) 118.66 ± 16.18 117.76 ± 14.77 120.03 ± 18.26 
 Academic fluency (standard score) 103.56 ± 11.92 104.03 ± 10.7 102.84 ± 13.69 
 Academic applications (standard score) 99.31 ± 9.12 99.81 ± 9.18 98.55 ± 9.1 
 Total achievement (standard score) 109.14 ± 11.98 109.03 ± 10.85 109.29 ± 13.67 
Executive function, mean (SD)          
 Cognitive flexibility (z-Score) -0.03 ± 0.81 0.08 ± 0.82 -0.2 ± 0.77 
 Inhibition (s) 41.9 ± 17.31 38.97 ± 15.31 46.38 ± 19.34 
 Working memory (nr. correct answers) 65.54 ± 16.44 67 ± 16.46 63.31 ± 16.39 

IQ, mean (SD) 98.45 ± 12.34 97.02 ± 12.14 100.63 ± 12.48 

Data are presented as mean ± SD. Statistically significant values are shown in bold. 

Table 27 
Descriptive characteristics of 
participants 
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Whole-brain volumetric analyses were conducted using the 

Statistical Parametric Mapping software (SPM12; Wellcome Depart-

ment of Cognitive Neurology, London, UK) implemented in Matlab 

(The MathWorks, Inc, Natick, MA). Imaging pre-processing included 

quality control, motion correction, spatial normalization to an MNI 

template, and spatial smoothing. Detailed information about pre-

processing steps is described elsewhere[54]. Hippocampal volumet-

ric analyses were conducted using FSL version 5.0.7. Specifically, we 

used FIRST in FSL. FIRST is a semi-automated model-based subcor-

tical segmentation tool which uses the Bayesian framework from 

shape and appearance models obtained from manually segmented 

images from the Center for Morphometric Analysis, Massachusetts 

General Hospital, Boston, MA, USA [375]. Briefly, FIRST runs a two-

stage affine registration to a standard space template (i.e., MNI 

space) using 12 degrees of freedom and uses a subcortical mask to 

exclude voxels outside subcortical regions. Second, the subcortical 

regions, including the hippocampus, are segmented for both hemi-

spheres separately. The manual volumetric region labels are param-

eterized as surface meshes and modelled as a point distribution 

model. In addition, the hippocampus segmentation from FIRST was 

then split based on the centre of gravity of the region into anterior 

and posterior sub-regions for each hemisphere separately. This re-

sulted in separate anterior and posterior hippocampal segmenta-

tions for each hemisphere in each participant [376,377]. The final 

segmentations were visually inspected for quality. The volume of 

each region was obtained from FIRST in mm3. 

Academic achievement, executive function and intelligence quotient 

Academic achievement was assessed with the Spanish version 

of the Woodcock-Johnson III battery, which is a valid and reliable (in-

ternal consistency reliability coefficient > 0.9) measure of academic 

achievement in children [71]. Children completed a total of 12 tests 

from this battery including reading, language, mathematics and sci-

ences during one session of 100-120 min. Tests were independently 

checked by two trained evaluators and then scores were processed 

in the Compuscore and profile software (v. 3.1., Riverside Publishing 

Company, Itasca, IL, USA). We used standardized scores of broad 

reading, mathematics and writing scores, as well as composite scores 

representing academic skills (answers accuracy), academic fluency 

(processing speed), academic applications (problem solving) and to-

tal academic achievement score.  

Executive function domains included cognitive flexibility, inhi-

bition and working memory as described elsewhere [266,337]. Cog-

nitive flexibility was assessed with the second and fourth conditions 

of the DFT and the third and fourth conditions of the TMT [72,414]. 

Both the DFT and the TMT are valid and reliable for measuring 

Abbreviations in this page: 
DFT: design fluency test 
FSL: FMRIB’s Software Library 
FIRST: FMRIB’s Integrated Regis-
tration and Segmentation Tool 
MNI: Montreal Neurological Insti-
tute 
TMT: trail making test 



Study IX 

Page 272 of 385 

cognitive flexibility in children [72,73]. The score from these tests 

was standardized by sex as Z-score and then averaged to obtain a 

unique indicator of cognitive flexibility. The Stroop test [415] was 

used as a valid and reliable indicator of inhibition [72–75]. Perfor-

mance time of condition 3 (i.e., inhibiting reading by naming color) 

minus condition 1 (i.e., color naming) was used as previously re-

ported [266,337]. Finally, working memory was measured from a 

modified version of the DNMS computerized task which has been val-

idated to assess working memory [76]. In brief, a total of 16 practice 

trials plus 140 experimental trials were presented in two separated 

conditions (i.e., low- and high-memory load). Response accuracy for 

the high-load condition was used [309]. 

The IQ quotient was assessed with the Spanish version of the 

K-BIT [77]. The K-BIT shows a coefficient α for the validity of 0.86 to 

0.93 in its Spanish version[77]. Crystallized and fluid IQ components 

were assessed with vocabulary and matrices sub-tests from K-BIT, 

respectively. Both sub-test scores were summed to obtain the IQ 

score. 

Confounders 

Participants’ weight, height, peak height velocity and parents’ 

education level were obtained as part of the protocol of the Active-

Brains project [63]. Weight and height were measured twice consec-

utively with an electronic scale (SECA 861, Hamburg, Germany) and 

a stadiometer (SECA 225, Hamburg, Germany), respectively, and av-

erage values were used in analyses. BMI was calculated as kg/m2. 

Peak height velocity was derived from standing and sitting height as 

a continuous measure of maturational status [92]. Parents reported 

whether both of them, one of them or none of them reached univer-

sity level education. Total brain volume was derived from FreeSurfer 

software version 5.3.0 (http://surfer.nmr.mgh.harvard.edu) as the 

sum of total white matter volume and total GMV. 

Statistics 

Participants’ descriptive characteristics were summarized as 

mean and SD or percentages. All variables were checked for normal-

ity. Included and excluded participants did not significantly differ in 

sociodemographic and anthropometric variables (all P>0.05). Based 

on previous studies[400,401], we tested sex, peak height velocity, 

parent university education level and total brain volume as con-

founders in sensitivity analyses. As all models remained similar with 

and without adjustment for total brain volume, we excluded it from 

the covariates. Thus, the association between sleep behaviours (i.e., 

sleep onset, wake-up time, total bedtime, total sleep time, sleep effi-

ciency, WASO time and WASO number) and GMV was analysed using 

whole-brain voxel-wise multiple regression models, adjusted for sex, 

peak height velocity and parent university education level (i.e., basic 
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confounders). Sensitivity analyses were performed adding BMI as 

confounder to the previous model and all significant associations 

presented in this study remained unchanged (data not shown). Ad-

ditionally, we extracted the eigenvalues from the peak coordinates of 

each significant cluster. The associations of the extracted mean GMV 

from significant clusters and academic achievement, executive func-

tion and IQ were studied with linear regression models adjusted for 

basic confounders. The Benjamini-Hochberg procedure was applied 

to account for the random effect in multiple comparisons for every 

dependent domain (i.e., academic achievement, executive function 

and IQ) with q=0.1. Then, we performed additional independent 

models adding either SB, LPA or MVPA as confounders (they were 

not all included in the same model because of the high risk of multi-

collinearity among these variables). 

The statistical threshold in the imaging analyses was calculated 

with AlphaSim, as implemented in Resting-State fMRI Data Analysis 

Toolkit toolbox (RESTplus) [416]. Parameters were defined as fol-

lows: cluster connection radius (rmm)=5mm and the actual smooth-

ness of the data after model estimation, incorporating a grey mask 

volume of 128190 voxels. The voxel-level alpha significance (thresh-

old, p < 0.001 uncorrected) along with the appropriate cluster size 

for controlling for multiple comparisons in each analysis were indi-

cated in the results. The resulting cluster extents were further ad-

justed to account for the non-isotropic smoothness of structural im-

ages[417]. 

Multiple linear regression models were used to study the asso-

ciations between sleep behaviours and ROI hippocampal GMV ad-

justed for basic confounders. Additional models adjusting for SB, LPA 

or MVPA were performed. All statistical analyses were performed in 

R (v. 3.4.4, https://cran.r-project.org/), except those involving imag-

ing data which were performed using the GLM approach imple-

mented in SPM12. 

Results 

Sociodemographic and anthropometric characteristics, sleep 

behaviours, academic achievement, executive function and IQ scores 

of participants are reported in Table 27. 

Whole-brain associations of sleep behaviours with grey matter volume  

Table 28 presents the sleep behaviours inversely associated 

(no positive associations were found) with GMV in the whole-brain 

volumetric analyses adjusted for sex, peak height velocity, parent ed-

ucation level, and additionally for SB and PA. A later wake-up time 

was associated with lower GMV in 2 bilateral clusters in the inferior 

temporal gyrus (Left: peak t=3.58, k=186; Right: peak t=3.76, k=243), 

and 3 more clusters in the fusiform gyrus (peak t=3.76, k=138), the 
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supramarginal gyrus (peak t=4.00, k=412) and the superior parietal 

cortex (peak t=4.12, k=56). A longer total bedtime was associated 

with lower GMV in the postcentral gyrus (peak t=4.22, k=257), but 

no association with total sleep time was found. A longer WASO time 

was associated with lower GMV in the superior temporal pole (peak 

t=3.61, k=98), the precuneus (peak t=3.67, k=400) and the superior 

parietal cortex (peak t=3.61, k=150). The number of WASO was in-

versely associated with GMV in two bilateral clusters in the postcen-

tral gyrus (Right: peak t=3.96, k=418; Left: peak t=3.67, k=117) and 

in two more clusters in the medial superior frontal gyrus (peak 

t=3.73, k=448) and the superior parietal cortex (peak t=3.63, k=125). 

All these clusters showed P < 0.001 and they remained significant af-

ter additional adjustments for SB, LPA or MVPA. Associated clusters 

are visually presented in Figure 38. Table S1 (ESM 9) shows bivari-

ate correlation coefficients and confidence intervals between sleep 

behaviours.  
Table 28 
Brain regions showing significant negative associations of sleep behaviours with GMV (n = 96) 

       
Basic con-
founders 

 Basic conf. + SB  Basic conf. + LPA  Basic conf. + MVPA 

Predictors Brain regions X Y Z 
Hemi-
sphere 

 Peak t 
Cluster 
size 

 Peak t 
Cluster 
size 

 Peak t 
Cluster 
size 

 Peak t 
Cluster 
size 

Wake time 
(hh:mm) 

Inferior temporal gyrus -41 -12 -44 Left  3.58 186  3.54 164  3.56 164  3.55 164 

 47 -21 -35 Right  3.76 243  3.73 218  3.71 210  3.75 222 

Fusiform gyrus -30 -47 -18 Left  3.76 138  3.78 144  3.79 149  3.80 152 

Supramarginal gyrus -48 -50 33 Left  4.00 412  3.96 375  3.94 404  3.96 402 

Superior parietal cortex 29 -75 57 Right  4.12 56  4.08 52  4.09 50  4.10 52 

Total time in 
bed (min/day) 

Postcentral gyrus -33 -42 56 Left  4.22 257  4.60 420  4.41 335  4.18 267 

WASO time 
(min/day) 

Superior temporal pole 29 18 -29 Right  3.61 98  3.67 132  3.59 89  3.56 86 
Precuneus -2 -39 48 Left  3.67 400  3.65 400  3.64 269  3.68 478 
Superior parietal cortex 18 -60 71 Right  3.61 150  3.57 145  3.51 79  3.59 122 

Number of 
WASO (nr.) 

Medial superior frontal 
gyrus 

12 45 42 
Right 

 3.73 448  3.69 402  3.76 287  3.69 422 

Postcentral gyrus 63 -12 23 Right  3.96 418  3.90 372  3.75 283  3.96 431 
 -56 -39 53 Left  3.67 117  3.62 102  3.56 63  3.64 109 
Superior parietal cortex -20 -75 54 Left  3.63 125  3.61 124  3.77 161  3.61 114 

Whole-brain voxel-wise multiple regression models were used. Basic confounders are sex, peak height velocity (years) and parent education univer-
sity level (neither/one/both). All contrasts were thresholded using AlphaSim at P<0.001 with k=47 for wake-up time, k=57 for bedtime, k=46 for 
WASO time, k=55 for number of WASO for the basic confounders model, and remained similar for the rest of models, and surpassed Hayasaka correc-
tion. Anatomical coordinates (X, Y, Z) are given in Montreal Neurological Institute (MNI) Atlas space.  
No clusters were significatively associated with sleep onset time, sleep time or sleep efficiency 

Sleep behaviours with grey matter volume in the hippocampus 

Figure 39 depicts scatter plots for the associations between to-

tal sleep time, sleep efficiency and WASO time with GMV in the left 

and right hippocampus. Associations with the right hippocampus 

were positive for total sleep time (β=0.187, P=0.049) and sleep effi-

ciency (β=0.220, P=0.019) and negative for WASO time (β=-0.202, 

P=0.033). Specific associations for the anterior and posterior hippo-

campal sub-regions can be found as ESM 9 (Table S3).  

Grey matter volume associations with academic achievement, execu-

tive function and intelligence quotient 

Higher GMV in those clusters related to wake-up time were as-

sociated with higher academic achievement scores. Specifically, four 
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out of the five clusters were associated with one or more academic 

achievement indicators (β ranging from 0.217 to 0.333, all P<0.028); 

and one cluster (i.e., supramarginal gyrus) was also associated with 

IQ (Table 29). GMV in the cluster related to total bedtime (left post-

central gyrus) was associated with various academic achievement in-

dicators, i.e., reading, academic skills, academic fluency, academic ap-

plications and total achievement (β ranging from 0.225 to 0.355, 

P’s<0.032) (Table 29). Additionally, clusters in the precuneus and 

the superior parietal cortex, which were previously associated with 

WASO time, were also associated with academic achievement indica-

tors (β ranging from 0.232 to 0.309, P’s<0.028) (Table 30). The re-

maining clusters were not associated with academic achievement, 

executive function or IQ (all P>0.05).  

 
Finally, GMV in right hippocampus was not associated with ac-

ademic achievement, executive function and IQ (Table 31). We only 

found a negative association with inhibition (β = -0.222 to 0.271, P = 

0.02) surpassing the correction for multiple comparisons. 

Discussion 

Our findings support an association between some sleep be-

haviours (i.e., sleep timing, duration and pattern) and GMV in the cor-

tical and subcortical brain structures, including the hippocampus, in 

children with overweight or obesity. Specifically, earlier wake-up 

time, shorter total bedtime, lower WASO time and the number of 

WASO were associated with greater GMV in one or several brain 

structures. Additionally, ROI analyses in the hippocampus depicted 

associations of a longer total sleep time, higher sleep efficiency and a 

lower WASO time with the GMV in the right hippocampus. All the as-

sociations mentioned are adjusted for sex, peak height velocity and 

parent education university level. Nearly every association remained 

following adjustment for SB, LPA or MVPA. The identified brain 

structures associated with sleep behaviours were also positively as-

sociated with academic achievement and, to a lesser extent, with IQ 

Figure 38 
Brain regions showing negative asso-
ciations of sleep behaviors with GMV 
in children with overweight/obesity. 
Analyses were adjusted for sex, peak height 
velocity and parent education university level. 
All contrasts were thresholded using AlphaSim 
at P<0.001 with k=47 for wake-up time, k=57 
for bedtime, k=46 for WASO time, k=55 for 
number of WASO, and surpassed Hayasaka 
correction. Anatomical coordinates (X, Y, Z) 
are given in MNI Atlas space.  
The color bar represents t-values scale. 
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(but not with executive function). These findings should be inter-

preted with caution because of the multiple tests performed. Further 

studies should investigate the brain regions reported in this study. 

 

Whole-brain associations of sleep behaviours with grey matter volume  

Only two previous studies investigated the associations be-

tween sleep behaviours and GMV in children and/or adolescents us-

ing a whole-brain volumetric approach [400,401]. The whole-brain 

volumetric approach depicted a complete picture of sleep and GMV 

associations at a whole-brain level, rather than at a ROI level. Thus, 

the whole-brain approach affords the exploration of associations not 

described in previous studies. These two studies focused separately 

on weekdays and weekend days. This study was the first one inves-

tigating the week as a whole (using weighted averages to account for 

the correspondent weight of school days and weekend days in the 

daily life) and, therefore, considering the associations with brain as a 

result of the sleep behaviours during both weekdays and weekend 

days.  

In regard to sleep timing, later wake-up times were associated 

with lower GMV in several cortical structures, such as the inferior 

temporal, the fusiform, the supramarginal gyri and the superior pa-

rietal cortex. Sleep onset was not associated with GMV in any brain 

region. The inferior temporal gyrus, the fusiform gyrus and the su-

pramarginal gyrus are important for reading and language 

Figure 39 
Linear regression analyses of the 
association of total sleep time (A, 
B), sleep efficiency (C, D) and WASO 
time (E, F) with GMV in the left and 
the right hippocampus. 
*Analyses were adjusted for sex, peak height 
velocity and parent education university 
level. 
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processing, word recognition and posture and gesture identification 

[418,419]. GMV in these structures was positively associated with ac-

ademic fluency, mathematics, total achievement and IQ score. The 

superior parietal cortex is important for processing spatiotemporal 

and visual information [420], which seems to be important for aca-

demic achievement as its GMV associated positively with mathemat-

ics, academic fluency, academic applications and total achievement. 

One previous study found that self-reported earlier wake-up time 

during weekends was associated with greater GMV in the medial 

frontal orbital and the anterior cingulate cortices in 14 year-olds 

[400]. Diversity in the associated brain regions can respond to a dif-

ferent stage in brain development (pre-adolescence vs. adolescence) 

and/or different methods of assessing sleep (i.e., self-reported vs. ob-

jective). Consistent with our findings, Urrila et al. found a positive as-

sociation between GMV and school grades [400], which suggests that 

larger GMV was linked to better academic achievement. This study 

complements the previous one by adding a detailed study of the as-

sociations with different academic abilities and by including execu-

tive function and IQ. 

 Wake time  
Total time 

in bed 

 
L Inferior 
temporal 

gyrus 

R Inferior 
temporal 

gyrus 

L Fusi-
form 
gyrus 

L Supra-
marginal 

gyrus 

R Superior 
parietal 
cortex 

 
L Postcen-
tral gyrus 

Academic achievement        
Reading 0.121 -0.012 0.160 0.104 0.174  0.355** 
Mathematics 0.160 0.166 0.224* 0.241* 0.333**  0.216* 
Writing 0.149 0.027 0.200 0.170 0.207*  0.163 
Academic skills 0.097 0.006 0.150 0.120 0.152  0.225* 
Academic fluency  0.256* 0.126 0.231* 0.264* 0.294**  0.244* 
Academic applications  0.136 0.070 0.181 0.155 0.276**  0.281** 

Total achievement 0.171 0.058 0.217* 0.195 0.260**  0.296** 

Executive function        
Cognitive flexibility  0.184 0.020 0.191* 0.126 -0.001  0.075 
Inhibition -0.04 -0.057 0.051 -0.192 -0.146  0.185 
Working memory -0.03 0.069 0.065 0.113 0.152  0.210* 

IQ 0.105 0.045 0.183 0.269* 0.102  0.209* 

Multiple linear regression models adjusted for sex, peak height velocity (years) and parent educa-
tion university level (neither/one/both).  
Bolded font indicates that the specific association surpassed the Benjamini-Hochberg correction for 
multiple comparison tests (performed for each domain, i.e., academic achievement, executive func-
tion and IQ). 
* P < 0.05 
** P < 0.01 

Likewise, total bedtime associated with higher GMV in the post-

central gyrus. Considering the negative association with wake-up 

time and the lack of association with sleep onset, it seems logical that 

longer total bedtimes are due to later wake-up times, which are both 

negatively associated with GMV in several brain regions. None of the 

previous studies [400,401] have found associations with GMV in the 

postcentral gyrus, but differing sample characteristics and methodo-

logical inconsistencies may account for this discrepancy. The post-

central gyrus is located in the primary somatosensory cortex. Our 

findings may suggest that those children who stay longer in bed 

Table 29 
Associations of GMV from regions 
associated with wake-up time and 
total time in bed with academic 
achievement, executive function 
and IQ (N=96). 
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interact less with the environment and, in turn, do not stimulate this 

brain region adequately. This positively affects academic achieve-

ment, since GMV in this specific cluster was positively associated 

with reading, academic skills, academic fluency, academic applica-

tions and total achievement. However, this should not be interpreted 

as a negative consequence of longer sleep periods. Total sleep time 

was not associated with GMV in any region, but total bedtime was. It 

may indicate that those children who stayed in bed longer (especially 

when engaged in non-sleeping time activities) have smaller GMV in 

certain regions, which may lead to poorer academic achievement.  

