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referente. A mis maravillosos colegs, Salva, Vı́ctor, Ana, Simona, Antonio,
Guille, Gimmy, Sevilli, Cris, Manu, Pablo, David, Claudia, Lorena, Arturo
y la Momo, por ese sabio azar que nos quiso juntar en Granada estos años.
Sois cada uno un pequeño y apasionante universo. A todos mis amigos cuyos
nombres no quedan escritos, esta tesis también es gracias a vosotros.

Quero expressar a minha gratidão e o meu afeto a Alessandro Margheri e

v



vi AGRADECIMIENTOS

Carlota Rebelo. As calorosas boas-vindas durante a minha estadia em Lisboa
mostraram-me o lado mais humano deste trabalho. Quero também recordar
os momentos partilhados sob a luz de Lisboa com amigos como Marlo, Juned,
Renata, Vicente, Carlos, Myriam, Annabelle, Edo e Max.

My warmest thanks to all my colleges of research. It has been a plea-
sure to learn from all of you and to share this passion for science. Empiezo
por la Universidad de Granada, gente como Antonio Ureña, Pedro Torres,
Juan Soler y Juan Calvo, que me han hecho sentir parte de esta profesión.
Ringrazio anche il mio gruppo di ricerca dell’Università degli Studi di Roma
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Abstract

In this thesis we study the long term dynamics of some models of celestial
mechanics including dissipative effects. Our objective is to characterize so-
lutions with physical relevance from a theoretical point of view. We deal
with three models derived from the Two-Body problem. First, we consider
the Kepler problem with a biparametric family of dissipative forces, with a
singularity at the origin. This family represents several physical phenomena.
Here we give a fairly complete description of the qualitative asymptotic be-
havior of the solutions for a wide range of the parameters. Additionally, we
discuss the existence of an asymptotic first integral in some cases. Second, we
investigate the spin-orbit problem with a family of dissipative tidal torques.
We do so using its full non-autonomous form and allowing large orbital ec-
centricities. Specifically, we are interested in the existence and asymptotic
stability of a particular periodic solution that represents the capture into the
synchronous spin-orbit resonance. Our quantitative results are in correspon-
dence with real data of systems such as the Earth-Moon system. Third, we
develop a planar version of the Full Two-Body Problem model that gener-
alizes the dissipative spin-orbit model for two extended bodies with mutual
spin interaction: the spin-spin model. Following the analogy, we characterize
with analytical tools an asymptotically stable periodic solution that repre-
sents the double synchronous resonance. Likewise, our results are applied
to real bodies such as the Pluto-Charon system and the binary asteroid 617
Patroclus. Our results are based upon analytical methods from dynamical
systems, nonlinear analysis, theory of real analytic functions, etc., combined
with numerical simulations to validate the results.
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Resumen

En esta tesis estudiamos la dinámica a largo plazo de algunos modelos de
mecánica celeste que incluyen efectos disipativos. Nuestro objetivo es carac-
terizar soluciones con relevancia f́ısica desde un punto de vista teórico. Con-
sideramos tres modelos derivados del problema de los dos cuerpos. En primer
lugar, nos centramos en el problema de Kepler con una familia biparamétrica
de fuerzas disipativas. Esta familia incluye distintos fenómenos f́ısicos. Nue-
stros resultados dan una descripción bastante completa del comportamiento
asintótico de las soluciones para un amplio rango de los parámetros del prob-
lema. Además, discutimos la existencia de una integral primera asintótica en
algunos casos. En segundo lugar, analizamos el problema spin-orbit con una
familia de torques disipativos causados por fuerzas de marea. Aqúı estudi-
amos el modelo completamente no autónomo y consideramos órbitas con altas
excentricidades. Concretamente, nos interesa la existencia y la estabilidad
asintótica de una solución periódica particular que representa la captura en el
estado de rotación sincrónica del sistema. Nuestros resultados cuantitativos
son consistentes con medidas de casos reales, como el sistema Tierra-Luna.
En tercer lugar, desarrollamos un modelo plano del problema completo de
dos cuerpos: el modelo spin-spin. Este modelo generaliza el problema spin-
orbit disipativo para dos cuerpos extensos cuyas rotaciones están en influ-
encia mutua. Siguiendo la analoǵıa, utilizamos herramientas anaĺıticas para
caracterizar una solución periódica asintóticamente estable que representa
la rotación sincrónica doble. Asimismo, aplicamos nuestros resultados a sis-
temas reales como es el caso del sistema Plutón-Caronte y el asteroide binario
617 Patroclo. Nuestro resultados se basan en métodos anaĺıticos de sistemas
dinámicos, análisis no lineal, teoŕıa de funciones anaĺıticas, etc., en combi-
nación con simulaciones numéricas para contrastar los resultados.
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Sintesi

In questa tesi studiamo le dinamiche a lungo termine di alcuni modelli di
meccanica celeste che includono gli effetti dissipativi. Il nostro obiettivo è di
caratterizzare da un punto teorico le soluzioni che hanno rilevanza fisica. Ci
occupiamo di tre modelli derivati dal problema dei due corpi. In primo luogo,
consideriamo il problema di Keplero con una famiglia bi-parametrica di forze
dissipative e con una singolarità all’origine. Questa famiglia e’ rappresenta-
tiva di diversi fenomeni fisici. In questo lavoro forniamo una descrizione piut-
tosto completa del comportamento asintotico qualitativo delle soluzioni per
un’ampia gamma di parametri. Inoltre, in alcuni casi discutiamo l’esistenza
di un integrale primo asintotico. In secondo luogo, analizziamo il problema
spin-orbita con una famiglia di coppie di marea dissipative. Per questo stu-
dio utilizziamo la forma non autonoma del modello e consententiamo elevate
eccentricità orbitali. In particolare, siamo interessati all’esistenza e alla sta-
bilità asintotica di una particolare soluzione periodica che rappresenta la
cattura nella risonanza sincrona spin-orbita. I nostri risultati quantitativi
sono in corrispondenza con dati reali di sistemi fisici come il sistema Terra-
Luna. In terzo luogo, sviluppiamo una versione planare del modello ”Full
Two-Body Problem” che generalizza il modello dissipativo spin-orbita per
due corpi estesi e che include l’interazione reciproca degli spin’ ci riferiamo
a questo caso come il modello spin-spin. Seguendo l’analogia con gli altri
modelli, caratterizziamo con strumenti analitici una soluzione periodica as-
intoticamente stabile che rappresenta la doppia risonanza sincrona. I nostri
risultati vengono poi applicati a corpi reali come il sistema Plutone-Caronte
e l’asteroide binario 617 Patroclo. I risultati ottenuti si basano su metodi
analitici derivati dalla teoria dei sistemi dinamici, analisi non lineare, teo-
ria delle funzioni analitiche reali, ecc., combinati con simulazioni numeriche
utilizzate per convalidare i risultati.
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Chapter 1

Introduction

1.1 The scope of this thesis

In this thesis we study the asymptotic dynamics of some low dimensional
models related to the Two-Body problem involving a dissipative phenomenon.
We consider three problems, that are described as follows.

In the first problem, a dissipative Kepler problem, developed in Chapter 2,
we consider the orbital evolution of a particle in a Keplerian potential created
by another particle fixed at the origin. The moving particle is affected by a
large family of dissipative forces that are proportional to its velocity and have
a singularity at the origin. These forces depend on two parameters whose val-
ues distinguish several physical phenomena, such as viscous friction and the
Poynting-Robertson effect. Our results give a general theoretical description
of the global asymptotic dynamics as time goes to infinity. Particularly, we
analyse the changes in the qualitative asymptotic behavior when we vary the
parameters of the dissipative force. Additionally, in some cases we discuss
the existence and further properties of a first integral that is an asymptotic
Runge-Lenz vector. This research is developed in the following paper.

A. MARGHERI AND M. MISQUERO, A dissipative Kepler problem with
a family of singular drags. Celest. Mech. Dyn. Astr. 132, 17 (2020).
https://doi.org/10.1007/s10569-020-9956-7

In the second problem, the spin-orbit problem in Chapter 3, we study
the spin evolution of an extended body, when it moves in a Keplerian po-
tential created by a point mass. Here we include a family of dissipative tidal
torques, generalizing the well-known MacDonald torque, [75]. We deal with
the synchronous spin-orbit resonance of the problem, say, when the spin is
T -periodic, where T is the orbital period. More precisely, we deal with the
existence and asymptotic stability of a particular periodic solution of the

1



2 CHAPTER 1. INTRODUCTION

full non-autonomous problem, that has a complicated pendulum-like struc-
ture. This study includes large orbital eccentricities. Our results, both for
the conservative and the dissipative problem, are rigorous and have a direct
application to real systems. Particularly, our quantitative results on the dis-
sipative mechanism are consistent with data from the Earth-Moon system.
The corresponding article is the following.

M. MISQUERO AND R. ORTEGA, Some Rigorous Results on the 1:1 Res-
onance of the Spin-orbit Problem. SIAM J. Appl. Dyn. Syst. (In press)
(2020). Preprint available at
https://www.ugr.es/~ecuadif/files/MisqueroOrtega.pdf

In the last problem, the spin-spin problem in Chapter 4, we deal with
two extended bodies orbiting around each other in Keplerian orbits. Here we
are focused on the mutual spin interaction and consider only the MacDonald
dissipative torque that they exert on each other. We develop the model in an
analogous way as the spin-orbit model, and we study it following an outline
similar to the one in Chapter 3. That is, we are interested in a particular
solution with physical relevance, the double synchronous resonance: when
both spins have the same period as the orbital one. We want to prove that
such solution exists and it is asymptotically stable. The main difference with
respect to the spin-orbit model is that now we deal with one more degree of
freedom.

M. MISQUERO, The spin-spin model and the capture into the double syn-
chronous resonance Submitted. Preprint available at https://www.ugr.es/

~ecuadif/files/Misquero.pdf

The rest of the current introductory chapter is organized as follows.

Section 1.2 contextualizes the topics included in this thesis. It is of opta-
tive reading since it does not include original content, but it gives a general
overview of three important aspects. First, Section 1.2.1 discusses the role
of the dissipation in celestial mechanics, a discipline historically linked to
the conservative point of view. Second, Section 1.2.2 reviews some remark-
able previous works that have contributed to dissipative celestial mechanics,
with special stress on theoretical studies. Third, Section 1.2.3 introduces
some concepts used along the rest of the text and defines, from a physical
perspective, the dissipative forces that this thesis is concerned with.

The reader interested in the results of the thesis can directly go to Sec-
tion 1.3. Each of its subsections corresponds to each of the models and all of
them have the same structure. In the first subsection we describe the model
and cite some results existing in the literature. The second subsection is
dedicated to enumerate specific objectives of our research dealing with the
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presented model. The third subsection is devoted to make a general exposi-
tion of the results achieved in this thesis. The results are in correspondence
with the mentioned objectives. The fourth subsection contains the most im-
portant specific methods that led us to our results. This can serve as a guide
to follow the steps of the proofs given in the dedicated chapters: Chapter 2
- The Kepler problem with singular drags, Chapter 3 - Stability of the 1:1
spin-orbit resonance and Chapter 4 - The spin-spin model. In the last sub-
section there is a discussion of the results compared to the literature and we
present some future work as a continuation of our research.
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1.2 The context of this thesis

1.2.1 Dissipation in celestial mechanics

Dissipation and its role. This thesis is devoted to the study of the ef-
fect of certain dissipative forces in the motion of stars, planets, natural and
artificial satellites, etc. This motion is primarily dictated by their mutual
gravitational influence. However, the force of gravity alone is not enough to
explain how celestial bodies move in the space as we observe today. In a
few words we can say that, there are many physical processes beyond grav-
ity that transform mechanical energy into heat (dissipation of energy). This
heat is ultimately transferred from the hot parts of the system to the cold
ones, leading to a balance of temperature. In this context, dissipative effects
embody the fact behind the second law of thermodynamics: as time goes
forward, nature tends to specific states of equilibrium. Or in other words,
gravitation makes some motions possible, but dissipation chooses which ones
become permanent.

Celestial mechanics in the old times and today. Celestial mechanics
includes the mathematical methods that help us to understand how the ce-
lestial bodies move. It is indeed a very old discipline. In the search to explain
the harmony of the heavens, Kepler discovered the laws that rule the motion
of the planets. In this way we learned that their orbits were ellipses instead
of perfect circles. Later, celestial mechanics was well established thanks to
the Newtonian foundations of dynamics. In that moment we learned that
the force that attracts everything to the ground was the same that moves the
huge bodies up in the sky. Further developments of celestial mechanics have
always been guided by the fact that the skies were not as ideal as we thought
before. The timeless question of the stability of the solar system received an
unexpected answer by Poincaré at the end of the 19th century. We learned
then that the Three-Body problem is chaotic1, say, its behavior is almost
impossible to predict. This is far from the ideally steady universe conceived
by Kepler. Later, the actual observation of chaos in the solar system and
the possibility of performing advanced numerical simulations confirmed us
the vast complexity of the dynamics of the celestial bodies. At present, we
have a particularly challenging situation due to the astonishing development
of astronomy, astrophysics and space science, in general. In one hand, as-
trophysics has conceived very elaborated theories on the formation of stars,
planetary systems, galaxies, etc. Such theories are well based on the classi-

1At least for some values of the masses.
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fication of the huge variety of observed astronomical objects. On the other
hand, the expansion of the aerospace industry of the last decades provide
many practical problems involving the dynamics of artificial satellites and
space mission design. In fact, we have to deal with new dynamical situations
that were hardly imagined before, but are becoming real now. All this dis-
cussion confronts us with the need of developing new and powerful dynamical
models adapted to the description of the evolving worlds of astronomy and
the special circumstances of the space exploration. In this context, a huge
computational power is necessary, but we also need to develop theoretical
tools that optimize the available resources.

Theoretical approach. At this point, it is worth mentioning that, al-
though the motivation is practical, the approach of this thesis is mainly the-
oretical. More specifically, we will deal with very simplified models and prove
rigorous results with physical significance. This means that our intention is
not to provide realistic answers, but to be precise in the mathematical formu-
lation of some physical problems including dissipation and in the results. As
a consequence, the applicability of this research relies on the fidelity of the
models that we have chosen. Indeed, in this thesis not only the mathematical
techniques have a central role, but also the models themselves. For example,
in this thesis we will deal with a model (we call it spin-spin model) that has
not been studied much so far, but we think it has great potential. This is
an elementary model that helps us to understand the rotational dynamics of
two extended bodies interacting gravitationally. Apart from this model, in
line with classical models of celestial mechanics, we will put the emphasis on
how the dissipation is integrated in the dynamics of the bodies.

Conservative celestial mechanics. The theory of Hamiltonian systems
is nowadays the fundamental theoretical framework of celestial mechanics.
This is a very rich mathematical field, widely used in the past, as well as in
modern physics. Its predominant role in celestial mechanics was mainly due
to the advances in perturbative techniques developed in the second half of the
20th century. Their suitability for numerical implementation have reinforced
the relevance of these methods. Normal forms, KAM theory, Nekhoroshev’s
theory, Arnold diffusion, etc. have been the core of the theoretical methods
used in celestial mechanics, see for example [23]. It is remarkable the appli-
cation of KAM theory to the question of the stability of the solar system.
Actually, many of these tools have entered into the language of astronomy
and astrophysics. The book Modern celestial mechanics [94], by A. Mor-
bidelli, has been an important contribution in this sense because it shows
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Figure 1.1: Remarkable attractors. Left: The Van der Pol limit cycle. Right:
The Lorenz attractor. Source: Wikipedia.

the considerable applicability of the tools of celestial mechanics. Hamilto-
nian dynamics is a natural framework when we consider conservative systems,
as those determined by gravity. However, more realistic systems require a
more general treatment. For these kind of systems it is necessary to con-
sider dissipative effects, that, although much smaller than the gravitational
interaction, contribute to its long-term behavior.

Dissipative dynamics. Although the conservative approach in celestial
mechanics is widely spread, here we want to remind that Poincaré developed
the general methods of dynamical systems precisely motivated by celestial
mechanics, [107]. Dissipative dynamics is a fruitful branch of dynamical
systems whose central objects of study are called attractors. Later we will
make a precise definition, but in a few words we can say that an attractor is
the endpoint of the evolution of a dissipative system in the phase space. In
some cases the attractor of a system is just an equilibrium point, meaning
that the system does not change anymore once the equilibrium is reached.
For example, the lower equilibrium of a pendulum with dissipation. In other
cases the attractor is a periodic orbit, meaning that, the system will continue
to evolve resembling a specific periodic motion more and more. This is the
case of the limit cycles like that of the Van der Pool oscillator. There are
more complicated attractors with intricate topologies, such as the celebrated
Lorenz attractor, that is an example of the so-called strange attractors. See
Figure 1.1. The following question arises in our context: Many of the objects
that we see through a telescope have been exposed to dissipative forces and
have evolved for a very long time. Can we identify them with physical repre-
sentations of attractors of certain dissipative problems of celestial mechanics?
There have been several attempts trying to explain the astronomical struc-
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tures with attractors. For instance, planetary systems in [6], or the presence
of spiral structure and bars in some galaxies [104].



8 CHAPTER 1. INTRODUCTION

1.2.2 A selected historical review

Some old examples. The consideration of non-conservative effects in ce-
lestial mechanics is not new at all. For example, in one of the lectures of
Jacobi in 1842-43 [59], he considers the dynamics of a body orbiting around
a center within a resistive medium. In 1884 H. Gyldén considered time-
variation in the mass of the Kepler problem, [55]. This is a time-dependent
Hamiltonian model that was proposed to explain the secular acceleration of
the Moon’s longitude due to a mass increase. J. Mestschersky found out in
1902 [90] that the resulting orbit would be a spiral leading to a collision or to
a distancing. The problem was addressed from a theoretical point of view by
J. Littlewood in 1964 [74], he gave some results involving adiabatic invariants.
Although it is questionable that the model is useful for the initial purpose,
it has been used in different situations such as the evolution of comets, bi-
nary stars, pulsating stars, among others. See for example [64, 38], and the
references therein. On the other hand, in 1904, J.H. Poynting described an
interesting effect on small particles in the solar system arising from the solar
radiation [108]. This is the so-called Poynting-Robertson effect and it acts
as a dissipative force. Here Poynting studies this dissipative Kepler problem
and concludes that the particle would fall in a spiral orbit and hit the Sun
at some point. This effect was later addressed by H.C. Plummer [105] and
H.P. Robertson [110]. These are just some interesting old examples among
others, but it is not our intention to give a complete review.

Hypotheses on the formation of the solar system. The dissipative
effects in celestial mechanics started to be relevant in the search of a theory
of the formation of the solar system in consistence with the observations.
The specific dynamical structure of the solar system has always intrigued
scientists: The circularity and planarity of the orbits, the resonant structure
appearing between the orbital and spin periods of many bodies and their
particular distribution must have a dynamical explanation. In 1911, Poincaré
published his Leçons sur les hypothéses cosmogoniques2, [106]. There, he
summarizes several theories on the formation of the solar system available at
that time and exposes them mathematically whenever possible. There is a
very detailed discussion on the nebular hypothesis of Laplace. The hypothesis

2Unfortunately for non-French speakers, there is not an available translation of the
book. Anyhow, an interesting discussion on the book, in contrast with modern theories, is
given in a talk by A. Morbidelli in 2012, entitled Leçons sur les hypothéses cosmogoniques:
Poincaré’s view of solar system formation. What remains valid today?. It is available on
the YouTube channel of the Institut Henri Poincaré https://www.youtube.com/watch?

v=FXNa00sqTL8.
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of R. du Ligondès is remarkably modern in some parts, such as the role of the
dissipation and the gravitational instabilities in the formation of the Sun, the
protoplanetary disk, the rings and the planets. The hypothesis of T.J.J. See
that the planets were captured by the solar nebula is quite obsolete, but is
used by Poincaré to illustrate that the friction with the viscous nebula leads
to circularization and shrinking of the orbits of the planets. He explains this
by arguing that the friction force is proportional to the velocity, then, its
effect on the periapsis is stronger than in the apoapsis, resulting in orbits
that are more and more circular. Besides, Poincaré pays special attention
to the tidal theory of G.H. Darwin on the origin of the Moon and considers
that tides should have a predominant role in the evolution of the whole solar
system. Although all these theories have been widely surpassed by modern
theories, the global intuitions of Poincaré exposed along the book are very
valuable in our context so we can speak about dissipative celestial mechanics.

Early dissipative celestial mechanics. The decade of 1960’s, in the
midst of the so-called Space Race, was a stimulating period in the study
of the space. As far as this thesis is concerned, there are two main topics
that acquired much relevance at that time. In one hand, the motion of ar-
tificial satellites exposed to atmospheric drag, and on the other hand, the
understanding of the role of dissipative tides in the phenomenon of capture
into spin-orbit resonances. The effects of the atmospheric drag in the evolu-
tion of the orbital elements for different models of drags were addressed in
[62, 15, 10]. How to model the atmospheric drag has been always a problem
because it is desirable a high accuracy in the computation of orbits of real
satellites. Particularly, in [10], V.V. Beletsky pays also special attention to
the spacial orientation of the satellite in the orbit, including the spin-orbit
interaction. He even proposes some ways to implement dissipative devices
(involving viscous fluids or magnetic dampers) in artificial satellites to stabi-
lize their orientation. He argues that dissipation would lead to asymptotically
stable states of relative equilibrium, for circular orbits, and forced eccentric-
ity oscillations, for eccentric orbits. The theory of tidal dissipation proposed
by G.J.F. MacDonald [75], modifying the tidal theory of G.H. Darwin, had
a great impact in the theory of the evolution of natural satellites. In [51], P.
Goldreich and S.J. Peale investigate the capture into spin-orbit resonances
due to the action of dissipative torques and derive the probabilities of such
captures. Then, not only relative equilibria are stabilized by dissipation, but
also more complicated motions such as the 3:2 spin-orbit resonance of Mer-
cury (it completes three rotations every two orbital revolutions), considered
as an orbiting body around the Sun. In fact, in 1970 [65], W.T. Kyner ex-
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plains that the KAM tori structure of the conservative problem of Mercury
is destroyed by the dissipation and convert some stable periodic orbits into
attractors that are asymptotically stable periodic solutions. In this way, in-
stead of using the concept of capture probability, he proposes the capture
measure, i.e., the (relative) measure of the basin of attraction of the attrac-
tor. Although both concepts are intimately related, the second one deepens
into the dissipative dynamics. A few more papers follow this line [97, 111].
On the other hand, there are some other studies dealing with the dissipa-
tive effects on orbit-orbit resonances in the solar system, such as [93, 54]. In
[127], orbit-orbit and spin-orbit resonances are studied with a unified damped
pendulum-like model. The need for a theoretical development of dissipative
celestial mechanics following the previous papers is pointed out in [66]. It is
worth mentioning that the Hamiltonian framework has been present in many
of the studies above.

Dissipative celestial mechanics: a practical approach. The tidal in-
teraction was the major dissipative phenomenon considered in celestial me-
chanics, but many other dissipative perturbations were also taken into ac-
count. See for example the following two papers with an ample view. In one
hand, [123] focuses the effect of different friction forces in the solar nebula
during the formation of the solar system. The size of the particle (from dust
to protoplanets) is the main parameter for the type of motion it performs.
On the other hand, in [17], there is an extensive study on forces produced by
the Sun radiation acting on dust and small bodies. Among these forces we
have the solar radiation pressure, the Poynting-Robertson effect, the differen-
tial Doppler effect and the so-called Yarkovsky effect. Thus, at this moment
we consider more realistic situations. For example, the interaction between
stable resonances and non-gravitational forces was investigated in [53], for
large bodies affected by gas drag or collisions with small bodies, and [52],
for small bodies for which the Poynting-Robertson effect is not negligible.
At this point the numerical experiments acquire much relevance due to the
immediate practical application to the theories that were consolidating. The
commensurability of orbital periods has been constantly revisited with new
models, see [103]. In particular, the capture into resonances in the solar sys-
tem due to dissipation is studied in [8], for planetesimals, and [9], for dust.
See also [78, 98, 73]. For a more analytical study see [70].

The particular context of this thesis. In the last decades there has
been an increasing interest in the dissipative dynamics of celestial bodies.
Advances have been produced both from the analytical and the numerical
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points of view. The co-supervisors of this thesis are involved in this cur-
rent development. A. Celletti and her collaborators have elaborated a series
of articles considering weakly dissipative and nearly integrable Hamiltonian
systems, [27, 20, 25, 22, 24, 26]. There are both numerical and theoreti-
cal works. These works characterize different kinds of attractors (periodic
and quasi-periodic orbits, strange attractors). Their theoretical techniques
include the theory of conformally symplectic system, dissipative versions of
KAM results, normal forms, exponential stability estimates, among others.
In these papers, the spin-orbit problem is taken as a paradigmatic dissipa-
tive model in celestial mechanics. On the other hand, R. Ortega and his
collaborators have contributed with analytical studies of the dissipative Ke-
pler problem and the dissipative Three-Body problem, [80, 81, 82, 83]. In
these works they find results on the continuation of periodic orbits to the
dissipative regime, characterization of the asymptotic behavior of solutions,
existence of asymptotic first integrals, etc. Their techniques have a geo-
metrical approach and come from the general qualitative theory of ordinary
differential equations.
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1.2.3 Preliminaries

In this thesis we will provide some theoretical results on ordinary differential
equations given by celestial mechanics. They are of the type

ẋ = f(t,x,p), (1.1)

where the dot indicates derivation with respect to t ∈ R, the time variable,
x ∈ Rn, and p ∈ Rd is a vector containing some parameters of the problem.
The vector function f : R×Rn×Rd → Rn is usually an analytic function in
all the entries.

In the next subsection we discuss when equation (1.1) is called dissipative.

The definition of dissipative systems

There are many definitions of what a dissipative system is, and not all of
them are equivalent. The simplest definition in physics is the following. Let
Emec be the mechanical energy of the system, Emec = Ekin+Epot, where Ekin
is the kinetic energy and Epot is the potential energy. If Emec is a constant
of motion, then, the system is conservative, otherwise, it is non-conservative.
Furthermore, if there is a loss of energy, i.e., Ėmec(t) ≤ 0 for any t, then,
the system is dissipative. Indeed, physics generally considers that, if we take
into account all the degrees of freedom involved in a phenomenon, then, the
system is always conservative. Thus, in non-conservative systems we are dis-
regarding some of the degrees of freedom and make an effective description
of them. For example, if we have a block moving on a surface, normally
we describe the mutual friction as an effective external force exerted by the
surface, instead of taking into account the transfer of energy between the
atoms/molecules of the block and the surface. In mathematics we usually
avoid the description of physical phenomenology and focus on rigorous def-
initions. The mathematical definitions of dissipative systems are varied as
well and, again, there is not always a correspondence between them and with
the physical definition. Let us cite some of them.

The first one is a simple definition for autonomous differential equations.

Definition 1.1 (From Def. 13.9 in [57]). An equation ẋ = f(x), x ∈ Rn

is said to be dissipative if there exists a bounded subset B of Rn such that,
for any x0 ∈ Rn, there is a time t0, which depends on x0 and B, so that the
solution x = x(t) with x0 = x(t0) satisfies x(t) ∈ B for all t ≥ t0.

This means that any solution ends up entering in a bounded subset of the
phase space at some moment. A consequence of this definition is stated in
Theorem 13.10 in [57]. It says that there exists a set D ⊆ Rn diffeomorphic
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to a ball such that the vector field at the boundary of D points inside D.
Note that for this definition it was not necessary the concept of energy. The
following definition is based on the contraction/expansion of the phase space.

Definition 1.2 (from [23]). Let x(t) = φ(t; x0) be the solution (flow) of ẋ =
f(x), x ∈ Rn, such that x0 = x(0) = φ(0; x0). The equation is dissipative if
| det Jt| 6= 1, where the Jacobian matrix Jt ∈ Rn×n is given by Jt = ∂xφ(t; x).
If | det Jt| > 1 for all t, it is called expansive. On the other hand, if | det Jt| <
1 for all t, it is called contractive.

Here, the elements of the Jacobian matrix are ∂φi
∂xj

, where φi are the com-

ponents of φ(t; x) and xj are the components of x. Definition 1.2 is quite
general because all the systems that are not conservative (| det Jt| = 1 for
all t) are called dissipative. In [50] there is an example that is sometimes
contractive and sometimes expansive.

There are other advanced definitions. To give some examples, see the
concept of contraction of the phase space on average [72], or the entropy
approach to dissipation [109], or conformally symplectic systems [20], that
produce a uniform contraction of the phase space in all the directions.

Despite the different characterizations of dissipative systems, the related
concepts of attractor and basin of attraction are quite standard. First we
need to define positive invariance and the ω-limit set associated to an initial
condition.