In regard to sleep patterns, longer WASO time was related to 

lower GMV in the superior temporal pole, the precuneus and the 

right superior parietal cortex; and a higher number of WASO with 

lower GMV in the superior medial frontal and the postcentral gyri, 

and the left superior parietal cortex. GMV in the precuneus and the 

right superior parietal cortex were positively associated with read-

ing, mathematics, academic skills, fluency, applications and total 

achievement. Consistently, Urrila et al. also found sleep behaviours 

associated with GMV in the precuneus and, in turn, this GMV was as-

sociated with school grade average[400]. The precuneus has been re-

lated to visuospatial perception and, together with the hippocampus, 

to episodic memory[421,422]. These functions seem to be important 

for academic achievement. It is also noteworthy that the right supe-

rior parietal cortex was negatively associated with wake time and 

WASO time in our sample. Since these two sleep behaviours were not 

correlated with each other (see ESM 9, Table S1), we cannot assume 

that these findings are overlapping. Likewise, the left postcentral gy-

rus was associated with bedtime and the number of WASO, indica-

tors which did not correlate with each other. Only the cluster related 

to bedtime was associated with academic achievement.  

Briefly, these findings have complemented previous literature 

by confirming some specific areas which were found associated with 

sleep behaviours and by describing associations which have not been 

previously reported. Brain development during childhood and ado-

lescence is heavily dependent upon the age of participants, with age 

having a differential relationship relative to which brain areas are 

more or less sensitive to sleep behaviours[372]. In this regard, our 

sample comprised 8-11-year-old children, while previous studies 

were focused on older adolescents. Furthermore, all of the partici-

pants in the current study presented overweight or obesity, which 

could alter the relationship between sleep and brain outcomes, in-

cluding development[374], and may account for differences in the 

findings between the current study and previous research. Likewise, 

we found eight cortical regions associated with sleep, which resulted 

in a high number of statistical tests that were employed to study their 
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association with academic achievement, executive function and IQ. 

Although we applied a correction for multiple comparisons, we ad-

vise caution in the interpretations and suggest further investigation 

of these findings. 

All of the above-mentioned associations were not affected by 

including SB; LPA or MVPA in the models. Therefore, SB, LPA and 

MVPA do not appear to influence the association between sleep be-

haviours and GMV in our sample of children with overweight or obe-

sity.  

Sleep behaviours with grey matter volume in the hippocampus 

The hippocampus is a subcortical brain structure which, in con-

stant communication with cortical structures, has been found to be 

crucial for memory consolidation during sleeping [402,403]. A major 

hypothesis on this link points out the memory consolidation process, 

which occurs predominantly during sleep [403]. Our ROI analyses of 

the hippocampus showed that total sleep time was positively associ-

ated with GMV in the right hippocampus. This finding agrees with 

Taki et al. [401], who found similar associations using self-reported 

sleep behaviours in 5-18-year-old children. Specifically, they found a 

longer total sleep time during weekdays to be associated with the 

hippocampus, but not weekend total sleep time. This study compli-

ments their findings by objectively assessing a representative whole 

week, including both weekdays and weekends.  
 WASO time  Number of WASO 

 
R Superior 
temporal 

pole 

L Precu-
neus 

R Superior 
parietal 
cortex 

 

R Medial 
superior 
frontal 
gyrus 

R Postcen-
tral gyrus 

L Postcen-
tral gyrus 

L Superior 
parietal 
cortex 

Academic achievement         
Reading 0.122 0.249* 0.252*  0.138 0.216* 0.031 0.109 
Mathematics 0.193 0.249* 0.309**  0.153 0.181 0.001 0.069 
Writing 0.091 0.219* 0.079  -0.013 -0.031 -0.100 0.022 
Academic skills 0.169 0.241* 0.194  0.044 0.163 0.009 0.100 
Academic fluency  0.050 0.249* 0.193  0.146 0.137 -0.057 0.088 
Academic applications  0.125 0.170 0.232*  0.104 0.038 -0.065 -0.021 

Total achievement 0.163 0.274** 0.248*  0.098 0.147 -0.028 0.074 

Executive function         
Cognitive flexibility  0.009 -0.065 -0.065  -0.021 -0.104 -0.114 -0.123 
Inhibition 0.037 -0.069 -0.064  0.030 -0.068 0.046 -0.094 
Working memory -0.054 0.040 0.088  0.095 0.028 0.094 0.012 

IQ 0.105 0.233* 0.060  -0.084 -0.005 -0.076 -0.034 

Multiple linear regression models adjusted for sex, peak height velocity (years) and parent education univer-
sity level (neither/one/both).  
Bolded font indicates that the specific association surpassed the Benjamini-Hochberg procedure for multiple 
comparison tests (performed for each domain, i.e., academic achievement, executive function and IQ). 
* P < 0.05 
** P < 0.01 

Furthermore, higher sleep efficiency and shorter WASO time 

were associated with greater hippocampal GMV in the right hemi-

sphere. This is the first study to investigate the associations between 

these variables and GMV in children. Of note, sleep efficiency and 

WASO time were highly correlated in this sample (see ESM 9, Table 

S1). Our conclusion is that WASO time should be as short as possible, 

meaning that sleep efficiency and GMV in the hippocampus would be 

Table 30 
Associations of GMV from 
regions associated with 
WASO time and number 
of WASO with academic 
achievement, executive 
function and intelligence 
(N=96). 
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higher. It is noteworthy that our whole-brain volumetric analyses 

failed in finding associations between sleep behaviours and GMV in 

the hippocampal regions as the ROI analysis did. The whole-brain 

analysis requires enough contiguous voxels associated with sleep be-

haviours to consider a significant association, which makes this anal-

ysis stricter than the ROI. 

It seems that the right hippocampus is more sensitive to sleep 

behaviours than the left hippocampus in children with overweight or 

obesity. However, GMV in the right hippocampus was not clearly as-

sociated with academic achievement, executive function or IQ (i.e., 

only the anterior sub-section of the right hippocampus associated 

with inhibition).  

 

 Right hippocam-
pus 

Right anterior hip-
pocampus 

Right posterior 
hippocampus 

Academic achievement     
Reading  0.106 0.063 0.161 
Mathematics  0.06 0.043 0.087 
Writing  0.128 0.114 0.139 
Academic skills  0.059 0.015 0.122 
Academic fluency   0.164 0.156 0.16 
Academic applications   0.099 0.092 0.106 
Total achievement  0.116 0.085 0.155 

Executive function     
Cognitive flexibility   -0.03 -0.038 -0.018 
Inhibition  -0.204* -0.222* -0.159 
Working memory  -0.03 -0.045 -0.009 

IQ  0.059 0.046 0.08 

Multiple linear regression models adjusted for sex, peak height velocity (years) and parent educa-
tion university level (neither/one/both).  
Bolded font indicates that the specific association surpassed the Benjamini-Hochberg procedure for 
multiple comparison tests (performed for each domain, i.e., academic achievement, executive func-
tion and IQ). 
*Indicates p<0.05 
**Indicates p<0.01 
† Indicates that the score is multiplied by -1 (i.e., a positive association is interpreted as higher inhi-
bition) 

Limitations and Strengths 

Several limitations of this study should be acknowledged. First, 

the cross-sectional design of the study does not allow a causal inter-

pretation of the findings. Next, accelerometer-based estimates of 

sleep do not represent sleep itself, but an estimation based on move-

ment patterns, so our findings should be interpreted with caution. 

However, accelerometers are the less-invasive objective method to 

assess sleep behaviours in free-living settings, while also providing 

good validity [38,40]. Likewise, nap time cannot be accurately iden-

tified via accelerometers, and we did not collect self-report infor-

mation on naps; thus, it could be that part of the daily sleep is missing 

in our estimates. Nevertheless, strengths of this study include: its rel-

atively large sample size (96 children with valid MRI); the consider-

ation of SB and PA as a potential confounding factor for sleep behav-

iours and GMV; the objective assessment of sleep behaviours during 

a whole week; the standardized tests for the measurement of aca-

demic achievement rather than school grades; and the focus on 

Table 31 
Standardized beta coefficients for 
the association of GMV in hippo-
campal regions and academic 
achievement, executive function, 
and IQ (N=96). 
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children with overweight or obesity, given the bidirectional associa-

tions between obesity and sleep behaviours, PA and brain develop-

ment. 

Conclusion 

In conclusion, our findings indicate that sleep behaviours, in-

cluding timing, duration and patterns, are associated with GMV and, 

subsequently, GMV is associated with academic achievement and IQ 

in children with overweight or obesity. It seems that the superior pa-

rietal and postcentral cortices are the most consistent regions asso-

ciated with sleep, being also associated with academic achievement 

indicators. We should also highlight that WASO time was associated 

with GMV in both cortical structures and, subsequently, related 

strongly to academic achievement. Total sleep time, sleep efficiency 

and WASO time seem to be specifically associated with the right hip-

pocampus, but this subcortical region did not associate with aca-

demic achievement, executive function or IQ. Sleep behaviours seem 

important for GMV and academic achievement and, to a lesser extent, 

for IQ, but they were not associated with executive function. All these 

associations remained significant after considering the potential ef-

fect of SB, LPA or MVPA. 

Abbreviations in this page: 
GMV: grey matter volume 
IQ: intelligence quotient 
LPA: light physical activity 
MVPA: moderate-to-vigorous 
physical activity 
PA: physical activity 
WASO: wakening after sleep 
onset 
 



Study  

Page 282 of 385 

Study X 
  



 

 

Migueles JH, Martinez-Nicolas A, Cadenas-Sanchez C, 
Esteban-Cornejo I, Muntaner-Mas A, Mora-Gonzalez J, 
Rodriguez-Ayllon M, Madrid JA, Rol MA, Hillman CH, 
Catena A, Ortega FB. 
Scand J Med Sci Sports 2020 
DOI: 10.1111/sms.13862 

 

Activity-rest circadian pattern and 

academic achievement, executive 

function and intelligence in 

children with overweight or obesity





Study X 

Page 285 of 385 

Contents 

Abstract and key points _________________________________  287 

Introduction _______________________________________________  289 

Methods ____________________________________________________  290 

Participants and study design ............................. 290 

Activity-rest pattern ................................................ 291 

Academic achievement, executive function,  

and intelligence quotient ................................. 292 

Magnetic resonance imaging data  

acquisition and processing .............................. 293 

Confounders ............................................................... 293 

Statistics ....................................................................... 294 

Results _____________________________________________________  295 

Activity-rest pattern and  

academic achievement, executive  

function and intelligence quotient ............... 295 

Mediation role of total grey matter volume ... 296 

Discussion _________________________________________________  296 

Perspectives _______________________________________________  300 

 





Study X 

Page 287 of 385 

Abstract 

Background | Lifestyle behaviours such as PA, SB and sleep are as-

sociated with academic achievement, executive func-

tion and crystallized intelligence in children. Less at-

tention has been paid to the circadian rhythm of PA 

and resting (namely the activity-rest pattern) in rela-

tion to these outcomes in children with overweight or 

obesity. 

Aims | This study aimed to analyse the associations of activ-

ity-rest pattern indicators with academic achieve-

ment, executive function and IQ; and to explore 

whether these associations are mediated by the total 

GMV among children with overweight or obesity.  

Methods | Ninety-five children (10±1 year, 37 girls) with over-

weight or obesity (based on the WOF BMI cut-off 

points) were included in this cross-sectional study. 

Hip- and wrist-worn ActiGraph GT3X+ accelerome-

ters were used to assess the activity-rest pattern. IS, 

IV, the mean value of the lowest 5h (L5) and the mean 

value of the maximum 10h (M10) of activity and their 

respective timing (TL5, TM10) were used as indica-

tors of the activity-rest pattern throughout the day. 

Chronotype and social jetlag were used as indicators 

of circadian preference. Academic achievement, exec-

utive function and intelligence were assessed with 

standardized tests. GMV was acquired by MRI. 

Results | IS was positively associated with executive function 

(β=0.244, P=0.014). IV was negatively associated 

with mathematics and academic applications (β: -

0.211 to -0.238, P’s ≤ 0.026). Later TM10 in the day 

was related to lower writing, academic skills and in-

telligence (β: -0.229 to -0.271, P’s ≤ 0.025). None of 

the associations found were mediated by GMV. 

Conclusion | A non-fragmented and stable activity-rest pattern 

and earlier physical activity in the day were associ-

ated with better academic achievement, executive 

function and IQ in children with overweight or obe-

sity. Further studies are required to corroborate or 

contrast our findings.

Key Points 

Question 
Is the activity-rest pattern as-
sociated with academic 
achievement, executive func-
tion, and/or IQ in children 
with overweight or obesity? 

Findings 
Higher IS, lower IV, and earlier 
TM10 were associated with 
academic achievement and IQ. 
We did not find evidence of 
mediation via GMV in this 
study 

Meaning 
Brain health may be benefit-
ted from a stable and non-
fragmented activity-rest pat-
tern in children with over-
weight or obesity. 
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Introduction 

Enhancing brain development to reach optimal cognitive func-

tioning and academic success in youth is a universal public health 

goal [51]. Lifestyle behaviours such as PA, SB and sleep are associ-

ated with academic achievement, executive function and crystallized 

intelligence in children [423–425]. Less attention has been paid to 

the circadian rhythm of PA and resting in relation to these outcomes, 

namely the activity-rest pattern. The activity-rest pattern defines the 

timing and stability of these behaviours throughout the day and 

across days. Unstable and fragmented patterns are associated with 

obesity, lower CRF, and mood disorders in youth [60,426]. 

To date, the understanding of whether the activity-rest pattern 

is related to academic achievement, executive function or IQ in chil-

dren is inconclusive. A previous study found a moderating effect of 

sleep type on attention and IQ among children. Specifically, they ob-

served higher scores in attention and IQ in early (i.e., usually classi-

fied as sleep midpoint before 3 am) versus late types of sleep timing 

among children [427]. A prior meta-analysis reported poorer aca-

demic achievement for those adolescents and young adults with a 

late sleep type (i.e., late bedtime and rise up, usually derived from 

sleep midpoint after 4 am) [395]. Furthermore, social jetlag (i.e., time 

difference between sleep midpoint in weekdays and weekends) is 

negatively associated with cognitive and academic performance in 

adolescents [428]; however, information in children is lacking.  

PA, SB, and sleep have been associated with GMV in specific 

brain areas, which may explain, in part, their associations with aca-

demic achievement, executive function and IQ.[54,332,400,429,430] 

In children with overweight or obesity, we found a moderator effect 

of weight status on the association of PA and GMV in the hippocam-

pus [332]. Additionally, Esteban-Cornejo et al. found that cardi-

orespiratory fitness (which can be effectively modified through PA) 

is associated with GMV in seven different brain regions important for 

academic achievement (e.g., premotor cortex, supplementary motor 

cortex and hippocampus) [54]. Relative to sleep, Urrila et al. found 

that shorter time in bed and later bedtime hours are associated with 

lower GMV and poorer school grade average [400]. Therefore, if the 

activity-rest pattern is associated with academic achievement, exec-

utive function and/or IQ, GMV could mediate this relationship.  

Pediatric obesity is associated with a fragmented and unstable 

activity-rest pattern [60] and impaired brain health in children 

[54,332,374] (Figure 40 shows an unstable/fragmented [participant 

1] and a stable/non-fragmented [participant 2] pattern examples). 

Thus, the study of children with overweight or obesity should con-

sider appropriate activity-rest patterns in the design of interventions 
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to benefit their cardiometabolic and brain health. However, no pre-

vious studies have focused on the associations of activity-rest pat-

terns with brain health outcomes (including academic, cognitive, and 

brain structure outcomes) in children with overweight or obesity, 

nor in children in general. This study aimed to: study the associations 

of the activity-rest pattern indicators with academic achievement, 

executive function and IQ; and explore whether these associations 

are mediated by GMV in children with overweight/obesity.  

 

Methods 

Participants and study design 

This study included baseline data from the ActiveBrains project 

[63], which is a RCT intended to examine the effect of a 20-week PA 

intervention on brain structure, brain function, cognitive perfor-

mance, academic achievement, and physical and mental health out-

comes in children with overweight or obesity. Children were re-

cruited in three waves from hospitals and health care centers from 

Granada, public and private schools, and local media advertising. Out 

of the 110 children enrolled, those with valid data at baseline were 

included in this cross-sectional analysis (N=95, 10±1 year, 37 girls). 

Detailed rationale and methods have been described elsewhere [63]. 

Briefly, participants were 8-11 years old with overweight or obesity 

(based on the WOF BMI cut-off points). Participants’ weight and 

height were obtained and their BMI was calculated as weight (kg) di-

vided by squared height (m2). Weight and height were measured 

twice consecutively with an electronic scale (SECA 861, Hamburg, 

Germany) and a stadiometer (SECA 225, Hamburg, Germany), re-

spectively and averaged values were used. Baseline data were col-

lected from November 2014 to February 2016. Parents were in-

formed of the purpose of the study and parental written informed 

consents were obtained. The ActiveBrains project was approved by 

the Ethics Committee on Human Research of the University of Gra-

nada. 

Figure 40 
Examples of differing interdaily 
stability (IS) and intradaily varia-
bility (IV) among two participants 
of the ActiveBrains project. Partic-
ipant 1 presents a more frag-
mented and less stable activity-
rest pattern than participant 2.   
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Activity-rest pattern 

Participants wore accelerometers (ActiGraph GT3X+, Pen-

sacola, FL, USA) on their right hip and non-dominant wrist for seven 

days (24 hours/day) as previously reported [266]. In brief, accel-

erometers collected data at 100 Hz with a dynamic range of ±6 G. Raw 

accelerations were processed with the default filter in the ActiLife 

software (ActiGraph, Pensacola, FL, USA) and the VMCounts were ag-

gregated over 30 s epochs. Periods of 30 consecutive minutes record-

ing 0 CPM were considered non-wear time and excluded from anal-

yses. Those children wearing devices more than 16 hours/day for at 

least 4 days (including 1 weekend day) were included. 
Parameter Derived from Description and interpretation 

Interdaily stability (IS) Accelerometer 

Ratio of activity level variance within each 24-
hour period to the overall variance. The higher 
the IS, the higher the stability of the activity-rest 
pattern. 

Intradaily variability (IV) Accelerometer 

Ratio of the mean squares of the difference be-
tween consecutive hours and the mean squares 
around the overall mean. The larger the IV, the 
larger the fragmentation of the activity-rest pat-
tern. 

Lowest 5-h (L5) Accelerometer 

Average CPM over 10-min epochs during the 
consecutive 5 h with the lowest CPM values. The 
higher the L5, the higher the intensity of the ac-
tivity in this part of the day (usually sleep pe-
riod). 

Lowest 5-h timing (TL5) Accelerometer 
Central time of the L5 occurrence. Indicated as 
hh:mm. 

Maximum 10-h (M10) Accelerometer 

Average CPM over 10-min epochs during the 
consecutive 10 h with the highest CPM values. 
The higher the M10, the higher the intensity of 
the activity in this part of the day (usually wake 
period). 

Maximum 10-h timing (TM10) Accelerometer 
Central time of the M10 occurrence. Indicated as 
hh:mm. 

Social jetlag Sleep diaries 

Absolute time difference in hours of the sleep 
midpoint calculated in weekend days (free days) 
minus weekdays (school days). The larger the so-
cial jetlag, the larger the difference in the timing 
of sleep of weekdays versus weekend days. 

Early sleep type Sleep diaries 
Participants whose sleep midpoint was before 4 
am.  

Neither sleep type Sleep diaries 
Participants whose sleep midpoint was between 
4 am and 5 am.  

Late sleep type Sleep diaries 
Participants whose sleep midpoint was after 5 
am.  

Since the accelerometer data did not adjust to the cosine func-

tion (i.e., sinusoid wave), we used non-parametric analysis was per-

formed to characterize the activity-rest pattern [60]. We calculated 

the following parameters: interdaily stability (IS), ratio of activity 

level variance within each 24-hour pattern to the overall variance, 

that indicates the degree of consistency from day to day; intradaily 

variability (IV), ratio of the mean squares of the difference between 

consecutive hours and the mean squares around the overall mean, 

that is a measure of rhythm fragmentation within a day; average CPM 

over 10-min epochs during the 5 consecutive hours with the lowest 

CPM in the day (L5) and its respective timing (TL5); average CPM 

Table 32 
Description and interpretation 
of the activity-rest parameters.   
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over 10-min epochs during the 10 consecutive hours with the highest 

CPM in the day (M10) and its respective timing (TM10). A stable and 

non-fragmented activity-rest pattern would be characterized by high 

IS and low IV, respectively. Likewise, lower L5, earlier TL5, higher 

M10 and earlier TM10 have been reported to be beneficial for health 

[431,432]. Brief descriptions and interpretation of activity-rest indi-

cators are presented in Table 32. All these variables were calculated 

twice, using the acceleration signal from the hip-worn and the wrist-

worn accelerometers. Analyses using the wrist data are presented in 

the ESM 10.  

Additionally, participants were instructed to complete a sleep 

log with bedtimes (i.e., onset, cessation) every day. Sleep onset and 

offset were used to classify participants as early, neither or late sleep 

types as described by Roenneberg et al [433]. Midpoint of sleep cor-

rected for sleep deficit was calculated from the times recorded in the 

sleep diaries and using the formula proposed by Roenneberg et al 

[433]. Participants were classified as early sleep type if the midpoint 

of their reported sleep time was before 4 am or late sleep type if it 

occurred after 5 am. Those children with a sleep midpoint between 

4 am and 5 am were classified as neither sleep type. We used 4 am 

and 5 am cut points instead of the standard 3 am and 4 am because 

Spanish time is one hour ahead of its geographical time zone [432]. 

In addition, social jetlag was quantified as the absolute difference be-

tween midsleep on school days and weekend days.  

Academic achievement, executive function and intelligence quotient 

Academic achievement was assessed with the Spanish version 

of the Woodcock-Johnson III battery, which provides a standardized, 

valid, and reliable measure of academic achievement.[71] Children 

completed a total of 12 tests from this battery including reading, lan-

guage, mathematics and sciences during one session of 100-120 min. 

All tests were performed individually by a trained evaluator in the 

laboratory. Tests were independently checked by two trained evalu-

ators and scores were then processed in the Compuscore software 

(v. 3.1., Riverside Publishing Company, Itasca, IL, USA). We used the 

broad reading, mathematics and writing scores, as well as composite 

scores representing academic skills (answer accuracy), academic flu-

ency (processing speed), academic applications (problem-solving) 

and total academic achievement score. 

Executive function domains included cognitive flexibility, inhi-

bition and working memory as described elsewhere [337]. Cognitive 

flexibility was assessed with two different tests: the third condition 

of the DFT and the fourth condition of the TMT [72]. The DFT condi-

tion consisted in connecting dots, switching bland and empty dots, 

using four straight lines to design as many novel shapes as possible 

in one minute. The TMT condition required participants to draw lines 

Abbreviations in this page: 
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to connect numbers and letters in numeric and alphabetic order as 

fast as possible (e.g., 1-A-2-B-3-C). The score from these tests (i.e., 

number of correct designs in the DFT and completion time in the 

TMT) was standardized by sex as Z-score and then averaged to ob-

tain a unique indicator of cognitive flexibility. A modified version of 

the Stroop test [415] was used as an indicator of inhibition. Perfor-

mance time of condition 3 (i.e., inhibiting reading by naming color) 

minus condition 1 (i.e., color naming) was used as previously re-

ported [337]. As higher values indicate lower inhibition, we inverted 

this score for analyses. Finally, working memory was measured from 

a modified version of the DNMS computerized task [76]. A total of 16 

practice trials plus 140 experimental trials were presented in two 

separated conditions (i.e., low- and high-memory load). Response ac-

curacy for the high-load condition was used as an indicator of work-

ing memory. We calculated a composite executive function z-score as 

an overall measure of executive function, representing the sum of the 

three domains (i.e., cognitive flexibility, inhibition, and working 

memory). 

IQ was assessed with the Spanish version of the K-BIT [77]. 

Crystallized and fluid IQ components were assessed with the vocab-

ulary and matrices sub-tests, respectively. Both sub-test scores were 

summed to obtain a total IQ score. 

Magnetic resonance imaging data acquisition and processing 

MRIs were collected on a 3.0 Tesla Siemens Magnetom Tim Trio 

scanner (Siemens Medical Solutions, Erlangen, Germany) with a 32-

channel head coil. High-resolution, T1-weighted images were ac-

quired using a 3D MPRAGE protocol. The acquisition parameters 

were the following: repetition time=2,300 ms; echo time=3.1 ms; in-

version time=900 ms; flip angle=9º; field of view=256 x 256; acqui-

sition matrix=320 x 320, 208 slices; resolution=0.8 x 0.8 x 0.8 mm; 

and scan duration=6 min and 34 s [54]. 

We used the FreeSurfer software version 5.3.0 

(http://surfer.nmr.mgh.harvard.edu) and the standard processing 

pipeline known as ‘recon-all’ to assess the total GMV [434]. Imaging 

pre-processing included quality control, motion correction, spatial 

normalization to an MNI template and spatial smoothing. Detailed in-

formation about pre-processing steps is described elsewhere [54]. 

Confounders 

Participants’ weight, height, peak height velocity, parents’ edu-

cation level, and CRF were obtained as part of the protocol of the Ac-

tiveBrains project [63]. Weight and height were measured twice con-

secutively with an electronic scale (SECA 861, Hamburg, Germany) 

and a stadiometer (SECA 225, Hamburg, Germany), respectively and 

averaged values were used. BMI was calculated as weight (kg) di-

vided by squared height (m2). Peak height velocity was derived from 
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standing and sitting height as a continuous measure of maturational 

status.[92] Peak height velocity represents the difference (in years) 

between chronological age and the age at peak height velocity. Car-

diorespiratory fitness was assessed with a maximal incremental 

treadmill tests recommended by the American College of Sports 

Medicine for poorly fit children and with the 20-m shuttle run test. 

The treadmill test consisted of walking on a treadmill at a constant 

speed (4.8 km/h) starting at a 6% slope with grade increments of 1% 

per min until volitional exhaustion. VO2max was obtained if partici-

pants reached volitional fatigue (>8 points in the OMNI scale), plat-

eau in VO2max during the last two stages of the test, achieved >85% 

of their age-predicted maximum heart rate, and/or respiratory ex-

change ration ≥1.0. We used the Léger equation to derive VO2max 

from the 20-m shuttle run test. Parents reported their highest level 

of education finished and they were categorized as: both of them, one 

of them or neither of them reaching university level.  

Statistics 

Participants’ descriptive characteristics were summarized as 

mean and SD or percentages (%). All variables were checked for nor-

mal distribution prior to analysis. Hierarchical stepwise regressions 

were performed with potential confounders as explanatory variables 

and academic achievement, executive function, and IQ indicators as 

explained variables. Confounders were selected based on the change 

in the explained variance and the significance level (sex, peak height 

velocity offset, and parental education university level). Multiple lin-

ear regression models were used to study the associations between 

activity-rest pattern indicators and academic achievement, executive 

function and IQ. Analysis of covariance (ANCOVA) models were used 

to investigate differences in academic achievement, executive func-

tion and IQ across early, neither and late sleep types. Simple media-

tion analyses were performed to investigate whether the associa-

tions of activity-rest pattern indicators with academic achievement, 

executive function and IQ were mediated by total GMV. The PROCESS 

macro version 2.16.3, model 4, with 5000 bias-corrected (BC) boot-

strap samples and 95% CIs was used. Mediation is assessed by the 

indirect effect of the pertinent activity-rest pattern indicator (inde-

pendent variable) on academic achievement, executive function, or 

IQ (dependent variable) through total GMV (mediator). The total (c 

path), direct (c′ path) and indirect (a*b paths) effects are graphically 

presented in Figure 41. The Sobel test was used to determine 

whether the indirect effect was equal to zero. The statistical signifi-

cance level was set at P<0.05 and the Benjamini-Hochberg correction 

for multiple comparison testing was applied [435]. Analyses were 

performed using the IBM SPSS Statistics for Windows version 22.0 

(Armonk, NY: IBM).  
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Table 33. Descriptive characteristics of participants 

 

All 
(N = 95) 

Early sleep type† 
(N = 31) 

Neither sleep type† 
(N = 41) 

Late sleep type† 
(N = 23) Unadjusted P 

Age (years) 10.00 (1.13) 9.82 (1.16) 10.04 (1.10) 10.18 (1.15) 0.492 
Peak height velocity (years) -2.32 (0.95) -2.49 (0.99) -2.3 (0.84) -2.14 (1.07) 0.412 
BMI (kg/m2) 26.73 (3.59) 26.94 (4.31) 26.51 (3.30) 26.83 (3.10) 0.870 

Parent education university level, %     
Neither parent 67 61 66 78  
One parent 16 23 15 9 0.579 
Both parents 17 16 19 13  

Activity-rest pattern (derived from the hip accelerometer)    
IS 0.32 (0.05) 0.33 (0.05) 0.33 (0.04) 0.30 (0.05) 0.060 
IV 0.49 (0.10) 0.50 (0.11) 0.49 (0.09) 0.47 (0.09) 0.482 
L5 (CPM) 28.91 (14.75) 29.97 (11.74) 26.06 (11.05) 32.57 (22.12) 0.213 
TL5 (hh:mm) 03:36 (01:12) 03:07 (01:26) 03:36 (00:58) 04:19 (00:43) <0.001 
M10 (CPM) 1032.87 (247.05) 1086.8 (293.22) 985.26 (222.71) 1045.07 (211.84) 0.219 
TM10 (hh:mm) 15:50 (1:26) 15:36 (1:26) 16:05 (1:12) 15:50 (1:12) 0.388 
Social Jetlag (h) 1.39 (0.73) 0.72 (0.39) 1.40 (0.44) 2.27 (0.44) <0.001 

Academic achievement‡      
Academic skills 118.63 (16.27) 119.00 (16.02) 120.51 (15.39) 114.78 (18.11) 0.401 
Academic fluency  103.52 (11.97) 103.19 (10.87) 105.17 (12.57) 101 (12.34) 0.407 
Academic applications  99.22 (9.13) 100.16 (8.44) 99.95 (9.98) 96.65 (8.28) 0.302 
Reading 108.17 (13.2) 107.81 (12.67) 108.66 (12.91) 107.78 (14.91) 0.952 
Mathematics 101.71 (10.8) 102.71 (10.85) 102.76 (10.85) 98.48 (10.48) 0.261 
Writing 113.51 (12.89) 114.45 (12.02) 116.49 (11.46) 106.91 (14.53) 0.014 
Total achievement 109.06 (12.02) 109.58 (12.11) 110.66 (12.03) 105.52 (11.66) 0.252 

Executive function      

Cognitive flexibility (z-score)§ -0.03 (0.81) -0.01 (0.77) -0.02 (0.90) -0.09 (0.71) 0.925 
Inhibition (s*-1) -41.98 (17.38) -44.31 (15.23) -40.34 (19.65) -41.77 (16.12) 0.633 
Working memory (%) 65.52 (16.53) 64.11 (14.4) 68.16 (15.87) 62.74 (20.07) 0.473 
Executive function score (z-score) -0.03 (0.69) -0.10 (0.60) 0.06 (0.74) -0.10 (0.73) 0.536 

IQ‡      
Cristal IQ 102.94 (12.92) 104.87 (12.74) 102.00 (13.43) 102.00 (12.51) 0.602 
Fluid IQ 97.34 (12.86) 96.03 (11.84) 97.49 (14.29) 98.83 (11.79) 0.733 
Total IQ 98.40 (12.39) 99.13 (12.32) 98.1 (13.03) 97.96 (11.82) 0.924 

Gray matter      
Volume (mm3) 730380 (65537) 731569 (67453) 731068 (59507) 727553 (75483) 0.972 

Data are presented as mean (SD) except for parent education university level (%). 
† Early sleep type includes children whose sleep midpoint is before 4 am, Neither sleep type represents sleep midpoints between 4 am and 5 am and 
Late sleep type includes children with sleep midpoint after 5 am. 
‡ Academic achievement and IQ indicators were calculated based on standardized scores centered at 100. 
§ Cognitive flexibility was assessed with two tests: the design fluency test and the trail making test. Standardized composite scores are presented. 

Results 
Sociodemographic and anthropometric characteristics, activ-

ity-rest pattern indicators, academic achievement, executive func-

tion and IQ scores of participants are reported in the (Table 33). De-

scriptive values of the activity-rest indicators derived from the wrist-

worn accelerometer are presented in ESM 10 (Table S1) 

Activity-rest pattern and academic achievement, executive function 

and intelligence quotient 

As shown in Table 34, IS was positively associated with work-

ing memory (β=0.244, P=0.014); IV was negatively associated with 

mathematics (β=-0.238, P=0.026) and academic applications (β=-

0.262, P=0.013); later TM10 was associated with lower writing (β=-

0.229, P=0.025), academic skills (β=-0.256, P=0.008) and total IQ 

(β=-0.271, P=0.006). Otherwise, social jetlag was not associated with 

any of the outcomes (all P’s>0.05). No associations were found be-

tween activity-rest pattern indicators derived from the wrist-worn 

accelerometer and academic achievement, executive function, or IQ 

(ESM 10, Table S2).  
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No differences in academic achievement, executive function 

and IQ across early, neither and late sleep types were found, except 

for the writing (Neither vs Late: 8.4 points, P=0.029) (Table 35).  

 

Mediation role of total grey matter volume 

Prior to performing mediation models, we investigated the bi-

variate correlations of total GMV (i.e., mediator) with academic 

achievement, executive function, and IQ indicators (i.e., outcomes). 

We observed positive associations with mathematics (β=0.233, 

P=0.023), academic fluency (β=0.242, P=0.018), academic applica-

tions (β=0.229, P=0.025), and total academic achievement (β=0.215, 

P=0.037). Associations with other outcomes only demonstrated 

trends, such as: reading (β=0.187, P=0.070), cognitive flexibility 

(β=0.186, P = 0.071), executive function score (β=0.192, P=0.062), 

and crystallized IQ (β=0.192, P=0.063). Mediation analyses were 

only performed in those associations which were found significant 

(Table 34). Table 36 shows that none of the associations were sig-

nificantly mediated by the total GMV.  

Discussion 
Our findings support the association of activity-rest pattern 

with academic achievement, executive function and IQ in children 

with overweight or obesity. Specifically: lower IV and earlier TM10 

are associated with higher academic achievement; higher IS and 

lower IV are associated with better executive function; earlier TM10 

is associated with higher IQ scores; and none of these associations 

were mediated by total GMV. In brief, stable and less fragmented 

Figure 41 
Diagram representing the study 
simple mediation analyses. Path 
c shows the association between 
independent and dependent var-
iables. Paths a x b show the nat-
ural indirect effect pathway, and 
c’ shows the natural direct effect 
pathway.   

Abbreviations in this page: 
CPM: counts per minute 
GMV: grey matter volume 
IQ: intelligence quotient 
IS: interdaily stability   
IV: intradaily variability 
M10: mean CPM of the 10 h with 
the highest activity   
TM10: timing of the M10 
 



Study X 

Page 297 of 385 

activity-rest patterns, and earlier PA performance in the day are re-

lated to better academic achievement, executive function, and IQ.  

  
IS IV L5 TL5 M10 TM10  

Social 
Jetlag 

Academic achievement          
Reading  0.139 -0.219* 0.074 -0.046 -0.048 -0.120  0.091 
Mathematics  0.178 -0.238* 0.181 -0.177 -0.113 -0.099  0.007 
Writing  0.158 -0.082 -0.108 -0.195 -0.076 -0.229*  -0.038 
Academic skills  0.165 -0.159 -0.076 -0.122 -0.109 -0.256**  0.031 
Academic fluency   0.155 -0.176 0.200* -0.156 -0.077 -0.073  0.058 
Academic applications   0.109 -0.262* 0.149 -0.106 -0.018 -0.004  0.014 
Total achievement  0.183 -0.225* 0.045 -0.155 -0.088 -0.181  0.029 

Executive function          
Cognitive flexibility   0.184* -0.171 0.04 -0.085 0.040 0.017  -0.055 
Inhibition  0.013 -0.120 0.107 -0.046 -0.166 -0.129  0.050 
Working memory  0.244* -0.197 0.09 -0.117 -0.153 -0.086  -0.068 
Executive function score  0.209* -0.211* 0.091 -0.104 -0.105 -0.054  -0.047 

IQ          
Cristal IQ  0.046 -0.097 0.117 -0.089 -0.007 -0.176  0.017 
Fluid IQ  0.104 -0.108 0.215* -0.057 -0.105 -0.219*  0.060 
Total IQ  0.099 -0.119 0.206* -0.087 -0.071 -0.271**  0.014 

Linear regression models were adjusted for sex, peak height velocity offset and parent education uni-
versity level.  
Bolded font indicates that the significant association (i.e., p < 0.05) surpassed the Benjamini-Hochberg 
correction for multiple comparison tests. 
* P < 0.05 
** P < 0.01 

Interestingly, associations were only significant using the activ-

ity-rest pattern determined with the hip-worn accelerometers. A po-

tential explanation is that wrist-worn accelerometers capture higher 

variability in the accelerations (see Table 33 and Table S1, ESM 10). 

Thus, we may be underpowered to find associations using the wrist-

worn accelerometer data in this study. Likewise, we recently found 

that accelerometer-derived PA metrics from hip-worn and wrist-

worn accelerometers are hardly comparable [337]. Thus far, it is not 

clear which body attachment site is better in the characterization of 

the activity-rest pattern [233]. In this regard, we found that the ac-

tivity-rest pattern measured at hip is more related to brain health 

than those measured at wrist. 

Higher IS was associated with higher executive function 

(mainly with working memory) in this sample, but it was not associ-

ated with either academic achievement or IQ scores. No previous 

studies have investigated IS or similar metrics in relation to academic 

achievement, executive function or IQ in children. Yet, previous stud-

ies have found IS to be inversely associated with cognitive function 

in adults [436] and with emotional face processing in 1-year-old in-

fants [437]. As such, higher IS appears beneficial for cognitive pro-

cesses in different populations. 

Fragmented activity-rest patterns (higher IV) were associated 

with lower academic achievement and executive function in children 

with overweight/obesity. This suggests that organized PA is prefer-

able to sporadic and unorganized bouts. No previous studies have di-

rectly focused on the IV in relation to academic achievement, execu-

tive function and IQ. However, systematic reviews and meta-analyses 

found that intervention studies using PA breaks during school did 

Table 34 
Standardized β coefficients from 
linear regression models investi-
gating the association of activity-
rest pattern parameters derived 
from the hip accelerometer with 
academic achievement, execu-
tive function and IQ in children 
with overweight or obesity (n = 
95). 

Abbreviations in this page: 
CPM: counts per minute 
IQ: intelligence quotient 
IS: interdaily stability   
IV: intradaily variability 
L5: mean CPM of the 5 h with 
the lowest activity   
M10: mean CPM of the 10 h with 
the highest activity   
PA: physical activity 
TL5: timing of the L5 
TM10: timing of the M10 
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not improve academic achievement, but organized PA interventions 

did (e.g., after-school programs), mainly in mathematics 

[55,438,439]. These findings corroborate ours, since we found that 

less fragmented activity-rest patterns (lower IV) were associated 

with higher scores in mathematics and academic applications (i.e., 

problem solving).  

  

Early sleep type† 
(N = 31) 

 
Neither sleep 

type† 
(N = 41) 

 
Late sleep 

type† 
(N = 23) 

  

  Mean SE  Mean SE  Mean SE  P 

Academic achievement            
Reading  107.28 2.25  108.42 1.94  108.92 2.62  0.881 
Mathematics  101.81 1.78  102.63 1.54  99.91 2.07  0.576 
Writing  114.03 2.18  116.27 1.88  107.88 2.54  0.033‡ 

Academic skills  118.49 2.70  120.13 2.33  116.15 3.15  0.598 
Academic fluency   102.75 2.12  105.06 1083  101.81 2.47  0.518 
Academic applications   99.34 1.50  99.88 1.29  97.89 1.75  0.659 

Total achievement  108.86 1.99  110.42 1.72  106.92 2.32  0.476 

Executive function            
Cognitive flexibility   0.04 0.13  -0.01 0.11  -0.17 0.15  0.557 
Inhibition  43.72 2.81  40.26 2.43  42.71 3.28  0.468 
Working memory  64.91 2.89  67.83 2.50  61.52 3.37  0.322 
Executive function score  -0.06 0.10  0.06 0.09  -0.17 0.12  0.264 

IQ            
Cristal IQ  103.86 2.16  101.84 1.87  103.65 2.52  0.738 
Fluid IQ  95.68 2.26  97.22 1.95  99.78 2.63  0.504 
Total IQ  98.34 2.09  97.84 1.81  99.47 2.44  0.866 

Analyses were adjusted for sex, peak height velocity offset and parent education university level.  
† Early sleep type includes children whose sleep midpoint is before 4 am, Neither sleep type repre-
sents sleep midpoints between 4 am and 5 am and Late sleep type includes children with sleep mid-
point after 5 am. 
‡ Bonferroni correction for pairwise comparisons: Writing scores were significantly lower for the late 
group compared with neither group (-8.4 points; P = 0.029) 
Bolded font indicates statistical significance (P < 0.05) 

Furthermore, we found that earlier TM10 is associated with 

better writing, academic skills and fluid IQ. Concomitantly, those chil-

dren with a late sleep type (defined as sleep midpoint after 5 am) 

showed lower scores in writing. In agreement, a previous meta-anal-

ysis found lower academic achievement in adolescents with a late 

compared to early sleep type [395]. Likewise, lower IQ scores were 

observed in those children with late sleep type [427]. Altogether, it 

can be speculated that those children with later PA performance and 

late sleep type had attenuated associations (or no association) with 

academic achievement and IQ compared to children with earlier PA 

performance or early sleep type. More studies should investigate the 

appropriate timing for PA performance with larger cohorts and well-

designed studies. 

By contrast, social jetlag was not associated with academic 

achievement, executive function or IQ. Although Social jetlag is neg-

atively related to academic achievement and cognitive function in ad-

olescents [428], its relevance at younger ages is under-reported. A 

possible explanation is that children still present an overall low so-

cial jetlag since their activity during weekends is not substantially 

displaced to night-time, which would support our findings. More 

studies with larger sample sizes are needed to confirm our findings. 

Table 35 
Means and standard error (SE) 
of academic achievement, execu-
tive function and IQ indicators 
according to early, neither and 
late types in children with over-
weight or obesity (n = 95). 

Abbreviations in this page: 
CPM: counts per minute 
IQ: intelligence quotient 
IV: intradaily variability 
M10: mean CPM of the 10 h with 
the highest activity   
TM10: timing of the M10 
SE: standard error 
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Previous findings provide support for total GMV in various 

brain regions as a potential underlying factor that could explain the 

observed positive associations of PA and sleep with academic 

achievement, executive function and IQ [400]. Since we were under-

powered to test the various mediation models in this study, we de-

cided to consider total GMV as a potential mediator. However, we did 

not find that total GMV mediated the associations between activity-

rest pattern and academic achievement, executive function and IQ in 

children with overweight/obesity. This may indicate that a detailed 

study of certain brain regions would be needed to find the mediation 

role of GMV. In this regard, the main brain region underlying circa-

dian rhythms is the suprachiasmatic nucleus in the hypothalamus. 