Definition 1.3. Let ẋ = f(x), x ∈ Rn, be an equation whose flow is given
by φ(t; x).

1. We say that a set U ⊆ Rn is a positively invariant set if, for all t ≥ 0
and x ∈ U , we have that φ(t; x) ∈ U .

2. The ω-limit set of x0 ∈ Rn is given by

ω(x0) =
{
x ∈ Rn : there exists a sequence {tk} → ∞, k = 1, 2, ...,

such that φ(tk; x
0)→ x as k →∞

}
.

An attractor is a positively invariant set that is the ω-limit of some set
of initial conditions. Attractors are sets of the phase space that attract the
nearby solutions as time increases. The basin of attraction associated to some
attractor is the union of all the possible initial conditions that it attracts.
If the basin of attraction of some attractor is the whole phase space we
will call global attractor. Thus, the global attractor of a dissipative system
contains the most important information of the long-term behavior of it.



14 CHAPTER 1. INTRODUCTION

Attractors can have a very complicated topology. In general, we can associate
a dimension to the attractor that can be non-integer (fractal dimension). In
this thesis we will not enter into the existence of attractors with fractal
dimension (strange attractors), but rather, on simpler ones. The following
definition characterizes asymptotically stable solutions (local attractors). Let
|| · || be any norm in Rn.

Definition 1.4 (From [56]). Assume that x∗ ∈ Rn is an equilibrium point
of ẋ = f(x), whose flow is given by φ(t; x). We will call x∗ asymptotically
stable if it is Lyapunov stable and there exists b > 0 such that ||x0− x∗|| < b
implies that ||φ(t; x0)|| → x∗ as t→∞.

The same definition can be extended to a more general solution of the
equation instead of an equilibrium point. In this thesis we deal particularly
with asymptotically stable periodic solutions.

Dissipative forces

In this section we introduce, from a physical point of view, the dissipative
forces that are relevant for the models of this thesis. For a more general
and detailed discussion we refer to the book Dissipative forces in celestial
mechanics by S. Ferraz-Mello et al. [47].

Fluid drag. A body that moves in a viscous fluid is influenced by a friction
force that points in the opposite direction to its velocity3. This force can be
modelled as

F = −kD||v||m−1v, (1.2)

where v ∈ R3 is the velocity vector of the body and || · || is the Euclidean
norm in R3. It implies ||F|| ∝ ||v||m. The parameter kD > 0 takes into
account different types of behavior between the fluid and the body depending
on the density, the size and the shape of the body. This is an empirical law
and the value of m is associated to a specific range of velocities. For example,
according to [96], experiments have shown that, for a satellite moving in the
Earth’s atmosphere, we can take m = 1 for velocities ||v|| < 3m/s, m = 2
if 3m/s < ||v|| < 300m/s, and approximately m = 3 if ||v|| > 300m/s. For
the case of an atmosphere whose density that decays with the altitude we
can include a factor exp[−α0h], where α0 > 0 is a parameter and h > 0 is
the altitude, [15]. This atmosphere model has been corrected in later works

3There are also other components acting in the perpendicular direction with respect to
the velocity. For instance, the lift force appearing in an airplane wing.
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including oblateness of the body with the atmosphere, periodic variations,
rotation, etc. See [121].

According to [123], we can distinguish between two models depending on
the size of the moving body with respect to the mean free path λ̄ of the
particles of the fluid. These models describe the motion of bodies of all sizes,
from dust particles to protoplanets. Let us consider that the moving body is
spherical with radius s and is moving in a fluid with density ρ.

1. Gas regime: s� λ̄. It is applicable to a dust particle that moves in a
gaseous medium and the force takes the form

F = −4

3
πs2ρv̄Tv (Epstein law), (1.3)

where v̄T is the mean thermal velocity of the gas particles.

2. Fluid regime: s� λ̄. We have a law

F = −1

2
CDπs

2ρ||v||v, (1.4)

where CD is the drag coefficient that depends on the Reynolds number
Re, defined by

Re =
inertial force

drag force
=

2sρ||v||
η

,

here η = ρv̄T λ̄/3 is the dynamic viscosity of the fluid. It is usual to take
CD proportional to a power of Re. For Re < 1 we take CD ≈ 24R−1

e ,
which reproduces the Stokes law F = −6πηsv. If 1 < Re < 800 we take
CD ≈ 24R

−3/5
e , whereas for Re > 800 we take CD ≈ 0.44. The Stokes

law and the Epstein law coincide when λ̄/s = 7/9, that is defined as
the transition point between the two of them.

The cited article [123] studies the motion of several bodies in the solar
nebula. The nebula is considered as an ideal gas with a pressure gradient
and a temperature gradient. It takes simple laws for the pressure P ∝ r−a,
and for the temperature T ∝ r−b, where r is the distance to the Sun and
a, b > 0. With these laws, the pressure of the gas has a conservative effect
on the dynamics.

The effect of the drag force on the motion of the particle depends on its
size. For small bodies, tangential velocity decreases rapidly and they are
dragged by the rotating nebula and fall to the Sun gradually. Larger objects
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Figure 1.2: Schematic behavior of the relative radial velocity of fall depending
on the size of the particle. We see that the smallest and the largest bodies
fall very slow to the Sun with respect to intermediate sizes. The peak (Upper
Limit) depends on the nebular structure. Taken from [123].

spiral into the Sun without being dragged. However, very small and very
large objects also fall to the Sun, but with radial velocities much smaller.
This explains the presence of large bodies like planets and the interplanetary
dust in our solar system. Figure 1.2 shows very well this behavior.

Tidal dissipation. The effect of the tides exerted by the Moon on the
Earth is a very well known phenomenon because it produces a periodic vari-
ation of the sea level. The physical mechanism involved is very common
in celestial mechanics and it appears when we consider gravitational forces
between extended bodies that are close enough to each other. The closest
points experience a stronger attraction than those that are further away, so
the tides are caused by this difference of forces. If the bodies are rigid or elas-
tic, the tidal effects are conservative due to gravity. However, if the bodies
are viscous, there are inelastic deformations that have a dissipative effect.

Consider an elastic body that has a spherical shape in absence of any ex-
ternal influence. If there is an external perturbing body, the tides deform the
main body generating a new figure of equilibrium of oblate shape. The new
shape is elongated in the direction to the perturber. The elastic response to
the perturbation is immediate, but this is not the case for viscous bodies. A
simple way to model the viscoelastic behavior in this context is to consider
that there is a small delay between the perturbing force and the actual de-
formation of the body. This approach is synthesized in the following, with
[42] as reference.

Let us take a system planet-satellite, where the satellite is an extended
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Figure 1.3: Schematic figure of the tides raised on the satellite by the delayed
position of the planet.

body and the planet acts as a point mass. See Figure 1.3. Let R be the
position vector of a point at the surface of the satellite with respect to its
center, and let r be the position vector of the planet. Let R and r be the
moduli respectively of R and r. Assume that R and r form an angle γ. The
leading term of the potential created by the planet on the point of the surface
has the usual expression −GM/r. Here M is the mass of the planet and G
is the gravity constant. The next term in the expansion of the potential is
the one responsible of the tides and is given by

Φ2(r, γ) = −GMR2

r3
P2(cos γ),

where P2(x) = (3x2− 1)/2. If the satellite is deformable, this potential gives
rise to a displacement of the point R to a point R̃. If the satellite is viscous
we can consider that the deformation is caused by the potential Φ2 evaluated
in a delayed position of the planet, that is given by rdel(t) = r(t − ∆t),
γdel = γ + α, where ∆t is the time delay and α is the lag angle. As a result,
the point R̃ generates another potential onto a generic point r∗. If the effect is
small, we can assume a linear deformation that amends the potential with an
additional term proportional to Φ2(rdel, γdel) and to the elastic Love number
k2. Since Φ2 is proportional to P2, from potential theory we know that the
new potential must decrease with the distance as a power 3. Then, the new
potential has the form

U = k2

(
R

r∗

)3

Φ2(rdel, γdel) = −Gk2
MR5

r3
∗r

3
del

P2(cos γdel), (1.5)

where r∗ is the modulus of r∗. Here we assumed that the deformation is
negligible with respect to the changes in r and γ, then, R̃ ≈ R. We can
compute the force associated to this potential at the position of the planet.
This force has a dissipative effect on the system as we can see in Section 1.3.2.
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It is worth mentioning that the tidal force affects both to the orbital
motion as well as to the spin motion of the bodies. However, in this thesis
we will only focus on the tidal influence on the spin motion, i.e., the torque
produced by the tidal force.

Dissipative forces of electromagnetic origin. For bodies that are small
enough, electromagnetic forces become important with respect to the force
of gravity. Probably, the main phenomenon considered in celestial mechan-
ics that is of electromagnetic nature is the pressure exerted by the radiation
emitted by stars. This pressure acts on the surface of the objects and pro-
duces a repulsive force. Thus, the larger is the surface of the object and
smaller is its mass, the more important is such force. The emitted photons
carry a momentum p and an energy Ep = pc, where c is the speed of light.
Besides, the radiation flux of a star is given by L

4π||x||2 , where L is the star

luminosity (energy emitter per unit of time) and x is the position vector with
respect to the center of the star. Then, the force associated to the radiation
pressure over a surface A oriented orthogonal to the direction of the light is

Fr =
AL

4πc||x||3
x = − grad

µr
||x||

,

here grad is the gradient operator with respect to the coordinates of x and
µr = AL

4πc
is a constant. Note that the force Fr has exactly the form of the

gravity force (inverse square law) but points in the opposite direction. Then,
the effect of the radiation pressure can be included into the Keplerian part of
the gravity force by changing the standard gravitational parameter µ of the
star to µ−µr. This effect can be considered in other situations, for example,
in a planet-satellite system we can assume that the star is so far away that
the radiation pressure is constant. In any case, the effect of the radiation
pressure alone is conservative.

However, an object can reflect, absorb or re-emit the radiation after it
receives it. If there is total reflexion, the force we have to consider is twice
the force Fr we defined, because in the previous paragraph it was assumed
a total absorption of the radiation. The case of the re-emission requires a
more specific treatment, because it produces the dissipative effects, [17].

As already mentioned in Section 1.2.2, the Poynting-Robertson effect was
studied in [108, 105, 110]. Consider the rest frame of a particle that is
orbiting around a star. The re-emission of the radiation is isotropic assuming
thermal equilibrium. However, as shown in Figure 1.4, in the rest frame of
the Sun, the radiation become anisotropic due to the Doppler effect. In fact,
the particle re-emits a factor 2||v||/c times more radiation in the forward
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Figure 1.4: The Poynting-Robertson effect. Left: In the particle’s frame,
there is re-emission of photons with momentum p in all directions. Right:
Due to the Doppler effect, the photons are emitted with momentum p(1 +
||v||/c) in the forward direction, whereas in the backwards direction they
have momentum p(1− ||v||/c). Taken from [47].

direction than in the opposite direction. Here v ∈ R3 is the velocity of the
particle. By conservation of momentum in the rest frame of the particle,
there exists a force that acts opposite to the velocity given by

F = − 2µr
c||x||2

v. (1.6)

This force will be referred to as Poynting-Plummer-Danby (PPD) drag as
in [14] and [39]. Since this dissipation occurs as an approximation of the
Poynting-Robertson (PR) drag when the Doppler shift component is ne-
glected, it is sometimes still called PR drag in the literature (see for example
[47], pag. 115, [28], and [80]). To take into account the shape of the parti-
cle, its capacity to absorb, reflect or re-emit radiation there are some other
constant factors that can be added to this force. A variant of this effect is
produced by the solar wind, say, emission of massive particles instead of pho-
tons. The Yarkovsky effect is a similar phenomenon that arises if we consider
that the particle rotates and it is not in thermal equilibrium.

According to [17], for particles of around 0.1µm composed by iron, mag-
netite or graphite, the radiation force is larger than the force of gravity and
those particles are blown out the solar system. Dust particles with sizes be-
tween 1µm−1mm, the Poynting-Robertson effect dominates and particles fall
spiralling into the star. Larger particles usually collide between them before
completing their orbits. Finally, the Yarkovsky effect dominates for particles
of sizes of the order of meters, such as comets, metoroids or asteroids.
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1.3 The content of this thesis

1.3.1 The Kepler problem with singular drags

Model

The first problem we want to address is the dissipative Kepler problem. That
is to say, we want to describe the motion of a particle moving in a Keplerian
potential with an additional dissipative force. We take a family of dissipative
forces opposed to the particle’s motion and with a singularity at the origin.
Let us take the family

Fβ(x, ẋ) = − k

||x||β
ẋ, (1.7)

where k > 0 and β > 0 are parameters. We assume that k is a fixed
positive number, x ∈ R3 \ {0} is the position vector of the particle and
ẋ ∈ R3 is its velocity. The parameter β distinguishes different models. For
example, (1.7) has the form (1.6) if β = 2. This case, the PPD drag for dust
particles, has attracted much attention from the theoretical point of view,
see [108, 110, 105, 92, 39]. There are also numerical experiments, see [63].
If β = 0, (1.7) has the form (1.4) for bodies with small Reynolds numbers
moving in homogeneous viscous fluids. This is the so-called linear drag or
Stokes law. Note that in this case we do not have a singularity anymore.
The linear drag has already been studied in several papers like [80, 81]. The
linear drag and the PPD drag generate two very different global dynamics,
whose main features we will recall below. Finally, (1.7) has the form (1.3)
for a body moving into a gaseous solar nebula. Particularly, (1.7) represents
different models depending on the density of the solar nebula as a function
ρ = ρ(||x||), i.e., with radial symmetry. If, as in [123], we assume that the
pressure and the temperature vary as P ∝ r−a, T ∝ r−b, where r = ||x||, the
density ρ will vary as a negative power of r as well. Then, to each model of
the solar nebula, we would have a corresponding value of β. The equation of
motion is then given by

ẍ +
k

||x||β
ẋ = − x

||x||3
. (1.8)

For simplicity, we study this normalized equation, in which all the quanti-
ties are dimensionless. Particularly, for a given β, the parameter k represents
the strength of the dissipative force relative to the gravitational force, whose
constant is normalized to 1. In our results we will see that the value of k is
relevant for the asymptotic dynamics only in the case β = 3/2.
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We note that (1.8) is a member of the larger class of dissipative Kepler
problems considered by Poincaré in [106] when discussing the cosmogonique
hypothesis of T.J.J. See (Section 1.2.2), namely,

ẍ + Pα,β(x, ẋ)
ẋ

||ẋ||
= − x

||x||3
, (1.9)

where Pα,β(x, ẋ) = h||x||−β||ẋ||α, h is a positive fixed real number, and the
parameters α and β are positive. The family (1.9) can be included also
in the general form of the drag forces (1.2) and (1.4) when the parameters
depend on a power of the distance, as we mentioned for (1.7). Essentially,
Poincaré found that orbits with negative energy spiral towards the singularity
with increasing velocity4. Moreover, for α and β sufficiently large, after
each revolution the eccentricity decreases, leading to the circularization of
orbits. Poincaré presented also a qualitative argument supporting that this
effect occurs for a more general dissipative force opposed to the velocity, see
Section 1.2.2. However, it turns out that such circularization of orbits does
not take place for the particular cases that we mentioned: the linear drag
(α = 1, β = 0) and the PPD drag (α = 1, β = 2).

In the first case, the fact that the linear drag does not circularize orbits
was observed in [58]. Besides, the results presented in [82] and [83] show the
following. Although some orbits circularize as they spiral down toward the
singularity, for an open set of initial conditions, the value of the eccentricity
of the corresponding orbit converges to a positive constant, being all val-
ues in ]0, 1[ attainable. Geometrically, these trajectories are spirals made of
asymptotically self similar ellipses that shrink to the singularity. Moreover,
it turns out that the angular velocity of these spirals increases exponentially
with time. These results are obtained from the existence and continuity on
the phase space of a first integral I, defined as the limit, along the solutions,
of the Runge-Lenz vector. We recall that this vector, also called eccentricity
vector, is a first integral of the conservative Kepler problem, and defines the
type of conic section corresponding to the orbit (its modulus is the eccentric-
ity of the orbit) as well as its orientation (it is parallel to the axis containing
the focus). Then, we can think of I as an asymptotic eccentricity vector.

In [83] it is proved that the range of I is the closed unit disk in the plane.
This property expresses that all the non rectilinear orbits are of elliptic type,
meaning that, eventually, their energy becomes negative. This last fact is
stated in [81], where it is also established that the singularity is a global
attractor, reached in infinite time by non rectilinear motions and in finite

4This fact had already been mentioned by Euler when discussing the motion of a planet
in a resistive medium, see [44].



22 CHAPTER 1. INTRODUCTION

time by rectilinear ones. In each case, it is proved that the velocity tends to
infinity.

In the case of the PPD drag (see [14], [17], [35], [39]), all the orbits
which tend to the singularity, spiral only a finite number of times around it
and achieve an asymptotic direction. This last property implies that their
eccentricity tends to one. Moreover, all collisions occur in finite time and
with finite velocity. Also, for this drag there exist solutions which escape
to infinity. Essentially, these results are obtained in [39] by means of a
qualitative study of (1.8). The fact that collision orbits are asymptotically
rectilinear was previously observed in [14], where a more a general class of
drags is treated using a suitable transformation (called generalized Robertson
transformation) to find explicit analytic solutions. The first step of such
transformation is the Binet change of variables, exploited in [85], [92] to
transform (1.8) with β = 2 into a forced harmonic oscillator, that leads to a
closed form for the orbit equation.

The PPD drag was studied also in other frameworks, such as the dissi-
pative restricted Three-Body problem. In [28] and [80] the authors study
the existence of periodic attractors. The actual Poynting-Robertson drag5

was considered, for example in [9] to study its effect on the orbital evolution
of grains of dust captured in mean motion resonances. Besides, in [71], the
stability of motions near the Lagrangian points L4 and L5 was investigated.

Objectives

In Chapter 2, we want to study the forward dynamics of the solutions of
(1.8) with special emphasis on the following points.

1. We will try to characterize the asymptotic behavior of the solutions
as much as we can for all β > 0, k > 0. Recall that β distinguishes
different models, and k gives the relative strength of the dissipation
with respect to the gravitational force. We would like to find threshold
values of the parameters such that the qualitative asymptotic behavior
of the solution changes. Particularly, since the linear drag β = 0 and
the PPD drag β = 2 generate two very different global dynamics, we
want to explore if there are transitions of qualitative behavior for the
different values of β in between.

2. We would like to know if, apart from the collisions with the singularity,

5For this dissipative force, the radial component of the velocity has a coefficient which
is twice the one of the angular component.
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there are escape orbits or even oscillatory solutions, say,

lim sup
t→ω−

||x(t)|| = +∞, ∞ > lim inf
t→ω−

||x(t)|| ≥ 0.

For example, we know that for β = 0 all the solutions are collisions,
but for β = 2 there are also escapes. We would like to classify the
resulting orbits.

3. We want to characterize the behavior of the collisions. Does a collision
happen in infinite time? What is the energy and the velocity when
the collision is reached? Is the number of turns around the singularity
finite or infinite? Can we answer these questions for all the values of
the parameters?

4. Also, we want to see if the first integral existing for β = 0, that is an
asymptotic Runge-Lenz vector, is present for other values of β. Does
it have the same properties as for β = 0? The case β = 2 seems a good
candidate to start because the problem is integrable by quadratures.

Results

The main results concerning the Kepler problem with a singular family of
dissipations (1.8) are stated in Section 2.2 and Section 2.3. The problem
has a planar structure (we restrict ourselves to x ∈ C) and naturally divides
into rectilinear solutions and non rectilinear ones. Regarding this division,
there are some common and some particular results. Unless there is an
explicit reference (for example, to the polar angle θ), the results would be
valid for all the solutions. In the following, ω denotes the supremum of
the maximal interval of definition of a solution x(t) of (1.8). Sometimes ω
appears as subscript of some quantity, for example, the limit of the polar
angle θω = limt→ω− θ(t). Analogous definitions hold for the energy E, the
angular momentum M , the radial velocity u, etc.

In Section 2.1 we present a preliminary result, in Theorem 2.1. It states
that, for non rectilinear collision orbits of (1.8), the energy and the angular
momentum tend respectively to the values Eω = −∞ and Mω = 0.

In Section 2.2 we present an analysis of the dynamics as β increases. In
particular, we detect some thresholds for different global behaviors.

In Theorems 2.2 and 2.5, we show that the global attractiveness of the
singularity and the unboundedness of the angular velocity of solutions, which
hold for β = 0, can be continued, respectively, for β ∈ (0, 1] and for β ∈
(0, 1) . Particularly, in Theorem 2.2 we claim that escapes are possible only
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for β > 1. Recall that we already knew this for β = 2. Actually, it takes
infinite time for a particle to escape, and it does with finite velocity and
a non-negative finite energy. On the other hand, Theorem 2.5 determines
that we can find a sequence {tn}∞n=0 converging to ω, such that the angular
velocity of a non rectilinear collision becomes unbounded, say, θ̇(tn)→ +∞.
These results suggest that, when β ∈ (0, 1), all solutions collide with the
singularity winding faster and faster infinite times around it, as they do in
the case of the linear drag.

In Theorem 2.4 we show the variation of their polar angle θ for different
type of orbits. Escapes are only possible during the first turn around the
origin, otherwise, if the solution makes more turns, it has to be a collision.
Moreover, for escapes, the limit angle is bounded, θω < α0 + π, where α0 ∈
(0, π) is the angle that forms the initial velocity v(0) with the initial position
vector x(0).

Theorem 2.3 allows us to classify the solutions because it rules out the
possibility of oscillatory solutions. Here we show that escape and collision so-
lutions are the only kind of solutions that can occur for (1.8). In consequence,
the phase space associated to non rectilinear motions, Ω+, can be partitioned
in the following three sets: the set of initial conditions of collisions orbits

Ω+
C := {(x,v) ∈ Ω+ : Eω = −∞},

the set of initial conditions of hyperbolic escapes, and the set of initial con-
ditions of parabolic escapes, defined respectively by

Ω+
H := {(x,v) ∈ Ω+ : Eω > 0} and Ω+

P := {(x,v) ∈ Ω+ : Eω = 0}.

The last two sets are empty when β ∈ [0, 1].
The case β ∈ [3

2
,+∞) for non rectilinear collisions is addressed in the

next theorem, that we show explicitly.

Theorem (Theorem 2.6). The following properties hold for non rectilinear
collision orbits:

i) If β > 3
2
, or if β = 3

2
and k > 2

√
2, there exists a limit polar angle at

collision, achieved with zero angular velocity.

ii) If 3
2
< β < 3, or if β = 3

2
and k > 2

√
2, collisions occur in finite time,

whereas if β ≥ 3 they occur in infinite time.

iii) If 3
2
< β < 2, or if β = 3

2
and k > 2

√
2, the limit velocity at collision

is infinite, if β = 2, the limit velocity is finite and with modulus 1
k
, and

if β > 2 the limit velocity is zero.
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Here we give a fairly complete description of the qualitative dynamics
of non rectilinear collision orbits. Namely, we show that when β > 3

2
such

orbits are asymptotically rectilinear, a behavior that, as already mentioned
above, was observed for β = 2 in [14] and [39]. Moreover, we prove that the
approach to zero occurs in finite time if β ∈ (3

2
, 3), and that β = 2 is the

threshold for the value of the terminal velocity. When β crosses this value,
the terminal velocity passes from −∞ to 0. We extended these results to
β = 3

2
, but only imposing that k > 2

√
2.

Unfortunately, we could not provide any result about the rotational prop-
erties, collision time or terminal velocity of non rectilinear solutions when
β ∈ [1, 3

2
). However, in Section 1.3.1 we will present some conjectures about

the dynamics at collision for β ∈ (0, 3
2
).

Theorem 2.7 gives a complete description of the rectilinear motions. We
describe their collision time ω (discussing whether it is finite or not), and the
asymptotic behavior of their velocity, uω, and energy, Eω. The results are
summarized in the following table:

β ]0, 1/2[ [1/2, 2[ 2 ]2, 3[ [3,∞[
ω finite +∞
uω −∞ − 1

k
0

Eω finite −∞

In Section 2.3, we show an interesting difference between the linear drag
and the PPD drag. First note that equation (1.8) can be written as

ẋ = v

v̇ = − k

|x|β
v − x

|x|3
,

(x,v) ∈ Ω = (C\{0})× C.

Let us define R, the Runge-Lenz vector

R(x,v) = v ∧ (x ∧ v)− x

|x|
.

The result of this section is contained in Theorem 2.8 and deals with the
existence of a first integral I for β = 2, like in [82] for β = 0. The vector field
I is an asymptotic Runge-Lenz vector, say, to each solution t 7→ (x(t),v(t)),
defined on the right maximal interval [0, ω), it corresponds the vector

I(x(t′),v(t′)) = lim
t→ω−

R(x(t),v(t))

for each t′ ∈ [0, ω).
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Theorem 2.8 is analogous to Theorem 2.1 in [82], where the properties
of I for β = 0 are described. In such case, I is continuous on Ω. Moreover,
Theorem 4.2 in [83] shows that the range of I is the closed unit disk. When
β = 2, Theorem 2.8 shows that I has significantly different properties: I is
not continuous on Ω, and its range is the exterior of the open unit disk. The
discontinuity arises along any fixed parabolic orbit since such orbit is the limit
of hyperbolic and collision orbits. We prove this fact only for β = 2, because
in this case the problem is integrable. As to the range of I, it expresses that,
unlike the case β = 0, there are parabolic and hyperbolic orbits, and there
are no elliptic motions winding infinite times around the singularity as they
approach it.

Methodology

Section 2.1 is devoted to introduce some preliminaries that are useful along
Chapter 2. Here we show that our problem (1.8) has an intrinsic planar
structure (the direction of the angular momentum is conserved) that can be
split into rectilinear and non rectilinear motions. Also, the energy E and the
angular momentum M are strictly decreasing functions of the time (except
for rectilinear motions: M = 0). This is used for the proof of the preliminary
result, in Theorem 2.1, about the value of Eω and Mω for collisions.

In Section 2.2, we present several results on how the asymptotic behavior
of the solution changes for different values of β. The first result, Theorem 2.2,
deals with the existence of collision and escape orbits. Here we use some
results that characterize the attractivity of the singularity. Using Lemma 6
in [33] we prove, with the family of functions (2.14), that all the solutions
are bounded for 0 < β ≤ 1. Then, we apply Lemma 2.1, that says that any
bounded solution is a collision. This is based on a generalization of La Salle’s
principle to singular systems, [83]. To prove the existence of escape orbits for
β > 1, we use a family of unbounded positively invariant sets (2.17) that do
not include the singularity. Then we prove the non existence of oscillatory
solutions in Theorem 2.3 with similar arguments as in Lemma 2.1.

The following results deal only with non-rectilinear solutions. We rewrite
(1.8) with the Binet transformation, that leads to a forced linear oscillator
equation on ρ = 1/r, where r is the distance to the singularity. Using the
variation of constants formula we obtain an expression for ρ (2.21), in terms
of an integral that involves the angular momentum (2.23). Lemma 2.2 shows
that the integral (2.23) increases after each turn. Its proof takes advantage of
the monotonicity of the angular momentum. This is enough to prove Theo-
rem 2.4, that characterizes the number of turns and the limit angle depending
on the type of orbit (escape/collision). The second result is Theorem 2.5,
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that states that for β ∈ (0, 1), the angular velocity gets unbounded when
reaching the singularity. This result is proved borrowing arguments from
[81] on elementary inequalities using the equations of the system. Here we
work on the regularized system (2.24) given by a time scaling dt = r2 dµ.
To prove the next result we regularize with another time scaling dt = rβ dτ .
Theorem 2.6 gives a rather complete description for β > 3/2 and β = 3/2,
k > 2

√
2. It shows the asymptotic value at the collision of the limit polar

angle, the endpoint of the maximal time interval and the limit velocity. For
the proof we apply repeatedly previous results on the behavior of the solu-
tions. At the end of the proof of the item ii) of Theorem 2.6 we explain
that in our problem we can eliminate the parameter k by a scaling of the
solutions except when β = 3/2. In this case and with our tools we are able
to characterize only solutions for k > 2

√
2. We do not know if this constraint

on k is just a technical condition which arises due to our technique of proof,
or if it reflects some deeper aspects of the dynamics.