Given the small size of this brain region (i.e., around 2 mm3) further 

complications may be added when trying to isolate this region. Other 

mechanistic pathways including variability in functional connectivity 

should be also investigated. 
Table 36. Total, direct and indirect effects of the simple mediation analyses investigating total GMV as a mediator in 
the association of activity-rest circadian rhythm with academic achievement, executive function and IQ (n = 95). 

Pre-
dictor Outcome Total effect (c) Direct effect (c’) Path a Path b 

Indirect effect 
(ab) 

BC 95% CI 
(lower, up-
per) 

Sobel test 

 
Academic 
achievement       

 

IV Reading -0.219 (0.109)* -0.207 (0.111) -0.171 (0.101) 0.069 (0.114) -0.012 (0.024) -0.100, 0.013 -0.570 (0.021) 
IV Mathematics -0.238 (0.105)* -0.215 (0.106)* -0.171 (0.101) 0.131 (0.109) -0.022 (0.031) -0.130, 0.010 -0.980 (0.023) 

IV 
Academic appli-
cations  

-0.262 (0.104)* -0.234 (0.105)* -0.171 (0.101) 0.163 (0.108) -0.028 (0.031) -0.133, 0.006 -1.127 (0.025) 

IV 
Total achieve-
ment 

-0.225 (0.106)* -0.204 (0.108) -0.171 (0.101) 0.123 (0.110) -0.021 (0.028) -0.120, 0.008 -0.933 (0.023) 

L5 Academic fluency 0.200 (0.100)* 0.189 (0.099) 0.061 (0.090) 0.192 (0.116) 0.012 (0.018) -0.008, 0.074 0.627 (0.019) 

TM10 Writing -0.229 (0.101)* -0.223 (0.100)* -0.041 (0.093) 0.145 (0.114) -0.006 (0.016) -0.059, 0.014 -0.417 (0.014) 
TM10 Academic skills -0.256 (0.095)** -0.255 (0.095)** -0.041 (0.093) 0.041 (0.108) -0.002 (0.010) -0.036, 0.010 -0.288 (0.006) 

 
Executive func-
tion 

       

IS 
Cognitive flexibil-
ity 

0.149 (0.074)* 0.150 (0.075) -0.012 (0.093) 0.055 (0.084) -0.001 (0.013) -0.038, 0.018 -0.127 (0.005) 

IS Working memory 0.233 (0.099)* 0.234 (0.099)* -0.012 (0.093) 0.082 (0.112) -0.001 (0.017) -0.050, 0.027 -0.127 (0.008) 

IS 
Executive func-
tion score 

0.145 (0.058)* 0.145 (0.058)* -0.012 (0.093) 0.017 (0.066) 0.0001 (0.008) -0.019, 0.014 -0.115 (0.002) 

IV 
Executive func-
tion score 

-0.146 (0.064)* -0.148 (0.065)* -0.171 (0.101) -0.012 (0.067)  0.002 (0.013) -0.016, 0.040 0.178 (0.012) 

 IQ        
L5 Fluid IQ 0.215 (0.099)* 0.206 (0.099)* 0.061 (0.090) 0.160 (0.115) 0.010 (0.015) -0.007, 0.061 0.609 (0.016) 
L5 Total IQ 0.206 (0.095)*  0.192 (0.093)* 0.061 (0.090) 0.227 (0.109)* 0.014 (0.019) -0.013, 0.071 0.645 (0.021) 
TM10 Fluid IQ -0.219 (0.102)* -0.213 (0.101)* -0.041 (0.093) 0.166 (0.115) -0.007 (0.018) -0.065, 0.015 -0.422 (0.016) 
TM10 Total IQ -0.271 (0.096)** -0.262 (0.094)** -0.041 (0.093) 0.229 (0.107)* -0.009 (0.023) -0.076, 0.023 -0.432 (0.022) 

Data presented as standardized coefficients (SE) and BC 95%CI based on 5000 bootstraps. All analyses were adjusted for sex, peak height velocity 
offset and parent education university level.  

Thus far, there is little information on whether PA and sleep 

benefits also appear specifically in children with overweight/obesity. 

For example, Crova et al. found higher benefits of PA on cognitive 

performance in children with overweight compared to normal-

weight children [378], although most previous research did not find 

the weight status to be a modifier of this association [55]. In this 

study, we found some promising associations that could guide the 

appropriate designs of lifestyle interventions to amplify the effects of 

PA on brain health in children with overweight/obesity. The major 

limitations of this study are the cross-sectional design and the 

Abbreviations in this page: 
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GMV: grey matter volume 
IQ: intelligence quotient 
IS: interdaily stability   
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PA: physical activity  
SE: standard error 
TM10: timing of the M10 
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limited sample size for the mediation analyses. The cross-sectional 

design hinders the investigation of the mechanisms underlying the 

associations found. Likewise, there might be uncontrolled confound-

ers, e.g., screen time before bed, which could affect the activity-rest 

patterns. Such influences on the association with brain health out-

comes should be further investigated. Strengths of this study are: the 

use of objective assessment of the activity-rest pattern from hip- and 

wrist-worn accelerometers; the use of standardized tests to assess 

academic achievement, cognition and IQ; the use of MRI (gold-stand-

ard) to study the potential mechanistical pathway of the GMV for the 

observed associations; and the focus on children with overweight or 

obesity, which are a public health concern. 

Perspectives 
A more stable and less fragmented activity-rest pattern is asso-

ciated with better academic achievement, executive function and IQ 

in children with overweight/obesity. Likewise, earlier PA occurrence 

is preferable for academic achievement, executive function and IQ in 

this population. Altogether, these findings provide insights into fac-

tors that contribute to the appropriate design of effective PA pro-

grams for children with overweight or obesity. Future studies should 

confirm these findings with larger sample sizes that investigate the 

mechanistic pathways responsible for the associations depicted.

Abbreviations in this page: 
GMV: grey matter volume 
IQ: intelligence quotient 
MRI: magnetic resonance image 
PA: physical activity 
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Abstract 

Background | Childhood obesity is a risk factor for later T2D and 

CVDs, as well as mental disorders.  

Aims | The aim of our study was to investigate the effects of 

an exercise program on cardiometabolic and mental 

health in children with overweight or obesity.  

Methods | A total of 98 (N = 47 exercise group, mean age 

10.4±1.1 years) children with overweight or obesity 

participated in the two-arm ActiveBrains RCT. The 

ActiveBrains exercise program included a combina-

tion of aerobic and resistance training from Monday 

to Friday during 20 weeks. The outcomes were cardi-

ometabolic health and mental health. 

 Results | The ActiveBrains exercise program reduced meta-

bolic syndrome (MetS) risk score around 30% (95% 

confidence interval, CI: -0.65 to 0.03) compared to 

control group, which was confirmed with the use of 

two different validated MetS risk scores. The exercise 

program had a positive effect on cardiometabolic 

health by reducing the BMI (-0.60 kg/m2, 95% CI: -

1.07 to -0.13), the fat mass index (-0.70 kg/m2, 95% 

CI: -1.03 to -0.36), and visceral adipose tissue (-34.05 

g, 95% CI: -61.38 to -6.73); and increasing cardi-

orespiratory fitness (+3.07 ml/kg/min, 95% CI: 0.68 

to 5.45) in the exercise group compared to the control 

group. More participants in the exercise group re-

duced their MetS risk score compared to the control 

group (MetS 1: 30 vs. 45%; MetS 2: 23 vs. 59%). No 

effects were observed on mental health outcomes. 

Conclusion | The ActiveBrains exercise program improved cardi-

ometabolic health in children with overweight or 

obesity, but it had no effect on mental health. These 

findings support public health initiatives promoting 

exercise programs in children with obesity to prevent 

future comorbidities. 

 

 

 

Clinical Trial registration no. NCT02295072

Key Points 

Question 
Can a 20-week exercise pro-
gram improve the cardiometa-
bolic and mental health in 
children with overweight or 
obesity? 

Findings 
The ActiveBrains exercise pro-
gram improved the cardi-
ometabolic health and more 
children experienced mean-
ingful changes in the exercise 
group compared with the con-
trol group. Mental health was 
not affected 

Meaning 
These findings support public 
health initiatives promoting 
exercise in children with over-
weight or obesity and should 
be considered in future exer-
cise programs 

Abbreviations in this page: 
BMI: body mass index 
CI: confidence interval 
CVD: cardiovascular disease 
MetS: metabolic syndrome 
MVPA: moderate-to-vigorous 
physical activity 
RCT: randomized controlled trial 
SB: sedentary behaviour 
T2D: type 2 diabetes 
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Introduction 

Around 380 million people live with T2D worldwide [440], 

which might double their risk of CVD [441]. Obesity is a risk factor 

for T2D and CVD [48], and this condition may onset in childhood. Of 

concern, T2D is increasing in youth with obesity across the globe 

[50,442]. Thus, best practice prevention of T2D and CVD should ini-

tiate fighting against obesity in childhood. Children with obesity are 

often characterized by poor cardiometabolic [45,46,443] and mental 

health [47]. Exercise is considered an essential component of obesity 

treatment programs in children due to its physical, psychological, 

and cognitive benefits [51]. However, few studies have examined the 

parallel effects of exercise on cardiometabolic and mental health in 

children with obesity, being therefore unable to compare whether 

the effect sizes are larger in the cardiometabolic or mental health di-

mension. 

The HEARTY study demonstrated exercise benefits on cardi-

ometabolic health [444], physical fitness [445], and mental health 

[446] in adolescents with obesity. In children, previous trials found 

benefits of exercise on visceral fat [447,448], HDL, LDL [447,449], in-

sulin resistance [448], blood pressure [450], body composition 

[448,449], and CRF [448–450]. However, none of these studies in 

children included mental health indicators to elucidate the parallel 

effects of exercise in cardiometabolic and mental health in children 

with obesity. Indeed, a recent systematic review and meta-analysis 

conducted by our group found insufficient evidence for the effect of 

exercise on the children’s mental health [451].  

Although previous studies found effects on at least one dimen-

sion of cardiometabolic health, the effects were inconsistent across 

studies. Moreover, none of the abovementioned trials analyzed the 

effects of the exercise program on a composite metabolic syndrome 

(MetS) risk score, which is relevant to quantify the overall risk for 

future T2D, CVD, and other cardiometabolic diseases [452,453]. Like-

wise, only one previous trial reported the percentage of children 

with obesity experiencing meaningful changes in their cardiometa-

bolic health and body composition [454]. Given the well-known 

multi-organ effects of exercise, it is relevant to shed light on the par-

allel effects of exercise on cardiometabolic and mental health in chil-

dren with obesity. This holistic approach will guide policy makers in 

the implementation of strategies to target an array of health out-

comes in children with obesity. Therefore, the primary aim of our 

study was to investigate the effects of a 20-week exercise program 

on cardiometabolic and mental health in children with overweight or 

obesity. Our secondary aim was to examine the within-individual 

variability in the effects observed. 

Abbreviations in this page: 
CRF: cardiorespiratory fitness 
CVD: cardiovascular disease 
HDL: high-density lipoprotein 
cholesterol 
HEARTY: Healthy Eating Aerobic 
and Resistance Training in Youth 
LDL: low-density lipoprotein cho-
lesterol 
MetS: metabolic syndrome 
T2D: type 2 diabetes 
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Methods  

Study design and participants 

This study investigated the effects on secondary outcomes of 

the ActiveBrains RCT (http://profith.ugr.es/activebrains, 

NCT02295072). The primary aim of the ActiveBrains RCT was to in-

vestigate the effect of an exercise program on brain and cognitive 

function in children with overweight and obesity [63]. The rationale, 

protocol, and inclusion criteria are described elsewhere [63]. In brief, 

a total of 109 pre-pubertal children (8-11 years) with overweight or 

obesity [248], and not presenting any neurological or physical prob-

lem (including ADHD) took part in the ActiveBrains RCT [63]. Partic-

ipants were randomly assigned to either the exercise program (N = 

57) or the wait-list control group (N = 52). A person not involved in 

the assessments performed a computer-based simple randomization 

procedure for group allocation after baseline data collection. Partici-

pants entered in the ActiveBrains RCT in three different waves for 

feasibility reasons. Figure 41 depicts the participants flowchart of 

the project. The ActiveBrains RCT [63] was approved by the Human 

Research Ethics Committee of the University of Granada.  

Exercise program 

The ActiveBrains exercise program had a duration of 20 weeks 

and was based on the global recommendations on PA for children 

(i.e., 60 min/day of MVPA, including aerobic and muscle-bone 

strengthening activities) [8]. Five sessions per week were offered 

(from Monday to Friday), of which participants were recommended 

to attend at least to three sessions per week. Each session lasted 90 

min and included warm-up (5-10 min), aerobic exercise (60 min), re-

sistance training (20 min), and cool-down (5-10 min). The Active-

Brains exercise program was mainly based on aerobically-demand-

ing games and resistance exercises using bodyweight, elastic re-

sistance band (i.e., therabands, TM resistance bands), and stability 

balls (i.e., fitballs), involving all major muscle groups [63]. Detailed 

information about the exercise program can be found in ESM 11. 

Heart rate monitors (POLAR RS300X, Polar Electro Oy Inc., Kempele, 

Finland) were programmed for each child based on their baseline 

age, sex, weight, height, and maximum heart rate obtained in a pre-

vious incremental maximal test. Heart rate monitoring was used to 

track participants’ exercise intensity in every session and adapt the 

games or instructions if needed. Children spent an average of 38 min 

per session above 80% of their maximum heart rate. The SAAFE prin-

ciples (i.e., Supportive, Active, Autonomous, Fair and Enjoyable) pro-

posed by Lubans et al. to maximize the effects of exercise on physical 

and mental health were met [455]. All sessions were delivered by 

trainers with university studies in sport sciences. Weekly meetings 

Abbreviations in this page: 
ADHD: attention-deficit hyper-
activity disorder 
ESM: electronic supplementary 
material 
MVPA: moderate-to-vigorous 
physical activity 
PA: physical activity 
RCT: randomized controlled 
trial 
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were conducted with the trainers to determine if the sessions were 

running as they were previously programmed. 
  All  Control group  Exercise group 

  N Mean (SD) or %  N Mean (SD) or %  N Mean (SD) or % 

Sex           
Girls (n %)  41 42%  25 49%  16 34% 
Boys (n %)  57 58%  26 51%  31 66% 

At risk of dyslipidemia  42 43%  26 51%  16 34% 
Pre-diabetes  3 3%  0 0%  3 6% 
Pre-hypertension  9 9%  4 8%  5 11% 
Age (y)  98 10.1 (1.1)  51 10.1 (1.1)  47 10.0 (1.1) 
Peak height velocity (y)  98 -2.2 (1.0)  51 -2.1 (1.1)  47 -2.4 (0.9) 

Cardiometabolic health          
LDL (mg/dL)  85 101.1 (24.6)  44 103.1 (24.3)  41 98.9 (24.9) 
HDL (mg/dL)  94 50.9 (11.2)  49 50.0 (10.5)  45 52.1 (11.9) 
Triglycerides (mg/dL)  94 96.3 (46.0)  46 100.1 (48.8)  45 92.2 (43.1) 
Triglycerides-to-HDL (mg/dL)  94 2.2 (1.9)  49 2.2 (1.5)  45 2.2 (2.2) 
HOMA  88 2.9 (2.0)  45 2.8 (2-0)  43 3.0 (2.1) 
Mean arterial pressure (mmHG)  96 71.3 (12.3)  49 70.4 (12.5)  47 72.3 (12.2) 
Body mass index (kg/m2)  98 26.9 (3.6)  51 26.4 (3.0)  47 27.4 (4.1) 
Fat mass index (kg/m2)  97 11.8 (2.8)  50 11.4 (2.3)  47 12.4 (3.2) 
Lean mass index (kg/m2)  97 13.9 (1.5)  50 13.9 (1.4)  47 14.0 (1.6) 
Waist circumference (cm)  96 90.5 (9.8)  51 89.7 (8.6)  47 91.3 (11.0) 
Visceral adipose tissue (g)  79 402.8 (114.7)  41 391.4 (105.7)  38 415.1 (123.9) 
CRF performance (laps)  96 15.4 (6.9)  49 15.7 (6.9)  47 15.0 (6.9) 
Speed-agility fitness (s)  96 15.2 (1.6)  49 15.0 (1.6)  47 15.3 (1.5) 
Upper-limb muscular strength (kg)  97 16.8 (4.2)  50 16.9 (4.0)  47 16.7 (4.5) 
Lower-limb muscular strength (cm)  96 104.0 (17.8)  49 105.6 (18.6)  47 102.3 (17.0) 
MetS score 1*  92 -0.011 (0.551)  47 -0.064 (0.525)  45 0.045 (0.577) 
MetS score 2†  86 -0.039 (0.636)  44 -0.093 (0.597)  42 0.017 (0.677) 

Mental health          
Stress (0 – 30)‡  95 5.9 (3.3)  49 6.3 (3.1)  46 5.4 (3.4) 
Anxiety (20 – 60)‡  94 33.7 (7.3)  49 34.3 (7.0)  45 33.0 (7.5) 
Depression (0 – 54)‡  98 8.6 (5.1)  51 9.3 (5.2)  47 7.7 (4.9) 
Negative affect (10 – 30)‡  94 16.1 (3.5)  49 16.4 (3.6)  45 15.7 (3.5) 
Positive affect (10 – 30)‡  96 24.3 (2.9)  50 24.4 (2.9)  46 24.3 (3.0) 
Happiness (4 – 28)‡  98 22.7 (3.9)  51 22.3 (3.7)  47 23.1 (4.1) 
Optimism (6 – 30)‡  97 21.9 (4.0)  50 21.9 (4.1)  47 22.0 (3.9) 
Self-efficacy (10 – 40)‡  97 30.8 (4.9)  50 30.3 (5.2)  47 31.3 (4.4) 
Self-concept (30 – 300)‡  96 227.0 (29.0)  49 225.2 (30.1)  47 228.8 (28.0) 
Self-esteem (10 – 40)‡  97 32.9 (4.7)  50 32.5 (4.4)  47 33.3 (4.9) 
Psychological ill-being**  87 0.025 (0.739)  46 0.133 (0.705)  41 -0.097 (0.766) 
Psychological well-being††  94 -0.028 (0.641)  48 -0.091 (0.636)  46 0.037 (0.647) 
Total mental health‡‡  85 -0.016 (0.559)  44 -0.094 (0.533)  41 0.067 (0.582) 

Data analyses were primarily conducted under the per-protocol principle, i.e., attending to 70% of the sessions 
or keep the usual lifestyle for exercise and control groups, respectively. 
*MetS score 1 was calculated as the normalized mean of the z-scores for HDL cholesterol, waist circumference, 
triglycerides, glucose, and the average of systolic and diastolic blood pressure. 
†MetS score 2 was calculated as the normalized mean of the z-scores for waist circumference, triglycerides to 
high-density lipoprotein ratio, mean arterial pressure and fasting insulin. 
‡Score range for the questionnaire. 
**Psychological ill-being was calculated as the normalized mean of the z-score for stress, anxiety, depression, 
and negative affect. 
††Psychological well-being was calculated as the normalized mean of the z-score for positive affect, happiness, 
optimism, self-efficacy, self-concept, and self-esteem. 
‡‡ Total mental health was calculated as the normalized mean of the z-score for all mental health indicators. 
***Standard T-scores (i.e., 50 ± 10) from the Behavioral Assessment System for Children (BASC). 

Measurements 

Measurements were conducted at baseline and repeated after 

the exercise program finished in both the exercise and control 

groups. PA was monitored at baseline and during the delivery of the 

exercise program (10th week) in both groups. Assessors were not 

blinded to the participants’ group allocation due to budget re-

strictions in the staff employed for the trial. Detailed information on 

the measurements is provided elsewhere [63]. Sociodemographic 

data were reported by children and their parents. At baseline, biolog-

ical maturation was assessed with the peak height velocity from 

Table 37 
Descriptive characteristics of 
the ActiveBrains participants 
meeting the per-protocol cri-
teria at baseline. 
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height and sitting height measurements using the Moore’s equations 

[92]. 

 

Cardiometabolic health  

Cardiometabolic health outcomes included the traditionally-

considered risk factors for MetS (i.e., hyperglycemia, hypertension, 

and dyslipidemia) [63], as well as body composition, inflammatory 

biomarkers, and physical fitness, which are closely related to cardi-

ometabolic health [143,456]. Blood lipids biomarkers included fast-

ing LDL, HDL cholesterol, and triglycerides. The triglycerides-to-HDL 

ratio was calculated. Fasting insulin and glucose were obtained from 

blood samples and the HOMA (homeostatic model assessment) index 

was calculated as insulin (μU/mL) multiplied by glucose (mg/dL) 

and divided by 405. All blood samples were collected at the hospital 

between 8:00 am and 10:30am after a minimum of 8h overnight fast-

ing, and were analyzed by an accredited laboratory. Systolic and di-

astolic blood pressure were assessed twice in a sitting position from 

Figure 42 
Flowchart of the study. 
For final ITT analyses, those partici-
pants that left the study during the 
exercise program or did not com-
plete the post-exercise program as-
sessments were imputed (see Statis-
tical section). 
Nmax: Maximum N for analyses, it 
changes depending on the variable, 
see Table 1 and ESM 12 Tables S1 
and S3 for the main study outcomes. 
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the left arm with an automatic sphygmomanometer (Omron M6, 

Hoofddorp, The Netherlands), and the lowest values out of the two 

measures was retained for analyses. The systolic and diastolic aver-

age, and the mean arterial pressure were calculated. Additionally, the 

risk of dyslipidemia (based on an alteration of the blood lipids, either 

triglycerides and/or HDL), pre-diabetes (glucose) and pre-hyperten-

sion (systolic and diastolic blood pressure) were classified based on 

the age- and sex-specific cut-offs that are linked to the Adult Treat-

ment Panel III and International Diabetes Federation criteria [457].  

Body weight and height were measured twice with an elec-

tronic scale and a stadiometer (SECA, Hamburg, Germany) with par-

ticipants barefoot and wearing light clothes, and the averages were 

recorded. BMI was calculated using the standard equation: kg/m2. 

Whole-body fat mass and lean mass, and visceral adipose tissue were 

measured via DXA (Discovery Horizon® DXA system, Hologic, Can-

ada ULC). Fat mass index and lean mass index were calculated as fat 

or lean mass in kilograms divided by height in meters squared 

(kg/m2). Abdominal obesity was represented by the average waist 

circumference from two measurements following standard proto-

cols [458]. Physical fitness components (i.e., CRF, speed-agility, and 

muscular fitness) were assessed using feasible, reliable, and valid 

tests for children [88–90]. Specifically, CRF was assessed using the 

20 m shuttle-run test [459]. The number of completed laps was rec-

orded and the Léger’s equation was used to estimate the relative 

VO2max in ml/kg/min [91]. Speed-agility fitness was assessed 

through the 4x10 m shuttle run test, where lower values indicate 

higher performance (i.e., less time to complete the circuit). Muscular 

fitness was assessed by the handgrip strength (i.e., upper-limb mus-

cular strength) and the standing long jump tests (i.e., lower-limb 

muscular strength). To account for the body mass, relative upper-

limbs strength was calculated as the ratio of the handgrip test to the 

body weight. We multiplied the distance reached jumping by the 

bodyweight to calculate the lower-limbs absolute strength (taking 

body weight into account). Both upper- and lower-limb strength in-

dicators were merged in a composite score indicator of overall mus-

cular fitness. Detailed information on the physical fitness testing can 

be found elsewhere [63]. 

Finally, two previously validated MetS risk scores were calcu-

lated [452,453]. The MetS score 1 averaged the specific z-scores for 

the variables included in the most-used definition of MetS (i.e., tri-

glycerides, inverted HDL, glucose, and the average of systolic, and di-

astolic blood pressure, and waist circumference) [453]. The MetS 

score 2, which has shown good structural validity in children at 

cross-sectional and longitudinal level [460], was calculated as the 
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normalized mean of the z-scores of waist circumference, triglycer-

ides-to-HDL, mean arterial pressure, and fasting insulin [452]. 

Mental health  

Children filled in the mental health questionnaires in three sep-

arate days. Both psychological ill-being and well-being components 

of mental health were assessed using valid self-reported question-

naires. Psychological ill-being included measures of stress (Chil-

dren’s Daily Stress Inventory, scored from 0 to 30), anxiety (State-

Trait Anxiety Inventory for Children, scored from 20 to 60), depres-

sion (Children’s Depression Inventory, scored from 0 to 54) and neg-

ative affect (Positive and Negative Affect Schedule for Children, 

scored from 10 to 30). Otherwise, psychological well-being included 

positive affect (Positive and Negative Affect Schedule for Children, 

scored from 10 to 30), happiness (Subjective Happiness Scale, scored 

from 4 to 28), optimism (Life Orientation Test-Revised, scored from 

6 to 30), self-efficacy (General Self-Efficacy, scored from 10 to 40), 

self-concept (Five-Factor Self-concept questionnaire, scored from 30 

to 300) and self-esteem (Rosenberg Self-Esteem Scale, scored from 

10 to 40). A detailed description of the mental health indicators as-

sessment and the tests psychometric information can be found else-

where [63]. Composite standardized scores were calculated for psy-

chological ill-being (i.e., stress, anxiety, depression and negative af-

fect), psychological well-being (i.e., positive affect, happiness, opti-

mism, self-efficacy, self-concept, and self-esteem) and total mental 

health (i.e., psychological ill-being multiplied by -1 and psychological 

well-being). 

Physical activity assessment  

Accelerometer-determined daily time spent in PA, SB, and sleep 

during the intervention were used to assess the ActiveBrains exer-

cise program fidelity (and possible contamination/compensation ef-

fects). Accelerometers (GT3X+, ActiGraph, Pensacola, Florida, USA) 

were placed on the right hip and the non-dominant wrist to monitor 

PA for seven days at baseline and during the intervention delivered 

period. The accelerometers raw data were processed as described 

elsewhere [266], following the practical recommendations previ-

ously done by our group [233]. In brief, a minimum of four valid days 

(i.e., ≥16 hours/day), including at least one weekend day, was re-

quired to be included in the analyses. We used the GGIR software 

[200] to identify the night sleep periods using an automated algo-

rithm guided by the self-reported sleep times [40,202]. Then, waking 

time was classified into MVPA, LPA, and SB using children-specific 

cut-points [61,62,68].  
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Statistical analysis 

Power analyses showed that a sample size of 98 children is 

enough to detect low-to-medium effect sizes assuming an α error of 

0.05 and 80% statistical power. Characteristics of the study partici-

pants are presented as mean and SD, or frequency and percentage. 

Prior to analyses, each outcome was winsorized when needed by re-

placing extreme values for the closest valid value to avoid the outli-

ers’ influence [461]. Then, baseline z-scores of the outcomes were 

calculated by subtracting their mean and dividing by their SD. Post-

exercise z-scores were calculated relative to the baseline mean and 

SD as a standardized measure of the effect size. Therefore, these 

post-exercise z-scores are indicative of change (i.e., the number of 

SDs that the outcomes deviated from their mean baseline value) 

[461].  

ANCOVA was used to test the effects of the ActiveBrains exer-

cise program on each outcome. For this, post-exercise outcome val-

ues were the dependent variables, group (i.e., exercise vs. control) as 

fixed factor, and baseline outcome data as covariates [461]. Analyses 

were primarily conducted under the per-protocol principle, i.e., at-

tending to 70% of the sessions. Additionally, as sensitivity analysis, 

we analyzed the data under the ITT principle including all partici-

pants and imputing the missing data using predictive mean matching 

multiple imputations [462]. We checked that missing data was miss-

ing at random prior to performing the multiple imputation. 

The within-individual change distribution was studied and the 

changes exceeding 0.2 Cohen’s D were considered meaningful, as this 

is accepted as the minimum relevant standardized effect size of an 

intervention [454]. Chi-square tests were used to compare the rate 

of meaningful changes observed in the exercise and the control 

group. Finally, changes in the daily time spent in MVPA, LPA, SB, and 

sleep during the exercise program (or usual lifestyle for the control 

group) were analyzed. We calculated the isometric log-ratios be-

tween each group’s compositional mean and the overall composi-

tional mean after centering the data at baseline and during exercise 

[326]. Then, we subtracted the baseline composition from the dur-

ing-exercise (or usual lifestyle) composition. Values in the change 

composition are represented as proportional changes (%) from the 

baseline overall composition. The Hotelling’s T-squared test for mul-

tivariate pair-wise comparisons was used to compare the change in 

the time-use composition between the control and the exercise 

group. All the statistical procedures were performed using the R soft-

ware (v. 4.0.0.). A significant difference level of P < 0.05 was set.  
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Results 

A total of 98 participants (N = 47 exercise group) were included 

in the per-protocol analysis (90% of the participants initially en-

rolled in the trial adhered to the recommended study protocol, i.e., 3 

sessions/week) (Figure 42). Participants in the exercise and control 

groups presented similar baseline characteristics (Table 37). At 

baseline, 43% of the children were at risk of dyslipidemia, 3% pre-

sented pre-diabetes, and 9% pre-hypertension. No significant differ-

ences were found regarding basic characteristics between the partic-

ipants included in the per-protocol analysis (N=98), and the rest of 

the participants (N=11, all P > 0.05). 

 

Cardiometabolic health 

Figure 43 and Table S1 (ESM 12) show the within- and be-

tween-groups pre-post differences in cardiometabolic health out-

comes in a graphical and tabulated format, respectively. We found a 

reduction in the LDL of 7.40 mg/dL (-14.82 to 0.016), the BMI (-0.60 

kg/m2, -1.07 to -0.13), the fat mass index (-0.70kg/m2, -1.03 to -0.36), 

Figure 43 
Effects of the ActiveBrains exer-
cise program z-score pre-post 
change between groups in car-
diometabolic risk outcomes 
(per-protocol analyses). 
Data analyses were primarily conducted 
under the per-protocol principle, i.e., at-
tending to 70% of the sessions. Baseline 
z-score of the outcomes were calculated 
by subtracting the mean value and di-
viding by the SD of each outcome. Post-
exercise z-scores were calculated rela-
tive to the mean and SD of the baseline 
values, being a z-score of the change in 
each outcome, i.e., (post-exercisei – 
baseline mean) / baseline SD. 
†MetS score 1 was calculated as the nor-
malized mean of the z-scores for HDL 
cholesterol, waist circumference, tri-
glycerides, glucose, and the average of 
systolic and diastolic blood pressure. 
‡MetS score 2 was calculated as the nor-
malized mean of the z-scores for waist 
circumference, triglycerides to high-
density lipoprotein ratio, mean arterial 
pressure and fasting insulin. 
*P < 0.05 
** P < 0.01 
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and the visceral adipose tissue of -34.05 g (–61.38 to –6.73) in the 

exercise group compared to the control group. CRF performance was 

higher after the exercise program in the exercise group compared to 

the control group (+3.07 laps, 0.68 to 5.45). The absolute muscular 

fitness was significantly reduced in the exercise group compared to 

controls (effect size = -0.16, -0.319 to -0.008), yet this difference was 

not present in the relative muscular fitness score (Table S1, ESM 

12). The ActiveBrains exercise program produced a meaningful (yet 

not statistically significant) reduction on the MetS scores in exercis-

ers compared to controls (effect sizes = -0.30 [-0.652 to 0.029] and -

0.29 [-0.628 to 0.048], in MetS score 1 and 2 respectively). Overall, 

the intention-to-treat analyses showed similar effects than observed 

in the per-protocol analysis (ESM 12, Table S2). 

More participants in the exercise group showed meaningful 

changes (i.e., reduction of ≥ 0.2 SD) compared to the control group in 

fat mass index (79% vs. 36%, P < 0.001) and CRF performance (65% 

vs. 38%, P = 0.020) (Figure 44). A marginal difference, yet non-sig-

nificant, was found in favor to exercise in BMI (34% vs. 16%, P = 

0.081). Significantly, more participants experienced meaningful 

changes in the exercise group compared to the control group in the 

MetS risk scores (MetS score 1: 45% vs. 30%, P=0.047; MetS score 2: 

59% vs. 23%, P = 0.007). Furthermore, since a 5% reduction in body 

weight is considered clinically relevant [463], we observed that the 

proportion of participants experiencing a clinically relevant change 

in the fat mass index was significantly higher in the exercise group 

compared to controls (34% vs. 79%, P<0.001, ESM 12, Figure S1). 

Mental health 

Figure 45 and Table S3 (ESM 12) show that the ActiveBrains 

exercise program did not affect any mental health outcome. Simi-

larly, intention-to-treat analyses showed no effect of the Active-

Brains exercise program on mental health (ESM 12, Table S4).  

Evidence of the exercise program fidelity 

As a measure of exercise program fidelity, Figure 46 shows the 

exercise-induced changes in physical behaviors derived from the 

hip- and the wrist-worn accelerometers (Panel A and Panel B, re-

spectively). A no significant but marginal difference in the time-use 

composition was found using the estimates based on the hip-worn 

accelerometer (P = 0.079, Panel A). Otherwise, the time-use compo-

sition was found significantly different between groups using the 

wrist-worn accelerometer estimates (P = 0.002, Panel B). Both the 

hip- and the wrist-based estimations agree on that the exercise group 

increased more the time devoted to MVPA than the control group 

(hip: +15% vs. +7% from baseline; wrist: +21% vs. +7% from base-

line). Likewise, the control group did not substantially alter their 

time in LPA, SB, and sleep from baseline, while the exercise group 
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substantially reduced their SB (hip: -6%; wrist: -14%) and sleep time 

(hip: -8%; wrist: -9%). 

 

Discussion 

The primary aim of our study was to investigate the effects of 

the ActiveBrains exercise program on cardiometabolic and mental 

health in children with overweight or obesity. Secondarily, we exam-

ined the within-individual variability in the effects observed. The Ac-

tiveBrains RCT demonstrated that a 20-week exercise program re-

duced the MetS risk around 30% (i.e., ~one-third of one SD of nor-

malized MetS scores) compared to usual lifestyle in children with 

overweight or obesity. It seems that changes in visceral adipose tis-

sue and LDL could drive this risk reduction. The participant rate pre-

senting meaningful changes in the MetS risk scores was markedly 

and significantly higher among exercisers than controls. These find-

ings were confirmed by two different and valid MetS risk scores 

[452,453]. In addition, the ActiveBrains exercise program substan-

tially improved the children’s body composition and the CRF, com-

pared to those randomized to the control group. Similar to cardi-

ometabolic health, the participant rate experiencing meaningful 

changes in body composition and CRF was higher in the exercise 

group than in the control group. No effects were observed on mental 

health. Finally, we observed that the exercise group incremented 

Figure 44 
Pre-post change distribution in 
the outcomes significantly af-
fected by the exercise program.  
Data analyses were primarily conducted 
under the per-protocol principle, i.e., at-
tending to 70% of the sessions. 
*MetS score 1 was calculated as the re-
normalized mean of the z-scores for 
HDL cholesterol. waist circumference. 
triglycerides. glucose. and the average of 
systolic and diastolic blood pressure.  
†MetS score 2 was calculated as the re-
normalized mean of the z-scores for 
waist circumference, triglycerides to 
high-density lipoprotein ratio, mean ar-
terial pressure and fasting insulin. 
P values from chi-squared test. 
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notably the daily time devoted to MVPA and reduced SB compared to 

controls during the exercise program, which confirms the exercise 

program fidelity. 

Cardiometabolic health 

In our opinion, our models depicted a sizeable effect, yet non-

significant, in the MetS risk (i.e., 0.3 SDs reduction in exercise com-

pared to control group). To note that the sample size for the MetS 

scores was substantially reduced due to data missingness (i.e., 74 

and 64 cases for MetS score 1 and 2, versus 91 cases for fat mass in-

dex), which may explain the non-significant P values for the effect 

sizes observed. Post hoc power analyses showed with the current 

sample size for the two MetS risk scores, i.e., 74 and 64 participants, 

we have power to detect changes ≥ 0.32 SDs with and ≥ 0.34 SDs re-

spectively for a given α error of 5% and statistical power of 95%. 

However, if the sample size for the MetS risk scores would have been 

91 participants (instead of 74 and 64 as it currently is due to miss-

ingness), as it is for FMI and other outcomes in our project, we would 

have power to detect changes ≥ 0.28 SDs with an α error of 5% and 

statistical power of 95%. These calculations clearly support the no-

tion that the effect size observed in our project for the two MetS risk 

scores, i.e., 0.3 SDs, is meaningful and would have been a significant 

(p<0.05) if these outcomes would have had the same sample size as 

the other study outcomes (e.g., fat mass index, 91 participants). The 

fact that out intervention improved MetS risk scores is further sup-

ported by the higher proportion of participants meaningfully reduc-

ing the risk in the exercise group compared to controls. The risk re-

duction was probably driven by improvements in blood lipids, total 

and visceral adiposity, and CRF. In this regard, our exercise group re-

duced their fasting LDL cholesterol by 8 mg/dL and their visceral ad-

ipose tissue by 34 g compared to the control group. Other blood lipid 

and adiposity markers showed a positive trend in the exercise com-

pared to the control group, but it was not statistically significant (e.g., 

waist circumference and HDL cholesterol).  

Our results agree with recent meta-analyses in children over-

weight or obesity on that concurrent aerobic and resistance training 

is effective to improve blood lipids, mainly LDL and triglycerides 

[464,465]. Likewise, we observed consistent effects with previous 

trials in children with overweight or obesity, such as reductions in 

visceral fat [447,448], LDL [447], and increments in HDL cholesterol 

[449,450]. Two of the previous RCTs in children with obesity addi-

tionally found effects on insulin resistance [448,450] while we did 

not. We believe that differences in the participants’ baseline charac-

teristics may account for our lack of effects on glucose metabolism 

biomarkers. In this regard, Farpour-Lambert et al. only included chil-

dren with obesity (excluding children with overweight) [450], while 
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the PLAY RCT analyzed 222 participants, of whom 85% had obesity 

and 28% were pre-diabetic [448]. Our sample included 98 children 

with overweight or obesity, of whom 77% had obesity, and only 3% 

were pre-diabetic. Otherwise, almost half of our participants were at 

risk of dyslipidemia [457]. Thus, there was more room for improve-

ments in blood lipids and adiposity than it was in glycemic metabo-

lism. Our participants were at healthy glycemic levels at baseline, 

which could produce a floor effect and the so observed lack of effects.  

 
Children in the ActiveBrains exercise program improved the 

body composition by reducing their total and visceral fat mass. These 

results are in line with the previous literature in children with obe-

sity regarding the reductions in BMI and fat mass [447–450]. Like-

wise, a recent network meta-analysis concluded that aerobic or the 

combined aerobic and resistance training effectively reduced adipos-

ity outcomes with similar magnitude as we observed in our study 

(BMI ~0.7 kg/m2 vs. our findings: 0.6 kg/m2) in children and adoles-

cents with overweight or obesity [464]. No less important, we found 

that a higher rate of participants experienced meaningful reductions 

Figure 45 
Effects of the ActiveBrains exercise 
program z-score pre-post change 
between groups in mental health 
(per-protocol analyses). 
Data analyses were primarily conducted un-
der the per-protocol principle, i.e., attending 
to 70% of the sessions. Baseline z-score of 
the outcomes were calculated by subtracting 
the mean value and dividing by the SD of 
each outcome. Post-exercise z-scores were 
calculated relative to the mean and SD of the 
baseline values, being a z-score of the 
change in each outcome, i.e., (post-exercisei 
– baseline mean) / baseline SD. 
*Psychological ill-being was calculated as 
the normalized mean of the z-score for 
stress, anxiety, depression, and negative af-
fect. 
†Psychological well-being was calculated as 
the normalized mean of the z-score for posi-
tive affect, happiness, optimism, self-effi-
cacy, self-concept, and self-esteem. 
‡ Total mental health was calculated as the 
normalized mean of the z-score for all men-
tal health indicators. 
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in their fat mass (i.e., 79% in the exercise vs. 36% in the control 

group), which is in line with the EFIGRO trial findings [454]. Other-

wise, the lean mass index was not affected by the ActiveBrains exer-

cise program. This is in line with a previous study using a similar in-

dicator of lean mass [447]. However, another RCT in children with 

obesity with a similar dose of resistance training described improve-

ments in FFM (+1.2 kg compared to controls) [450].  

Regarding physical fitness, the ActiveBrains exercise program 

improved CRF both the performance in the test (laps) and estimated 

VO2max. These results agree with previous trials in children with 

overweight or obesity, independently of the exercise protocol fol-

lowed [447–450]. The ActiveBrains exercise program did not im-

prove the children’s speed-agility or muscular fitness, which agrees 

with the EFIGRO trial findings, which used a similar exercise protocol 

in a sample of similar characteristics to ours [447]. The specificity of 

the resistance exercises performed might explain this finding, i.e., 

body-weight exercises instead of weightlifting may have produced 

benefits in muscular endurance instead of maximal strength or 

power (as measured by the handgrip and the standing long jump 

tests). Although the absolute muscular fitness was reduced in the ex-

ercise group compared to the control, this difference disappeared af-

ter using a score relative to the body weight. This is in line with the 

lack of effects of the ActiveBrains exercise program on the lean mass 

index. Thereby, given that not only CRF but also other fitness compo-

nents such as speed-agility or muscular fitness are relevant for health 

later in life [23], further trials targeting speed-agility and muscular 

fitness in children with overweight or obesity are needed. As previ-

ously found [454], the participant rate meaningfully improving CRF 

was higher in the exercise group compared to controls. 

None of the previous studies analyzed the effects of the exercise 

program on the composite MetS risk scores, which hampers compar-

isons in this regard. We believe it is a strength of our study to quan-

tify the effect on the composite MetS risk scores, which are valid 

measures of risk for T2D, CVD, and other cardiometabolic diseases 

[452,453]. Our findings are further strengthened by the investigation 

of the proportion of children experiencing meaningful changes in the 

control and the exercise groups. Using a similar approach, the 

EFIGRO trial found higher rates of meaningful changes in hepatic fat 

[454].  