The rectilinear problem is a planar problem that we study with analogous
tools than those of [81, 83]. Theorem 2.7 gives a thorough description of the
behavior of the rectilinear solutions for each range of the parameter β. In the
proof, the phase space is divided by the isocline curves in different regions
and we look for positively invariant regions that prove the results. For this
purpose we define several families of curves and study how the vector field
behaves on them. This theorem implies that the asymptotic expansions of
solutions around the collision time given for β = 0 in [81] still hold when
β ∈ (0, 1

2
). However, we show that, unlike for the case β = 0, the presence

of the singularity in the dissipation does not allow to regularize collisions by
means of a generalized Levi-Civita transformation (2.49).

Section 2.3 is dedicated to prove Theorem 2.8 on the existence of the first
integral I. We focus the proof on the discontinuity of such integral on the
set of parabolic orbits (escapes whose energy tends to zero), because it is the
main difference with respect to [81]. We base our proof on the fact that the
limit polar angle θω is a discontinuous function of the initial conditions. Par-
ticularly, the discontinuity arises when we continuously change from elliptic
orbits (collisions) to hyperbolic ones (escapes whose energy tends to a pos-
itive value) passing through parabolic ones. We prove this by applying the
expression of ρ = 1/r integrating the forced linear oscillator equation from
the Binet transformation. For β = 2, the angular momentum has an explicit
expression, so we have an explicit dependence on the polar angle ρ = ρ(θ).
With this expression it is rather clear that θω is different for elliptic orbits
than for hyperbolic ones. In the proof we make a detailed description of the
diffeomorphisms to undo the change of variables and get the desired result.
Incidentally, we also show the range of I : for rectilinear solutions, collisions
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and parabolic escapes, I lies in the boundary of the unit disk, whereas for
non rectilinear hyperbolic escapes, I lies in the exterior of it.

Discussion and perspectives

In this research we have considered a family of dissipative Kepler problems
with drags of the form − k

||x||β ẋ, and studied the changes in the forward dy-
namics as β increases. This family includes two physically meaningful dis-
sipations: the Stokes drag (β = 0) and the Poynting-Plummer-Danby drag
(β = 2).

We were able to detect a threshold value for the existence of escape orbits,
namely β = 1, and we gave a fairly complete description of non rectilinear
collision orbits for β ≥ 3

2
, showing in particular that they are asymptotically

rectilinear. Moreover, the integrability of the equation for β = 2 allowed us
to prove that the asymptotic Runge-Lenz vector, which is a non-trivial first
integral, is not continuous on the phase space, unlike for the case β = 0.
We think that the jump discontinuity in the parabolic orbits is a general
property for those values of β for which there are hyperbolic escapes and
asymptotically rectilinear collisions. The reason is that discontinuity follows
essentially from the fact that θω is defined by ρ(θ−ω ) = 0 for hyperbolic
escapes, whereas for collisions ρ(θ−ω ) = +∞.

The dynamical behavior of non rectilinear collisions for the values of β
in the complementary interval (0, 3

2
) remains an open question. Our only

contribution in this direction is the unboundedness of angular velocity of
these solutions when β ∈ (0, 1). However, the following informal argument,
which we were not able to make rigorous, leads to a conjecture: substituting
the third equation of (2.21) into the first, we obtain a fixed point equation
of the form ρ = T (ρ). From the results in [82], we see that, when β = 0, any
fixed point defined for every θ ≥ 0, satisfies ρ(θ) ≈ θ2/3 for large θ. Then, if
we look for fixed points defined for every θ ≥ 0 when β > 0, we can try to
find a space of functions satisfying ρ(θ) ≈ θα, α > 0, for large θ, and which
is invariant under T. We are led, heuristically, to α = 2

3−2β
, which is correct

for β = 0. Now, if β ∈ (0, 3
2
), it is not difficult to see that the previous

asymptotic growth for ρ(θ) implies that the collision time ω is finite and
that θ̇(t) → +∞ as t → ω−. This last property is consistent with Theorem
2.5. Due to the difficulty of numerical integration of singular systems, the
simulations made to support our conjecture were inconclusive.

Finally, in our work we gave a complete description of the rectilinear
collisions as β increases, including their asymptotic expansion for β ∈ (0, 1

2
).

As a consequence, we were able to show that the presence of the singularity
in the dissipation is an obstruction to the regularization of collisions.
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We think that this research contributes to the understanding of the dis-
sipative dynamics for more general dissipations. Particularly, as mentioned
in the description of the model, we deal with a member of a larger family of
dissipative Kepler problems

ẍ + k
||ẋ||α−1

||x||β
ẋ = − x

||x||3
, α, β > 0

that was considered by Poincaré and include very general drag forces (1.2).
Here we considered the case α = 1 and it would be interesting to study other
values, such as α = 2 because this is a common dependence for a body moving
in a fluid, such as the atmosphere. In this way, another possibility is to study
other dependence with respect to ||x||, such as the simple atmospheric model
in [15] given by the factor exp[−α0(||x|| −R)], α0 > 0, ||x|| > R, where R is
the radius of the body.
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Figure 1.5: The spin-orbit problem

1.3.2 Stability of the 1:1 spin-orbit resonance

Model

The spin-orbit model is the most elementary model to study the rotational
dynamics of a satellite about its center of mass when it orbits around a
planet. Consider a satellite whose center of mass is moving around a planet
in a Keplerian elliptical orbit of eccentricity e. We are interested in the spin
of the satellite around its center of mass, so, we will identify the satellite
with a tridimensional object and the planet with a point mass. Let the
satellite be triaxial, with principal moments of inertia A < B < C. The
parameter ε = 3

2
B−A
C measures the equatorial oblateness of the satellite. For

this ordering of moments of inertia, ε ∈ (0, 3/2). Assume that the spin axis
of the satellite is perpendicular to the orbital plane and coincides with the
smallest of its physical axes, which is associated to C. This planar setting
is a major simplification that reduces the problem to one degree of freedom
(spin) plus time-dependence (orbit), allowing us to focus the study on the
spin-orbit resonances.

Let us identify the orbital plane with the complex plane C. Consider
the planet fixed at the origin and let the position of the center of mass of
the satellite be r = r exp[if ] ∈ C, where r > 0 and f are real and smooth
functions of the time. Note that this point describes an ellipse with focus at
the origin and eccentricity e ∈ [0, 1), so, the polar coordinates r and f vary
periodically with time and are known by the Kepler problem. Let us take
convenient units of time so that the period is 2π. In the usual terminology,
f is called true anomaly and the time t is the mean anomaly. There is a
third useful angle u, the eccentric anomaly, which is defined by the famous
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Figure 1.6: Some geometrical relations in a Keplerian ellipse.

Kepler’s equation
t = u− e sinu, (1.10)

and let us determine the Keplerian ellipse simply by

r = a(1− e cosu), (1.11)

where a is the semimajor axis of the ellipse.
Also, using the graphical definition of the eccentric anomaly, see Figure 1.6,
we can write r in terms of the eccentric anomaly as

r exp[if ] = a(cosu− e+ i
√

1− e2 sinu). (1.12)

Note that for t = 0 we assumed that f = u = 0, and consequently, f = u = π
when t = π. We can take convenient units of length so that a = 1. The
expressions eqs. (1.11) and (1.12) relate the true and eccentric anomalies.
Moreover, Equations (1.10) to (1.12) define u = u(t, e), r = r(t, e) and
f = f(t, e) as analytic functions in both entries.

Let θ be the angle that determines the direction of the body’s axis of the
major elongation with respect to the major axis of the ellipse. See Figure 1.5.
According to [51], the motion of the satellite is modelled by the following
biparametric equation

θ̈ +
ε

r(t, e)3
sin[2(θ − f(t, e))] = Td(t, θ̇), e ∈ [0, 1), ε ∈ (0, 3/2), (1.13)

where Td is a dissipative torque, which has different forms depending on
the model. The popular model introduced by MacDonald in [75] has been
extensively used, taking as reference [51] or [99], for example. Although
MacDonald studied only the case Td constant, later approaches, like [51] and
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[115], suggest that it is more physically reasonable to take a MacDonald’s
torque with a linear dependence

Td(t, θ̇) = − CM
r(t, e)6

sin[2∆t(θ̇ − ḟ(t, e))] ≈ − δ

r(t, e)6
(θ̇ − ḟ(t, e)), (1.14)

where 1� δ = 2CM∆t ≥ 0, and CM is a constant depending on the param-
eters of the bodies,

CM =
3GM2R2k2

2Ca6
,

where M is the mass of the planet, R and k2 are the mean radius and the Love
number of the satellite. Here a is the semimajor axis of the orbit, that in our
units equals 1. Hereafter (1.14) will be referred to as the linear MacDonald
torque. According to [42], to obtain (1.14), the dissipation is modelled by
assuming that there is a time delay between the deforming disturbance and
the actual deformation of the body. This was explained in Section 1.2.3
and the delay was denoted by ∆t (time lag). In our planar configuration, the
torque Td can be derived from (1.5) by Td = −M

C ∂γU evaluated at the position
of the planet6 (γ = 0, r∗ = r ≈ rdel). Let us show this. First, ∂γP2(cos γdel)
at γ = 0 equals 3

2
sin(2α). Furthermore, if r̂del and r̂ are the unit vectors

of the delayed and the current position of the planet, r̂del ∧ r̂ = (0, 0, sinα),
where ∧ is the vector product. Besides, sinα ≈ α if |α| is small. We can
approximate r̂del ≈ r̂− dr̂

dt
∆t, then,

r̂ret ∧ r̂ = r̂ ∧ dr̂

dt
∆t.

Note that we are in a non-inertial frame of reference that has an angular
velocity ω = (0, 0, θ̇), then

dr̂

dt
≡
(

dr̂

dt

)
non-inertial

=

(
dr̂

dt

)
inertial

− ω ∧ r̂.

Since r̂ = (cos f, sin f, 0), then

r̂ret ∧ r̂ = (0, 0,∆t(ḟ − θ̇)),

consequently, the lag angle (geometric lag) is α ≈ (ḟ(t, e) − θ̇)∆t. This is
enough to obtain (1.14).

The spin-orbit model has the structure of a periodically forced pendulum.
It is nearly integrable for small eccentricities. It has attracted much attention

6Recall that, by the law of action-reaction, the torque exerted by the planet on the
satellite is the opposite to the torque exerted by the satellite on the planet.
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not only for its accurate physical implications but also for its mathematical
richness. Some pioneer papers are [10] for the conservative case and [51] for
the dissipative case. This model is useful to explain the synchronization of
the rotational motion of the Moon and its orbital motion around the Earth.
In other words, the Moon is in a 1:1 spin-orbit resonance, i.e., solutions
of equation (1.13) that satisfy θ(t + 2π) = θ(t) + 2π. It is also known as
synchronous resonance. This phenomenon is indeed very common in the
Solar System for natural satellites that are close enough to their respective
planets, [99]. Besides, Mercury, as an orbiting body around the Sun, is locked
in a 3:2 spin-orbit resonance, for which θ(t + 4π) = θ(t) + 6π. This is also
a very interesting resonance, see for example [34], [11] or [24]. According
to [34], in its chaotic evolution, Mercury could have reached large orbital
eccentricities that made possible the capture into this higher order resonance.
It is accepted that the phenomenon of capture into resonances is driven by
dissipative torques, caused by internal frictions within the satellite, [75]. The
concept of stability of a resonance in the conservative regime is linked to
the concept of capture in the dissipative case and both can be related. For
example, [21] studies the KAM stability in the conservative case, whereas [25]
proves the existence of quasiperiodic attractors for the dissipative problem,
that bifurcate from the KAM tori of the conservative case. This last study
belongs to a group of papers exploiting the weakly dissipative and nearly
integrable Hamiltonian structure of the problem, [22, 24, 2]. We would like
to remark the analytical treatment of the dissipative spin-orbit problem as
a conformally symplectic system [20]. Also, it is worth mentioning that
the system has a very strong connection with the standard map and its
dissipative counterpart, see [19, 26]. The onset of chaos is another interesting
feature of this problem. The oblateness of the satellite produces chaotic
regions in the phase space that surround the libration regions of resonances.
Chaotic zones can be very large due to overlapping of different resonances,
[29]. A large eccentricity emphasizes this behavior, as in the case of Hyperion,
[125], [124]. The spatial setting has a higher dimensional phase space and
richer dynamics. For example, other types of resonances may appear. In
[10], without the planar assumption, the synchronous resonance is found
as a relative equilibrium, which is Lyapunov stable for circular orbits, only
provided the ordering of the moments of inertia. By contrast, in [69], the
authors study the onset of chaos due to deviations from perpendicularity of
the spin axis and the orbital plane.

This thesis deals with the study of the stability of synchronous resonances
of (1.13). Let us take the change of variable Θ = 2(θ−f) and a more general
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Figure 1.7: Figure 17 in [10]. This is a plot of linear stability of the odd
2π-periodic solutions of (1.16) in the (Λ, e)-plane. Here Λ = n2.

dissipation proportional to (θ̇ − ḟ), such that (1.13) turns into

Θ̈ + δD(t, e)Θ̇ +
Λ

r(t, e)3
sin Θ = −2f̈(t, e), e ∈ [0, 1), Λ = 2ε� δ ≥ 0,

(1.15)
where D(t, e) is a positive analytic function, which is 2π-periodic in t. Note
that, for the linear MacDonald torque, D(t, e) = r(t, e)−6. Equation (1.15)
models a damped and forced pendulum of variable length and depends on
three parameters e, Λ and δ. Since f(t + 2π, e) = f(t, e) + 2π, then, 1 : 1
resonances correspond to solutions of (1.15) satisfying Θ(t+ 2π) = Θ(t).

In [129] there is a numerical investigation of the non-dissipative problem7

Θ̈ +
Λ

r(t, e)3
sin Θ = −2f̈(t, e), e ∈ [0, 1), Λ ∈ (0, 3). (1.16)

Particularly, [129] focuses on the periodic solutions of equation (1.16) with
odd symmetry Θ(−t) = −Θ(t). According to [129], in the indicated range
of parameters, there are three odd periodic solutions, namely Θ−, Θ+ and
Θ0. There is a branching curve, in which Θ+ and Θ0 coincide, that divides
the region in two. The lower part is a region of uniqueness of Θ−. The
regions of linear stability of the solutions and the branching curve are shown
in Figure 1.7.

7The results of [129] (in Russian) have been summarized in [10]. The works [129, 10]
consider the true anomaly f as independent variable, instead of the mean anomaly t.
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Objectives

Our main objective in Chapter 3 is to characterize the capture into the 1:1
resonance of the dissipative spin-orbit problem (1.13). We choose the 1:1
resonance because is the simplest and most abundant one in the solar system.
We want to achieve this goal using the full non-autonomous form (1.15) and
without any previous assumption on the smallness of the eccentricity. With
this approach we would like to address some particular questions.

1. We want to characterize the capture by finding an asymptotically stable
solution of the dissipative problem. To do this, we would like to make a
continuation of solutions of the conservative problem to the dissipative
one. Here we expect to make an analytic continuation of solutions with
odd symmetry.

2. First, we will explore the conservative problem. We can infer from
Figure 1.7 that the solution Θ−, found in [129], is the continuation
of the equilibrium of (1.16) for e = 0. We want to find regions of
uniqueness and linear stability of Θ− with theoretical tools.

3. Once we have a region of linear stability, we want to make a contin-
uation of Θ− to the dissipative problem (1.15) for δ > 0. We want
that the estimated region is large enough to make it useful for practical
applications.

4. We expect such continuation to be asymptotically stable and would
like to prove it. Furthermore, we want to make a quantitative con-
tinuation by finding an upper value of δ for which the continuation is
asymptotically stable.

5. To complete this process, we would like to obtain a diagram that pro-
vides the upper value of δ for each point (e,Λ). Also, we want to apply
our results for real systems, such as the Earth-Moon system. More-
over, we would like to put our results on the dissipative parameter in
contrast with real measurements of how the satellite dissipates energy.

6. Finally, we want to investigate the stability of Θ− for large eccentrici-
ties. It looks from Figure 1.7 that there is a bifurcation such that the
solution Θ− is unstable for large eccentricities. We want to characterize
theoretically this bifurcation.
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Results

The results of the second part of thesis are developed in Chapter 3.
We start discussing, in Section 3.1, the existence and uniqueness of a par-

ticular 2π-periodic solution Θ∗ for the non-dissipative problem (1.16). This
solution has an odd symmetry, Θ∗(−t) = −Θ∗(t), and is two times the func-
tion Θ− defined in [129, 10], as it was described at the end of Section 1.3.2.
Proposition 3.1 defines a region of uniqueness for such solution in the (e,Λ)-
plane. The region is given by e ∈ (0, 1] and 0 ≤ Λ < Λ1(e), where the function
Λ1(e) is defined in (3.13). See Figure 1.8. In Lemma 3.2 we provide some
properties of Λ1(e). Moreover, Proposition 3.1 claims that Θ∗(t; e,Λ) is an
analytic function in all its entries. Actually, Θ∗ is the analytic continuation
of the trivial solution for e = 0.

In Proposition 3.2 we provide a region of linear stability of Θ∗(t; e,Λ).
The region is given by{

(e,Λ) : e ∈ (0, 1),m(e) < π/4, 0 < Λ <
1

4
Λ1(e), 0 < Λ < Λ2(e)

}
.

The functions m(e) and Λ2(e) are defined respectively in (3.21) and (3.22).
The functions 1

4
Λ1(e) and Λ2(e) define the upper limit of the stability region

obtained theoretically. We can see these results illustrated in Figure 1.8.
Note that we actually reach large eccentricities8, close to 0.4.

In Theorem 3.2, we make a continuation of the 2π-periodic solution Θ∗ of
(1.16) to the dissipative problem (1.15). In such case, the solution becomes
asymptotically stable. More precisely, if (e,Λ) belongs to the region defined
in Proposition 3.2, there exists a 2π-periodic solution Θ∗δ(t) of (1.15) that
is continuous for δ ∈ [0, δ̄] and Θ∗0(t) = Θ∗(t; e,Λ) for each t ∈ R. Here δ̄
is a small quantifiable value. Particularly, if δ > 0, Θ∗δ(t) is asymptotically
stable. Let ∆0 be the discriminant associated to the linearized equation at
the solution Θ∗(t; e,Λ). We provide an explicit formula for δ̄, (3.36) with
δ̄ = ρ, that only involves the quantities e, Λ and ∆0.

In Section 3.3.1 we discuss that our results are applicable to a family
of torques generalizing the MacDonald torque. In Section 3.3.2 we make a
diagram in the (e,Λ)-plane for different orders of magnitude of δ̄ using the
linear MacDonald torque. See Figure 1.9. Furthermore, we compute δ̄ for a
few systems, including the Earth-Moon system, shown in Table 1.1. Partic-
ularly, our estimates about asymptotic stability in the dissipative problem
are consistent with the data from the Moon-Earth system.

8For example, recall that, according to [34], Mercury was captured in a higher spin-
orbit resonance (3:2) because it had achieved large eccentricities is its evolution. Its current
value is e = 0.2056.
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Figure 1.8: (Figure 3.2) Linear stability of Θ∗(t; e,Λ). The gray regions are
linearly unstable and are computed numerically. Compare with Figure 1.7.
The lines pattern indicates that for high eccentricity e ≥ 0.9 we did not
compute the linear stability due to the proximity to the singularity. The
yellow region is the region of linear stability with our theoretical results.

Figure 1.9: (Figure 3.5) Dissipative diagram for the linear MacDonald torque.
The greener regions correspond to greater admissible δ. We do not guarantee
the existence of Θ∗δ(t; e,Λ) for the region filled with the wavy pattern.
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Satellite (Planet) e Λ δ̄ ∆t(δ̄)
Moon (Earth) 0.0549 0.00069 2.06 · 10−20 11 min

Io (Jupiter) 0.0041 0.021 9.69 · 10−19 0.00057 min

Europa (Jupiter) 0.0094 0.0055 2.85 · 10−19 0.0064 min

Table 1.1: (Table 3.1) Estimates for some satellite-planet systems with strong
spin-orbit interaction. The parameters e and Λ have been taken from [16]
and other constants from [1]. The corresponding δ̄ have been obtained nu-
merically. The dependence of ∆t with respect to δ only depends on the
parameters of the system.

Finally, Section 3.2 is devoted to prove that Θ∗(t; e,Λ) is linearly unstable
for high eccentricities, no matter how small Λ is considered. The variational
equation at Θ∗(t; e,Λ) is

ÿ +

(
Λ

r(t, e)3
cos[Θ∗(t; e,Λ)]

)
y = 0. (1.17)

In Theorem 3.1, we characterize the bifurcation of the instability region
for large eccentricities shown in Figure 1.8. Here we define the curve e = E(Λ)
of separation between stability and instability. It arises from the e-axis at
some point e = e∗ ≈ 0.682. The result reads as follows.

Theorem (Theorem 3.1). For some ε > 0, there exists a function E :
[0, ε)→ (0, 1), Λ 7→ E(Λ), such that the equation (1.17) is unstable and has
a non-trivial 4π-periodic solution if e = E(Λ). Moreover, E(0) = e∗ ∈ (0, 1)
and for each ē ∈ (e∗, 1) there exists a Λ̄ = Λ̄(ē) ∈ (0, ε), such that the equation
(1.17) is unstable for the points (e,Λ) satisfying E(Λ) < e < ē, 0 < Λ < Λ̄.
In addition, the function E can be expressed as E(Λ) = ξ(Λ1/p), where ξ(ζ)
is real analytic at ζ = 0 and p ≥ 1 is an integer.

Methodology

Recall from the objectives that we want to study the problem (1.15) in its
full non-autonomous form and without any assumption of small eccentrici-
ties. This means that in our research we will not use the perturbative and
averaging methods on Hamiltonian systems that are usual in the literature.

The results of Section 3.1 are proved as follows. The odd 2π-periodic solu-
tion Θ∗ of the conservative problem (1.16) is also a solution of the Dirichlet
problem (3.1) due to the symmetries of the original equation. Using the
shooting method, we find out that, if the only solution of the linearization of
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(3.1) is the trivial solution, then Θ∗ is the unique solution of (3.1). This is
done using Lemma 3.1, that involves Lp-estimates on the linear coefficient.
These estimates allow us to define the function Λ1 and the region of unique-
ness given in Proposition 3.1. The estimates involve the optimal Sobolev in-
equalities (3.5). The analytic properties of the solution are proved by means
of the implicit function theorem, in its real analytic version (Theorem 2.3.5
in [67]).

The linear stability of Θ∗ is given by a criterion for the stability of the
first variation at Θ∗ (3.16) . It is an example of Hill’s equation. This crite-
rion (3.17) is a generalization, using Lp-norms, of the Lyapunov criterion for
stability of a Hill’s equation. The inequalities of the criterion are considered
separately. In one hand, we need Lp-estimates on the linear coefficient, as
in the previous paragraph (Lemma 3.1). On the other hand, we can use a
Green’s function of a related problem to find upper and lower solutions for
Θ∗. This leads us to the definition of the function Λ2 appearing in Proposi-
tion 3.2.

Before making the continuation of Θ∗ to the dissipative regime, we prove
in Section 3.2 that the solution is unstable for large eccentricities in The-
orem 3.1. In this part we employ some techniques from complex analysis.
Using some properties of (even) Hill’s equations and the analyticity of the
solution, we are able to characterize the bifurcation point e = e∗ as a point
where the integral I(e), in (3.23), vanishes. This integral is analytic in e
and we can prove that e = e∗ exists by Bolzano’s Theorem. To do this we
compute I(e) in series expansion and prove that lime→1− I(e) is negative and
finite (Lemma 3.3). We compute I(e) with the Residue Theorem and prove
the uniform convergence of the limit. The additional properties that char-
acterize the bifurcation curve e = E(Λ) are proved with Lemma 3.4. This
lemma is a parametric version of Bolzano’s Theorem that defines a curve in
which a function of two variables vanishes and has a weaker transversality
condition. To compensate, the lemma requires the function to be analytic in
both variables, so we can prove it by means of the Weierstrass Preparation
Theorem and the Decomposition Theorem (Theorems 6.3.1 and 4.2.7 in [67]).

In Section 3.3 we prove Theorem 3.2. Its proof is given by two lem-
mas. Lemma 3.5 allows the quantitative continuation of the solution and
Lemma 3.7 guarantees that the continuation is asymptotically stable. We
see the periodic solution as a fixed point of the Poincaré map, so, Lemma 3.5
is formulated as a quantitative version of the Implicit Function Theorem.
The proof of Lemma 3.5 is given by the Contraction Mapping Theorem and
a generalized version of the Mean-Value Theorem, [3]. Lemma 3.5 provides
a formula for δ̄ that is given in terms of bounds for the norms of derivatives
of the Poincaré map. To assure such boundedness in our problem, it is nec-



40 CHAPTER 1. INTRODUCTION

essary a rather technical procedure based on an a priori bound in Lemma 3.6
and an auxiliary function given in (3.40). On the other hand, Lemma 3.7 is
based on the concept of strong stability, in the sense of Krein, for a Hill’s
equation (if it is stable and also any small perturbation of it). Here we take
advantage of the fact that a general perturbation of a Hill’s equation can
be converted into a Hill’s equation by a change of variable. Strong stability
guarantees that the perturbed equation is asymptotically stable by undoing
the change of variable.

At the end of the section we apply our results concerning the dissipative
problem. To compute δ̄ we need to integrate numerically the conservative
problem and its first variation. For simplicity, the numerical integrations are
performed taking as independent variable the eccentric anomaly u. With
this information we are able to produce the plot in Figure 1.9. We particu-
larize our results to some real systems: Earth-Moon, Jupiter-Io and Jupiter-
Europa. In the case of the Moon we have measurements of the velocity of
propagation of seismic waves. This provides an estimate of the dissipative
delay ∆t of the model that is consistent with our results. We do not have
the same information for Io and Europa, but our results are less realistic for
those cases.

Discussion and perspectives

In this research we have obtained some rigorous results concerning the ex-
istence and stability of the 1:1 resonant solution for the spin orbit problem,
which is closely related to the capture into the resonance. The dissipative
as well as the conservative version of the problem have attracted much at-
tention. We have considered equation (1.13) as the reference model for the
problem. Despite the rough simplification introduced by the linear MacDon-
ald torque in the model, it seems reasonable to take the dissipative torque Td
proportional to θ̇− ḟ . This inevitably leads us to the intricate pendulum-like
equation (1.15). This starting point, though suggested in many articles, was
never fully exploited, as far as we know. That is why we wanted to study this
equation with an analytical point of view and without further modifications.
This is in contrast with the literature, where either the numerical approach
prevails, or the equation is modified. This modification can be produced by
an average over a period or by an expansion in powers of the eccentricity e,
in order to focus the study on small e. The pioneer works of Goldreich and
Pale [51] and Beletskii [10] set the main research directions. The articles fol-
lowing [10] work in the conservative regime with f as independent variable,
obtaining the so-called Beletskii equation.

In the literature we find different approaches to the stability of the solu-
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tion. For instance, [51] poses the rough stability condition that the averaged
dissipative torque does not exceed the maximum conservative torque. There
are also more sophisticated approaches by A. Celletti and her collaborators,
like the KAM stability in [21] for the conservative case, or the existence of
quasiperiodic attractors in [25] for the dissipative problem, bifurcating from
the KAM tori of the conservative case. See also other related articles like
[24] and [50]. The articles that employ the Beletskii equation, such as [10],
[89] and [88], do not average the equation. Indeed they study the 2π-periodic
solutions (there is not uniqueness) and consider the linear stability, particu-
larly for the even solution Θ∗(t). They produce numerical stability diagrams
similar to Figure 3.2, and notice, see for example [10], the complexity of the
region of linear stability of Θ∗(t) for high eccentricities.

The most similar approach to ours is that of [101], which studies the
Beletskii equation with analytical tools. Its main result (Theorem 5) esti-
mates a region of existence and Lyapunov stability of Θ∗(t). The authors use
the method of upper and lower solutions to prove the existence of solution,
but they do not guarantee the uniqueness as odd 2π-periodic solution as we
did in Proposition 3.1. Since we consider the dissipative model, we are in-
terested in the asymptotic stability of the solution instead of the Lyapunov
stability. For this purpose we need a region of strong linear stability, which
is larger than the region obtained in Theorem 5, [101]. Using their compu-
tations, which correspond to L∞-norm estimates (recall that we used all the
Lα-norms to estimate our region), the resulting region of linear stability is
given by

0 < Λ <
(1− e)3

4
, 0 < Λ <

1

π

(
(1− e2)3/2

2
− 8e

)
.

We can check that this region is in fact included in our Ω.
This research has several direct continuations. In one hand, the same

study can be done to study the stability of higher spin-orbit resonances, such
as the 3:2. In higher resonances the role of large eccentricities is even more
important, as shown in [34] for the case of Mercury. Actually, if e = 0,
the only possible asymptotically stable resonance is the 1:1, as we know for
the equilibrium of the free damped pendulum, [86]. In this framework, we
would have to look for asymptotically stable subharmonic solutions (2πn-
periodic) of the pendulum equation (1.15). Another direction to explore is,
as commented in Remark 3.3, the use of the results by Borg [77] (or similar) to
look for other stability regions of higher order (Λ > 0.25) for the synchronous
resonance Θ∗. Or, in addition, for the other odd solutions that appear for
large Λ, as shown in Figure 1.7: do these solutions become asymptotically
stable in the dissipative setting? On the other hand, we can try to apply



42 CHAPTER 1. INTRODUCTION

our techniques to a more general dissipative torque, so the model covers
more realistic situations. See for example the models by S. Ferraz-Mello and
collaborators using the Newtonian creep model, [46, 48]. Also, note that our
results hold for the planar problem, we would like to know if the asymptotic
stability of the solution holds for the three dimensional model. If this is the
case, do we have to make important assumptions? Finally, as we will see,
the next model and the applied techniques are based on the present work.
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1.3.3 The spin-spin model and its double synchronous
resonance

Model

We will call spin-spin model to a planar version of the Full Two-Body Prob-
lem. This is a natural extension of the well known spin-orbit problem for
two extended bodies. As far as we know, it was first considered in [60] and
we think it is of great value for future research.

The Full Two-Body Problem (F2BP) deals with the dynamics of two
extended bodies interacting gravitationally. It has been extensively inves-
tigated, especially in the last two decades, due to an increasing interest on
binary systems. Due to its complexity, most of the studies are numerical
explorations of particular cases, [45]. There are some works with a more
analytical approach dealing with relative equilibria and stability, [113] and
[76]. The spin-spin model is motivated mainly by [12], [114], [36] and [7].
In one hand, [12] is focused on the evolution of the orbit and the spin axes
of the bodies in the secular F2BP (averaging over fast angles). This paper
points out that the mutual influence in the spin dynamics is contained in the
terms of order 1/r5 of the expansion of the potential energy of the system,
where r is the distance between the bodies. On the other hand, [114] stud-
ies the relative equilibria and stability in the planar case, i.e., the spin axes
of the bodies are perpendicular to the orbital plane, that is also a common
equatorial plane. [36] studies the observability of non-planar stable oscil-
lations around the double synchronous equilibrium in binary asteroids. In
[114] and [36], only terms up to 1/r3 of the potential energy are considered,
so the resulting system is equivalent to two uncoupled spin-orbit problems.
The planar spin-spin coupling was first studied in [7], making an analogous
study as the classical paper [51] on the spin-orbit coupling. Particularly,
[7] studies the spin of the body 1, identified with two point masses slightly
separated from each other (dumbbell model), that moves in a circular orbit
around the body 2, an ellipsoid with uniform rotation. They focus on the
case when the orbital motion is slow and the angular velocity of the body 1
becomes commensurable with the angular velocity of the body 2 (spin-spin
resonance).

The spin-spin model deals with the complete coupled dynamics of the
F2BP in the planar and ellipsoidal case. As usual in the spin-orbit problem,
we also assume that the orbital motion is Keplerian. This reduces the high
dimensional phase space of the F2BP to a problem of two degrees of freedom
(spins) plus time-dependence (orbit). For a small non-zero orbital eccentric-
ity, it has the structure of a nearly integrable system of coupled pendula that
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Figure 1.10: The planar spin-spin problem.

is periodically forced. This setting is suited to study the phenomena related
to spin-orbit and spin-spin resonances. Furthermore, the intrinsic dissipative
nature of the capture into resonances supports the relevance of this model.
The reason is that the most used family of dissipative torques, the MacDon-
ald torques in (1.14), is of order 1/r6, whereas the spin-spin coupling appears
at order 1/r5. In addition to the questions related to the spin-orbit problem,
this model of coupled oscillators opens new questions that were not possible
to consider before. In [60] there is a first study of this kind. It deals with the
stability of relative equilibria and the chaotic behavior associated to the spin-
spin-orbit resonances (simultaneous spin-orbit and spin-spin resonances) of
the problem due to the Chirikov diffusion.

Consider two homogeneous ellipsoids E1 and E2 with respective masses
Mj, j = 1, 2, principal moments of inertia Aj < Bj < Cj and corresponding
principal semi-axes aj > bj > cj. Assume that the orbital motion of the
ellipsoids is the same as for two point masses, say, the centers of the ellipsoids
describe coplanar Keplerian orbits of eccentricity e ∈ [0, 1) with a common
focus at the center of mass of the system. Moreover, assume that the spin
axis of each body is the principal axis associated to cj and is perpendicular
to the orbital plane.

Now proceed as for the spin-orbit problem. We identify the orbital plane
with the complex plane C. Consider the center of mass of the system fixed at
the origin and let the center of each ellipsoid be rj, then, M1r1 +M2r2 = 0.
If we define the relative position vector r = r2 − r1 and choose the units
of mass such that M1 + M2 = 1, then, r1 = −M2r and r2 = M1r. The
orbital motion is defined by r, which can be written as r = r exp(if) ∈ C,
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where r > 0 and f vary periodically with time. Here the vector r describes
an ellipse of eccentricity e ∈ [0, 1) and semi-major axis a with focus at the
origin. Then, the functions f(t) and r(t) are known by the Kepler problem
given by eqs. (1.10) to (1.12).

Let us take convenient units of time so that the period is 2π. Here we
do not take a = 1 as for the spin-orbit problem because we will see that the
size of the orbit is now an important factor. Recall Kepler’s third law for the
Two-Body Problem

G(M1 +M2)

(
T

2π

)2

= a3, (1.18)

where G is the Gravitational constant and T is the orbital period. In conse-
quence, G = a3 in our units. For our model to be completely non-dimensional
and adequate to the scale of the system, we take convenient units of length
such that C1 + C2 = 1. In these units the semimajor axes aj of the ellipsoids
are of order 1, whereas a should be much larger.

If t, M and l stand for time, mass and length respectively, the relation
between our system of units and any other one is the following

tours =
2π

T
t, Mours =

M

M1 +M2

, lours = l

√
M1 +M2

C1 + C2

.

It is worth mentioning that, if I is any magnitude with units of moment of
inertia, then the conversion is given simply by

Iours =
I

C1 + C2

.

The value of the gravitational constant G in any system of units must
respect Kepler’s third law (1.18).

Let θj be the polar angle of the principal direction associated to aj with
respect to the orbit’s major axis. See Figure 1.10. The spin dynamics of the
ellipsoids is modelled by the following coupled system of ordinary differential
equations

Cj θ̈j = T C
j (t, θ1, θ2) + T D

j (t, θ̇j), j = 1, 2, (1.19)

where T C
j and T D

j are respectively the conservative and dissipative torques
acting on Ej.

The conservative torque is derived from a potential energy, see Section 4.1,
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and it takes the form

T C
j (t, θ1, θ2) = −

(
a

r(t)

)3
Λj

2
sin(2θj − 2f(t))

−
(

a

r(t)

)5 ∑
(m1,m2)∈Ξ

mj Λm1
m2

2
sin(2m1(θ1 − f(t)) + 2m2(θ2 − f(t))), (1.20)

where
Ξ = {(m1,m2) ∈ Z2 : |m1|+ |m2| ≤ 2}.

The parameters Λj and Λm1
m2

are positive small quantities depending on the
physical parameters of the bodies and on a. These parameters satisfy Λm1

m2
=

Λ−m1
−m2

< Λj < 3Cj. Note that if all the constants Λm1
m2

in (1.20) vanish,
the system (1.19) is formed by two uncoupled spin-orbit problems in θ1 and
θ2. The coupling of the system is contained in the terms (m1,m2) of type
(±1,±1) and (±1,∓1), whereas the rest of them are high order spin-orbit
terms.

On the other hand, for the dissipative torques we take the form (1.14),
that in our case is given by

T Dj (t, θ̇j) = −CM,j

(
a

r(t)

)6

sin(2∆tj(θ̇j− ḟ(t))) ≈ −δjCj
(

a

r(t)

)6

(θ̇j− ḟ(t)),

where 1 � δjCj = 2CM,j∆tj ≥ 0, and CM,j are constants depending on the
parameters of the bodies. Note that between the definitions of T Dj and Td
there is a factor C different. It is worth mentioning that there is no physical
reason for both lags ∆tj (or both δj) to match.

Note that if T D
j = 0, the system (1.19) has a Hamiltonian structure. The

corresponding Hamiltonian has two degrees of freedom and time dependence
and it is given by

H(θ1, θ2, pθ1 , pθ2 , t) =
p2
θ1

2C1

+
p2
θ2

2C2

+ V(t, θ1, θ2), (1.21)

where

V(t, θ1, θ2) = −1

4

(
a

r(t)

)3 2∑
j=1

Λj cos(2θj − 2f(t))

− 1

4

(
a

r(t)

)5 ∑
(m1,m2)∈Ξ

Λm1
m2

cos(2m1(θ1 − f(t)) + 2m2(θ2 − f(t))).
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Due to the explicit time dependence of the Hamiltonian, the energy of the
system is not constant even though T D

j ≡ 0. However, if T D
j ≡ 0, the system

(1.19) will be called conservative, because no dissipative forces are involved
in the physical derivation of the model. On the other hand, if T D

j is not
identically zero for all time, then we will call it dissipative. In the following,
particularly in Chapter 4, we will use the terms conservative and dissipative
in italic font to remark this point. In Section 4.1 we will see also a purely
conservative version of the model involving (r, f, θ1, θ2) as unknown functions
of time, eqs. (4.14) and (4.15).

There are solutions of (1.19) that are especially relevant. Since the spin-
orbit problem is a particular case of (1.19), a solution satisfying θ1(t+2πno) =
θ1(t) + 2πns, with ns, no ∈ Z, is called ns : no spin-orbit resonance of the
ellipsoid E1. The same holds for E2. Spin-spin resonances arise when the spin
rates of the two ellipsoids become commensurable. In [7] these resonances
were studied independently from the orbital rate. There are some solutions
in which the ellipsoids are simultaneously in a spin-orbit and a spin-spin
resonance (studied in [60]). The simplest of these resonances is the double
synchronous resonance of equation (1.19), that is, solutions satisfying θj(t+
2π) = θj(t)+2π, for both j = 1, 2. In other words, the spin of both ellipsoids
synchronize with the orbital motion at the same time.

In this thesis we will deal with the capture into the double synchronous
resonance of equation (1.19). In the same way as for the spin-orbit problem
in the previous section, let us take the change of variable Θj = 2(θj − f),
such that the system (1.19) turns into

CjΘ̈j + δjCj
(

a

r(t)

)6

Θ̇j +

(
a

r(t)

)3

Λj sin Θj

+

(
a

r(t)

)5 ∑
(m1,m2)∈Ξ

mj Λm1
m2

sin(m1Θ1 +m2Θ2) = −2Cj f̈(t). (1.22)

The system (1.22) models a couple of damped and forced pendula of variable
length. Since f(t + 2π) = f(t) + 2π, then, double synchronous resonances
correspond to solutions of (1.22) satisfying Θj(t + 2π) = Θj(t) for both
j = 1, 2.

Similarly to the spin-orbit problem, we will consider also the conservative
version of (1.22), say,
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CjΘ̈j +

(
a

r(t)

)3

Λj sin Θj

+

(
a

r(t)

)5 ∑
(m1,m2)∈Ξ

mj Λm1
m2

sin(m1Θ1 +m2Θ2) = −2Cj f̈(t). (1.23)

In Section 4.1 we will make the derivation of the conservative model from
the Lagrangian of the physical system and obtain the expression of Λj and
Λm1
m2

in terms of physical parameters.

Objectives

We have two objectives in Chapter 4. On one hand, we want to make a thor-
ough derivation of the model presented in Section 1.3.3. On the other hand,
we want to characterize the capture into the double synchronous resonance
of (1.19) in a similar way as we do for the spin-orbit problem in the second
part of the thesis (Chapter 3). That is, by using the full non-autonomous
equation (1.22) and avoiding a requirement of small eccentricity. Again, the
double synchronous resonance is the most important full resonance of the
problem and we know several examples in the solar system. We summarize
our specific goals as follows.

1. First, we want to derive the Euler-Lagrange equations of motion of the
conservative system. This will involve the computation of the potential
energy of the F2BP up to order 1/r5. Although this was done in other
works [12, 76, 13], we want to do it independently in order to find the
expansion of the potential of the planar problem at any order.

2. We would like to find a parametric description of the problem such
that we can study different systems and make an effective comparison
between them. Accordingly, we want to find the number of independent
parameters of the problem. Can we associate a physical meaning to
them? Are realistic all the values of the parameters? These questions
will be related to the assumption that the orbits to be Keplerian. We
want to clarify this point.

3. We will study the conservative problem. We want to explore the solu-
tions with odd symmetry, because, at least for the uncoupled problem,
it is equivalent to two spin-orbit problems. Can we find a region of
uniqueness and linear stability for that solution? What techniques are
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necessary now that we have one more degree of freedom? Are the esti-
mated regions (much) smaller compared to those of the spin-orbit prob-
lem? About the corresponding regions found with numerical methods:
How do they change when we increase the coupling?

4. After the region of linear stability is found, we want to make a contin-
uation of the odd solution to the dissipative setting. We would like to
be able to prove that this continuation is asymptotically stable. In this
process, do we have to include additional requirements with respect to
the spin-orbit problem? Can we do a quantitative continuation?

5. Then, we want to apply our results. In one hand, we can use real
binaries in the solar system and see if our results are compatible. On
the other hand, we can study some families of representative systems.
For example, the case of identical bodies or the case in which one body
is twice larger than the other one. Here the following question arises:
can we reduce the number of parameters of the problem to facilitate
the comparison between systems?

Results

The results of the third part of the thesis are given in Chapter 4.
In Section 4.1, we derive the equations of motion of the full planar system

C1θ̈1 = −∂θ1V, C2θ̈2 = −∂θ2V,

µr̈ = µrḟ 2 − ∂rV, f̈ = − 1

µr2
∂fV − 2

ṙḟ

r
.

They depend on the potential energy. Its full expansion is found to be

V = −GM1M2

r

∑
(l1,m1)∈Υ
(l2,m2)∈Υ

Γl1,m1

l2,m2

(
R1

r

)2l1 (R2

r

)2l2

×

×Z1)
2l1,2m1

Z2)
2l2,2m2

cos(2m1(θ1 − f) + 2m2(θ2 − f)),

where Υ = {(l,m) ∈ Z2 : 0 ≤ |m| ≤ l}, the constants Γl1,m1

l2,m2
are defined in

(4.13), Rj is the mean radius of Ej, and Zj)2lj ,2mj
are the Stokes coefficients of

Ej computed with respect to its fixed body frame, they are defined in (4.9).
The first terms of the expansion are
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V0 = −GM1M2

r
.

V2 = −GM2

4r3
(q1 + 3d1 cos(2(θ1 − f)))− GM1

4r3
(q2 + 3d2 cos(2(θ2 − f))) ,

V4 = − 3G

43r5
{12q1q2 + 15

7
[M2

M1
d2

1 + 2M2

M1
q2

1 + M1

M2
d2

2 + 2M1

M2
q2

2]

+d1M2

{
[20 q2

M2
+ 100

7
q1
M1

] cos(2(θ1 − f)) + 25 d1

M1
cos(4(θ1 − f))

}
+d2M1

{
[20 q1

M1
+ 100

7
q2
M2

] cos(2(θ2 − f)) + 25 d2

M2
cos(4(θ2 − f))

}
+6d1d2 cos(2(θ1 − θ2)) + 70d1d2 cos(2(θ1 + θ2)− 4f)},

where dj = Bj−Aj, qj = 2Cj−Bj−Aj. V0 contains the dynamics of two point
masses, V2 the uncoupled spin-orbit dynamics and V4 the spin-spin coupled
dynamics between θ1 and θ2. The coupling terms appear in the last line of
V4. The assumption of Keplerian orbital motion leads us to the equations of
motion for j = 1, 2,

0 = θ̈j +
λj
2

{( a

r(t)

)3

sin(2θj − 2f(t))+

+

(
a

r(t)

)5 [5

4

(
q̂3−j +

5

7
q̂j

)
sin(2θj − 2f(t)) +

25d̂j
8

sin(4θj − 4f(t))+

+
3d̂3−j

8
sin(2θj − 2θ3−j) +

35d̂3−j

8
sin(2θ3−j + 2θj − 4f(t))

]}
,

where the parameters of the problem are defined as

λj = 3
dj
Cj

µ

Mj

, d̂j =
dj

Mja2
, q̂j =

qj
Mja2

.

The parameters have the following physical meaning: λj measures equato-

rial oblateness of Ej, d̂j measures the equatorial oblateness of Ej with respect
to the size of the orbit and q̂j measures the flattening of Ej with respect to
the size of the orbit. Not all the parameters are free, there are only six inde-
pendent ones (e; C1, λ1, λ2, d̂1, q̂1). Moreover, we see that spin of the ellipsoid
E2 is affected by the spin-spin coupling with a strength essentially given by
d̂1, and vice versa. The equations can be written in terms of the conservative
torque in the compact form (1.20). The parameters of both forms are related
by the expressions in eqs. (4.23) to (4.26).

In Section 4.2 we prove our theoretical results on the double synchronous
resonance of the conservative problem (1.23). The next theorems define (in
the space of parameters) regions of uniqueness and linear stability of the
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odd 2π-periodic solution that is the continuation of the equilibrium of the
equation for e = 0.

Theorem (Theorem 4.1). Assume that e ∈ [0, 1) and the parameters of the
problem satisfy

1 >
1

(1− e)3
max

{
Λ1

C1

(1 + α1),
Λ2

C2

(1 + α2)

}
,

where

αj
Λj

Cj
=

1

(1− e)2

∑
(m1,m2)∈Ξ

(
m2
j

Cj
+
|m1m2|√
C1C2

)
Λm1
m2
.

Then, there exists a unique odd 2π-periodic solution for (1.23), denoted by
(Θ∗1(t),Θ∗2(t)).

Theorem (Theorem 4.2). Assume that the parameters of the model satisfy
the following conditions.

1

π2
>

1

(1− e)3

(
Λ1

C1

+
Λ2

C2

)
+

1

(1− e)5

∑
(m1,m2)∈Ξ

(
m2

1

C1

+
m2

2

C2

)
Λm1
m2
,

1

4π
> M :=

1

(1− e)3
max

{
Λ1

C1

,
Λ2

C2

}
+

+
1

(1− e)5

∑
(m1,m2)∈Ξ

max

{
|m1|
C1

,
|m2|
C2

}
Λm1
m2

+
4e
√

1− e2

(1− e)4
,

cos(2π2M) min

{
Λ1

C1

,
Λ2

C2

}
> max

{
α1

Λ1

C1

, α2
Λ2

C2

}
,

Then the solution (Θ∗1(t),Θ∗2(t)) is strongly linearly stable.

The definition of strong linear stability in the sense of Krein is given in
Definition 4.2. Strong linear stability can be used in Section 3.3 to make
a continuation of the solution to the dissipative setting, as we did for the
spin-orbit problem in Chapter 3. This is done in Theorem 4.3. Here we
assume that the parameters of the problem satisfy the conditions of Theo-
rem 4.2 and that |δj| are small enough. In such case, there exists a solution
Ψ∗(t, δ1, δ2) of (1.22) for δj ≥ 0, that is analytic in all the entries and such
that Ψ∗(t, 0) = (Θ∗1(t),Θ∗2(t)) for each t ∈ R. Moreover, if |Λm1

m2
| are small

enough, Ψ∗(t, δ1, δ2) is asymptotically stable. Note that here we require that
|Λm1

m2
| and |δj| are small enough, in contrast with the quantitative result in
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Figure 1.11: (Figure 4.2) Stability diagrams in the (e, λ)-plane of the syn-
chronous resonance of the spin-spin model. Top: both bodies are equal.
Bottom: one body is double the size of the other. The double synchronous
resonance is unique under the dashed lines (right) and linearly stable under
the black lines (left) for the indicated value of q̂. In the left we see zoomed
views of the stable regions. The more yellow is the region indicates that
stability is guaranteed for larger values of q̂. The gray regions in the right
are unstable for the uncoupled system (spin-orbit), i.e., with q̂ = 0.
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Figure 1.12: (Figure 4.4) Stability diagrams in the (e, λ)-plane in the case of
equal bodies. The six plots in the left show the unstable region in gray for
different values of q̂. The image in the right shows the six diagrams super-
imposed. Darker tones of gray indicate more overlapping between unstable
regions.

Theorem 3.2 for the spin-orbit problem. We discuss at the end of Section 3.3
the technical limitations that did not allow to make a quantitative result.

In Section 4.4 we explain how to apply our results to real cases and
use the Pluto-Charon system and the binary asteroid 617 Patroclus as two
representative examples. In the case of Pluto and Charon, all of our results
are consistent, but the case of 617 Patroclus is only covered by our result on
the uniqueness of the solution (Theorem 4.1). This study leads to a discussion
of the extension of the theoretical regions obtained. In correspondence with
our results (we provide only sufficient conditions for uniqueness and linear
stability), we reduce the coupling of the system to a single parameter (q̂1).
This allows us to produce the diagrams in Figure 1.11 to two cases: In one
hand, the case of identical bodies, that we compare with the asteroid 617
Patroclus. On the other hand, the case when E1 is twice the size of E2, that
we compare with the Pluto-Charon system. We discuss the technical reasons
that make the shown regions much smaller that those of the spin-orbit model
(Figure 1.8).

Finally, we describe in detail the change of the regions of linear stability
(computed numerically) when we increase the coupling. The plots are shown
in Figure 1.12. This is done for the case of identical bodies. We conclude
giving an upper estimate for q̂ ≈ 10−2, under which the orbits are close to
be Keplerian, and we can use the model as stated.
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Methodology

We derive the equations of motion of the model in Section 4.1. We start
by computing the expansion of the potential energy of the Full Two Body
Problem in terms of the Stokes coefficients of the two bodies, (4.6). To
achieve this we use the translation formula of the (solid) spherical harmonics
in (4.3). The Stokes coefficients with respect to the inertial frame are related
to the ones computed in each fixed body frame by (4.7). Here, the Wigner
D-matrices, that in our planar case are diagonal, perform the rotation of
the components. We use properties of symmetry of the ellipsoids to obtain
the full expansion of the potential energy of the system in (4.12), whose
first terms are given in (4.16). With this potential we can write the Euler-
Lagrange equations of the system eqs. (4.14) and (4.15). Then we disregard
the non-Keplerian terms only in the orbital part and obtain the equations of
the spin-spin model (4.27). Here we define the adimensional parameters of
the system with physical meaning.

In Section 4.2 we obtain results to the conservative spin-spin model, anal-
ogous to those of Section 3.1 for the spin-orbit problem: we find regions of
uniqueness and linear stability of a 2π-periodic solution with odd symme-
try in the space of parameters. We call this solution Θ∗ as in Section 3.1,
although here it has two components. In this case we do not intend to max-
imize the size of the uniqueness and stability regions because the increase of
one degree of freedom adds many technical difficulties. Again Θ∗ is the solu-
tion of a Dirichlet problem (4.31). We prove that such solution exists using
Brouwer’s fixed-point theorem. For the uniqueness we prove that the only
solution of the linear Dirichlet problem (4.33) is the trivial one (Lemma 4.1).
To do this we employ the partial ordering of symmetric matrices (Defini-
tion 4.1) and other basic properties of the spectral radius and matrix norms.
Then, we deal with the variational equation at Θ∗, that is a linear Hamil-
tonian system with periodic coefficients. We define strong stability (in the
sense of Krein) for such systems in Definition 4.2 and use a test of strong
stability to prove Theorem 4.2. To fulfil the inequalities in the test (4.40),
we apply again basic properties of the spectral radius, matrix norms and also
an a priori bound in Lemma 4.2.

In Section 4.3, to make the continuation of the solution to the dissipative
setting (Theorem 4.3) we use Proposition 4.3 and Theorem 3.2. Proposi-
tion 4.3 reproduces some classical results on the continuation of periodic
solutions, [31]. The first item of Proposition 4.3 guarantees that the continu-
ation exists and is unique. To apply this item we use Proposition 4.2, a basic
result on strong stability. Then, we need to prove that the new solution is
asymptotically stable. This is proved by applying Theorem 3.2 to each of
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the equations of the system in the uncoupled case Λm1
m2

= 0. To complete the
proof, we can see the complete system as a perturbation of the uncoupled
one and apply the second item of Proposition 4.3. We dedicate the end of
the section to explain why we require a small coupling |Λm1

m2
| in the last part

of the proof. Basically, the full coupled system requires a deeper theoreti-
cal study because we did not find a straightforward generalization to higher
dimensions of the method used in Lemma 3.7 for the spin-orbit problem.

In Section 4.4, we apply the results. We make a direct application to the
Pluto-Charon binary and to the binary asteroid 617 Patroclus. This leads
us to a discussion about why the estimated regions for the spin-spin model
are much smaller than those for the spin-orbit problem in Chapter 3. We
conclude that the techniques of the latter are much finer: In Chapter 3 we
develop generalized Lyapunov criteria using Lp-norms, with p ∈ [1,∞], see
[128], and upper and lower solutions to bound the amplitude of the solution.
Instead, for the spin-spin model we use the stability test given by (4.40),
that is of type L∞, and a rougher bound for the amplitude of the solution in
Lemma 4.2. Finally, we make a qualitative description of Figure 1.12, that
shows the numerical plots of linear stability regions of Θ∗ for the case of iden-
tical bodies when we change the coupling parameter q̂. For a stable linear
Hamiltonian system with periodic coefficients with two degrees of freedom,∑4

n=1 |λn| = 4, where λn are the Floquet multipliers of the variational equa-
tion at Θ∗ (Section 4.2.3). On the other hand, if

∑4
n=1 |λn| > 4, the system

is unstable. Then, we find the separatrix of stability/instability by taking
the limit of the curves given implicitly by

∑4
n=1 |λn| = 4 + ε as ε→ 0+.

Discussion and perspectives

In this research we deal with a simplified mathematical model for the rota-
tional dynamics in the Full Two-Body Problem. As far as we know, it was
first studied in [60], although here we put more emphasis on the mathematical
formulation of the problem for future studies. This model is a straightforward
continuation of the spin-orbit problem. In consequence, we hope it will be of
interest for physical applications as well as for theoretical studies. We have
approached the problem from a theoretical point of view, but always keeping
what we think is the essence of the physical problem: the dissipative effects
are fundamental to explain the universe we observe today. In this sense, the
spin-spin model not only broaden the scope of the spin-orbit problem in a
higher dimensional phase space, but also contributes to fill the gap between
the conservative and the dissipative effects considered in the spin-orbit prob-
lem. More precisely, if the dissipative torque (of order 1/r6) is important
in the evolution of a satellite, then, we should consider also the spin-spin
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interaction (of order 1/r5). Of course this two effects are more important
when the bodies are closer to each other. In fact, in the spin-spin model the
strength of the terms of order 1/r5 is given by parameters that compare the
shape of the bodies with the size of the orbit, say, d̂j and q̂j. In contrast,
the spin-orbit problem only regards the equatorial oblateness of the satel-
lite dj/Cj. It is reasonable to think that the different types of interactions,
say, point-point, spin-orbit and spin-spin, must have their own specific rele-
vance in different ranges of parameters. This shows that the non-Keplerian
behavior of the full Lagrangian model (4.14), (4.15), should be investigated
more deeply. Here the full expansion of the potential energy, given in (4.12),
may also play a role. Moreover, as [36] shows, non-planar oscillations around
solutions of the planar problem can be studied and are of practical interest.

In the present research, we have made a brief theoretical study that al-
lowed us to point out the importance of the double synchronous resonance
and compare it with the synchronous resonance of the spin-orbit problem.
Particularly, in a similar way than in Chapter 3, we determine sufficient con-
ditions for the existence of an asymptotically stable periodic solution (capture
into resonance). Besides, note that our estimates do not intend to be optimal
at all. Instead, we illustrate a way to extend to the spin-spin model the tools
used for the spin-orbit model, as well as to compare them. Furthermore, in
this sense we have included some numerical diagrams of linear stability in
Figure 4.4 that show us how the spin-spin interaction alters the schemes of
the spin-orbit model.