Mental health 

Furthermore, the ActiveBrains exercise program did not affect 

mental health (i.e., psychological ill-being and well-being) in children 

with overweight or obesity. These results agree with a recent meta-

analysis in which no overall effect of exercise on mental health in 

children was described (effect size = 0.209, P = 0.141) [451]. 
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However, the studies included examining the effect of exercise in 

children with overweight or obesity showed inconsistent findings 

[466,467]. Seabra et al. concluded that a 20-week football program 

improved self-esteem in boys with overweight [466]. Alternatively, 

Romero-Perez et al., found no significant changes after 20-week aer-

obic exercise training in anxiety and a small reduction in depression 

in children with obesity [467]. Differences in our findings and the 

previous studies could be explained by the heterogeneity of the ex-

ercise program (type, only aerobic vs. aerobic and resistance train-

ing; and frequency, 2 vs. 3 to 5 sessions per week), characteristics of 

the study sample (sex, weight status), the mental health outcomes 

examined (individual dimensions vs. a complete set of psychological 

ill-being and well-being outcomes); and the study design (non-RCT 

vs. RCT).  

Although our intervention is in line with the principles defined 

by Lubans et al. [455] to maximize the effects of exercise on mental 

health, we believe that the lack of a protocol to control whether the 

sessions were conducted under these principles (to adapt the ses-

sions accordingly if needed) could explain the lack of effect observed. 

Likewise, it is possible that the large number of questionnaires im-

plied a high burden to participants. Since the mental health of chil-

dren with obesity is likely impaired [47,50], further studies propos-

ing effective lifestyle interventions to improve their mental health 

are urgently needed. We recommend that future trials monitor the 

acute effects on mental health in every session to find the best type, 

frequency, intensity, and duration of exercises to target mental 

health. Over time, high-intensity interval training might be a good 

strategy for improving mental health [468]. 

Practical implications 

First, our study is the first quantifying the risk reduction for 

MetS produced by an exercise program in childhood obesity. Chil-

dren with overweight or obesity are at high risk for future T2D and 

CVD [48]. Here, we demonstrate that a combined aerobic and re-

sistance training exercise program reduced risk of MetS by around 

30% in these children, probably driven by improvements in the 

blood lipids biomarkers, total and visceral adiposity, and CRF 

[469,470]. Another important implication of our study relates to the 

mental health benefits of exercise. Lubans et al. already described 

that exercise on its own may not be enough to improve mental health, 

and they proposed a series of characteristics of the exercise that 

should be followed to maximize the effects [455]. Based on the study 

findings, i.e., no effect on mental health, and the experience after car-

rying out the ActiveBrains RCT, we would recommend the monitor-

ing of the exercise sessions (i.e., intensity and methodology) and ex-

amination of mental health outcomes after each session to adapt the 
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exercise program as needed. Last, our study sheds light on the exer-

cise-induced changes in the time devoted to MVPA, LPA, SB, and sleep 

in children. We found that the exercise program promoted a health-

ier daily time-use composition, which is important for public health 

strategies by supporting that children with overweight or obesity 

might benefit from exercise programs by increasing the time spent 

in MVPA and decreasing the health consequences of SB.  

 

Limitations and strengths 

The strengths of our study include: the holistic view of both 

physical and mental health with a complete array of outcomes in chil-

dren with obesity; the quantification of two composite MetS risk 

scores; the description of the distribution of the meaningful change 

at individual level; the analysis of the exercise-induced changes in the 

daily time devoted to MVPA, LPA, SB and sleep using objective 

measures; the use of gold-standard measures of cardiometabolic 

health and body composition, reliable and valid physical fitness tests 

and mental health questionnaires; and the heart rate monitoring us-

ing individualized and ‘a priori’ programmed heart rate monitors. 

However, there are some limitations that should be noted. These 

study findings might be limited by the relatively low sample size for 

Figure 46 
Evidence of exercise program fi-
delity based on behavioral 
changes assessed from hip- 
(panel A) and wrist-worn (panel 
B) accelerometers observed from 
baseline to during the implemen-
tation of the ActiveBrains exer-
cise program. 
Data analyses were primarily conducted 
under the per-protocol principle, i.e., at-
tending to 70% of the sessions. Isometric 
log-ratios between each group’s composi-
tional mean and the overall compositional 
mean after centering the data at baseline 
and during exercise were calculated. 
P value from Hotelling’s T-squared test 
for pair-wise comparison of multivariate 
means. 
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some outcomes, which could make some of the statistical analyses 

underpowered to detect significant differences and by the fact that 

some of the evaluators were not blinded to the group allocation. We 

believe that most of the outcomes included in our study are objective 

or contained a large number of objective elements which are unlikely 

to be influenced by assessor blinding (i.e., cardiometabolic health, 

blood markers assessed in external laboratory, and body composi-

tion by DXA). However, it is possible that the lack of findings in men-

tal health is explained by the large number of questionnaires (alt-

hough they were collected in three different days to lower the partic-

ipants’ burden). 

Conclusion 

The ActiveBrains exercise program improved cardiometabolic 

health in children with overweight or obesity. The MetS risk score 

might be reduced by around 30%, which could be due to improve-

ments in blood lipids, total and visceral adiposity, and CRF. The lack 

of the effect on mental health need to focus more attention on exer-

cise environment and delivery. These findings support public health 

initiatives promoting exercise programs in children with obesity to 

reduce their risk for later comorbidities.  

Abbreviations in this page: 
CRF: cardiorespiratory fitness 
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Limitations 

The findings of the present Doctoral Thesis should be inter-

preted with caution due to a number of limitations. Specific limita-

tions of each study are presented in the Results and Discussion sec-

tion of each study and an overall view of the main limitations is pre-

sented here.  

Section I includes a systematic review, a software description 

article, four observational studies, and an expert consensus state-

ment. The systematic review (Study I) set basis for the rest of the 

thesis describing the state-of-the-art in the measurement of physical 

behaviours (i.e., PA, SB, and sleep) with accelerometers, and identi-

fying some research gaps that were approached in this Thesis. Nota-

bly, this review was limited by the only inclusion of one accelerome-

ter model (ActiGraph GT3X/+), other brands and models were omit-

ted by inclusion criteria. This could limit our understanding of the 

research field, yet this is unlikely given that ActiGraph was the brand 

by far most used in the field at that time and roughly 200 studies 

were included in the review [41]. An update including not only Acti-

Graph, but also other brands and open-access algorithms would pro-

vide useful information and make the field closer to a harmonization 

of accelerometer data collection and processing protocols. The Study 

II describes the software used for the accelerometer data processing 

in this Thesis (i.e., GGIR). The GGIR software could be limited in some 

functionalities, such as the lack of a validated algorithm to estimate 

sleep behaviours for children or the activity-rest indicators. How-

ever, GGIR continuously grows upon the research field demands with 

open-source contribution and usability policies.  

Studies III-VI are a set of cross-sectional analyses investigating 

the capacity of acceleration metrics to estimate PAEE and comparing 

accelerometer data derived from different data collection and pro-

cessing protocols. The fact that they are cross-sectional studies is less 

of a concern given the research objectives of these studies. However, 

longitudinal designs could have opened the venue to the investiga-

tion of accelerometer data variability along time. Likewise, the par-

ticipants differed across studies, limiting the generalization of find-

ings from some studies to others. In this regard, the estimation of 

PAEE from acceleration metrics (Study III) was performed in 5-year 

olds, which limited the usability of the PAEE equations in the other 

studies included in this Thesis. The rest of studies in the thesis fo-

cused on the participants of the ActiveBrains project (8-11-year olds 

with overweight or obesity). Although the sample is younger in Study 

III, this study provides valuable information and addressed a re-

search gap in the field related to PAEE estimation from wrist accel-

erometers. The fact that the Study IV was conducted in young adults 
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is less concerning since our aim here related to the comparability of 

the acceleration metrics, being less relevant the sample characteris-

tics as long as they provide a wide range of accelerations in which the 

metrics were tested.  

Another limitation that was repeated in Studies IV-VI is the lack 

of a criterion measure of the physical behaviours (i.e., PA, SB, and 

sleep) or related outcomes (e.g., steps). Under that constrain, our 

studies were limited to the comparability of the different protocols, 

metrics, and descriptors. However, we could not make inferences on 

what specific protocol, metric, or descriptor was the most accurate 

to quantify physical behaviours. Likewise, study V only included pub-

lished ENMO and VMCounts cut-points, which could be comple-

mented now by recently published cut-points for other acceleration 

metrics. Given that we used cross-sectional designs, we could not test 

the reliability and consistency of these protocols, metrics, and de-

scriptors. This limitation may be also considered in the studies in 

Section II. Our decisions on the specific protocols followed in each 

study of Section II were made based on the specific requirements of 

the research question to answer in each study. Additionally, sensitiv-

ity analyses on how different data collection and processing proto-

cols could have affected the specific findings of each study were car-

ried out. 

Similarly, Section II has several limitations to be considered. 

The cross-sectional design of Studies VIII-X limits the causation in-

terpretation. Thus, the associations observed between physical be-

haviours and brain health in this Thesis should be considered with 

caution and further confirmed in well-designed RCTs. Additionally, 

some of the analyses performed may lack enough statistical power 

given the limited sample size. In this regard, the ActiveBrains RCT 

was powered to find low-to-medium effect sizes on its primary re-

search question (i.e., effects of exercise on brain outcomes, academic 

achievement, and cognition). However, some analyses cross-sec-

tional analyses (especially the stratification of sample as in the Study 

VIII) on secondary outcomes (or some) might be underpowered. 

Thus, we may be ignoring some associations that future studies 

should investigate. Likewise, the use of accelerometers to quantify 

sleep-related behaviours might be criticized by the fact that we are 

not actually measuring sleep, but we estimate it from movement pat-

terns. However, accelerometers are the less-invasive objective 

method to assess sleep behaviours in free-living settings, while also 

providing good validity [38,40]. Sleep periods during the day (naps) 

are ignored in this Thesis upon the unavailability of an algorithm 

providing valid and objective measures of this behaviour. Finally, the 

ActiveBrains data collection implied a high burden to participants, 

primarily given the number of questionnaires they had to fill in. This 
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might affect those variables derived from questionnaires, where the 

subjectivity might produce inaccuracies. However, this is not a con-

cern for many of the variables in this Thesis (cardiometabolic varia-

bles, body composition, physical activity) as they were objectively 

collected; to note that we separated the assessments in five different 

days to reduce the participants’ burden. 

Strengths 

Notwithstanding, an overall view of the strengths of this Thesis 

is worth mentioning. First, both Section I and Section II benefit from 

a variety of study designs (i.e., systematic review, cross-sectional 

studies, consensus statement, and RCT) well complemented to reach 

meaningful conclusions for the PA promotion in children with over-

weight or obesity. Also relative to both sections, participants in all 

the studies reached high wear times with the accelerometers, which 

allowed for a better representation of their movement along the day. 

Likewise, the use of accelerometers to quantify physical behaviours, 

as the less invasive tool to objectively quantify physical behaviours 

in free living is another important strength of the Thesis. 

Specifically, in Section I, a major strength arises from the sys-

tematic review (Study I) as it is a comprehensive study that summa-

rizes information from the methodologies of a large number of stud-

ies in separate sections for age groups. This allows researchers to 

gain insights in the comparability of different methods and access 

meaningful information for assistance in the selection of specific data 

collection and processing decisions for their sample and research 

question characteristics. The GGIR software (described in Study II) 

is another strength of this thesis as it allows for transparent (open-

access) data processing of the raw accelerometer data. The use of 

doubly-labelled water, which is a gold standard for the measurement 

of PAEE in Study II is another important strength to consider. Be-

sides, the in-depth investigation of different data processing proto-

cols and their comparability is a step forward to reach the harmoni-

zation of findings in the field (Studies III-VI). In this sense, we in-

cluded from a variety of acceleration metrics (e.g., ENMO, MAD, 

VMCounts) to inferences of specific behaviours, such as MVPA, sleep, 

or steps among others.  

In Section II, gold-standard measurement techniques were 

used for GMV (MRIs, Studies VIII-IX), cardiometabolic health and 

body composition (blood samples, DXA, Study XI). This provide ac-

curate and reliable measures of the cardiometabolic and brain health 

of our participants. Similarly, the use of standard measures of aca-

demic achievement, executive function, and IQ is preferable over 

other measures that are more likely to be affected by subjectivity 

(such as academic grades). Another strength is the use of advanced 
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analytical approaches (e.g., compositional data analysis, multivariate 

pattern analysis, mediation models), which allows appropriate con-

clusions by handling the closure and multicollinearity often observed 

among accelerometer data descriptors. Finally, the focus on children 

with overweight or obesity, which can be greatly benefited from the 

conclusions obtained in this Thesis including a complete array of car-

diometabolic and brain health outcomes.  
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Looking back while moving forward 

As in sculling, the ‘boat’ containing the research on PA meas-

urement and on associations of PA with health should move forward 

while the rowers (researchers) keep an eye to backwards. I borrow 

this metaphor, which I completely agree with, from Prof. I-Min Lee, 

one of the most influential epidemiologists in PA and health of the 

last decades.  

The Section I of this Thesis focuses on PA measurement with 

accelerometers, the method of preference to objectively monitor 

physical behaviours in free-living settings at the moment. May the 

Study I serve as the look to the past with a comprehensive systematic 

review on the data collection and processing decisions of choice dur-

ing the last years in the field. Main advantages and limitations of the 

chosen decisions were described, which allowed us to define some 

future directions: 

• There was a need for further research on the compara-

bility of data collected from different body attachment 

sites, being the hip and wrists the preferred by the field 

at that time. 

• The field primarily relied on a single manufacturer of ac-

celerometers (ActiGraph), which comes with proprie-

tary data processing methods conducted. Thus, another 

important conclusion for future research was the need 

of open-source algorithms to process raw accelerome-

ter data and obtain consistent physical behaviour esti-

mates. 

• We also observed a clear under-reporting of the data 

processing protocols followed in many of the studies in-

cluded in the systematic review. We recommend future 

studies in the field to provide a clear description on how 

the data were processed to enhance data comparability 

and reproducibility of findings. 

• At the moment, the field would benefit from an update 

of this systematic review, which should be expanded to 

other accelerometer brands and open-access algo-

rithms.  

Some of these directions were followed by the rest of the stud-

ies included in this Thesis. Specifically, Section I of this Thesis con-

tributes to the field by making comparing backward (proprietary in-

formation) algorithms with newer (open-access) algorithms to pro-

cess raw accelerometer data and gain insight into physical behav-

iours quantification. The following research directions are recom-

mended attending at the Section I studies’ findings: 

Abbreviations in this page: 
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• The usefulness of open-access metrics is supported in 

future studies given that we observed higher correla-

tions between such metrics and PAEE (measured with a 

gold-standard) than using proprietary activity counts 

(Study III). However, future studies should also confirm 

this information in other cohorts of varying characteris-

tics. 

• Likewise, Study IV demonstrated that the movement 

pattern identified by different acceleration metrics is 

highly comparable, unless aggressive filtering tech-

niques are used. This also supports the use of accelera-

tion metrics and encourage more studies on whether 

the movement pattern associations with health vary 

upon the use of different acceleration metrics. 

• Dominant-wrist cut-points for PA intensity classifica-

tion in adults were missing in the field, and Study IV 

provided a comparable set of cut-points to others previ-

ously published in non-dominant wrist data. However, 

future studies should cross-validate these cut-points 

against indirect calorimetry to really understand their 

usefulness. 

• Study V shows that PA intensity and SB estimated from 

different cut-points are hardly comparable. Further data 

harmonization efforts are needed, as well as meta-anal-

yses using data from cut-points validation studies to 

propose a consensual set of cut-points to be used in dif-

ferent settings/projects. 

• One step further in the investigation of different acceler-

ation metrics that provide meaningful information on 

PA is done in Study VI. Step-based metrics are a good 

proxy to PA levels in children with overweight or obe-

sity, and walking seems to be a feasible intervention al-

ternative to meaningfully increase PA in children with 

overweight or obesity. However, further RCTs using on 

walking are needed to confirm this finding.  

The Study VII serves as link between physical behaviour meas-

urements and the investigation of their associations with health. The 

sculling metaphor is still present in this study, in which we summa-

rize the analytical approaches more frequently-used in the field (look 

backward) while proposing the research field needs and recommend 

future steps (moving forward). In this regard, the authors of this con-

sensus article agree that investigations determining associations be-

tween physical behaviours and health should be extended to under-

stand how is the physical behaviours interplay in their relationship 
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with health outcomes. We defined a short- and long-term agenda for 

the field, which is summarized as follows: 

• Clear communication on the rationale and limitations of 

the analytical approaches used in studies. 

• Investigation of new analytical approaches to handle the 

accelerometer data singularities (primarily closure and 

collinearity between variables). 

• Triangulation of results from different analytical ap-

proaches might be the best alternative at the moment to 

quantify the associations of physical behaviours with 

health outcomes. Following the decision tree designed 

in this consensus article (Figure 32) may assist re-

searcher on the selection of analytical approaches for a 

given research question. 

• Investigation of machine learning for diagnostic/prog-

nostic purposes is encouraged in the field. 

Finally, Section II is built upon the information obtained from 

the studies in Section I. All the data collection and processing deci-

sions, as well as the analytical approaches used, were made based on 

the findings obtained in the previous studies. Future directions can 

be also derived from the Section II studies in relation to the associa-

tions of physical behaviours with cardiometabolic and brain health 

in children with overweight or obesity: 

• First, we discussed previous findings on the lack of as-

sociations between PA and hippocampal GMV in chil-

dren (Study VIII). We observed than using appropriate 

analytical approaches, and considering the weight sta-

tus as moderator, some associations were observed. 

This finding is not even close to be conclusive, yet it 

opens a conversation worth exploring in future studies. 

• We also observed that some sleep-related behaviours 

were associated with GMV in several cortical brain re-

gions and the hippocampus, and this seemed to impact 

the children’s academic achievement and IQ (Study IX). 

This may open the venue for well-designed RCTs to in-

vestigate strategies to improve sleep quality in children 

and their impact on their brain health. 

• We also investigated the activity-rest pattern, its stabil-

ity and fragmentation, in relation to the brain health of 

children with overweight or obesity (Study XI). Future 

RCTs should consider stable and timely-appropriate ex-

ercise interventions when targeting brain health in chil-

dren with overweight or obesity. 

Likewise, we conducted a RCT on the effects of a 20-week exer-

cise program on the cardiometabolic and mental health of children 
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with overweight or obesity (Study XI). From this study, we derive 

the following recommendations for future research: 

• We used accelerometers in investigate the exercise pro-

gram fidelity in Study XI. Monitoring physical behav-

iours patterns at baseline and during the exercise pro-

gram implementation allows to quantify the partici-

pants compliance with the exercise program, as well as 

the contamination (likelihood of controls to engage on 

PA during the experiment) and compensation (likeli-

hood of exercises of quitting from other daily living PA 

during the experiment) effects. Future studies should 

consider this to measure the intervention fidelity. 

• We also believe that including a post-session acute eval-

uation of some mental health outcomes would have ben-

efitted our exercise program by allowing to adapt the 

exercise program to the participants’ needs. Future 

RCTs targeting mental health through exercise interven-

tions should consider this. 

Last but not least, there is a need of well-designed RCTs in chil-

dren with overweight or obesity to confirm the findings presented in 

this Thesis.
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General conclusion 

The conclusions from this International Doctoral Thesis are of 

value for the PA measurement and the PA epidemiology research 

fields. Section I provides valuable recommendations on best-prac-

tice accelerometer data collection and processing techniques to 

measure physical behaviours in free-living settings, as well as con-

sensus recommendations on analytical approaches for the field of PA 

epidemiology. Moreover, this Doctoral Thesis highlights the value of 

open-source data processing algorithms for the field, being more 

comparable and reproducible than proprietary algorithms. Likewise, 

The Section II demonstrates the important role of PA, SB, sleep, and 

the activity-rest pattern in relation with brain health outcomes in 

children with overweight or obesity. Finally, this Doctoral Thesis has 

demonstrated that meaningful and positive changes in cardiometa-

bolic health in children with overweight or obesity can be obtained 

with a 20-week exercise program, which should inform future health 

programs. 

Specific conclusions 

The specific conclusions reached in the studies included in this 

International Doctoral Thesis are detailed as follows: 

1. The systematic review (Study I) on accelerometer data 

collection and processing decisions provide practical 

considerations for the decision making based on exist-

ing literature. Importantly, researchers in the field 

should make their decisions depending on the popula-

tion’s age. Likewise, when selecting a specific cut-point 

or algorithm, it is important to apply the same criteria 

as in the original validation/calibration study.  

2. GGIR (described in Study II) provides a tool for re-

searchers to derive variables that characterize PA and 

sleep assessed in an objective manner. As a PhD student, 

I have actively helped to check and improve GGIR, in 

particular the time-use analysis functionality. 

3. A higher performance to predict PAEE and TEE was ob-

served for the open-source acceleration metrics versus 

VMCounts (Study III). Open-source acceleration met-

rics from the wrist explained up to 84% of the variance 

in TEE and 67% in PAEE after adjustments for weight 

and height. Overall, open-source metrics explained 

around 10-20% more of the variation in TEE and PAEE 

than VMCounts.  