We have applied our study to two real systems in double synchronous
resonance. In one hand, Pluto and Charon are representative of a large binary
with one body much larger than the other one, see [41]. On the other hand,
the binary asteroid 617 Patroclus is an archetype of a small system of similar
components, see [36], [79]. Here we propose a way how to make an effective
comparison between different systems. Note that the convenient choice of
units and parameters helps to clarify the comparison. As we expected, the
best candidates to apply the spin-spin model are binary asteroids. They are
very abundant in the solar system, e.g., about 15% of the near-Earth asteroids
are thought to be binaries. For a detailed discussion on the applications of
the general spin-spin model and its full Lagrangian version, we refer to [7]
and the bibliography therein. With our study on the double synchronous
resonance we hope to contribute to the study of the spin-spin resonances
made in [7]. Whereas they focus on the synchronization of both spins for
slow circular orbital motion (ḟ � θ̇j), we consider the full synchronization
including the orbit with arbitrary eccentricity. According to [36], most of
the equal mass binaries are expected to be in the double synchronous state.
In [99], Section 4.14, they provide a formula for a critical mass ratio of the
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components for this state to be possible. We want to remark also that,
apart from the application to binary asteroids and large natural satellites,
the spin-spin interaction can be relevant for artificial satellites whose rotation
state along an orbit is important. For instance, communication satellites in
equatorial orbits or even spacecraft exploring small bodies.

Finally, we think that the theoretical interest of the model is large, even
beyond the phenomena already observed in the spin-orbit problem. For ex-
ample, in the spin-orbit problem we can apply the notion of KAM stability
because KAM tori confine regions in the phase space. However this does
not happen in the spin-spin model due to the increase in the phase space
dimension (two degrees of freedom and time dependence). In fact, it is ex-
pected that Arnold diffusion takes place in this case. In general, the weak
coupling and the Hamiltonian character of the system makes it suitable to
apply perturbative techniques. Particular questions may be investigated,
such as chaos by overlapping of resonances (see [60]), stochastic phenomena,
normally hyperbolic manifolds, scattering maps, among other phenomena,
see [29].
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Chapter 2

The Kepler problem with
singular drags

2.1 Some preliminaries

In this section we present some preliminary considerations and establish some
notation for the dissipative Kepler problem (1.8). We rewrite equation (1.8)
in an equivalent form as the first order system

ẋ = v

v̇ = − k

||x||β
v − x

||x||3
,

(2.1)

defined in the phase space Ω = (R3\{0}) × R3. Given an initial condition
(x0,v0) ∈ Ω, the unique maximal solution of (2.1) such that x(0) = x0 and
v(0) = v0 will be denoted by (x(t),v(t)) or by φt(x0,v0), where φt is the flow
of the system (2.1). The corresponding interval of definition will be indicated
by (α, ω).

The energy E and the angular momentum M, defined respectively by

E(x,v) =
1

2
||v||2 − 1

||x||
, M(x,v) = x ∧ v,

are no longer conserved quantities for (2.1), since their derivatives along any
solution of (2.1) satisfy

Ė(t) = −k ||v(t)||2

||x(t)||β
, Ṁ(t) = − k

||x(t)||β
M(t). (2.2)

It follows that the energy is strictly decreasing along the solutions of (2.1),
and that the angular momentum of any solution satisfies

59
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M(t) =M0e
−

∫ t
0

k

||x(s)||β
ds
, M0 := x0 ∧ v0. (2.3)

Then, either M(t) ≡ 0 on (α, ω), and the corresponding orbit is rectilinear,

or M(t) 6= 0 on (α, ω), and the corresponding orbit is planar since M(t)
||M(t)|| is

a conserved vector. In this second case, ||M(t)|| is strictly decreasing.1

Due to the invariance of our problem with respect to the group of isome-
tries of R3, we can study the dynamics of (2.1) in the phase space Ω =
{(x,v) ∈ (C\{0})×C}, where we have set x = x1 + ix2, v = v1 + iv2. More-
over, denoting by M = x1v2 − x2v1 the scalar angular momentum of a solu-
tion, in order to study the rotational properties of non rectilinear motions, it
will be sufficient to restrict ourselves to the set Ω+ = {(x,v) ∈ Ω : M > 0}.
The manifold Ω0 = {(x,v) ∈ Ω : M = 0} corresponds to rectilinear
motions.

We rewrite now system (2.1) using polar coordinates in C \ {0}. Consid-
ering the change of variables x = r exp (iθ) we see that the new coordinates
satisfy the system 

ṙ = u

u̇ = rϕ2 − k u
rβ
− 1

r2

ϕ̇ = −k + 2urβ−1

rβ
ϕ,

(2.4)

where ϕ = θ̇ ≥ 0 and u ∈ R. Of course, motions in Ω+ will correspond to
ϕ > 0, whereas the equality ϕ = 0 singles out the rectilinear motions in Ω0.
When dealing with rectilinear motions in Subsection 3.4, we will identify Ω0

with the set {(r, u) : r > 0, u ∈ R}.
In what follows, we will consider just the forward dynamics of (1.8). Ac-

cordingly, all the solutions will be considered on their right maximal interval
[0, ω).

Throughout the paper, the subscript ω attached to a time dependent
function will denote the limit of that function as t → ω−. For simplicity,
we will generally omit the dependence of such limit on initial conditions
(x0,v0). For example, since the energy and the scalar angular momentum
are decreasing along the solutions of (1.8) we will write

Eω = lim
t→ω−

E(φt(x0,v0)) ∈ [−∞, E(0)]

1Jacobi, in his book on mechanics [59], had already a considered the dissipative Kepler
problem corresponding to (1.9) with drag P1,β , finding that the motions are planar and
have decreasing energy and decreasing scalar angular momentum. We note that these
properties actually hold for any dissipation opposite to the velocity.
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and
Mω = lim

t→ω−
M(φt(x0,v0)) ∈ [0,M(0)].

Throughout the paper we will make use of the following definition.

Definition 2.1. A solution of (1.8) defined on the right maximal interval
[0, ω[ is called a collision solution if

lim
t→ω

x(t) = 0. (2.5)

We will say that the collision occurs in finite time if ω is finite, and that it
occurs in infinite time if ω = +∞.

In the first result we determine the values of Eω and Mω for collision
solutions.

Theorem 2.1. Collisions always occur with zero angular momentum and
energy equals to minus infinity.

Proof. From the expression of the energy

E(t) =
u2(t)

2
+
r2(t)θ̇2(t)

2
− 1

r(t)
=
u2(t)

2
+
M2(t)

2r2(t)
− 1

r(t)
,

we see that in the case of a collision, since r(t) → 0+ as t → ω−, it must
be Mω = 0. Otherwise, we would get Eω = +∞, which is not possible since
E(t) is a decreasing function.

To prove the second part of the statement, we start by observing that,
by (2.3),

M(t) = M(0)e−k τ(t),

where

τ(t) =

∫ t

0

ds

rβ(s)
. (2.6)

Since Mω = 0, we get that, for collision solutions,

τω =

∫ ω

0

ds

rβ(s)
= +∞. (2.7)

Now we can conclude our proof arguing by contradiction. Assume that Eω ∈
R. Since for a collision solution there exists a t0 ∈ [0, ω) such that

E(t) > Eω ≥
1

2
− 1

r(t)
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for all t ∈ [t0, ω), then, on this interval,

|v(t)|2 = 2E(t) +
2

r(t)
> 1.

As a consequence, we get

Ė(t) = −k |v(t)|2

rβ(t)
< − k

rβ(t)
.

Integrating this inequality from t0 to t, we get E(t) < E(t0) − k τ(t). But
now, from (2.7) we get Eω = −∞, contradicting the assumption. Then,
Eω = −∞ and our proof is complete.
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2.2 Forward dynamics

2.2.1 A threshold for the existence of escape orbits and
non existence of oscillatory ones

In this subsection we first address the problem of the existence of escape
orbits for (1.8). From [81] we know that escapes do not exist for β = 0, since
in this case the singularity is a global attractor. However, the influence of the
singularity at infinity becomes weaker and weaker as β increases, and escapes
are expected to exist when β crosses some threshold value. The results in
[39] show that escape rectilinear orbits exist for β = 2, implying that such
threshold is less than or equal to 2. In Theorem 2.2 below we show that the
threshold is β = 1. We also show, in Theorem 2, that no oscillatory solutions
exist for (1.8). We first give the following auxiliary lemma. We point out
that this result holds for ω finite or infinite.

Lemma 2.1. For any β > 0, let x(t) be a solution of (1.8) defined on the
right maximal interval [0, ω).

i) If lim inft→ω− |x(t)| < +∞, then

lim inf
t→ω−

|x(t)| = 0. (2.8)

ii) If x(t) is bounded on [0, ω), then it is a collision solution.

Proof. To prove i), we argue by contradiction. Assume that there exists
a positive real number δ∗ such that

lim inf
t→ω−

|x(t)| = 2δ∗. (2.9)

Then, there exists a sequence {tn} ⊂ [0, ω[ that satisfies tn → ω, |x(tn)| →
2δ∗, and

|x(tn)| ≥ δ∗, for any n. (2.10)

Since the energy is decreasing along solutions, from (2.10) we have

|v(tn)|2

2
≤ E(0) +

1

|x(tn)|
≤ E(0) +

1

δ∗
, (2.11)

for any n. It follows that there exists (x∗,v∗) ∈ Ω which is a limit point
of (x(tn),v(tn)). By the general theory of ODEs and the maximality of
(x(t),v(t)), we conclude that ω = +∞. Then, we can apply the extension
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of La Salle’s principle to singular systems given in [83], Proposition 2.2, with
V = E, and conclude that

Lω(x,v) ∩ Ω = ∅, (2.12)

where Lω(x,v) is the ω-limit set of the solution t 7→ (x(t),v(t)). Since
(x∗,v∗) ∈ Lω(x,v) ∩ Ω we get a contradiction, and our proof of i) is con-
cluded.

To get ii) we start by noticing that, if ω = +∞, the conclusion follows
immediately as in [83]. If ω < +∞, we show that

lim sup
t→ω−

|x(t)| = 0, (2.13)

arguing by contradiction. Assume that (2.13) does not hold, and let 2δ∗ > 0
be the value of the upper limit. Then, there exists a sequence {tn} ⊂ [0, ω)
converging to ω as n → ∞, such that |x(tn)| → 2δ∗ and |x(tn)| ≥ δ∗.
Now, the same argument already used in i) leads to the contradiction that
ω = +∞. Our proof is concluded.

Theorem 2.2. If 0 < β ≤ 1 all the orbits of (1.8) tend to the singularity,
whereas if β > 1 there are also escape orbits. Escapes occur in infinite time
with a finite velocity, which can have an arbitrarily large modulus, and with
non-negative finite energy.

Proof. We start the proof of the first claim by showing that for 0 < β ≤ 1
all the solutions are bounded in the future.

Let w = |ẋ| and consider the following family of functions

Λβ(r, w) :=

{
k

1−β r
1−β + w if 0 < β < 1,

k ln r + w if β = 1.
(2.14)

Let t 7→ x(t) be a solution of (1.8) defined on the right maximal interval
[0, ω). Define r0 := r(0) and w0 := w(0). We will show that

Λβ(r(t), 0) ≤ Λβ(r0, w0), t ∈ [0, ω),

which implies immediately that r(t) is bounded for all t ∈ [0, ω). We argue
by contradiction. Assume that there exists t1 ∈ [0, ω) such that r1 := r(t1)
satisfies

Λβ(r1, 0) > Λβ(r0, w0) ≥ Λβ(r0, 0).

Then, r1 > r0, and, if we let w1 := w(t1) we have
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Λβ(r1, w1) > Λβ(r0, w0). (2.15)

Let Λβ(t) := Λβ(r(t), w(t)). If t ∈ [0, t1] is such that ṙ(t) > 0, then

Λ̇β(t) = k
ṙ

rβ
− k w

rβ
− ṙ

r2w
< 0, 0 < β ≤ 1.

The inequality holds since w ≥ ṙ. Moreover, let t′ and t′′ be two values such
that 0 < t′ < t′′ ≤ t1 and r(t′) = r(t′′), then, from E(t′′) < E(t′), it follows
that w(t′′) < w(t′), and consequently, Λβ(t′′) ≤ Λβ(t′). By Lemma 6 in [33],
applied with a = 0, b = t1, y(t) = r(t) and z(t) = −Λβ(t), we get that

−Λβ(t1) = −Λβ(r1, w1) ≥ −Λβ(0) = −Λβ(r0, w0),

contradicting (2.15). We conclude that all solutions of (1.8) are bounded on
[0, ω[. The first part of the statement follows now from ii) of Lemma 2.1.

In order to prove the second claim, we rewrite system (2.4) introducing
the scalar angular momentum M = r2θ̇ as a variable, getting the following
system: 

ṙ = u

u̇ =
M2

r3
− k u

rβ
− 1

r2

Ṁ = −kM
rβ
.

(2.16)

Consider the set

B := {(r, u,M) : r > 1, u ∈ R,M ≥ 0},

and the following family of functions fc : B → R depending on the positive
parameter c:

fc(r, u,M) := c+
1

ln r
− u.

We claim that, for fixed c > 0, there exists r∗ > 1 such that the set

Bc := {(r, u,M) ∈ B : r ≥ r∗, fc(r, u,M) ≤ 0} (2.17)

is positively invariant with respect to the flow of system (2.16). Denote
by V(r, u,M) the vector field associated to (2.16) and by φt(r, u,M) the
corresponding flow. A computation shows that on the surface fc(r, u,M) = 0
we have
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(V ·∇fc)|fc=0 = − c

r ln2 r
− 1

r ln3 r
− M2

r3
+
kc

rβ
+

k

rβ ln r
+

1

r2
,

where the dot denotes the Euclidean inner product. As β > 1, it follows that
there exists a sufficiently large r∗ > 1 such that, for any initial condition
(r, u,M) ∈ Bc satisfying fc(r, u,M) = 0, the following inequality holds

d

dt
fc(φ

t(r, u,M))t=0 = (V ·∇fc)(r, u,M) < 0.

Since for (r∗, u,M) ∈ Bc we have that u = ṙ > 0, and since the set {M =
0} ∩B is positively invariant, we conclude that Bc is positively invariant for
φt. Taking into account that M(t) is decreasing, we have

u̇ =
M2

r3
− k u

rβ
− 1

r2
≤ M2(0)

r3
− kc

rβ
− k

rβ ln r
− 1

r2
,

and, by choosing if necessary a larger r∗, we may assume that u̇ < 0 in Bc.
Consider now a solution of (2.16) with initial condition in Bc. Then, u(t) is
decreasing on [0, ω) and

c ≤ lim
t→ω

u(t) = uω ≤ u(0).

If ω were finite, from ṙ = u we would get that r∗ ≤ r(t) ≤ r(0) + u(0)ω on
[0, ω[. Since on this interval it holds also 0 ≤ M(t) ≤ M(0), we would have
a maximal solution of (2.16) contained in a compact set of the phase space.
We conclude that ω = +∞, and then

r∗ + ct ≤ r(t)→ +∞

as t→ +∞. The existence of escape solutions is proved.
By the identity

|v(t)|2 = u2(t) + r2(t)θ̇2(t) = u2(t) +
M2(t)

r2(t)
,

and the boundedness of M(t), we see that the value of the asymptotic velocity
for escapes is exactly uω. For initial conditions in Bc, we get that uω ≥ c,
where c may be fixed arbitrarily large. Furthermore, the limit energy verifies
Eω = u2

ω/2. Our proof is concluded.

The arguments used in Lemma 2.1 to prove the attractiveness of the
singularity can be adapted to show that collisions and escapes are the only
possible types of solutions for (1.8). This is done in the next result.
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We recall that a solution t 7→ x(t) of (1.8), defined on the right maximal
interval [0, ω[, is called oscillatory if it satisfies

lim sup
t→ω−

|x(t)| = +∞, lim inf
t→ω−

|x(t)| = 0. (2.18)

Actually, in the definition of an oscillatory solution, it is usually required
only that the lower limit of |x(t)| is finite, but Lemma 2.1 rules out any value
different from zero.

Theorem 2.3. Equation (1.8) does not admit oscillatory solutions.

Proof. If β ∈]0, 1] the statement is trivially true, since all solutions are
collision solutions. The case β > 1 can be proved arguing by contradiction. If
x(t) is an oscillatory solution, there exist a d > 0 and a sequence {tn} ⊂ [0, ω)
converging to ω such that |x(tn)| = d for any n. Then, we get a contradiction
in the same way as in the proof of the item ii) in Lemma 2.1. We omit the
details.

Remark 2.1. According to Lemma 2.1, a bounded solution is attracted to
the singularity. Actually, a closer look at the proof shows that this behavior,
as well as the statement of Theorem 2.3, hold for any (sufficiently regular)
drag such that the energy along the motions is strictly decreasing. In our
framework, a general example is provided by a force of the form −D(x, ẋ)ẋ,
where the function D is strictly positive and sufficiently smooth on Ω. In
fact, in this case Ė(t) = −D(x(t), ẋ(t))|ẋ(t)|2 < 0, t ∈ [0, ω). We conclude
that, for such class of dissipations, the only attractor is the singularity.

It may be interesting to observe that a dissipative Kepler problem with
a different kind of attractor is obtained in [30], where a simplified model of
tidal dissipation is discussed. The general class of dissipations considered
there is radial, as illustrated by the example of dissipative force −ε(x · ẋ)x.
For this dissipative Kepler problem, each orbit is attracted to a circular orbit
depending on the initial conditions.

Remark 2.2. Note that Theorem 2.3 and Theorem 2.1 imply that Ω+ can be
partitioned in the following three sets: the set of initial conditions of collisions
orbits

Ω+
C := {(x,v) ∈ Ω+ : Eω = −∞},

the set of initial conditions of hyperbolic escapes, and the set of initial con-
ditions of parabolic escapes, defined respectively by

Ω+
H := {(x,v) ∈ Ω+ : Eω > 0} and Ω+

P := {(x,v) ∈ Ω+ : Eω = 0}.
The last two sets are empty when β ∈ [0, 1].

Of course, an analogous partition holds for Ω, but we will not need this
fact in what follows.
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2.2.2 Non-rectilinear motions

In this subsection we focus on some qualitative properties of the non rectilin-
ear motions of (1.8). We show that, for any β > 1, an escape solution cannot
make a full turn around the singularity, i.e., the variation of the polar angle
is less than 2π. As to collision solutions, we prove several facts. Firstly, for
any β > 0, their angular momentum tends to zero and their energy goes to
−∞. Secondly, if β ∈ (0, 1), their angular velocity is unbounded. Thirdly,
collision solutions are asymptotically rectilinear for β > 3

2
. In this case we

discuss the time to collision and the terminal velocity as β increases. We are
able to extend our results to the case β = 3

2
, but just for k sufficiently large.

This is due to the fact that 3
2

is the only value of the parameter β for which
k cannot be eliminated from equation (1.8) by a rescaling of the solutions.

Variation of the polar angle of escape orbits

In order to prove our result about escapes, we rewrite (1.8) using the well
known Binet transformation, which we recall here. Since for any solution
in Ω+ we have M(t) = r2(t)θ̇(t) > 0, for any t ∈ [0, ω), the function
t 7→ θ(t) is an increasing diffeomorphism between Jt = [0, ω) and the interval
Jθ = [θ0 := θ(0), θω = θ(ω−)). The inverse function θ 7→ t(θ) is then used to
re-parameterize the solutions of system (2.4), in which r is replaced by the
new variable ρ = 1

r
. Then, the maximal solutions t 7→ (x(t),v(t)), t ∈ Jt, of

(2.1) in the set Ω+ are transformed into the maximal solutions θ 7→ y(θ) =
(ρ(θ), ζ(θ), θ,M(θ)), θ ∈ Jθ, of the differential system

y′ = g(y) :=

(
ζ,

1

M2
− ρ, 1,− k

ρ2−β

)
, (2.19)

where the prime denotes derivation with respect to θ and

y = (ρ, ζ, θ,M) ∈ (0,+∞)× R× R× (0,+∞).

The previous transformation may be defined by the time rescaling t = t(θ)
and by the change of variables

(x,v) = U(y) :=

(
1

ρ
er(θ),−Mζer(θ) + ρMeθ(θ)

)
, (2.20)

where we identify θ modulo 2π and er(θ) = eiθ, eθ(θ) = ier(θ).
The first two equations of system (2.19) are equivalent to the second order

scalar equation of a forced linear oscillator, namely ρ′′ + ρ = 1
M2 . Given an

initial condition (x0,v0) ∈ Ω+, we set y0 := (ρ0, ζ0, θ0,M0) = U−1(x0,v0), in
which θ0 = arg x0 is defined modulo 2π. In what follows we will consider θ0 ∈
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[0, 2π). By the variation of constants formula we see that the corresponding
solution satisfies the coupled system

ρ(θ) = ρ0 cos(θ − θ0) + ζ0 sin(θ − θ0) +
∫ θ
θ0

sin(θ−η)
M2(η)

dη

ζ(θ) = ρ′(θ)

M(θ) = M0 −
∫ θ
θ0

k
ρ2−β(η)

dη

(2.21)

on [θ0, θω). We can rewrite the first equation as

ρ(θ) = −κ sin(θ − α0 − θ0) + Φ(θ), (2.22)

where α0 = arccos
(
− ζ0

κ

)
∈ (0, π) is the angle between x0 and v0, and where

we have defined

Φ(θ) :=

∫ θ

θ0

sin(θ − η)

M2(η)
dη, κ =

√
ρ2

0 + ζ2
0 . (2.23)

Note that a solution of y′ = g(y) defined on [0, θω) corresponds to an
escape solution of (1.8) if and only if

ρ(θ) > 0 on [0, θω) and lim
θ→θ−ω

ρ(θ) = 0.

We are now in a position to prove our result about escapes. To simplify
our notations, we assume that θ0 = 0.

Theorem 2.4. Escapes can only occur during the first turn around the origin.
Moreover, the limit angle θω satisfies

θω < α0 + π.

If a solution does more than one turn, then it corresponds to a collision orbit.

The theorem will be an immediate consequence of the following lemma,
whose proof is based on the fact that M(θ) is a strictly decreasing function.

Lemma 2.2. The function Φ defined in (2.23) satisfies the following prop-
erties:

i) Φ(θ) > 0 for all θ ∈ (0, θω).

ii) If θω > 2π, then Φ(θ) > Φ(θ − 2π) for all θ ∈ [2π, θω).
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Proof. From the sign of sin(θ − η) we see that

I1 :=

∫ θ

θ−π

sin(θ − η)

M2(η)
dη > 0, I2 :=

∫ θ−π

θ−2π

sin(θ − η)

M2(η)
dη < 0.

By the second inequality, it follows that

|I2| =
∫ θ−π

θ−2π

| sin(θ − η)|
M2(η)

dη =

∫ θ

θ−π

| sin(θ − η̄ + π)|
M2(η̄ − π)

dη̄ =

∫ θ

θ−π

sin(θ − η̄)

M2(η̄ − π)
dη̄.

Since 1
M(η)

is strictly increasing, we have I1 > |I2|, and then

∫ θ

θ−2π

sin(θ − η)

M2(η)
dη = I2 + I1 > 0, for any θ ∈ [0, θω).

This inequality implies both assertions of the lemma.

Proof. (of Theorem 2.4)

If a solution of (1.8) makes one complete turn around the origin, it follows
that

ρ(θ) > 0, for any θ ∈ [0, 2π] ⊂ [0, θω).

Property ii) of Lemma 2.2 implies

lim inf
θ→θω

ρ(θ) ≥ ρ(θω − 2π) > 0,

and |x(θ)| = 1
ρ(θ)

is bounded on [0, θω). From Remark 2.1, such solution is a

collision solution. To end our proof, we observe that i) of Lemma 2.2 and
(2.22) imply that, for an escape solution, θω ∈ (α0, α0 + π).

A rotational property of collision orbits for β ∈ (0, 1)

Next result shows that the rotational property of solutions obtained for the
linear drag in Proposition 2.5 in [81] continue to hold when β ∈ (0, 1).

Theorem 2.5. Let β ∈ (0, 1). Given a non rectilinear solution t 7→ x(t) =
r(t) exp (iθ(t)), there exists a sequence tn → ω− such that

θ̇(tn)→ +∞.
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Proof. We start by regularizing system (2.1) using the time rescaling
dµ = dt

r2 . We obtain the C1 system

dr

dµ
= r2u

du

dµ
= −kur2−β + r3ϕ2 − 1

dϕ

dµ
= −(kr2−β + 2ur)ϕ

(2.24)

on the set r ≥ 0, u ∈ R, ϕ > 0.

Then, multiplying the first equation by kr−β, adding it to the second
equation and integrating the result, we obtain that any solution

µ 7→ (r(µ), u(µ), ϕ(µ))

satisfies the following equality:

u(µ) + k
r1−β(µ)

1− β
=

∫ µ

0

r3(σ)ϕ2(σ)dσ + C0 − µ, (2.25)

where C0 := u(0) + k r
1−β(0)
1−β , on its right maximal interval Iµ = [0, µω).

Now we argue by contradiction. Assume that ϕ(µ) is bounded on Iµ.
Then, it must be µω = +∞. Otherwise, if we assume that µω < +∞, we
are led to a contradiction as follows. From (2.25) we infer that u(µ) is
bounded on Iµ. As a consequence, from the third equation of the system
we see that ϕ(µ) is bounded away from zero on Iµ. But then the solution
µ 7→ (r(µ), u(µ), ϕ(µ)) is contained in a compact set of the phase space for
all µ ∈ Iµ, contradicting its maximality. We conclude that µω = +∞. Now
the argument proceeds as in [81]. Since r(µ) → 0 as µ → +∞, there exists
a sequence µn → +∞ such that u(µn)→ 0. By the boundedness of ϕ on Iµ,
there exists µ̄ such that r3(σ)ϕ2(σ) < 1

2
for any σ ≥ µ̄. Then, from (2.25) we

get that for any µn > µ̄ it holds the inequality

u(µn) + k
r1−β(µn)

1− β
≤
∫ µ̄

0

r3(σ)ϕ2(σ)dσ +
µn − µ̄

2
+ C0 − µn.

Taking the limit for n → +∞, we get the contradiction 0 ≤ −∞. We
conclude that ϕ(µ) is unbounded on [0,+∞), and the same property holds
for θ̇(t) on [0, ω).
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Asymptotic dynamics of collision solutions for β ≥ 3
2

To get our next results we start with a suitable rescaling of time in system
(2.4), given by dτ = dt

|x|β . We obtain the following equivalent system in the
new time τ 

dr

dτ
= rβu,

du

dτ
= −ku+ rβ+1ϕ2 − rβ−2,

dϕ

dτ
= −(k + 2urβ−1)ϕ.

(2.26)

The associated vector field is non singular for β ≥ 2. In this case, it can be
extended continuously to the collision manifold r = 0, on which it possesses
a unique equilibrium r = 0, u = 0, ϕ = 0. For β ≥ 3 the vector field is C1 on
the set r ≥ 0, u ∈ R, ϕ ≥ 0.

By (2.7), collision solutions in Ω+ are defined on the right maximal inter-
val [0, τω = +∞), and on such interval, ϕ(τ) = θ̇(t(τ)) > 0. Since τ 7→ t(τ) is
an increasing diffeomorphism, the polar angle θ(t(τ)) is an increasing func-
tion of τ and, moreover, by (2.6) we get

dθ

dτ
= θ̇

dt

dτ
= θ̇(t(τ))rβ(t(τ)) > 0. (2.27)

Theorem 2.6. The following properties hold for collision orbits:

i) If β > 3
2
, or if β = 3

2
and k > 2

√
2, there exists a limit polar angle at

collision, achieved with zero angular velocity.

ii) If 3
2
< β < 3, or if β = 3

2
and k > 2

√
2, collisions occur in finite time,

whereas if β ≥ 3 they occur in infinite time.

iii) If 3
2
< β < 2, or if β = 3

2
and k > 2

√
2, the limit velocity at collision

is infinite, if β = 2, the limit velocity is finite and with modulus 1
k
, and

if β > 2 the limit velocity is zero.

Proof.

i) Since Eω = −∞ and r is bounded for collision orbits, we can take
initial conditions such that E(0) < 0 and 0 < r(t) < 1 on [0, ω). Then,

u2(t)

2
− 1

r(t)
< E(t) =

|v(t)|2

2
− 1

r(t)
< 0,
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or equivalently, u2r < 2. It follows that, for any β ≥ 3
2
, we have

u2r2β−2 < 2r2β−3 ≤ 2,

which implies

urβ−1 > −
√

2r
2β−3

2 ≥ −
√

2, for any β ≥ 3

2
. (2.28)

Consider now the evolution of the angular velocity given by the last
equation of (2.26). By (2.28) we get the inequality

dϕ

dτ
= −(k + 2urβ−1)ϕ < −(k − 2

√
2)ϕ, (2.29)

and hence

0 < ϕ(t(τ)) < ϕ(0)e−(k−2
√

2)τ . (2.30)

Taking into account that ϕ = θ̇ and (2.27), we can integrate (2.30)
obtaining

θ(t(τ)) < θ(0) + ϕ(0)

∫ τ

0

rβ(t(τ̄))e−(k−2
√

2)τ̄dτ̄ .

For k > 2
√

2 the integrand function in the right hand side of the
inequality is integrable on [0,+∞), since r is bounded on this inter-
val. Then, τ 7→ θ(t(τ)) is an increasing function, bounded from above
on [0,+∞). We conclude that, if β ≥ 3

2
and k > 2

√
2, there exists

limτ→+∞ θ(t(τ)) = limt→ω− θ(t) = θω, and is finite. Moreover, (2.30)
implies that limτ→+∞ θ̇(t(τ)) = limt→ω− θ̇(t) = 0+.

To finish the proof of i), we show that, if β > 3
2
, the restriction on

the values of k may be removed. In fact, one can check that, when
β 6= 3

2
, fixed arbitrarily two different values of k, the solutions of the

two corresponding equations (1.8) can be transformed ones into the
others by a suitable scaling of the form x̃(t) = px(qt), p, q > 0. In
particular, for β > 3

2
, let us consider k = k1 ≤ 2

√
2. Then, the scaling

x̃(t) = px(p−
3
2 t), with p > 0 and pβ−

3
2 > 2

√
2/k1, transforms any

solution of (1.8) with k = k1 into a solution of the same equation with

k = k2 = pβ−
3
2k1 > 2

√
2. Since the scaling preserves the asymptotic

behavior of the solutions as well as the orientation of time, the proof
of i) is concluded.
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ii) To study if ω is finite or not, it will be convenient to deal directly with
system (2.4). As above, without loss of generality, we may assume that
E(t) < 0 , 0 < r(t) < 1 on [0, ω). Moreover, since we are considering
β > 3

2
or β = 3

2
and k > 2

√
2, by (2.30) we may assume also 0 < ϕ(t) =

ϕ(τ(t)) < 1 on [0, ω).

From the second equation in (2.4) we see that, whenever u ≥ 0, it holds

u̇ = −k u
rβ

+ r

(
ϕ2 − 1

r3

)
< −k u

rβ
+ r

(
1− 1

r3

)
< 0.

Then, there exists t1 ∈]0, ω) such that u(t) < 0 on [t1, ω). As a con-
sequence, r(t) is a decreasing function on [t1, ω), and we can take r as
independent variable by considering the time rescaling t = t(r), r ∈
(0, r1 := r(t1)]. It follows that ω satisfies the equality

ω − t1 =

∫ 0

r1

dr

u(t(r))
.

Since r3ϕ2 → 0 as t → ω−, we can assume that r3(t)ϕ2(t) < 1/2 on
[t1, ω). Then, from (2.4) we get the inequality

r2du

dr
=
r3ϕ2

u
− k

rβ−2
− 1

u
> − k

rβ−2
− 1

2u
. (2.31)

Integrating (2.31) on any interval of the form [r∗, r1], with 0 < r∗ < r1,
we obtain

r2
1u(t1)−r2

∗u(t(r∗))−2

∫ r1

r∗

r u(t(r))dr > −k
∫ r1

r∗

dr

rβ−2
− 1

2

∫ r1

r∗

dr

u(t(r))
.

(2.32)

By the inequality u2r < 2, it follows that, for all γ > 1/2, urγ → 0
as r → 0+. Then, the left hand side of (2.32) has a finite limit, say l∗,
when r∗ → 0+. Passing to the limit in (2.32), we arrive to the following
inequality:

l∗ > −k
∫ r1

0

dr

rβ−2
+

1

2
(ω − t1).

Now, if β < 3, the integral is convergent, and then it must be ω < +∞.

In the case β ≥ 3, we can proceed analogously, by integrating on the
interval [r∗, r1] the inequality
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r2du

dr
=
r3ϕ2

u
− k

rβ−2
− 1

u
< − k

rβ−2
− 1

u
,

and then taking the limit as r∗ → 0+. We obtain the inequality

l∗ < −k
∫ r1

0

dr

rβ−2
+ (ω − t1),

where l∗ denotes the finite limit of the left hand side of the integrated
inequality. Since when β ≥ 3 the integral is divergent, it must be
ω = +∞.

The proof of ii) is concluded.

iii) We know that, if β > 3
2
, or if β = 3

2
and k > 2

√
2, the limit velocity at

collisions depends only on the radial component u, because the angular
component rϕ goes to zero. Additionally, in the previous item it was
proved that u gets eventually negative.

To prove our claims we will use the second equation of system (2.26).
Note that rβ+1ϕ2 → 0 as r → 0+ for any β > 0, but the behavior of
the term rβ−2 will depend on the sign of β − 2.

If β < 2, we have that rβ−2 → +∞ as r → 0+. Then, for any a > 0, we
can take initial conditions such that, for all τ > 0,

du

dτ
= −ku+ rβ+1ϕ2 − rβ−2 < −ku− a,

or, equivalently,

d

dτ

(
uekτ

)
< −aekτ .

Integrating this inequality we get

u(t(τ)) < −a
k

+
(
u(0) +

a

k

)
e−kτ ,

which implies

lim sup
τ→+∞

u(t(τ)) ≤ −a
k
.

Since a can be chosen arbitrary large, we conclude that u→ uω = −∞.
On the other hand, if β > 2, we have that rβ−2 → 0 as r → 0+. Then,
for any a > 0 we can take initial conditions such that, for all τ > 0,
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du

dτ
= −ku+ rβ+1ϕ2 − rβ−2 > −ku− a.

Analogously to the previous case, we conclude that

−a
k
≤ lim inf

τ→+∞
u(t(τ)) ≤ 0,

for any arbitrarily small a. Then, u→ uω = 0.

Finally, for the threshold value β = 2, since r3ϕ2 → 0, fixed any
arbitrarily small positive ε, we can use the inequality 0 < r3ϕ2 < ε in
the second equation of (2.26). We obtain, in a similar manner than
above, that

−1

k
≤ lim inf

τ→+∞
u(t(τ)) ≤ lim sup

τ→+∞
u(t(τ)) ≤ −1− ε

k
,

which leads to the conclusion that u→ uω = −1/k.
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2.2.3 Rectilinear motions

In order to give a more complete description of the forward dynamics of (1.8),
in this subsection we address the rectilinear collisions of (1.8).

We recall that the rectilinear motions of (1.8) verify the second order
equation

r̈ + k
ṙ

rβ
+

1

r2
= 0, (2.33)

equivalent to the following first order system (which, of course, corresponds
to the first two equations of system (2.4) with ϕ = 0),{

ṙ = u
u̇ = −k u

rβ
− 1

r2 ,
(2.34)

on the phase space Ω0 = {(r, u) : r > 0, u ∈ R}.

We have the following result.

Theorem 2.7. The terminal time ω, the terminal velocity uω and the termi-
nal energy Eω of collision solutions depend on β according to the following
table:

β ]0, 1/2[ [1/2, 2[ 2 ]2, 3[ [3,∞[
ω finite +∞
uω −∞ − 1

k
0

Eω finite −∞

Proof. This proof borrows some ideas from the ones of Proposition 2.4
in [83] and of Proposition 3.1 in [81], mainly in Case I. The corresponding
steps are presented below with less detail.

We recall that our phase space is the half-plane Ω0 = {(r, u) : r > 0, u ∈
R}. The isocline of system (2.34) associated to ṙ = 0 is the half line defined
by u = 0, whereas for u̇ = 0 the isocline is defined by

u = −r
β−2

k
.

These curves determine the following disjoint open regions in the phase space:

A0 = {(r, u) ∈ Ω0 : u > 0}, A1 =
{

(r, u) ∈ Ω0 : 0 > k u > −rβ−2
}
,

A2 =
{

(r, u) ∈ Ω0 : k u < −rβ−2
}
.

(2.35)
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Figure 2.1: Dependence on β of the regions defined by the isoclines in the
regularized systems.

The set A0 is negatively invariant with respect to the flow of (2.34) for all
β > 0, whereas for β ∈ (0, 2), A1 is positively invariant and A2 is negatively
invariant. For β > 2, the set A2 is positively invariant. We distinguish three
cases.

Case 1: β ∈ (0, 2).

We prove first that ω is finite. If it were infinite, there should exist a
sequence tn → +∞ such that u(tn) → 0. However, this is not possible,
because one can easily check that all collision solutions enter eventually into
the positively invariant set A1, where u = ṙ is negative and decreasing.

In what follows, we consider the regularization of system (2.34) given by
the time rescaling dµ = dt

r2 , already considered in the proof of Theorem 2.5.
Of course, we obtain a system made by the first two equations of (2.24) with
ϕ ≡ 0, namely, {

dr
dµ

= r2u,

du
dµ

= −k r2−βu− 1.
(2.36)

System (2.36) is defined in the extended phase space Ω̄0 = Ω0 ∪{(r, u) : r =
0, u ∈ R} and the line r = 0 is an isocline orbit associated to dr

dµ
= 0 (see the

left panel of Figure 2.1).

Let us prove now that, when β ∈ (0, 2), the velocity at collision satisfies
uω = −∞. We argue by contradiction. Assume that µ 7→ (r(µ), u(µ)) is a
collision solution such that uω ∈ (−∞, 0). We can take initial conditions
(r(0), u(0)) ∈ A1 so that u(µ) is negative for all µ > 0. Then, from the first
equation of (2.36), we see that
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1

r(µ)
=

1

r(0)
+

∫ µ

0

|u(σ)|dσ. (2.37)

Letting µ → µω, we have that the left hand side tends to +∞, and since
u(τ) is bounded on [0, µω), from (2.37) we get µω = +∞. But then, from the
second equation of (2.36), it follows that

lim
µ→+∞

du

dµ
= −1,

and this would imply that uω = −∞, contradicting the hypothesis that uω
is finite. We conclude that uω = −∞.

Now let us see how the energy behaves when an orbit approaches the
collision.

Consider first the case β ∈ (0, 1). System (2.36) has the first integral

H(r, u, µ) = u+
k

1− β
r1−β + µ, (2.38)

obtained by setting ϕ ≡ 0 in (2.25).
Let (r0, u0) be an initial condition in A1, and let H0 := H(r0, u0, 0), so

that by (2.38) we have

u(µ) +
k

1− β
r1−β(µ) + µ = H0. (2.39)

Since u(µ)→ −∞ and r(µ)→ 0 as µ→ µω, from (2.39) we infer that µω =

+∞. Then, from the same equality it follows that u(µ)
µ
→ −1 as µ → +∞,

and from (2.37) we get that µ2r(µ)→ 2 as µ→ +∞.
By (2.2), we see that dE

dµ
= r2 dE

dt
= −k r2−βu2. Then, using the two limits

established above for u and r, we get that

µ2(1−β)dE

dµ
(µ)→ −22−βk,

as µ→∞. As a consequence,

Eω = E(0) +

∫ ∞
0

dE

dµ
(σ)dσ

is finite if β ∈ (0, 1/2), whereas Eω = −∞ if β = [1/2, 1).
Let us consider now β ∈ [1, 2).
In this case the approach through the first integral (given by H = u +

k log r + µ, when β = 1, and by (2.38), when β > 1) does not allow to find
out the asymptotic expansion of the solutions as they approach collision.
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However, we argue as follows. It is easy to see that in A1 the trajectories of
system (2.36) may be written in the form u = χ(r), r ∈ (0, r0]. If we evaluate
the slope of such orbits at the points of the form u = −rβ−1, we get

du

dr

∣∣∣∣
u=−rβ−1

=
1

rβ

(
1

r
− k
)
,

which is positive for 0 < r < 1/k. This implies that the region

D :=

{
(r, u) : 0 < r <

1

k
, − 1

kr2−β < u < −rβ−1

}
⊂ A1

is positively invariant. On the other hand, note that

dE

dr
=

1

u

dE

dt
= −k u

rβ
> 0.

Then, for every orbit u = χ(r) such that (r0, χ(r0)) ∈ D, as a consequence
of the invariance of D, we have

k

r
<
dE

dr

∣∣∣∣
u=χ(r)

<
1

r2
,

and we conclude that

Eω = E(0) +

∫ 0

r0

dE

dr

∣∣∣∣
u=χ(r)

dr = −∞.

Case 2: β = 2.

This case is solved in [39]. The explicit solution is given by

u(µ) =

(
u0 +

1

k

)
e−kµ − 1

k
,

1

r(µ)
=

1

r(0)
−
∫ µ

0

u(σ)dσ, µ ∈ [0,∞).

From these expressions it is easy to see that ω < +∞, uω = −1/k and
Eω = −∞.

Case 3: β > 2.

In order to study the collisions for β > 2, it is convenient to consider the
time rescaling dτ = dt

rβ
, introduced previously to get system (2.26). We obtain

the following regular system, which corresponds to the first two equations of
(2.26) with ϕ ≡ 0, {

dr
dτ

= rβu

du
dτ

= −k u− rβ−2,
(2.40)
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on the extended phase space Ω̄0.
We note that the origin is an equilibrium of system (2.40) which attracts

the points of the invariant line r = 0 (see the right panel of Figure 2.1).
One can see easily that all collision orbits will enter eventually in the pos-

itively invariant region A2. Then, without loss of generality, we will consider
only initial conditions in A2. Actually, since in this region we have du

dτ
> 0

and dr
dτ
< 0, all solutions are bounded on [0, τω). This fact implies that all

solutions starting in A2 are collision ones, since otherwise an equilibrium of
the system should exist in A2. Moreover, any segment of orbit contained in
A2 may be expressed in the form u = χ(r), with r in a suitable interval of
the form (0, r̃), with 0 < r0 < r̃. Notice that, on this interval, χ(r) satisfies
the scalar differential equation

du

dr
:= f(r, u) = − k

rβ
− 1

r2u
. (2.41)

When β ≥ 3 the vector field associated to (2.40) is continuously differ-
entiable on Ω̄0 and, by the general theory of ODEs, we conclude that all
solutions starting in A2 tend to the equilibrium (0, 0) in infinite τ time. We
conclude that uω = 0.

This cannot be guaranteed without further considerations for β ∈ (2, 3).
In fact, in this range of values the regularized vector field is not Lipschitz
continuous in the points of the form (0, u) ∈ Ω̄0. As a consequence, in such
points uniqueness of solutions may fail, and all we can conclude by the general
theory is that, for collision solutions, we have −∞ < uω ≤ 0. Let us prove
that, actually, uω = 0. Define the function hλ(r) := −λrβ−2, where λ > 1/k.
Note that A2 = ∪{λ>1/k}{(r, hλ(r)) : r > 0}. Evaluating the slope field du/dr
at u = hλ(r), we get(

du

dr

∣∣∣∣
hλ

)/
dhλ
dr

=
kλ− 1

λ2(β − 2)r2β−3
. (2.42)

Hence, for any fixed λ > 1/k there exists only one point r = rλ such that
the graph of the function hλ(r) is tangent to an orbit, and is given by

rλ :=

(
kλ− 1

λ2(β − 2)

) 1
2β−3

. (2.43)

Moreover, by (2.42) it follows that

dhλ
dr

≶ f(r, hλ(r)), if r ≷ rλ. (2.44)
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As a consequence, by the comparison theorem for ODEs, the orbit u =
χ(r) of (2.41) that is tangent to the curve u = hλ(r) in r = rλ satisfies

χ(r) ≥ hλ(r),

for any r ∈ (0, rλ).
Note that (2.43) is a second degree equation in λ. Solving it, we obtain

two local inverses of the function λ 7→ rλ, namely the functions

λ±(r) :=
1

r2β−3

k ±
√
k2 − 4(β − 2)r2β−3

2(β − 2)
,

defined for 0 < r ≤ R, where

R :=

(
k2

4(β − 2)

) 1
2β−3

.

Now we use λ±(r) to construct the two following auxiliary functions:

h±(r) = hλ±(r)(r) := − 1

rβ−1

k ±
√
k2 − 4(β − 2)r2β−3

2(β − 2)
,

also defined for 0 < r ≤ R.
The functions h+ and h− satisfy the following properties. They are, respec-
tively, strictly decreasing and strictly increasing on (0, R], and such that
h−(r) > h+(r) on (0, R), with h−(R) = h+(R) := uR. Moreover, they have
the following behavior as r → 0+:

h−(r) = −r
β−2

k
+ o(rβ−2) → 0 and h+ → −∞. (2.45)

Finally, the range of h+ is (−∞, uR], and the one of h− is [uR, 0). We are
now ready to prove that on collision orbits uω = 0.

We start by defining the positively invariant set

G := {(r, u) : 0 < r ≤ R, h+(r) ≤ u ≤ h−(r)} ⊂ A2.

Given an initial condition (r0, u0) ∈ G, let us consider the corresponding orbit
u = χ(r), r ∈ (0, r̃). Since there exists a value λ > 1/k such that h−(r) >
χ(r) > −λrβ−2 for all 0 < r < R, we conclude that the orbit will go towards
the equilibrium as r → 0+. If (r0, u0) ∈ A2\G the corresponding orbit will
eventually enter in G. In fact, if there exists an orbit u = χ̄(r) for which this
is not the case, we can find λ̄ = λ−(r̄) such that u = hλ̄(r) intersects u = χ̄(r)

in a point r̂ > r̄ for which it holds the inequality
dhλ̄
dr

(r̂) > f(r̂, hλ̄(r̂)). By
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Figure 2.2: Illustration of the proof for β ∈ (2, 3).

(2.44), there exists a second point, r∗ > r̂ > r̄, such that the curve u = hλ̄(r)
is tangent to an orbit (the first being r̄), which is absurd.

Then, uω = 0 for all collision orbits also for β ∈ (2, 3). Taking into account
what was proved previously, we conclude that uω = 0 for any β > 2. It follows
immediately that the energy E = u2/2− 1/r tends to Eω = −∞.

Also, since

ω =

∫ 0

r0

dr

χ(r)
, (2.46)

by (2.45) and by the inequality −λrβ−2 < χ(r) < h−(r) for any r ∈ (0, R),
we see that 1/|χ(r)| is integrable on the interval (0, r0] if β ∈ (2, 3), in which
case ω is finite, whereas it is not integrable if β ≥ 3, and then ω = +∞. Our
proof is concluded.

From Theorem 2.7, we see that, when β ∈ (0, 1
2
), the collision time, as

well as the corresponding energy, are finite. It is not difficult to prove that
also the ejection time and ejection energy2 are finite. These properties are
sufficient to infer that the asymptotic expansions of solutions around collision
and ejection times obtained in [81] for β = 0 are still valid for β ∈ (0, 1

2
).

Namely, at collision we have

r(t) =

(
9

2

)1/3

(ω − t)2/3 +O((ω − t)4/3), t→ ω−, (2.47)

ṙ(t) = −2

3

(
9

2

)1/3

(ω − t)−1/3 +O((ω − t)1/3), t→ ω−. (2.48)

2An ejection solution is a solution such that limt→α+ x(t) = 0, and α is the ejection
time.
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The analogous expansion at ejection is obtained just by replacing ω − t
with t − α and by reversing the sign of ṙ in (2.48). We point out that
these expansions hold also for the rectilinear motions of a periodically forced
Kepler problem ([102]), as well as for a perturbed two body problem, with
a perturbation of the form P (t,x, ẋ). which, unlike in our case, is bounded
([116]).

However, unlike in the case of the linear drag, when β ∈ (0, 1
2
) the ejection-

collision solutions cannot be embedded in a regular flow. Let us explain this
point. The Levi-Civita transformation, developed in the conservative setting,
was used effectively in [81] to regularize the dynamics of (1.8) for β = 0. But,
for β > 0, the natural generalization of this transformation leads to a system
that, although non singular, does not define a flow. To show this, consider the
Levi-Civita-like transformation x = x1 + ix2 = w2, dν = dt

|x|β+1 (the classical

Levi-Civita transformation corresponds to β = 0). This transformation maps
solutions of (1.8) into solutions of the non singular system

dw

dν
= |w|2βv, dv

dν
=
E

2
|w|2βw − |w|2v, dE

dν
= −(2E|w|2 + 1) (2.49)

contained in the invariant manifold M ⊂ C2 × R of equation E|w|2 + 1 −
2|v|2 = 0.

We notice that an ejection-collision solution, t 7→ r(t), defined on the
maximal finite interval (α, ω) is transformed into a solution ν 7→ Ξ(ν) =
(w(ν), v(ν), E(ν)) of (2.49), defined on the finite, but not maximal, interval

IS =

(
να := −

∫ 0

α

1

rβ+1(σ)
dσ, νω :=

∫ ω

0

1

rβ+1(σ)
dσ

)
.

A maximal solution of (2.49) which extends Ξ outside IS is obtained by con-

sidering the function Ξα(ν) :=
(

0, 1√
2
, Eα − ν + να

)
on (−∞, να), where Eα

is the energy at ejection, and the function Ξω(ν) :=
(

0,− 1√
2
, Eω − ν + νβ

)
on [νω,+∞). Since Ξα(ν), ν ∈ R, is also a maximal solution of (2.49), it
follows that uniqueness os solutions fails at the point (0, 1√

2
, Eα).

This behavior agrees with the fact that, when β ∈ (0, 1
2
), the regularized

vector field is not locally Lipschitz continuous at points of the form (0, v, E)
with v 6= 0.

In a conservative setting, the study of the existence of a regularized flow
by means of a change of variables analogous to the Levi-Civita transformation
has been considered in [87].
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2.3 The asymptotic Runge-Lenz vector for

β = 2

In this section we consider the case of the Poynting-Plummer-Danby drag.
We show that a careful analysis of equation (2.22) allows a complete descrip-
tion of the orbit structure for such a case, improving the results in [39]. Such
description will be contained in the main result of this section, where we
discuss the properties of the limit I of the Runge-Lenz vector

R(x,v)=v ∧ (x ∧ v)− x

|x|

along the solutions of (1.8) with β = 2. We recall that R is a first integral
of the classical Kepler problem, with the following geometrical meaning: for
non rectilinear orbits, which are conic sections, R is parallel to the symmetry
axis which contains the focus, and its modulus is the eccentricity of the orbit.
For this reason it is also referred to as eccentricity vector.

The vector I, which can be thought of as an asymptotic eccentricity vec-
tor, was considered in [82] to study the dynamics of (1.8) when β = 0 (see
Remark 2.3 below). In our case, its properties will be obtained by taking
the limit of R along the solutions of (2.19) and then going back to the (x,v)
variables. This is equivalent to take the limit of R along the flow of (2.1).
In fact, if γθ denotes the flow of (2.19), we have

φt = U ◦ γθ ◦ U−1, (2.50)

where U was defined in (2.20) and t and θ are explicitly related by t =

t(θ, y) =
∫ θ
θ0
λ(γσ(y)) dσ, with λ(y) = 1

ρ2M
. The pair (U, λ) establishes the so

called equivalence in the extended sense of the vector fields (2.1) and (2.19),
see [95].

Theorem 2.8. There exists a vector field

I : Ω→ R2, I = I(x,v),

satisfying

i) I(σx, σv) = σI(x,v), for each (x,v) ∈ Ω and each rotation

σ =

(
cos θ − sin θ
sin θ cos θ

)
.
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ii) I is smooth on the sets Ω+
H and Ω+

C , corresponding, respectively, to
hyperbolic and collision orbits, and is discontinuous on the set Ω+

P ,
corresponding to parabolic orbits.

Moreover,
I(Ω) = R2 \ int (D),

where D is the closed unit disk in R2.

iii) Each solution t 7→ (x(t),v(t)) of (2.1) with β = 2, defined on the right
maximal interval [0, ω), satisfies

I(x(t′),v(t′)) = lim
t→ω−

R(x(t),v(t))

for each t′ ∈ [0, ω).

Remark 2.3. This theorem is analogous to Theorem 2.1 in [82], where the
properties of I for β = 0 are considered. In particular, in [82] it is found that
I is continuous on Ω. Moreover, taking also into account an improvement
of Theorem 4.2 presented in [83], it is established that the range of I is the
closed unit disk. When β = 2, item ii) shows that I has significantly different
properties: I is not continuous on Ω, and its range is the exterior of the open
unit disk. We will see that the discontinuity arises along any fixed parabolic
orbit since such orbit is the limit of hyperbolic orbits and of collision ones. We
prove this fact only for β = 2, because in this case the problem is integrable,
and we could make use of explicit closed formulas in our computations. As
to the range of I, it somewhat expresses that, unlike the case β = 0, there
are parabolic and hyperbolic orbits, and there are no elliptic motions winding
infinite times around the singularity as they approach it.

Proof.
We start by proving that I, as defined in iii), exists on Ω+ and that the

properties stated in ii) hold. To carry out our analysis we will use the Binet
variables. Consider the initial condition

(x0,v0) = U(ρ0, ζ0, θ0,M0) =

(
1

ρ0

er(θ0),−ζ0M0er(θ0) + ρ0M0eθ(θ0)

)
∈ Ω+,

and consider the corresponding solution of system (2.19), given by (2.21),
(2.22) and (2.23), with β = 2. In this case

M(θ) = M0 − k(θ − θ0) = k(θM − θ + θ0),

where θM = M0/k, and we have the following explicit formula:
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ρ(θ) = −κ sin(θ − α0 − θ0) +

∫ θ

θ0

sin(θ − η)

k2(θM − η + θ0)2
dη. (2.51)

Collision solutions correspond to θω = θM , and are such that

ρ(θ) > 0, θ ∈ [θ0, θω), ρ(θ−ω ) = +∞.

Escape solutions correspond to θω < θM , and satisfy

ρ(θ) > 0, θ ∈ [θ0, θω), ρ(θ−ω ) = 0.

By Theorem 2.4, we also know that for escapes θω ∈ (θ0 + α0, θ0 + α0 + π).
If we define the set

A = {(θ, θM) : θ0 < θ < θ0 + θM , θ0 + α0 ≤ θ ≤ θ0 + α0 + π}

and the smooth family of functions Fρ0,ζ0,θ0 : A→ R,

Fρ0,ζ0,θ0(θ, θM) := ρ(θ) = −κ sin(θ − α0 − θ0) +

∫ θ

θ0

sin(θ − η)

k2(θM − η + θ0)2
dη,

(2.52)
then the limit angle θω of an escape orbit will satisfy the implicit equation

Fρ0,ζ0,θ0(θω, θM) = 0.

We will show below that this equation defines implicitly θω as a function of
y0 = U−1(x0,v0) which is continuous in Ω+

H ∪ Ω+
P and smooth on Ω+

H .
For simplicity, in what follows we omit the dependence on the parameters

of F and of the functions implicitly defined. We also set θ0 = 0 for our
computations, but will remove this restriction in our conclusions.

In the same way we proved that Φ(θ) > 0 in i) of Lemma 2.2, we obtain
the inequality

∂θMF (θ, θM) = −2

∫ θ

0

sin(θ − η)

k2(θM − η)3
dη < 0,

so that for each fixed θ ∈ (0, θM) ∩ [α0, α0 + π], the map θM 7→ F (θ, θM) is
strictly decreasing on (θ,+∞). For each θ ∈ (α0, α0 + π) we have

lim
θM→∞

F (θ, θM) = −κ sin(θ − α0) < 0, (2.53)

and since
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Figure 2.3: Discontinuity of θω : graphical illustration of the proof.

sin(θM − η)

(θM − η)2
=

1

θM − η
+O

(
(θM − η)2

)
,

we get

lim
θ→θ−M

F (θ, θM) = +∞,

for any fixed θM > α0. By Bolzano’s theorem and the implicit function
theorem, there exists a smooth function θM = ψ(θ) defined on (α0, α0 + π)
such that F (θ, ψ(θ)) = 0.

From (2.52) and i) of Lemma 2.2, it follows that F (α0, θM) > 0 and
F (α0 + π, θM) > 0. Then, fixed any m > 0, there exists δ > 0 such that
F > 0 on ([α0, α0 + δ]× [0,m]) ∩ A and on ([π + α0 − δ, ]× [0,m]) ∩ A , see
Figure 2.3. From (2.53) we conclude that

lim
θ↘α0

ψ(θ) = lim
θ↗α0+π

ψ(θ) = +∞,

and as a consequence ψ(θ) has at least a minimum. Actually, for all θ such
that ψ′(θ) = 0, we have

ψ′′(θ) = − ∂2
θF (θ, ψ(θ))

∂θMF (θ, ψ(θ))
> 0,

since ∂θMF (θ, ψ(θ)) < 0 and ∂2
θF (θ, ψ(θ)) = 1

k2(ψ(θ)−θ)2 > 0. Then, the
minimum point, say θ = θP , is unique and it is the only critical point of ψ.
The subscript indicates that the minimum point is associated to a parabolic
escape, as we will see.
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It follows that ψ admits a decreasing left inverse η : [ψ(θP ),+∞) →
(α0, θP ], which is continuous on [ψ(θP ),+∞) and smooth on (ψ(θP ),+∞).