4. Higher acceleration metric values were observed in the 

dominant wrist versus the non-dominant wrist in Study 

IV). ENMO and LFENMO were the metrics that 
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compared the best, and to some extent, they also 

showed good comparability with MAD for daily average 

values and for the movement pattern identified 

throughout the day. However, VMCounts were demon-

strated to be less comparable to the previously-men-

tioned metrics. 

5. Large discrepancies were observed in the time spent in 

SB and PA intensities across cut-points relative to differ-

ent body attachment sites and acceleration metrics in 

overweight or obese children (Study V). Furthermore, 

we provide a comprehensive comparison between 

available cut-points in order to better understand which 

cut-points provide comparable results and which ones 

not. Also, our data showed that it is not currently possi-

ble (and probably will never be) to know the prevalence 

of a population meeting the PA guidelines based on ac-

celerometer data, with differences from nearly none to 

nearly everyone meeting the guidelines.  

6. Step-based metrics including steps/day and various ca-

dence-based intensity indicators seem to capture the 

majority of PA (as recorded by daily CPM, LMVPA, and 

MVPA with accelerometers) in children with overweight 

or obesity (Study VI). 

7. The expert consensus article provided a comprehensive 

description of the analytical approaches most-fre-

quently used in the field to investigate the associations 

of physical behaviours (i.e., PA, SB, and sleep) with 

health (Study VII). Advantages and limitations of each 

approach are exposed and practical recommendations 

on the best-suited approaches for a given research ques-

tion are recommended. The authors also agreed on a set 

of consensus points and research needs which are rele-

vant for the physical behaviour epidemiology. 

8. Findings from the Study VIII indicate that PA and SB 

were not associated with GMV in the hippocampus in 

children with overweight or obesity. However, we found 

some evidence of moderation by weight status in the as-

sociations, so that reducing SB and engaging in more 

MVPA were associated with greater GMV in the right 

hippocampus. Specifically, reallocating 20 min/day 

from SB to MVPA would be associated with 100 mm3 

more GMV in the right hippocampus in children with 

obesity type I. 

9. Sleep behaviours, including timing, duration, and pat-

terns, were associated with GMV and, subsequently, 

Abbreviations in this page: 
CPM: counts per minute 
ENMO: Euclidean norm minus 1 G 
GMV: grey matter volume 
LFENMO: ENMO of the low-pass 
filtered raw accelerations 
LMVPA: light-moderate-vigorous 
physical activity 
MAD: mean amplitude deviation 
MVPA: moderate-to-vigorous 
physical activity 
PA: physical activity 
PAEE: physical activity-related 
energy expenditure 
SB: sedentary behaviour 
TEE: total energy expenditure 
VMCounts: activity counts in the 
vector magnitude  



Conclusions 

Page 347 of 385 

GMV was associated with academic achievement and IQ 

in children with overweight or obesity (Study IX). Total 

sleep time, sleep efficiency and WASO time seem to be 

specifically associated with the right hippocampus, but 

this subcortical region did not associate with academic 

achievement, executive function or IQ. Sleep behaviours 

seem important for GMV and academic achievement 

and, to a lesser extent, for IQ, but they were not associ-

ated with executive function. These associations were 

independent of SB and PA intensity.  

10. A more stable and less fragmented activity-rest pattern 

is associated with better academic achievement, execu-

tive function, and IQ in children with overweight or obe-

sity (Study X). Likewise, earlier PA occurrence is pref-

erable for academic achievement, executive function 

and IQ in this population. These associations seemed not 

to be mediated by overall brain GMV. 

11. The ActiveBrains exercise program improved cardi-

ometabolic health in children with overweight or obe-

sity. The MetS risk score might be reduced by around 

30%, which could be due to improvements in blood li-

pids, total and visceral adiposity, and CRF. The lack of 

effect on mental health need to focus more attention on 

exercise environment and delivery. 

All these findings support public health initiatives promoting 

exercise programs in children with overweight or obesity, as well as 

they provide meaningful information for exercise program planifica-

tion.  
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Academic experience and background 
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15/09/2016 – 18/12/2020  | Predoctoral fellow at University of Granada (FPU15/02645) 

  Funder: Spanish Ministry of Education, Culture and Sport 

  Supervisor: Francisco B. Ortega 

15/10/2015 – 14/09/2016 | Research assistant associated to the ActiveBrains project 

  Funder: Spanish Ministry of Economy and Competitiveness 

  Supervisor: Francisco B. Ortega 

06/10/2014 – 14/10/2015 | Research starting grant 

  Funder: University of Granada 

  Supervisor: Francisco B. Ortega 
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15/10/2015 – 18/12/2020  | Predoctoral student in Biomedicine 

  Organization: University of Granada 

  Supervisor: Francisco B. Ortega 

01/10/2014 – 30/06/2015 | MSc in research on physical activity and sport 

  Organization: University of Granada 

15/09/2009 – 30/06/2014 | BSc in physical activity and sport sciences 

  Organization: University of Granada 

Publications in peer-reviewed journals 

Journal publications derived from this thesis 

1 Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, La-

bayen I, Ruiz JR, Ortega FB. Accelerometer Data Collection and Processing Criteria to Assess 

Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. 

Sports Med 2017 Sep;47(9):1821–1845. PMID: 28303543  

Citations Google Scholar: 502  | Citations WOS: 308   

Highly cited paper (top-1% in citations) 

2 Migueles JH, Rowlands A V., Huber F, Sabia SS, van Hees VT. GGIR: A Research Community–

Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From 

Multi-Day Raw Accelerometer Data. J Meas Phys Behav 2019;2(3):188–196.  

Citations Google Scholar: 34 

3 Migueles JH, Delisle Nyström C, Henriksson P, Cadenas-Sanchez C, Ortega FB, Löf M. Accel-

erometer Data Processing and Energy Expenditure Estimation in Preschoolers. Med Sci 

Sports Exerc 2019;51(3):590–598. PMID: 30303935 

Citations Google Scholar: 4 | Citations WOS: 3   

4 Migueles JH, Cadenas-Sanchez C, Rowlands A V, Henriksson P, Shiroma EJ, Acosta FM, Ro-

driguez-Ayllon M, Esteban-Cornejo I, Plaza-Florido A, Gil-Cosano JJ, Ekelund U, van Hees VT, 

Ortega FB. Comparability of accelerometer signal aggregation metrics across placements 

and dominant wrist cut points for the assessment of physical activity in adults. Sci Rep 2019 

Dec 3;9(1):18235. PMID: 31796778 

Citations Google Scholar: 8 | Citations WOS: 3  
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5 Migueles JH, Cadenas-Sanchez C, Tudor-Locke C, Löf M, Esteban-Cornejo I, Molina-Garcia P, 

Mora-Gonzalez J, Rodriguez-Ayllon M, Garcia-Marmol E, Ekelund U, Ortega FB. Comparability 

of published cut-points for the assessment of physical activity: Implications for data harmo-

nization. Scand J Med Sci Sport 2019 Apr;29(4):566–574. PMID: 30548545 

Citations Google Scholar: 40 | Citations WOS: 28  

Top downloaded paper in 2018-2019 in the journal  

6  Migueles JH, Cadenas-Sanchez C, Aguiar EJ, Molina-garcia P, Solis-Urra P, Mora-Gonzalez J, 

Garcia-Marmol E, Shiroma EJ, Labayen I, Chillon P, Lof M, Tudor-Locke C, Ortega FB. Step-

Based Metrics and Overall Physical Activity in Children With Overweight or Obesity: Cross-

Sectional Study. JMIR mHealth uHealth 2020 Apr;8(4). PMID: 32343251 

Citations Google Scholar: 0 | Citations WOS: 0  

7 Migueles JH, …, Ortega FB. The GRANADA consensus on analytical approaches to assess as-

sociations with accelerometer-determined physical behaviours in epidemiological studies  

Submitted to Br J Sports Med 

8 Migueles JH, Cadenas-Sanchez C, Esteban-Cornejo I, Torres-Lopez LV, Aadland E, Chastin SF, 

Erickson KI, Catena A, Ortega FB. Associations of objectively-assessed physical activity and 

sedentary time with hippocampal gray matter volume in children with overweight/obesity. 

J Clin Med 2020 Apr 10;9(4). PMID: 32290290  

Citations Google Scholar: 1 | Citations WOS: 1  

9 Migueles JH, Cadenas-Sanchez C, Esteban-Cornejo I, Mora-Gonzalez J, Rodriguez-Ayllon M, 

Solis-Urra P, Erickson KI, Kramer AF, Hillman CH, Catena A, Ortega FB. Associations of sleep 

with gray matter volume and their implications for academic achievement, executive func-

tion and intelligence in children with overweight/obesity. Pediatr Obes 2020 Aug 13;e12707. 

PMID: 32790234  

Citations Google Scholar: 0 | Citations WOS: 0   

10 Migueles JH, Martinez-Nicolas A, Cadenas-Sanchez C, Esteban-Cornejo I, Muntaner-Mas A, 

Mora-Gonzalez J, Rodriguez-Ayllon M, Madrid JA, Rol MA, Hillman CH, Catena A, Ortega FB. 

Activity-rest circadian pattern and academic achievement, executive function and intelli-

gence in children with obesity. Scand J Med Sci Sports 2020 Oct. 

Citations Google Scholar: 0 | Citations WOS: 0  

11 Migueles JH, …, Ortega FB. Effects of exercise on cardiometabolic and mental health in chil-

dren with overweight or obesity: The ActiveBrains randomized controlled trial.  

In process to be submitted 

Other journal publications as first author not included in this Thesis 

1 Migueles JH, Cadenas-Sanchez C, Ortega FB. Critique of: “Physical Activity Assessment Be-

tween Consumer- and Research-Grade Accelerometers: A Comparative Study in Free-Living 

Conditions”. JMIR mHealth uHealth [Internet] 2017 Feb 27;5(2):e15. PMID: 28242591 

Citations Google Scholar: 4 | Citations WOS: 1   

2 Migueles JH, Lee I-M, Cadenas-Sanchez C, Ortega FB, Buring JE, Shiroma EJ. Investigating an 

“ideal” combination of time spent in physical activity and sedentary behavior that is associ-

ated with greatest reduction in mortality rates among older women. 

Under review in IJBNPA 
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Co-authored journal publications  

1 Torres-Lopez L V, Cadenas-Sanchez C, Migueles JH, 

Adelantado-Renau M, Plaza-Florido A, Solis-Urra P, 

Molina-Garcia P, Ortega FB. Associations of Seden-

tary Behaviour, Physical Activity, Cardiorespiratory 

Fitness and Body Composition with Risk of Sleep-

Related Breathing Disorders in Children with Over-

weight/Obesity: A Cross-Sectional Study. J Clin Med 

2020 May 20;9(5). PMID: 32443799 

2 Tenorio-Jiménez C, Martínez-Ramírez MJ, Tercero-

Lozano M, Arraiza-Irigoyen C, Del Castillo-Codes I, 

Olza J, Plaza-Díaz J, Fontana L, Migueles JH, Olivares 

M, Gil Á, Gomez-Llorente C. Evaluation of the effect 

of Lactobacillus reuteri V3401 on biomarkers of in-

flammation, cardiovascular risk and liver steatosis 

in obese adults with metabolic syndrome: a random-

ized clinical trial (PROSIR). BMC Complement Altern 

Med 2018 Nov 20;18(1):306. PMID: 30453950 

3 Sõritsa D, Mäestu E, Nuut M, Mäestu J, Migueles JH, 

Läänelaid S, Ehrenberg A, Sekavin A, Sõritsa A, Salu-

mets A, Ortega FB, Altmäe S. Maternal physical activ-

ity and sedentary behaviour before and during in 

vitro fertilization treatment: a longitudinal study ex-

ploring the associations with controlled ovarian 

stimulation and pregnancy outcomes. J Assist Re-

prod Genet 2020 Aug;37(8):1869–1881. PMID: 

32578030 

4 Solis-Urra P, Esteban-Cornejo I, Cadenas-Sanchez C, 

Rodriguez-Ayllon M, Mora-Gonzalez J, Migueles JH, 

Labayen I, Verdejo-Román J, Kramer AF, Erickson KI, 

Hillman CH, Catena A, Ortega FB. Early life factors, 

gray matter brain volume and academic perfor-

mance in overweight/obese children: The Active-

Brains project. Neuroimage 2019;202(Au-

gust):116130. PMID: 31465844 

5 Rodriguez-Ayllon M, Esteban-Cornejo I, Verdejo-Ro-

mán J, Muetzel RL, Migueles JH, Mora-Gonzalez J, 

Solis-Urra P, Erickson KI, Hillman CH, Catena A, Tie-

meier H, Ortega FB. Physical Activity, Sedentary Be-

havior, and White Matter Microstructure in Children 

with Overweight or Obesity. Med Sci Sports Exerc 

2020;52(5):1218–1226. PMID: 31876665 

6 Rodriguez-Ayllon M, Cadenas-Sánchez C, Estévez-

López F, Muñoz NE, Mora-Gonzalez J, Migueles JH, 

Molina-García P, Henriksson H, Mena-Molina A, Mar-

tínez-Vizcaíno V, Catena A, Löf M, Erickson KI, Lu-

bans DR, Ortega FB, Esteban-Cornejo I. Role of Phys-

ical Activity and Sedentary Behavior in the Mental 

Health of Preschoolers, Children and Adolescents: A 

Systematic Review and Meta-Analysis. Sports Med; 

2019 Sep;49(9):1383–1410. PMID: 30993594 

7 Rodriguez-Ayllon M, Cadenas-Sanchez C, Esteban-

Cornejo I, Migueles JH, Mora-Gonzalez J, Henriksson 

P, Martín-Matillas M, Mena-Molina A, Molina-García 

P, Estévez-López F, Enriquez GM, Perales JC, Ruiz JR, 

Catena A, Ortega FB. Physical fitness and psycholog-

ical health in overweight/obese children: A cross-

sectional study from the ActiveBrains project. J Sci 

Med Sport 2018 Feb;21(2):179–184. PMID: 

29031643 

8 Plaza-Florido A, Migueles JH, Sacha J, Ortega FB. The 

role of heart rate in the assessment of cardiac auto-

nomic modulation with heart rate variability. Clin 

Res Cardiol 2019;108(12):1408–1409. PMID: 

31139891 

9 Plaza-Florido A, Migueles JH, Mora-Gonzalez J, Mo-

lina-Garcia P, Rodriguez-Ayllon M, Cadenas-Sanchez 

C, Esteban-Cornejo I, Solis-Urra P, de Teresa C, Gu-

tiérrez Á, Michels N, Sacha J, Ortega FB. Heart Rate Is 

a Better Predictor of Cardiorespiratory Fitness Than 

Heart Rate Variability in Overweight/Obese Chil-

dren: The ActiveBrains Project. Front Physiol 

2019;10(MAY):510. PMID: 31133870 

10 Plaza-Florido A, Migueles JH, Mora-Gonzalez J, Mo-

lina-Garcia P, Rodriguez-Ayllon M, Cadenas-Sanchez 

C, Esteban-Cornejo I, Navarrete S, Maria Lozano R, 

Michels N, Sacha J, Ortega FB. The Role of Heart Rate 

on the Associations Between Body Composition and 

Heart Rate Variability in Children With Over-

weight/Obesity: The ActiveBrains Project. Front 

Physiol 2019;10(JUL):895. PMID: 31379602 

11 Plaza-Florido A, Alcantara JMA, Migueles JH, 

Amaro-Gahete FJ, Acosta FM, Mora-Gonzalez J, Sacha 

J, Ortega FB. Inter- and intra-researcher reproduci-

bility of heart rate variability parameters in three 

human cohorts. Sci Rep Nature Publishing Group 

UK; 2020 Jul 9;10(1):11399. PMID: 32647148 

12 Ortolá R, García-Esquinas E, Cabanas-Sánchez V, Mi-

gueles JH, Martínez-Gómez D, Rodríguez-Artalejo F. 

Association of Physical Activity, Sedentary Behavior, 

and Sleep With Unhealthy Aging: Consistent Results 

for Device-Measured and Self-reported Behaviors 

Using Isotemporal Substitution Models. Journals 

Gerontol Ser A 2020;XX(Xx):1–10. [doi: 10.1093/ge-

rona/glaa177] 

13 Ortega FB, Cadenas-Sanchez C, Migueles JH, Laba-

yen I, Ruiz JR, Sui X, Blair SN, Martínez-Vizcaino V, 

Lavie CJ. Role of Physical Activity and Fitness in the 

Characterization and Prognosis of the Metabolically 

Healthy Obesity Phenotype: A Systematic Review 

and Meta-analysis. Prog Cardiovasc Dis Elsevier Inc.; 

2018;61(2):190–205. PMID: 30122522 

14 Mora-Gonzalez J, Migueles JH, Esteban-Cornejo I, 

Cadenas-Sanchez C, Pastor-Villaescusa B, Molina-

García P, Rodriguez-Ayllon M, Rico MC, Gil A, Agui-

lera CM, Escolano-Margarit MV, Gejl AK, Andersen 

LBO, Catena A, Ortega FB. Sedentarism, Physical 
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Activity, Steps, and Neurotrophic Factors in Obese 

Children. Med Sci Sports Exerc 2019;51(11):2325–

2333. PMID: 31634295 

15 Mora-Gonzalez J, Esteban-Cornejo I, Solis-Urra P, 

Migueles JH, Cadenas-Sanchez C, Molina-Garcia P, 

Rodriguez-Ayllon M, Hillman CH, Catena A, Pontifex 

MB, Ortega FB. Fitness, physical activity, sedentary 

time, inhibitory control, and neuroelectric activity in 

children with overweight or obesity: The Active-

Brains project. Psychophysiology 

2020;57(6):e13579. PMID: 32249933 

16 Mora-Gonzalez J, Esteban-Cornejo I, Cadenas-San-

chez C, Migueles JH, Rodriguez-Ayllon M, Molina-

García P, Hillman CH, Catena A, Pontifex MB, Ortega 

FB. Fitness, physical activity, working memory, and 

neuroelectric activity in children with over-

weight/obesity. Scand J Med Sci Sports 2019 

Sep;29(9):1352–1363. PMID: 31058358 

17 Mora-Gonzalez J, Esteban-Cornejo I, Cadenas-San-

chez C, Migueles JH, Molina-Garcia P, Rodriguez-Ay-

llon M, Henriksson P, Pontifex MB, Catena A, Ortega 

FB. Physical Fitness, Physical Activity, and the Exec-

utive Function in Children with Overweight and 

Obesity. J Pediatr 2019;208:50-56.e1. PMID: 

30902422 

18 Molina-Garcia P, Mora-Gonzalez J, Migueles JH, Ro-

driguez-Ayllon M, Esteban-Cornejo I, Cadenas-San-

chez C, Plaza-Florido A, Gil-Cosano JJ, Pelaez-Perez 

MA, Garcia-Delgado G, Vanrenterghem J, Ortega FB. 

Effects of Exercise on Body Posture, Functional 

Movement, and Physical Fitness in Children With 

Overweight/Obesity. J strength Cond Res 

2020;34(8):2146–2155. PMID: 32459738 

19 Molina-Garcia P, Miranda-Aparicio D, Molina-Molina 

A, Plaza-Florido A, Migueles JH, Mora-Gonzalez J, 

Cadenas-Sanchez C, Esteban-Cornejo I, Rodriguez-

Ayllon M, Solis-Urra P, Vanrenterghem J, Ortega FB. 

Effects of Exercise on Plantar Pressure during Walk-

ing in Children with Overweight/Obesity. Med Sci 

Sports Exerc 2020;52(3):654–662. PMID: 31524828 

20 Molina-Garcia P, Migueles JH, Cadenas-Sanchez C, 

Esteban-Cornejo I, Mora-Gonzalez J, Rodriguez-Ay-

llon M, Plaza-Florido A, Vanrenterghem J, Ortega FB. 

A systematic review on biomechanical characteris-

tics of walking in children and adolescents with 

overweight/obesity: Possible implications for the 

development of musculoskeletal disorders. Obes 

Rev 2019;20(7):1033–1044. PMID: 30942558 

21 Medrano M, Arenaza L, Migueles JH, Rodríguez-

Vigil B, Ruiz JR, Labayen I. Associations of physical 

activity and fitness with hepatic steatosis, liver en-

zymes, and insulin resistance in children with over-

weight/obesity. Pediatr Diabetes 2020;21(4):565–

574. PMID: 32237015 

22 Leppänen MH, Migueles JH, Cadenas-Sanchez C, 

Henriksson P, Mora-Gonzalez J, Henriksson H, 

Labayen I, Löf M, Esteban-Cornejo I, Ortega FB. Hip 

and wrist accelerometers showed consistent associ-

ations with fitness and fatness in children aged 8-12 

years. Acta Paediatr 2020 Oct 4;109(5):995–1003. 

PMID: 31583747 

23 Jurado-Fasoli L, De-la-O A, Molina-Hidalgo C, Migue-

les JH, Castillo MJ, Amaro-Gahete FJ. Exercise train-

ing improves sleep quality: A randomized controlled 

trial. Eur J Clin Invest 2020 Mar;50(3):e13202. 