Fixed θM ∈ [ψ(θP ),+∞), the angle θω = η(θM) ∈ (α0, θP ] is the limit an-
gle of the escape solution θ 7→ ρ(θ) = Fρ0,ζ0,0(θ, θM), θ ∈ [0, θω), correspond-
ing to initial conditions (ρ0, ζ0, 0,M). We notice that if θM ∈ [ψ(θP ),+∞),
it is

ζ(θω) = ρ′(θω) = ∂θF (θω, ψ(θω)) ≤ 0,

where the equality holds if and only if θω = θP . By definition of U, we have

v = −ζMer(θ) + ρMeθ(θ).

We infer that, if θM > ψ(θP ), the corresponding orbit is hyperbolic, since
the terminal velocity vω satisfies

vω = −ζ(θω)M(θω)er(θω) 6= 0, M(θω) > 0,

whereas, if θM = ψ(θP ), the corresponding orbit is parabolic, since vω = 0.
To complete our analysis, we note that, if α0 < θM < ψ(θP ), then the

solution θ 7→ ρ(θ) = Fρ0,ζ0,0(θ, θM), θ ∈ [0, θω) corresponds to a collision
solution with limit angle θω = θM . Summarizing, the limit angle θω, as shown
by Figure 2.3, is defined by the function

θω =

{
θM if θM < ψ(θP ),
η(θM) if θM ≥ ψ(θP ).

We conclude that this map is a smooth function of y0 = (ρ0, ζ0, θ0,M0) if
θω 6= θP (that is, on hyperbolic and on collision orbits) and is discontinuous
at θM = ψ(θP ) (that is, on parabolic orbits), since

lim
θM→ψ(θP )−

θω = ψ(θP ) > θP = lim
θM→ψ(θP )+

θω. (2.54)

Then, taking into account (2.50), if (x0,v0) ∈ Ω+ there exists

I(x0,v0) = lim
t→ω

R(x(t),v(t)) = lim
θ→θω

R ◦ U ◦ γθ ◦ U−1(x0,v0)

and is given by

I(x0,v0) =

{
−er(θM) if θM < ψ(θP ),
−ζ(θω)M2(θω)eθ(θω)− er(θω) if θM ≥ ψ(θP ),

where for simplicity of notations we have not indicated explicitly the compo-
sition with U−1 of the functions θM , θω and θP . It follows that I is smooth
on Ω+

H ∪ Ω+
C , since this property holds for θω.
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To prove that I is discontinuous on parabolic orbits, fix any (x0,v0) =
U(ρ0, ζ0, θ0,M0) ∈ Ω+

P . Then, we can consider solutions of (2.19) with initial
conditions of the form

(x0,v0) = (ρ0, ζ0, θ0,M∗) ∈ Ω+
H ∪ Ω+

C

with M∗ in a neighborhood of M0. By (2.54)

lim
θM∗→ψ(θP )+

I ◦ U = −er(θP ) 6= lim
θM∗→ψ(θL)−

I ◦ U = −er(ψ(θP )),

so that I is discontinuous on Ω+
P .

Note that I, as defined by property iii) of the statement, exists on all Ω.
In fact, on the rectilinear motions, it is I(x0,v0) = − x0

|x0| . On solutions with
negative scalar angular momentum, one can easily adapt the argument used
in Ω+, getting also the corresponding regularity results.

To complete the proof of the theorem, we observe that i) holds since the
SO(2) invariance of R is inherited by I. Then, by i), the continuity of I on
Ω+
H and the property

lim
θω→(α0)+

|I ◦ U | = +∞,

it follows that
I(Ω) = R2 \ int (D),

where D is the closed unit disk in R2.



Chapter 3

Stability of the synchronous
spin-orbit resonance

3.1 Linear stability of the synchronous reso-

nance

The main result of this section is at the end of it, in Proposition 3.2. It
determines a region of linear stability written in terms of the functions Λ1(e),
defined in the first subsection, and Λ2(e), defined in the second one.

3.1.1 Uniqueness of the odd 2π-periodic solution

Note that equation (1.16) is invariant under the change (t,Θ) → (−t,−Θ),
since f(−t, e) = −f(t, e) and r(−t, e) = r(t, e). Then, if Θ(t) is a solution
of (1.16), so it is −Θ(−t). On the other hand, for e = 0, the equation (1.16)
becomes the free pendulum equation Θ̈ + Λ sin Θ = 0. In this case we know
that for Λ ≤ 1, the only 2π-periodic solution are the equilibria Θ ≡ 0 and
Θ ≡ π. Since the trivial solution is the stable one, it is natural to look for
the 2π-periodic continuation of such solution for e 6= 0 in the family of the
odd solutions of (1.16), which is equivalent to solve the Dirichlet problem{

Θ̈ + Λ
r(t,e)3 sin Θ = −2f̈(t, e),

Θ(0) = Θ(π) = 0.
(3.1)

It is well known from nonlinear analysis that this problem has at least
one solution because equation (1.16) can be written as

Θ̈ = F (t,Θ), (3.2)

91
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with F (t,Θ) bounded. Making explicit1 the dependence with respect to the
parameters we can write

F (t,Θ; e,Λ) = − Λ

r(t, e)3
sin Θ− 2f̈(t, e). (3.3)

We are going to present a simple proof of the existence of solution, based
on the shooting method (see [100]). This will be a convenient way to intro-
duce some notation.

Let Θ(t) = ϑ(t, v) be the solution of (3.2) satisfying initial conditions
Θ(0) = 0, Θ̇(0) = v ∈ R. Solutions of the problem (3.1) are in correspon-
dence with the solutions of the equation ϑ(π, v) = 0. From equation (3.2) we
know that ϑ satisfies the following integral equation

ϑ(t, v) = vt+

∫ t

0

(t− s)F (s, ϑ(s, v))ds.

Moreover, since there exists a positive number M ≥ |F (t,Θ)|, then

|ϑ(t, v)− vt| ≤M
t2

2
,

for each t ∈ R. Using this estimate for t = π, we conclude that

lim
v→±∞

ϑ(π, v) = ±∞.

In consequence, the equation ϑ(π, v) = 0 must have at least one solution.
We know now that the Dirichlet problem (3.1) has a solution, however,

it is not necessarily unique. For instance, in the circular case (e = 0), if
Λ ≤ 1 the only solution of the problem (3.1) is Θ(t) ≡ 0, while if Λ > 1
there are additional solutions, see [86]. We would like to determine a region
of parameters (e,Λ) where there is uniqueness for the problem (3.1).

The shooting method is also useful to prove uniqueness by proving that
ϑ(π, v) is monotone, which is equivalent to say that the partial derivative
∂vϑ(π, v) never vanishes. From the theorem of differentiability with respect
to initial conditions, we know that y(t) = ∂vϑ(t, v) is the solution of the
variational equation

ÿ +

(
Λ

r(t, e)3
cos[ϑ(t, v; e,Λ)]

)
y = 0, (3.4)

1Sometimes we will make explicit the dependence on the parameters of the problem in
this way, for example, a solution Θ(t) of (3.2) would be referred as Θ(t; e,Λ)
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with initial conditions y(0) = 0, ẏ(0) = 1. Note that in (3.4) we have made
explicit the dependence upon the parameters of ϑ. We conclude that the
problem (3.1) has a unique solution as soon as the equation (3.4) has the
trivial solution y(t) ≡ 0 as the unique solution satisfying the Dirichlet con-
ditions y(0) = y(π) = 0. This condition will be checked for every v ∈ R.

To do this we will employ the Sobolev inequality

Kl(p)||ξ||2p ≤ ||ξ̇||22, (3.5)

where ξ is any function in the space H1
0 [0, l], || · ||p is the Lp-norm, which is

defined by

||ξ||p =


(∫ l

0
|ξ(t)|pdt

)1/p

, if 1 ≤ p <∞,

ess sup
t∈[0,l]

|ξ(t)|, if p =∞,

and the constant Kl(p) is optimal for (3.5) by definition,

Kl(p) = inf
ξ∈H1

0 [0,l]\{0}

||ξ̇||22
||ξ||2p

,

see [118], [18]. This constant has an explicit expression in terms of special
functions since, according to [128],

Kl(p) =

 2π
p l1+2/p

(
2

2+p

)1−2/p (
Γ(1/p)

Γ(1/2+1/p)

)2

, if 1 ≤ p <∞,
4
l
, if p =∞,

(3.6)

where Γ is the usual Gamma function. The last expression can be employed
to check that Kl(p) is continuous for all p ∈ [1,∞].

In order to prove the following lemma let us also recall Hölder’s inequality
for ξ ∈ Lp[0, l] and χ ∈ Lq[0, l], with 1/p+ 1/q = 1,

||ξ ·χ||1 ≤ ||ξ||p||χ||q. (3.7)

Lemma 3.1. Let a ∈ C[0, l] be a function such that its positive part

a+(t) = max{0, a(t)},

satisfies

||a+||α < Kl

(
2α

α− 1

)
, (3.8)
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with α ∈ [1,∞]. Then, the unique solution of the Dirichlet problem{
ÿ + a(t)y = 0,
y(0) = y(l) = 0,

(3.9)

is the trivial solution.

This Lemma is a particular case of Corollary 2.2 in [18], in its Dirichlet
version (Section 2.3). As we see in Remark 2.1 and in Section 2.3 of [18], we

do not need to impose the condition
∫ l

0
a(t)dt > 0, since, in the terminology

of [18], our problem is nonresonant.
Proof. We proceed by contradiction. Multiply the equation in (3.9) by

y(t) 6≡ 0 and integrate by parts,∫ l

0

ẏ(t)2dt =

∫ l

0

a(t)y(t)2dt ≤
∫ l

0

a+(t)y(t)2dt, (3.10)

i.e.
||ẏ||22 ≤ ||a+ y2||1,

from (3.7) we get
||ẏ||22 ≤ ||a+||p||y2||q,

for any numbers such that 1 ≤ p, q ≤ ∞ satisfying 1/p+ 1/q = 1. Addition-
ally, from (3.5) we get

Kl(β)||y||2β ≤ ||a+||p||y2||q,

for any number such that 1 ≤ β ≤ ∞. Let us take q = β/2 in the last
inequality and assume that y(t) 6≡ 0, consequently

Kl(β) ≤ ||a+|| β
β−2

,

where we have used that ||y||2β = ||y2||β/2. The last inequality contradicts
the hypothesis (3.8). In consequence, y(t) ≡ 0.

The previous Lemma can be applied to equation (3.4) in the interval [0, π]
for each α ∈ [1,∞]. To do this we define the following function

Λ0(e, α) =
Kπ( 2α

α−1
)

||r( · , e)−3||α
, (3.11)

which has an explicit expression in terms of the hypergeometric function and
the Γ function, and it is continuous in both of its variables. Let us show this
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PSfrag replacements

α = 1
α = ∞

Figure 3.1: The functions e 7→ Λ0(e, α) for different values of α.

point. We can compute that

||r( · , e)−3||α =



π

(1− e2)3/2
, if α = 1,(

π 2F1(1/2, 3α− 1; 1; 2e/(1 + e))

(1 + e)3α−1

)1/α

, if 1 < α <∞,

(1− e)−3, if α =∞,
(3.12)

where || · ||α denotes the Lα[0, π]-norm and 2F1 is the hypergeometric func-
tion. The continuous dependence of the function ||r( · , e)−3||α with respect
to e and α <∞ is guaranteed by the classical theorem in integration theory.
Moreover, it is also guaranteed for α =∞, because it is well known that the
Lα-norm of a function converges to its L∞-norm as α → ∞. The function
Kl(p) is continuous for each p ∈ [1,∞) since Γ(x) is continuous for all x > 0.
It is also continuous for p =∞ because Γ(1/2) =

√
π and Γ(1/p) = p+O(1)

as p→∞. Consequently, Λ0(e, α) is continuous in both entries.
The graphs of Λ0( · , α), for some values of α, are plotted in Figure 3.1.
Now we are able to define the function

Λ1(e) = max
α∈[1,∞]

Λ0(e, α), (3.13)

which allow us to state Proposition 3.1, that is the main result of this section.
But before, let us state some properties of Λ1.

Lemma 3.2. The function Λ1 defined in (3.13) is continuous, strictly de-
creasing and

Λ1(0) = 1, lim
e→1−

Λ1(e) = 0.
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Proof. The continuity of Λ0(e, α) implies that the function Λ1(e) is
bounded in [0, ē], for all ē ∈ (0, 1), since,

|Λ1(e)| ≤ max
[0,ē]×[1,∞]

|Λ0(e, α)|.

Then, the continuity of Λ1(e) is equivalent to say that the set {(e,Λ1(e)) :
e ∈ [0, ē]} is closed in R2.

Since Λ1 is bounded, we can take a sequence en ∈ [0, ē] converging to
e such that Λ1(en) converges to a some ζ. Then we have to prove that
Λ1(e) = ζ.

By definition of Λ1, for each n there exists αn ∈ [1,∞] such that Λ1(en) =
Λ0(en, αn). We can take a subsequence ασ(n) converging to a some α̂. Due
to the continuity of Λ0 and because Λ1(eσ(n)) = Λ0(eσ(n), ασ(n)), we get that
Λ1(e) ≥ Λ0(e, α̂) = ζ. On the other hand, we can take a α∗ ∈ [1,∞] such that
Λ1(e) = Λ0(e, α∗). Again, since Λ1(en) ≥ Λ0(en, α∗), then, ζ ≥ Λ0(e, α∗) =
Λ1(e). Consequently, Λ1(e) = ζ.

To prove that Λ1 is monotone, recall the definitions made in (1.11). We
can evaluate the integral ||r( · , e)−3||α, α ∈ [1,∞) using the change of variable
of the eccentric anomaly t = u− e sinu and get

||r( · , e)−3||αα =

∫ π

0

du

(1− e cosu)3α−1
, (3.14)

differentiating with respect to e and applying properties of the cosine we
obtain

d

de
||r( · , e)−3||αα = (3α− 1)

∫ π

0

cosu

(1− e cosu)3α
du

= (3α− 1)

∫ π/2

0

(
1

(1− e cosu)3α
− 1

(1 + e cosu)3α

)
cosu du.

The last integral is clearly positive and, since

d

de
||r( · , e)−3||αα = α||r( · , e)−3||α−1

α

d

de
||r( · , e)−3||α,

the function ||r( · , e)−3||α is increasing in e. In consequence, according to
the definition (3.11), each Λ0( · , α) is strictly decreasing for α ∈ [1,∞). The
same can be said about Λ0( · ,∞) since, according to (3.12), ||r( · , e)−3||∞ =
(1− e)−3. This implies also that Λ1 is monotone.

Now let us prove that Λ1(0) = 1. First note that it is easy to check
that Λ0(0,∞) = Kπ(2) = 1, then Λ1(0) ≥ 1. On the other hand, we can
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apply Theorem 5 in [128] to our equation (3.16), which for e = 0 is simply
ÿ+Λy = 0. In this case, the first anti-periodic eigenvalue is 1/4. Then, using
the identities (3.18) again and the definition of Λ0(0, α), we get the following
inequalities

1 > Λ0(0, 1), 1 ≥ Λ0(0, α), α ∈ (1,∞],

which lead to Λ1(0) ≤ 1. This proves the claim.
Now consider the asymptotic behavior. Note that the integrand in (3.14)

is positive and has a singularity at u = 0 for e = 1. Actually, it behaves
as u−2(3α−1) as u → 0+, making the integral divergent. This is the reason
why ||r( · , e)−3||α → ∞ as e → 1− for each α ∈ [1,∞), and, as a result,
Λ0(e, α) → 0. The same happens for the case α = ∞ as we did before. To
be able to take the maximum, the limit Λ0(e, α) → 0 as e → 1− should
be uniform, but so far we have shown only the pointwise convergence. To
obtain this property we can apply Dini’s Theorem (see Theorem 7.13 in [112])
thanks to the fact that Λ0(e, α) is continuous in the compact set of values
α ∈ [1,∞] for each e, and it is monotone in e for each α. We can take any
set of values {en} ⊂ [0, 1), such that en < en+1, and en → 1− as n→∞, and
apply the mentioned theorem to the functions fn(α) = Λ0(en, α). As a result,
Λ0(e, α)→ 0 uniformly in α as e→ 1−, which guarantees that Λ1(e)→ 0.

The main result of this section is the following.

Proposition 3.1. Assume that e ∈ (0, 1] and 0 ≤ Λ < Λ1(e). Then, there
exists a unique solution of the Dirichlet problem (3.1), denoted by Θ∗(t; e,Λ).
The function

(t, e,Λ) ∈ [0, π]× [0, 1)× [0,Λ1(e)) 7→ Θ∗(t; e,Λ),

is analytic in the real sense.

Proof. The previous discussions lead directly to the existence and unique-
ness of the solution. To prove the analytic character, we observe that, in
terms of the previous notation, the solution corresponds to Θ∗(t; e,Λ) =
ϑ(t, v(e,Λ); e,Λ), where v = v(e,Λ) is the unique solution of

ϑ(π, v; e,Λ) = 0.

Now we can apply the implicit function theorem, in its real analytic ver-
sion (Theorem 2.3.5 in [67]), because the solution ϑ is analytic in all the en-
tries due to the analytic character of the equation (1.16). Also, the derivative
∂vϑ(π, v; e,Λ) does not vanish as long as v ∈ R, e ∈ [0, 1) and 0 ≤ Λ < Λ1(e),
due to Lemma 3.1. These considerations lead easily to the proof of the claim.
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Figure 3.2: Stability diagram of Θ∗(t; e,Λ) computed numerically: the gray
regions are linearly unstable. The lines pattern indicates that for high eccen-
tricity e ≥ 0.9 we did not compute the linear stability due to the proximity
to the singularity. The yellow region is the stable region by a Lyapunov-type
criterion.

Remark 3.1. Being more precise, in terms of complex analysis, the function
Θ∗(t; e,Λ) has a holomorphic extension to some open subset of C3 containing
[0, π]× [0, 1)× [0,Λ1(e)).

Remark 3.2. Note that there are two special cases for which Θ∗ can be
computed

Θ∗(t; e, 0) = 2(t− f(t, e)), Θ∗(t; 0,Λ) = 0. (3.15)

Now we are interested in the stability properties of the solution Θ∗(t; e,Λ),
which should be seen as 2π-periodic and odd from now on. In the following
we will find a region of parameters where the linearized equation of (1.16) at
Θ∗, say,

ÿ +

(
Λ

r(t, e)3
cos[Θ∗(t; e,Λ)]

)
y = 0, (3.16)

is stable (linear stability). See Figure 3.2.
For this purpose we are going to apply Theorem 1 from [128], which is a

generalization of the classical Lyapunov criterion for the stability of a Hill’s
equation using Lα norms. According to it, given a Hill’s equation

ÿ + a(t)y = 0, a(t+ T ) = a(t),

with a ∈ Lα[0, T ], the equation is stable if∫ T

0

a(t)dt > 0 and ||a+||α < KT

(
2α

α− 1

)
. (3.17)
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See also a similar result by Borg in [77], Section 5.2.
In the present setting we want to consider T = 2π, so we have to do the

computations in the interval [0, 2π], instead of [0, π], as we did before. We
know that the following relations hold

K2l

(
2α

α− 1

)
=

2
1
α

4
Kl

(
2α

α− 1

)
,

∫ 2π

0

dt

r(t, e)3α
= 2

∫ π

0

dt

r(t, e)3α
. (3.18)

The first identity comes from the definition of Kl(p) in (3.6). In con-
sequence, the second inequality in (3.17) is satisfied for equation (3.16) if
0 < Λ < 1

4
Λ1(e). We rule out the case Λ = 0 because it does not satisfy the

second inequality.
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3.1.2 Upper and lower solutions

We see from Figure 3.2 that the condition 0 < Λ < 1
4
Λ1(e) is not sufficient to

obtain stability. We are going to define another function Λ2(e), which let us
guarantee that the first inequality in (3.17) is satisfied for equation (3.16).
Let us impose that cos[Θ∗(t; e,Λ)] > 0, or, equivalently,

|Θ∗(t; e,Λ)| < π

2
, t ∈ [0, 2π]. (3.19)

Due to the symmetry of this solution, it is sufficient to find the estimate on
the half-interval [0, π]. This can be done with the method of upper and lower
solutions. See for example [37].

Let ψ(t) be a solution of the Dirichlet problem

ψ̈ = − Λ

r(t, e)3
, ψ(0) = ψ(π) = 0.

By the maximum principle, the function ψ is positive on (0, π) and can
be expressed as

ψ(t) = −Λ

∫ π

0

G(t, s)

r(s, e)3
ds,

where G(t, s) is the Green’s function associated to the operator L[ψ] = ψ̈
with Dirichlet conditions ψ(0) = ψ(π) = 0, and whose expression is

G(t, s) =

{
−s(π − t)/π if s ∈ [0, t],
−t(π − s)/π if s ∈ [t, π].

Note that G(t, s) ≤ 0, and that |G(t, s)| ≤ |G(s, s)|, then,

ψ(t) ≤ Λ

π

∫ π

0

s(π − s)
r(s, e)3

ds. (3.20)

We can use ψ to produce the following functions

ψ±(t) = 2(t− f(t, e))± ψ(t).

These functions are upper and lower solutions of our problem, since they
satisfy

ψ+(t) > ψ−(t), ψ̈−(t) ≥ F (t, ψ−(t)), ψ̈+(t) ≤ F (t, ψ+(t)),

where F (t,Θ) was defined by the expressions eqs. (3.2) and (3.3), and con-
tains the nonlinear terms of our equation. Consequently,

ψ+(t) ≥ Θ∗(t; e,Λ) ≥ ψ−(t), t ∈ [0, π].
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Let us look for bounds that do not depend on t. Consider the function
χ(t) = f(t, e)− t. Since χ(0) = χ(π) = 0 and computing that

f̈(t, e) = −2e
√

1− e2 sin[u(t, e)]

(1− e cos[u(t, e)])4
< 0, t ∈ (0, π),

we can say that χ(t), t ∈ [0, π], is positive and has a unique maximum m(e)
in the interval (0, π), say,

m(e) = 2 arctan

√
(1 + e)(e− 1 + (1− e2)

1
4 )

(1− e)(e+ 1− (1− e2)
1
4 )
− arccos

(
1− 4
√

1− e2

e

)
+

√
e2 − (1− 4

√
1− e2)2. (3.21)

According to this discussion, define the function

Λ2(e) =
π2

2
− 2πm(e)∫ π

0
t(π−t)
r(t,e)3 dt

, (3.22)

then, the condition (3.19) is satisfied if 0 < Λ < Λ2(e). The stability result
is summarized in the following Proposition.

Proposition 3.2. For each value e ∈ (0, 1) such that m(e) < π/4, if 0 <
Λ < 1

4
Λ1(e) and 0 < Λ < Λ2(e), the solution Θ∗(t; e,Λ) is linearly stable.

Remark 3.3. We can see in Figure 3.2 that the yellow region determined by
Proposition 3.2 is just the first linear stability region of the solution. We have
focused in this zone because, physically, the most relevant application is to the
case of the major natural satellites in the solar system, which are generally
close to be spherical. See [16] for a detailed study of periodic solutions in
a large range of Λ. Besides, an extension of our results to higher stability
regions can be done using the mentioned results by Borg in [77].
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Figure 3.3: Bifurcation of stability at e = e∗. The shaded region is unstable.

3.2 Instability for high eccentricity

The numerical calculation of the instability regions in Figure 3.2 shows that
there exists instability for high eccentricities, whose boundary bifurcates from
Λ = 0 at some value of the eccentricity that we will call e = e∗. As it is
described in [10], Chapter 2, Section 7.3, Zlatoustov and collaborators already
showed this behavior with computer simulations in [129]. In this section we
will prove the existence of such bifurcation branch for small Λ. Assume that
e and Λ are in the conditions of Proposition 3.1 and let Θ∗(t; e,Λ) be the
odd 2π-periodic solution obtained for the Dirichlet problem (3.1). The next
result also concerns the stability of the variational equation (3.16).

Theorem 3.1. For some ε > 0, there exists a function E : [0, ε) → (0, 1),
Λ 7→ E(Λ), such that the equation (3.16) is unstable and has a non-trivial
4π-periodic solution if e = E(Λ). Moreover, E(0) = e∗ ∈ (0, 1) and for each
ē ∈ (e∗, 1) there exists a Λ̄ = Λ̄(ē) ∈ (0, ε), such that the equation (3.16)
is unstable for the points (e,Λ) satisfying E(Λ) < e < ē, 0 < Λ < Λ̄. In
addition, the function E can be expressed as E(Λ) = ξ(Λ1/p), where ξ(ζ) is
real analytic at ζ = 0 and p ≥ 1 is an integer.

The proof of this result will provide some additional information. The
number e∗ solves the equation I(e) = 0, where,

I(e) :=

∫ π

−π

cos[2(t− f(t, e))]

r(t, e)3
dt. (3.23)

Numerical computations suggest that e∗ is the only root of I(e) and e∗ ≈
0.682...
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The general theory of Hill’s equation deals with the study of

ÿ + a(t)y = 0, (3.24)

where a is a continuous and 2π-periodic function, see [77]. As it is well
known, the discriminant ∆ = ∆[a] is a real number such that (3.24) is stable
if |∆| < 2 (elliptic case) and unstable if |∆| > 2 (hyperbolic case). When
|∆| = 2 (parabolic case) the equation might be stable or unstable. In this last
case, there is at least one 4π-periodic solution and, only if all the solutions
of (3.24) are 4π-periodic (coexistence), the equation is stable.

According to Theorem 3.1, the specific equation (3.16) is parabolic-unstable
on the curve e = E(Λ) and hyperbolic-unstable on the shaded region of the
Figure 3.3. In particular, this hyperbolicity implies that Θ∗(t; e,Λ) is unsta-
ble, in the Lyapunov sense, as solution of the nonlinear equation (1.16).

Incidentally, we notice that Zhang’s conditions (3.17) really imply that
(3.24) is elliptic-stable. In our particular case, it means that equation (3.16)
is elliptic on the conditions of Proposition 3.2.

To describe the strategy for the proof of Theorem 3.1 we first recall some
facts on the linear equation (3.24) when the coefficient a(t) is even. Note
that this is the case for (3.16). Let y1 and y2 be the normalized solutions,
i.e., solutions obtained with initial conditions y1(0) = 1, ẏ1(0) = 0, y2(0) = 0,
ẏ2(0) = 1. The discriminant is expressed in terms of these solutions by the
formula

∆2 − 4 = 4ẏ1(2π)y2(2π), (3.25)

which let us decide the stability in a convenient way.
For the equation (3.16), we have that y1(t) = y1(t; e,Λ) and y2(t) =

y2(t; e,Λ). Particularly, for Λ = 0 we observe that for all t ∈ R, e ∈ [0, 1),

y1(t; e, 0) ≡ 1, y2(t; e, 0) ≡ t. (3.26)

Assuming that Λ < 1
4
Λ1(e), let us prove that y2(2π; e,Λ) > 0. Since y2 is

a non-trivial solution, we can apply Lemma 3.1 for l = 2π, and conclude that
y2(2π; e,Λ) 6= 0 = y2(0; e,Λ). From (3.26), y2(2π; e, 0) > 0 for each e ∈ [0, 1),
then, by continuity, y2(2π; e,Λ) > 0.

In consequence, by (3.25), if ẏ1(2π; e,Λ) is negative/positive, the equation
will be stable/unstable. Additionally, the fact that y2(2π; e,Λ) 6= 0 implies,
by Theorems 1.1 and 1.2 in [77], that y2 is not 4π-periodic. Therefore, if
ẏ1(2π; e,Λ) = 0, then, the equation (3.24) will be parabolic-unstable.
Since ẏ1(2π; e, 0) = 0 for each e, the division formula can be applied to write

ẏ1(2π; e,Λ) = ΛΨ(e,Λ), (3.27)
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with

Ψ(e,Λ) =

∫ 1

0

∂
Λ
ẏ1(2π; e, sΛ)ds,

which is a real analytic function in both variables. This comes from the fact
that any solution y = y(t; e,Λ) of (3.16) is analytic in all its entries due to
the real analytic version of the theorem of differentiability of solutions with
respect to the parameters. Fix a value e ∈ [0, 1) and note that, according to
the expansion of ẏ1(2π, e,Λ) around Λ = 0, we have

Ψ(e, 0) = ∂
Λ
ẏ1(2π; e, 0).