PMID: 31989592 

24 Henriksson P, Sandborg J, Blomberg M, Alexandrou 

C, Maddison R, Silfvernagel K, Henriksson H, 

Leppänen MH, Migueles JH, Widman L, Thomas K, 

Trolle Lagerros Y, Löf M. A Smartphone App to Pro-

mote Healthy Weight Gain, Diet, and Physical Activ-

ity During Pregnancy (HealthyMoms): Protocol for a 

Randomized Controlled Trial. JMIR Res Protoc 2019 

Mar 1;8(3):e13011. PMID: 30821695 

25 Gomez-Bruton A, Arenaza L, Medrano M, Mora-Gon-

zalez J, Cadenas-Sanchez C, Migueles JH, Muñoz-

Hernández V, Merchan-Ramirez E, Martinez-Avila 

WD, Maldonado J, Oses M, Tobalina I, Gracia-Marco 

L, Vicente-Rodriguez G, Ortega FB, Labayen I. Asso-

ciations of dietary energy density with body compo-

sition and cardiometabolic risk in children with 

overweight and obesity: role of energy density cal-

culations, under-reporting energy intake and physi-

cal activity. Br J Nutr 2019;121(9):1057–1068. 

PMID: 30724143 

26 Gil-Cosano JJ, Gracia-Marco L, Ubago-Guisado E, Mi-

gueles JH, Mora-Gonzalez J, Escolano-Margarit M V., 

Gómez-Vida J, Maldonado J, Ortega FB. Muscular Fit-

ness Mediates the Association between 25-Hy-

droxyvitamin D and Areal Bone Mineral Density in 

Children with Overweight/Obesity. Nutrients 2019 

Nov 14;11(11):1–10. PMID: 31739435 

27 Esteban-Cornejo I, Mora-Gonzalez J, Cadenas-San-

chez C, Contreras-Rodriguez O, Verdejo-Román J, 

Henriksson P, Migueles JH, Rodriguez-Ayllon M, 

Molina-García P, Suo C, Hillman CH, Kramer AF, Eri-

ckson KI, Catena A, Verdejo-García A, Ortega FB. Fit-

ness, cortical thickness and surface area in over-

weight/obese children: The mediating role of body 

composition and relationship with intelligence. Neu-

roimage 2019;186(November 2018):771–781. 

PMID: 30500426 

28 Esteban-Cornejo I, Cadenas-Sanchez C, Contreras-

Rodriguez O, Verdejo-Roman J, Mora-Gonzalez J, Mi-

gueles JH, Henriksson P, Davis CL, Verdejo-Garcia A, 

Catena A, Ortega FB. A whole brain volumetric ap-

proach in overweight/obese children: Examining 

the association with different physical fitness 
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components and academic performance. The Active-

Brains project. Neuroimage 2017;159(July):346–

354. PMID: 28789992 

29 Delisle Nyström C, Pomeroy J, Henriksson P, Forsum 

E, Ortega FB, Maddison R, Migueles JH, Löf M. Eval-

uation of the wrist-worn ActiGraph wGT3x-BT for 

estimating activity energy expenditure in preschool 

children. Eur J Clin Nutr Nature Publishing Group; 

2017;71(10):1212–1217. PMID: 28745334 

30 Chillón P, Herrador-Colmenero M, Migueles JH, Ca-

banas-Sánchez V, Fernández-Santos JR, Veiga ÓL, 

Castro-Piñero J, up&amp;down study group. Con-

vergent validation of a questionnaire to assess the 

mode and frequency of commuting to and from 

school. Scand J Public Health Sweden; 2017 

Aug;45(6):612–620. PMID: 30747037 

31 Cadenas-Sanchez C, Migueles JH, Ortega FB. Further 

Evidence on Cardiorespiratory Fitness as a Key Fac-

tor for the Metabolically Healthy Obese Phenotype 

Independent of the Race. J Adolesc Health Society for 

Adolescent Health and Medicine; 2019;64(3):290–

291. PMID: 30819330 

32 Cadenas-Sanchez C, Migueles JH, Esteban-Cornejo I, 

Mora-Gonzalez J, Henriksson P, Rodriguez-Ayllon M, 

Molina-García P, Löf M, Labayen I, Hillman CH, Ca-

tena A, Ortega FB. Fitness, physical activity and aca-

demic achievement in overweight/obese children. J 

Sports Sci Routledge; 2020 Apr 24;38(7):731–740. 

PMID: 32091309 

33 Cadenas-Sanchez C, Esteban-Cornejo I, Migueles JH, 

Labayen I, Verdejo-Román J, Mora-Gonzalez J, Hen-

riksson P, Maldonado J, Gómez-Vida J, Hillman CH, 

Erickson KI, Kramer AF, Catena A, Ortega FB. Differ-

ences in Brain Volume between Metabolically 

Healthy and Unhealthy Overweight and Obese Chil-

dren: The Role of Fitness. J Clin Med 2020;9(4):1059. 

[doi: 10.3390/jcm9041059] 

34 Cabanas-Sánchez V, Esteban-Cornejo I, Migueles JH, 

Banegas JR, Graciani A, Rodríguez-Artalejo F, Mar-

tínez-Gómez D. Twenty four-hour activity cycle in 

older adults using wrist-worn accelerometers: The 

seniors-ENRICA-2 study. Scand J Med Sci Sports 

2020 Apr;30(4):700–708. PMID: 31834945 

35 Béghin L, Vanhelst J, Drumez E, Migueles JH, An-

droutsos O, Widhalm K, Julian C, Moreno LA, De He-

nauw S, Gottrand F, HELENA study group. Gender in-

fluences physical activity changes during adoles-

cence: The HELENA study. Clin Nutr 

2019;38(6):2900–2905. PMID: 30718097 

36 Amaro-Gahete FJ, Acosta FM, Migueles JH, Ponce 

González JG, Ruiz JR. Association of sedentary and 

physical activity time with maximal fat oxidation 

during exercise in sedentary adults. Scand J Med Sci 

Sports Denmark; 2020 Sep;30(9):1605–1614. 

PMID: 32335956 

37 Alcantara JMA, Plaza-Florido A, Amaro-Gahete FJ, 

Acosta FM, Migueles JH, Molina-Garcia P, Sacha J, 

Sanchez-Delgado G, Martinez-Tellez B. Impact of Us-

ing Different Levels of Threshold-Based Artefact 

Correction on the Quantification of Heart Rate Vari-

ability in Three Independent Human Cohorts. J Clin 

Med 2020 Jan 23;9(2):325. PMID: 31979367 

38 Adelantado-Renau M, Beltran-Valls MR, Migueles 

JH, Artero EG, Legaz-Arrese A, Capdevila-Seder A, 

Moliner-Urdiales D. Associations between objec-

tively measured and self-reported sleep with aca-

demic and cognitive performance in adolescents: 

DADOS study. J Sleep Res 2019;28(4):e12811. PMID: 

30609171 

39 Acosta FM, Sanchez-Delgado G, Martinez-Tellez B, 

Migueles JH, Amaro-Gahete FJ, Rensen PCN, Lla-

mas-Elvira JM, Blondin DP, Ruiz JR. Sleep duration 

and quality are not associated with brown adipose 

tissue volume or activity-as determined by 18F-FDG 

uptake, in young, sedentary adults. Sleep 

2019;42(12):1–10. PMID: 31555815 

40 Acosta FM, Martinez-Tellez B, Sanchez-Delgado G, 

Migueles JH, Contreras-Gomez MA, Martinez-Avila 

WD, Merchan-Ramirez E, Alcantara JMAA, Amaro-

Gahete FJ, Llamas-Elvira JM, Ruiz JR. Association of 

Objectively Measured Physical Activity With Brown 

Adipose Tissue Volume and Activity in Young Adults. 

J Clin Endocrinol Metab United States; 2019 Feb 

1;104(2):223–233. PMID: 30137350 

41 Aadland E, Andersen LB, Migueles JH, Ortega FB, 

Kvalheim OM. Interpretation of associations be-

tween the accelerometry physical activity spectrum 

and cardiometabolic health and locomotor skills in 

two cohorts of children using raw, normalized, log-

transformed, or compositional data. J Sports Sci 

2020 Jul 29;1–12. PMID: 32723017 

42 Ubago-Guisado E, Gracia-Marco L, Medrano M, Cade-

nas-Sanchez C, Arenaza L, Migueles JH, Mora-Gon-

zalez J, Tobalina I, Escolano-Margarit MV, Oses M, 

Martín-Matillas M, Labayen I, Ortega FB. Differences 

in areal bone mineral density between metabolically 

healthy and unhealthy overweight/obese children: 

the role of physical activity and cardiorespiratory 

fitness. Pediatr Res Springer US; 2020;87(7):1219–

1225. PMID: 31822016 

43 Solis-Urra P, Olivares-Arancibia J, Suarez-Cadenas E, 

Sanchez-Martinez J, Rodríguez-Rodríguez F, Ortega 

FB, Esteban-Cornejo I, Cadenas-Sanchez C, Castro-

Piñero J, Veloz A, Chabert S, Saradangani KP, Zavala-

Crichton JP, Migueles JH, Mora-Gonzalez J, Quiroz-

Escobar M, Almonte-Espinoza D, Urzúa A, Dragicevic 

CD, Astudillo A, Méndez-Gassibe E, Riquelme-Uribe 
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D, Azagra MJ, Cristi-Montero C. Study protocol and 

rationale of the “Cogni-action project” a cross-sec-

tional and randomized controlled trial about physi-

cal activity, brain health, cognition, and educational 

achievement in schoolchildren. BMC Pediatr BMC 

Pediatrics; 2019;19(1):260. PMID: 31349791 

44 Martín-Matillas M, Mora-Gonzalez J, Migueles JH, 

Ubago-Guisado E, Gracia-Marco L, Ortega FB. Valid-

ity of Slaughter Equations and Bioelectrical Imped-

ance Against Dual-Energy X-Ray Absorptiometry in 

Children. Obesity (Silver Spring) 2020;28(4):803–

812. PMID: 32144886 

45 Cadenas-Sánchez C, Mora-González J, Migueles JH, 

Martín-Matillas M, Gómez-Vida J, Escolano-Margarit 

MV, Maldonado J, Enriquez GM, Pastor-Villaescusa B, 

de Teresa C, Navarrete S, Lozano RM, de Dios Beas-

Jiménez J, Estévez-López F, Mena-Molina A, Heras 

MJ, Chillón P, Campoy C, Muñoz-Hernández V, Martí-

nez-Ávila WD, Merchan ME, Perales JC, Gil Á, Ver-

dejo-García A, Aguilera CM, Ruiz JR, Labayen I, Ca-

tena A, Ortega FB. An exercise-based randomized 

controlled trial on brain, cognition, physical health 

and mental health in overweight/obese children 

(ActiveBrains project): Rationale, design and meth-

ods. Contemp Clin Trials Elsevier Inc.; 2016 

Mar;47:315–24. PMID: 26924671 

46 Mora-Gonzalez J, Esteban-Cornejo I, Migueles JH, 

Rodriguez-Ayllon M, Molina-Garcia P, Cadenas-San-

chez C, Solis-Urra P, Plaza-Florido A, Kramer AF, Eri-

ckson KI, Hillman CH, Catena A, Ortega FB. Physical 

fitness and brain source localization during a work-

ing memory task in children with overweight/obe-

sity: The ActiveBrains project. Dev Sci 2020 Oct 

9;e13048. PMID: 33037758

Books and book chapters 

1 Migueles JH, …, Ortega FB. Guía para la prevención y tratamiento de la obesidad infantil: 

experiencias de los proyectos ActiveBrains y EFIGRO.  

In process 

2 Patricio Solis-Urra, Migueles JH. Medidas de evaluación del nivel de actividad física. En Acti-

vidad física en la salud y enfermedad del niño y el adolescente.  

In production  

Distinguished communications in conferences (total = 66) 

Oral communications 

26/06/2019 | How do body attachment site and aggregation metrics affect accelerometer phys-

ical activity? 

 Migueles JH, …, Ortega FB 

 International Conference on Ambulatory Monitoring of Physical Activity and 

Movement (ICAMPAM), Maastricht (the Netherlands) 

15/02/2019 | Is physical activity associated with gray matter volume in children with over-

weight/obesity? 

  Migueles JH, …, Ortega FB 

  National congress of researchers PTS, Granada (Spain) 

23/06/2017 | Which is the best accelerometer-based metric to predict free-living energy ex-

penditure? 

Migueles JH, …, Ortega FB, Löf M 

International Conference on Ambulatory Monitoring of Physical Activity and 

Movement (ICAMPAM), Bethesda MD (USA) 

19/07/2017 | Collaborator speaker at the International Symposium ActiveBrains for all (1 hour) 

Migueles JH, …, Ortega FB 

Activebrains for all, Granada (Spain) 
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Poster presentations 

19/10/2017 | An evaluation of the accuracy of 4 different motion sensors at self-paced walking 

overground 

Migueles JH, …, Tudor-Locke C 

New England American College of Sports Medicine, Providence RI (USA) 

12/06/2017 | Combined effects of sleep behavior, sedentary time and physical activity on aca-

demic achievement in overweight/obese children: Results from the ActiveBrains 

project 

Migueles JH, …, Ortega FB 

ActiveBrains for All, Granada (Spain) 

Participation in research projects 

2019-2022 | HealthyMoms: smartphone app to promote healthy weight during pregnancy 

PI: M Löf | Role: adviser | Funding: €1,500,000 

2019-2021 | Cogni-Action: physical activity, brain health, cognition and educational achieve-

ment in children 

PI: C Cristi-Montero | Role: research assistant | Funding: €90,000 

2018-2020 | CoCA: Comorbid Conditional of Attention-deficit Hyperactivity Disorder (Granada, 

EU-funded project) 

Co-PI: FB. Ortega | Role: research assistant | Funding: €105,000 

2018-2020 | Australian based randomized controlled trial of physical activity for people with 

mental illness 

PI: Justin Chapman | Role: adviser | Funding: $115,000 

2018-2020 | SmarterMove: Exercise to prevent and treat obesity and insulin resistance  

PI: FB Ortega / JR Ruiz | Role: research assistant | Funding: €121,000 

2017-2019 | MINISTOP: Mobile-based intervention intended to stop obesity in Preschoolers 

PI: M Löf | Role: adviser | Funding: €265,000 

2017-2019 | ActiveBrains: Effects of exercise on brain and physical health in overweight/obese 

children 

PI: FB. Ortega | Role: research assistant | Funding: €145,200 

2017-2019 | ACTIBATE: Activating brown adipose tissue through exercise in young adults 

PI: JR. Ruiz | Role: research assistant | Funding: €120,000 

2017-2018 | Pilot study on accelerometer-based assessment of physical activity 

PI: FB. Ortega | Role: project manager | Funding: Non-funded 

Teaching experience 

2017-2019 | Fundamentals of handball (90 hours) 

BSc in physical activity and sport sciences 

2019-2020 | Physical activity and health (70 hours) 

BSc in physical activity and sport sciences 

2019-2020 | New trends in fitness (20 hours) 

BSc in physical activity and sport sciences 
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International stays 

Research stays 

26/01/2020 – 28/02/2020  | University of Pittsburgh 

  Pittsburgh PA (USA) 

  Supervisor: PhD Kirk I Erickson 

31/05/2019 – 07/07/2019  | Karolinska Institutet / Linköping University 

  Stockholm and Linköping (Sweden) 

  Supervisor: Prof Marie Löf 

16/09/2018 – 23/09/2018 | University of Pittsburgh 

  Pittsburgh PA (USA) 

  Supervisor: PhD Kirk I Erickson 

01/08/2018 – 28/10/2018  | National Institute on Aging 

  Baltimore MD (USA) 

  Supervisor: PhD Eric J Shiroma 

08/07/2018 – 14/07/2018  | eScience Center 

  Amsterdam (the Netherlands) 

  Supervisor: PhD Vincent T van Hees 

29/05/2018 – 08/06/2018  | Karolinska Institutet / Linköping University 

  Stockholm and Linköping (Sweden) 

  Supervisor: Prof Marie Löf 

25/11/2017 – 19/12/2017  | Northeastern University 

  Boston MA (USA) 

  Supervisor: Prof Charles H Hillman 

28/08/2017 – 25/11/2017  | University of Massachusetts Amherst 

  Amherst MA (USA) 

  Supervisor: Prof Catrine Tudor-Locke 

Teaching stays 

26/01/2019 – 02/02/2019  | Universitá Degli Studi di Roma “Foro Italico” 

  Rome (Italy) 

21/04/2018 – 28/04/2018  | University of Krakow 

  Krakow (Poland) 

Invited lectures, seminars and workshops 

17/04/2020 | Physical activity and cognition in children with overweight/obesity (8 hours) 

BSc in physical education, Prague (Czech Republic) – Online lecture 

16/04/2020 | Physical activity and sleep assessment with accelerometers (2 hours) 

MSc in research on physical activity and sport (UGR), Granada (Spain) 

28/02/2020 | Introductory workshop to accelerometer assessment of physical activity (4 hours) 

MSc in research on physical activity and sport (UCLM), Toledo (Spain) 

26/04/2019 | Sedentary time, physical activity and sleep with accelerometers (2 hours) 
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MSc in research on physical activity and sport (UGR), Granada (Spain) 

02/02/2019 | Effects of physical activity interventions on brain, cognition and academic achieve-

ment (8 hours) 

BSc in physical activity (Universitá Degli Studi "Foro Italico"), Rome (Italy) 

22/04/2018 | Brain, cognition and fitness and physical activity (8 hours) 

BSc in physical education (University of Krakow), Krakow (Poland) 

17/04/2018 | Objective assessment of physical activity and sleep (2 hours) 

MSc in research on physical activity and sport (UGR), Granada (Spain) 

19/02/2018 | Physical activity: concept and measurement (4 hours) 

MSc in food, exercise and sport for health (UGR), Granada (Spain) 

19/07/2017 | Workshop on assessment of physical activity with accelerometers (5 hours) 

Open seminar in University of Almería, Almería (Spain) 

26/04/2017 | Objective assessment of physical activity and sleep (2 hours) 

MSc in research on physical activity and sport (UGR), Granada (Spain) 

22/04/2017 | Physical activity metrics from accelerometer: raw and count based data (2 hours) 

Research group seminar (UGR), Granada (Spain) 

16/02/2017 | Workshop on accelerometer-based measurement of physical activity (2 hours) 

PREVIENE project training program (UGR), Granada (Spain) 

22/04/2016 | Objective assessment of physical activity and sleep (2 hours) 

MSc in research on physical activity and sport (UGR), Granada (Spain) 

Outreach activities 

Present | Co-developer of “GGIR: raw accelerometer data analysis” software (R package) 

30/09/2020 | Press release about the study on sleep and grey matter volume in children with 

overweight or obesity published in Pediatric Obesity. The press release ap-

peared on the major national media and I was interviewed by the National and 

some local radio stations about this study. 

21/10/2019 | Organization of the “International Workshop: a focus on statistical methods to an-

alyse accelerometer-determined physical activity” (University of Granada, Spain) 

12/06/2017 | Organization of the “International Symposium ActiveBrains for all: exercise, cog-

nition and mental health” (University of Granada, Spain) 

29/01/2018 - 28/02/2018 | Attendance to the “Scientific communication and dissemination” 

course and participation in the “Three-Minute Thesis” contest (classified as final-

ist) intended to communicate the thesis rationale and findings to the general 

population (video here). 

2018 - 2019 | Writing a novel with a background on Alzheimer Disease and participation in a 

national contest (awarded with the first prize). 

13/05/2020 | Press release on a communication activity using social media to promote physi-

cal activity during the COVID19 confinement (press note here). I performed this 
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activity within the “Physical activity and Health” module in the BSc in physical 

activity and sport sciences (University of Granada). 

Funding obtained 

2020 | Collaboration project with Accelting on GGIR functionalities development 

  Funder: Accelting© | Funding: 4,000 € 

2019-2020 | Erasmus+ teaching 

  Funder: ERASMUS | Funding: 1,200 € 

2018-2019 | Erasmus+ teaching 

  Funder: ERASMUS | Funding: 1,200 € 

2018-2019 | International mobility grant 

  Funder: Ministry of Education, Culture and Sports |Funding: 3,406 € 

2018-2019 | Funding for congresses participation 

  Funder: University of Granada | Funding: 600 € 

2017-2018 | Erasmus+ teaching 

  Funder: ERASMUS | Funding: 1,200 € 

2017-2018 | International mobility grant 

  Funder: Ministry of Education, Culture and Sports |Funding: 5,248 € 

2016-2017 | Funding for congresses participation 

  Funder: University of Granada | Funding: 600 € 

2016-2017 | International mobility grant 

  Funder: University of Granada | Funding: 2,600 € 

2016-2020 | University Teachers Training (main grant for PhD studies from the Spanish Ministry) 

  Funder: Ministry of Education, Culture and Sports |Funding: 80,000 € 

2015-2016 | Research assistant in the ActiveBrains project 

  Funder: University of Granada | Funding: 17,000 € 

2014-2015 | Starting research grant (for MSc students) 

  Funder: University of Granada | Funding: 1,800 € 

Awards 

2019 | Winner of the “Athenea” short stories contest 

2018 | Special award for BSc in physical activity and sport sciences 

2018 | Finalist in the University of Granada phase of the “Three-minute thesis” contest 

2016 | Special recognition for publishing a study in a 1st-decile JCR journal using the starting 

research grant funds 





 

 

 