Differentiating the equation (3.16) with respect to Λ and evaluating at
Λ = 0, we obtain

∂
Λ
ÿ(t; e, 0) +

cos[Θ∗(t; e, 0)]

r(t, e)3
y(t; e, 0) = 0,

which can be integrated with initial condition ∂
Λ
ẏ1(0; e, 0) = 0 and give as a

result that

∂
Λ
ẏ1(2π; e, 0) = −

∫ 2π

0

cos[2(t− f(t, e))]

r(t, e)3
dt.

Due to the periodicity of the integrand and considering the definition (3.23),
we can change the interval of integration from [0, 2π] to [−π, π] and identify
Ψ(e, 0) = −I(e).

The standard theory of integrals depending on parameters implies that
I(e) is a real analytic function defined on e ∈ [0, 1). Moreover, since f(t, 0) =
t and r(t, 0) = 1, we see that I(0) = 2π > 0. The following result implies
that I(e) has a change of sign. Hence, I(e∗) = 0 for some e∗ ∈ (0, 1).

Lemma 3.3. The function I(e) has a negative finite limit as e→ 1−.

The proof of this result is delicate because it is not possible to interchange
the limit with the integral sign. Let us explain this point. Since the integrand
is even, we just consider the integral (3.23) on the interval (0, π). At first
glance we see that the limit of the integrand is

lim
e→1−

cos[2(t− f(t, e))]

r(t, e)3
=

cos[2t]

r(t, 1)3

because, as e → 1−, f(t, e) → π for all t ∈ (0, π). From the definition of
r(t, 1), we get the expansion r(t, 1)3 = 9t2/2 + O(t4), i.e., the integrand has
a pole of order 2 at t = 0. Therefore,∫ π

0

cos[2t]

r(t, 1)3
dt = +∞.
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However, the delicate point comes from the fact that, for e close to 1, the
value of f(t, e) increases from 0 to π very fast. This results in a fast-changing
argument of the cosine and, ultimately, a change of sign of the integrand in
(3.23) for smaller and smaller t > 0. In this situation we cannot apply any
classical technique, such as the dominated convergence theorem or Fatou’s
lemma.

In order to prove Lemma 3.3, we will first apply the Residue Theorem to
compute I(e) for e ∈ (0, 1), and then we let e go to 1. All this hard work is
postponed to the end of the section.

Once we have found e∗ such that Ψ(e∗, 0) = 0, it seems natural to find
the function e = E(Λ) as a solution of the implicit function problem

Ψ(E(Λ),Λ) = 0, E(0) = e∗.

A direct application of the implicit function theorem does not seem easy.
The number e∗ is not known explicitly and the transversality condition
∂ΛΨ(e∗, 0) 6= 0 leads to a complicated integral with no clear sign.

Taking advantage of the analytic character of the function Ψ, we will
apply the following parametric version of Bolzano’s Theorem. The proof of
Theorem 3.1 will follow as a direct consequence.

Lemma 3.4. Let Υ : [0, l1) × [0, l2) → R, l1, l2 > 0, be a real analytic
function of two variables Υ = Υ(x, y) such that,

Υ(0, 0) < 0 < lim inf
x→l−1

Υ(x, 0). (3.28)

Then, there exists a value x∗ ∈ (0, l1) and a function ϕ : [0, ε) → (0, l1),
such that

ϕ(0) = x∗, Υ(ϕ(y), y) = 0, for each y ∈ [0, ε), (3.29)

and, for each x̄ ∈ (x∗, l1), there exists a ȳ > 0 such that

Υ(x, y) > 0, if ϕ(y) < x, x < x̄, 0 < y < ȳ. (3.30)

Moreover, there exists some positive integer p ≥ 1 such that ϕ(y) =
ϕ̃(y1/p), where ϕ̃(ζ) is analytic at ζ = 0.

Proof. The function Υ( · , 0) is analytic in [0, l1) and changes sign, then
it has a finite number of zeros. We will say that a zero x0 ∈ (0, l1) of this
function is transversal if

Υ(x0 + σ, 0)Υ(x0 − σ, 0) < 0,
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for every small enough σ > 0. The function Υ( · , 0) has at least one transver-
sal zero due to the condition (3.28).

Define the set of zeros

Z = {(x, y) ∈ [0, l1)× [0, l2) : Υ(x, y) = 0}.

We say that a zero x0 ∈ (0, l1) of Υ( · , 0) has a continuation if the point
(x0, 0) is non-isolated in Z. Transversal zeros have always a continuation.
This is a consequence of Bolzano’s Theorem. Given a transversal zero x0, for
small ε > 0,

Υ(x0 + σ, y)Υ(x0 − σ, y) < 0 if 0 < y < ε.

Therefore, Z has a point lying in the segment [x0 − σ, x0 + σ] × {y}. The
converse is not true, sometimes non-transversal zeros have a continuation.
We illustrate the previous definitions with the example

Υ(x, y) = (y − x+ 1)2(y + x− 2)(x− 3)2.

This function satisfies the conditions of the Lemma if l1 > 3, l2 > 0. Ad-
ditionally, Υ( · , 0) has three zeros, say, x0 = 2 (transversal), x1 = 1 (non-
transversal with continuation) and x2 = 3 (non-transversal without continu-
ation).

Let x∗ ∈ (0, l1) be the largest zero of Υ( · , 0) having a continuation.
Now, we are going to use several theorems on real analytic functions of two
variables in order to characterize the continuation set of the point (x∗, 0).

First, we apply the Weierstrass Preparation Theorem (Theorem 6.3.1 in
[67]) to the function Υ at the point (x∗, 0). To do this, note that some
coefficient of the power series expansion of Υ(x, 0) at x = x∗ does not vanish
(otherwise Υ(x, 0) ≡ 0). Then, the function Υ(x, y) can be decomposed as

Υ(x, y) = W (x− x∗, y)Y (x, y), (x, y) ∈ U,

where U is a small neighborhood of (x∗, 0), Y (x, y) is a non-vanishing real
analytic function defined on U and W (x, y) is a Weierstrass polynomial. This
means that there exists an integer N ≥ 1 such that

W (x, y) = xN + AN−1(y)xN−1 + · · ·+ A1(y)x+ A0(y),

where the functions An(y), n = 0, ..., N − 1, are real analytic at y = 0 and
An(0) = 0. As a result, the equation Υ = 0 is equivalent to W = 0 in U .

Second, we can apply the Decomposition Theorem (Theorem 4.2.7 in
[67]) to W . We deduce that there exists a finite number q of functions



3.2. INSTABILITY FOR HIGH ECCENTRICITY 107

Figure 3.4: Illustration of the contradiction argument. Green, red and blue
correspond to values of Υ that are positive, negative and zero, respectively.

H1, H2, ..., Hq, defined on [0, ε) where Hj(0) = x∗, j = 1, ..., q; H1(y) <
H2(y) < ... < Hq(y) if y ∈ (0, ε), and such that, for some neighborhood
V ⊂ U of (x∗, 0), we can characterize the continuation set as

Z ∩ V = {(Hj(y), y) : y ∈ [0, ε), j = 1, ..., q}.

Moreover, there exists an integer p ≥ 1 such that Hj(y) = H̃j(y
1/p), where

each H̃j(ζ) is analytic at ζ = 0. We define ϕ = Hq and ϕ̃ = H̃q. Then, the
identities (3.29) are automatically satisfied.

It remains to check that the inequality (3.30) holds. We start with a
preliminary observation: given a point (x, y) ∈ V with x > ϕ(y), then,
Υ(x, y) > 0. This is a consequence of the way we have chosen ϕ = Hq.
Consider χ ∈ (x∗, x∗ + σ), with σ > 0 small enough such that the point
(χ, 0) ∈ V . The point (χ, 0) is connected to every point within the region
{(x, y) ∈ V : x > ϕ(y)}. Since Υ(χ, 0) > 0, the same is true for all the
points in the region.

Let us now prove (3.30) by a contradiction argument concerning the def-
inition of x∗. Assume the existence of a number x̄ ∈ (x∗, l1) and a sequence
of points {(xn, yn)} satisfying

Υ(xn, yn) ≤ 0, ϕ(yn) < xn, xn < x̄, yn > 0, yn −→
n→∞

0.

Figure 3.4 illustrates the argument for strict inequalities Υ(xn, yn) < 0.
It is not restrictive to assume that x̄ is sufficiently close to l1 in order to
guarantee that x̄ 6∈ V and Υ(x̄, 0) > 0. Let us fix ε1 > 0 such that Υ(x̄, y) > 0
if y ∈ [0, ε1]. Letting n → ∞ in the inequality xn > ϕ(yn), we deduce that
lim inf
n→∞

xn ≥ x∗.

From the previous discussions we know that (xn, yn) 6∈ V . Then, there
exists some positive number ν > 0 such that xn > x∗ + ν for large n. Also,
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we can assume yn ≤ ε1. For each n, the function Υ( · , yn) must have a zero
in the interval [xn, x̄), say x̂n ∈ [xn, x̄). After extracting a subsequence we
can assume that x̂n converges to some x̂ ∈ [x∗ + ν, x̄]. Then, (x̂, 0) is a non-
isolated point in Z. Which contradicts the definition of x∗ as the largest of
such points.

Proof of Lemma 3.3. We will employ some techniques from complex
analysis. They are motivated by the following observation: after the change
of variable t = u− e sinu, we can express the integral in the form

I(e) =

∫ π

−π

cos[2(u− e sinu− f(u, e))]

(1− e cosu)2
du,

where the true anomaly f is written in terms of the eccentric anomaly u,
as defined by eqs. (1.11) and (1.12). Then, it is indeed the composition of
f(t, e) with t = u− e sinu.

Using some trigonometric identities I(e) can be written as an integral in
the family∫ π

−π
(R1(cosu, sinu) sin(2e sinu) +R2(cosu, sinu) cos(2e sinu)) du,

where R1(x, y) and R2(x, y) are rational functions. The simpler family of
trigonometric integrals ∫ π

−π
R(cosu, sinu)du,

is often analyzed using the change of variables z = exp[iu] and the Residue
Theorem. We will show that this trick also works in our situation.

First it is convenient to observe that∫ π

−π

sin[2(u− e sinu− f(u, e))]

(1− e cosu)2
du = 0,

because the integrand is odd. Therefore, our integral can be expressed as

I(e) =

∫ π

−π

exp[2i(u− e sinu− f(u, e))]

(1− e cosu)2
du. (3.31)

After the change of variable z = exp[iu], we can interpret I(e) as an
integral over the curve γ, where γ is the unit circle with counter-clockwise
orientation. To find the integrand we employ the formulas

cosu =
1

2

(
z +

1

z

)
, sinu =

1

2i

(
z − 1

z

)
,
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leading to

1− e cosu = − e

2z
(z − ζ−)(z − ζ+),

where ζ± = 1±
√

1−e2
e

. Note that ζ− and ζ+ are positive real numbers with
ζ−ζ+ = 1 and ζ− < 1.

From (1.12) we can compute that

exp[if(u, e)] = −ζ+
z − ζ−
z − ζ+

.

Straightforward computations show that

I(e) =
4

ie2ζ2
+

∫
γ

h(z, e)dz,

where

h(z, e) =
z3 exp[−e

(
z − 1

z

)
]

(z − ζ−)4
.

For each e ∈ (0, 1), the meromorphic function h( · , e) has two singularities
at z = ζ− and z = 0, both inside the unit circle. Therefore, making explicit
the dependence on e and using the Residue Theorem,

I(e) =
8π

e2ζ+(e)2
[Res(h( · , e), ζ−(e)) + Res(h( · , e), 0)].

The singularity at z = ζ−(e) is a pole of order 4. Then,

Res(h( · , e), ζ−(e)) =
1

6

d3g

dz3
(ζ−(e), e),

with g(z, e) = z3 exp[−e
(
z − 1

z

)
]. The function g( · , 1) is holomorphic in

|z| > 0. Moreover,

g(z, e)→ g(z, 1) as e→ 1−, z 6= 0,

and the convergence is uniform for z lying in any compact subset of C\{0}.
In particular,

d3g

dz3
(z, e)→ d3g

dz3
(z, 1) as e→ 1−.

This shows that the residue Res(h( · , e), ζ−(e)) has a limit when e→ 1−. We
are going to prove that this is also the case for the residue at the origin.

The function h( · , 1) is holomorphic in 0 < |z| < 1 and

h(z, e)→ h(z, 1) as e→ 1−, 0 < |z| < 1.
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The convergence is uniform on compact subsets. In particular on the circle
γ̃ = {z ∈ C : |z| = 1/2}. Then, as e→ 1−,

Res(h( · , e), 0) =
1

2πi

∫
γ̃

h(z, e)dz → 1

2πi

∫
γ̃

h(z, 1)dz = Res(h( · , 1), 0).

We conclude that I(e) has a limit, namely,

lim
e→1−

I(e) = 8π

[
1

6

d3g

dz3
(1, 1) + Res(h( · , 1), 0)

]
. (3.32)

To complete the proof we must show that this number is negative. This
will involve some computations, first,

1

6

d3g

dz3
(1, 1) = −1

3
. (3.33)

The function h( · , 1) has an essential singularity at z = 0. To compute
the residue we factorize h( · , 1) in the form

h(z, 1) = µ(z)ν(z),

with

µ(z) =
z3

(z − 1)4
exp[−z], ν(z) = exp

1

z
.

Then, µ is holomorphic in the disk |z| < 1 and has an expansion

µ(z) =
∞∑
n=0

µnz
n, |z| < 1.

The function ν has an essential singularity at z = 0 with Laurent expansion

ν(z) =
∞∑
n=0

1

n!
z−n, |z| > 0.

The residue of h( · , 1) can be computed from the Laurent expansion. More
precisely,

Res(h( · , 1), 0) =
∞∑
n=0

µn
(n+ 1)!

. (3.34)

From the binomial series (1− z)−d =
∑∞

n=0

(
n+d−1
n

)
zn, we know that

1

(z − 1)4
=
∞∑
n=0

(
n+ 3

n

)
zn, |z| < 1,
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and

z3 exp[−z] =
∞∑
n=3

(−1)n+1

(n− 3)!
zn, z ∈ C,

we deduce that

µ0 = µ1 = µ3 = 0, µn =
n−3∑
k=0

(
k + 3

k

)
(−1)n−k+1

(n− k − 3)!
, n ≥ 3.

Combining this formula with (3.34),

Res(h( · , 1), 0) =
∞∑
n=0

n−3∑
k=0

(
k + 3

k

)
(−1)n−k+1

(n+ 1)!(n− k − 3)!

Letting n− k − 3 = j,

Res(h( · , 1), 0) =
∞∑
k=0

∞∑
j=0

(
k + 3

k

)
(−1)j

j!(j + k + 4)!

<

∞∑
k=0

∞∑
j=0

(
k + 3

k

)
1

j!(j + k + 4)!

<
∞∑
j=0

1

j!

∞∑
k=0

(
k + 3

k

)
1

(k + 4)!
= exp[1]

∞∑
k=0

(
k + 3

k

)
1

(k + 4)!

Finally, we observe that

∞∑
k=0

(
k + 3

k

)
1

(k + 4)!
=

1

3!

∞∑
k=0

1

(k + 4)k!
<

1

4!

∞∑
k=0

1

k!
=

exp[1]

24
.

Thus,

Res(h( · , 1), 0) <
exp[2]

24
<

1

3
,

and the proof follows from (3.32), (3.33) and this inequality.
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3.3 The synchronous resonance in the dissi-

pative regime

Recall that the dissipative spin-orbit problem is modelled by the equation

Θ̈+δD(t, e)Θ̇+
Λ

r(t, e)3
sin Θ = −2f̈(t, e), e ∈ [0, 1), Λ� δ ≥ 0, (3.35)

with D(t, e) positive, analytic and 2π-periodic in t. We know from Proposi-
tion 3.2 that, for δ = 0, there exists an odd 2π-periodic solution Θ∗(t; e,Λ),
which is linearly stable in the set

Ω = {(e,Λ) : 0 < e < 1, 0 < Λ <
1

4
Λ1(e), 0 < Λ < Λ2(e)}.

Furthermore, this solution is elliptic in the following sense, the discriminant
associated to the linearized equation at Θ∗(t; e,Λ), say ∆0 = ∆0(e,Λ), satis-
fies |∆0| < 2.

We will prove that this periodic solution can be continued in the presence
of friction, although the odd symmetry is lost.

Theorem 3.2. Assume that (e,Λ) ∈ Ω. Then, there exists a number δ̄ > 0
and a real analytic function

(t, δ) ∈ R× [0, δ̄] 7→ Θ∗δ(t) ∈ R,

satisfying

i) Θ∗δ(t) is an asymptotically stable 2π-periodic solution of (3.35),

ii) Θ∗0(t) = Θ∗(t; e,Λ) for each t ∈ R.

In principle, this theorem is consequence of well known classical results
(see for instance Theorem 1.1 and 1.2 in Chapter 14, [31]). However, we will
prove it independently because our proof will provide an explicit formula for
δ̄. This formula will involve the quantities e, Λ and ∆0 only.

Let Θδ(t) be a solution of (3.35) satisfying Θδ(0) = Θ0 ∈ R, Θ̇δ(0) =
ω0 ∈ R. To make explicit the dependence on initial conditions, consider
x = (Θ0, ω0)T ∈ R2 and

φt(δ, x) =

(
Θδ(t)
ωδ(t)

)
, with ωδ(t) = Θ̇δ(t).
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Define the function

F(δ, x) = φ2π(δ, x)− x.

The zeros of this function are in correspondence with the 2π-periodic solu-
tions of (3.35). Since we know that Θ∗(t; e,Λ) is the odd 2π-periodic solution
for δ = 0, we are going to study the implicit function problem

F(δ, χ(δ)) = 0, χ(0) =

(
0

Θ̇∗(0; e,Λ)

)
.

The solution x = χ(δ) of this problem will produce a branch of periodic
solutions in the conditions of Theorem 3.2.

The proof of Theorem 3.2 will consists of two steps. First, we will apply a
quantitative version of the Implicit Function Theorem in order to find χ(δ),
defined on δ ∈ [0, δ̄]. Once the branch is constructed, we will prove the
asymptotic stability of the solution.

In the next lemma we will employ the following notation.
Given a function (δ, x) ∈ [0, 1]×Rn 7→ G(δ, x) ∈ Rn. The partial deriva-

tive ∂δG(δ, x) will be interpreted as a vector in Rn, whereas ∂xG(δ, x) and
∂δxG(δ, x) = ∂δ(∂xG(δ, x)) are linear maps represented by matrices in Rn×n.
Let xi be the i-th component of x ∈ Rn, then, ∂xxG(δ, x) is a bilinear map
given by

∂xxG(δ, x)[u, v] =
n∑
i=1

n∑
j=1

∂2G(δ, x)

∂xi∂xj
uivj, u, v ∈ Rn.

The norm in Rn is denoted by || · ||. The same notation will be employed
for the induced norm in spaces of multilinear forms. See [40], Chapter 5,
Section 7. Given a point ζ ∈ Rn and a positive number r > 0, the closed
ball centered at ζ of radius r is denoted by B̄r(ζ).

Lemma 3.5. Let G : [0, δ∗]×Rn → Rn, with δ∗ > 0, and G = G(δ, x), be a
function of class C2 such that there exists (∂xG(δ0, x0))−1 and G(δ0, x0) = 0
for a certain point (δ0, x0) ∈ [0, δ∗]×Rn.

Assume that there exist uniform bounds C1 ≥ ||∂δG||, C12 ≥ ||∂δxG||,
C22 ≥ ||∂xxG|| for all (δ, x) ∈ [0, δ∗]×Rn and C0 > ||(∂xG(δ0, x0))−1||.

Define the positive constants

ρ =

{
C12−C0C1C22

C0C2
12

if 2C0C1C22 < C12,
1

4C2
0C1C22

if 2C0C1C22 ≥ C12,
(3.36)
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and

R = R(ρ) =
1−

√
1− 4C2

0C1C22ρ

2C0C22

, (3.37)

then, there exists a C2 function χ : B̄ρ(δ0) ∩ [0, δ∗] → B̄R(x0) satisfying
x0 = χ(δ0) and

G(δ, χ(δ)) = 0, δ ∈ B̄ρ(δ0) ∩ [0, δ∗].

Proof. The proof follows along the standard methods using the Contrac-
tion mapping theorem. See for instance Section 3.4 in [68]. We give some
hints to reproduce the values of ρ and R in eqs. (3.36) and (3.37). Define

L(δ, x) = x−M−1G(δ, x), M = ∂xG(δ0, x0),

so that our problem is equivalent to the fixed point equation x = L(δ, x). We
see that

∂xG(δ, x)−M =

∫ 1

0

∂δxG(δλ, xλ)(δ − δ0)dλ+

∫ 1

0

∂xxG(δλ, xλ)(x− x0)dλ,

∂xG(δ0, x)−M =

∫ 1

0

∂xxG(δ0, xλ)(x− x0)dλ,

where δλ = λδ + (1 − λ)δ0, xλ = λx + (1 − λ)x0, λ ∈ [0, 1]. Consequently,
since ∂xL(δ, x) = 1−M−1∂xG(δ, x), we can use the bounds of the derivatives
of G to get that

||∂xL(δ, x)|| ≤ C0(C12ρ+ C22R), ||∂xL(δ0, x)|| ≤ C0C22R, (3.38)

for each x ∈ B̄R(x0) and δ ∈ B̄ρ(δ0). From the second expression in (3.38)
and the generalized version of the mean-value theorem for vector-valued func-
tions, see [3], we get

||L(δ0, x)− L(δ0, x0)|| ≤ C0C22R
2 x ∈ B̄R(x0).

Proceeding analogously with ∂δL, we obtain

||L(δ, x)− L(δ0, x)|| ≤ C0C1ρ x ∈ B̄R(x0), δ ∈ B̄ρ(δ0).

Note that L(δ0, x0) = x0 by definition, then,

||L(δ, x)− x0|| ≤ ||L(δ, x)− L(δ0, x)||+ ||L(δ0, x)− L(δ0, x0)||
≤ C0(C1ρ+ C22R

2).
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Let X be the complete metric space composed by continuous functions

χ : B̄ρ(δ0) ∩ [0, δ∗]→ B̄R(x0), χ(δ0) = x0.

The distance in X is induced by the uniform norm. Consider the operator
L(δ, · ) : X → X. From the previous computations, this operator is well
defined, i.e., L(δ,X) ⊆ X, as long as

C0(C1ρ+ C22R
2) ≤ R.

Moreover, from the first inequality in (3.38), L(δ, · ) is a contraction if

C0(C12ρ+ C22R) < 1.

The parameters ρ and R in (3.36) and (3.37) are the values such that the last
two inequalities are satisfied and the value of ρ is the largest possible. The
Banach principle leads to a continuous solution of the functional equation.
The implicit function theorem can be applied at each (δ, χ(δ)) to deduce that
this solution is indeed C2.

Remark 3.4. Note that χ is a real analytic function if G is real analytic.

Remark 3.5. By direct substitution of (3.36), we get that 0 ≤ 1−4C2
0C1C22ρ <

1, and

ρ ∈
(

0,
1

4C2
0C1C22

]
, R ∈

(
0,

1

2C0C22

]
.

We will work with n = 2 and the maximum norm

||x|| = max{|x1|, |x2|}, x =

(
x1

x2

)
.

The corresponding norms in the spaces of multilinear maps (see [40]) are
given by

||∂δG(δ, x)|| = max
i∈{1,2}

|∂δGi(δ, x)|,

||∂δxG(δ, x)|| = max
i∈{1,2}

 ∑
j∈{1,2}

∣∣∣∣∂2Gi(δ, x)

∂δ∂xj

∣∣∣∣
 ,

||∂xxG(δ, x)|| = max
i∈{1,2}

 ∑
j,k∈{1,2}

∣∣∣∣∂2Gi(δ, x)

∂xk∂xj

∣∣∣∣
 .

It will be clear from the computations of the bounds of the previous norms
that Lemma 3.5 cannot be directly applied to the function F . Actually, the
norm of ∂δF(δ, x) has not a uniform bound in (δ, x) ∈ R2. To overcome
this difficulty, we will observe that there is a partial a priori bound for the
periodic solutions of (3.35).
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Lemma 3.6. Let Θ(t) be a 2π-periodic solution of (3.35). Then,

|Θ̇(t)| ≤ C for each t ∈ R,

with C := Λ
∫ 2π

0
dt

r(t,e)3 + 2
∫ 2π

0
|f̈(t, e)|dt.

Proof. Note that if Θ(t) satisfies (3.35), then ω(t) = Θ̇(t) satisfies the
equation

ω̇ + δD(t, e)ω = b0(t), b0(t) = −2f̈(t, e)− Λ

r(t, e)3
sin[Θ(t)],

by variation of constants we see that if ω0 = ω(t0),

ω(t) = ω0 exp

(
−δ
∫ t

t0

D(s, e)ds

)
+

∫ t

t0

b0(s) exp

(
−δ
∫ t

s

D(τ, e)dτ

)
ds,

and, since D is positive,

|ω(t)| ≤ |ω0|+
∫ t0+2π

t0

|b0(s)|ds ≤ |ω0|+ C, (3.39)

where we defined

C = 2||f̈( · , e)||1 + Λ||r( · , e)−3||1,

where || · ||1 is the L1[0, 2π]-norm.
Since the solution Θ(t) is 2π-periodic, then, we could choose t0 such that

Θ̇(t0) = ω0 = 0. Then, C is a bound for |Θ̇(t)|.
Note that an analogous bound cannot be obtained for Θ(t). Due to the

periodicity of the equation, Θ(t) + 2nπ is also a solution for each n ∈ Z.
Let us define the function M : R → R, and the map R : R2 → R2 such

that

M(ζ) =


arctan(ζ + C)− C if ζ < −C,
ζ if |ζ| ≤ C,
arctan(ζ − C) + C if ζ > C,

R(x) =

(
x1

M(x2)

)
.

(3.40)
We observe that R is C2 and satisfies

• R is the identity on the strip SC = {(x1, x2)T : |x2| ≤ C}.

• R(R2\SC) ∩ SC = ∅.
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From these properties and Lemma 3.6 it is easy to deduce that, if x ∈ SC ,
the equation F(δ, x) = 0 is equivalent to G(δ, x) = 0, where,

G(δ, x) = F(δ,R(x)).

Here by equivalence we mean that both equations have the same solutions.
We can now find bounds for the norms of the derivatives of G. Consider

a vector x = (Θ0, ω0)T ∈ R2 and let Θ = Θ(t; δ, x) be the solution of (3.35)
with initial conditions Θ(0) = Θ0, Θ̇(0) = ω0 for fixed (e,Λ). Let us call
ω(t; δ, x) = Θ̇(t; δ, x) and

φt(δ, x) =

(
Θ(t; δ, x)
ω(t; δ, x)

)
.

Note that Φ(t) = ∂xφt(δ, x) ∈ R2×2 is the matrix solution of

ẏ = A(t)y, y(0) = 1,

where

A(t) =

(
0 1

− Λ
r(t,e)3 cos[Θ(t; δ, x)] −δD(t, e)

)
,

then, for 0 ≤ s ≤ t ≤ T = 2π,

Φ(t)Φ(s)−1 = 1+

∫ t

s

A(τ)Φ(τ)Φ(s)−1dτ,

taking matrix norms and using Gronwall’s inequalities, we have that

||Φ(t)Φ(s)−1|| ≤ exp

(∫ t

s

||A(τ)||dτ
)
≤ exp

(∫ T

0

||A(τ)||dτ
)
.

Using the maximum norm we get

||A(τ)|| ≤
{

max{1,Λ|r(τ, e)−3|} if δ = 0,
max {1,Λ|r(τ, e)−3|+ δ|D(τ, e)|} if δ > 0,

in consequence, using the subscript 0 for the case δ = 0, we have that

||Φ0(t)Φ0(s)−1|| ≤ κ0 = exp
(
max

{
T,Λ||r( · , e)−3||1

})
,

where || · ||1 is the L1[0, T ]-norm. Note that, for δ = 0, it is also true that
||A(τ)T|| ≤ max{T,Λ|r(τ, e)−3|}, then, ||Φ0(t)T|| ≤ κ0. Fixing a value δ∗ > 0,
for δ ∈ (0, δ∗] we have

||Φ(t)Φ(s)−1|| ≤ κ = exp
(
max

{
T,Λ||r( · , e)−3||1 + δ∗||D( · , e)||1

})
.
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The previous bounds are valid for all the initial conditions x ∈ R2.
For

G(δ, x) = F(δ,R(x)) = φT (δ,R(x))−R(x),

where R is defined in (3.40), we want to find some positive constants such
that

C1 ≥ ||∂δG(δ, x)||, C12 ≥ ||∂δxG(δ, x)||, C22 ≥ ||∂xxG(δ, x)||.

Computing the derivatives,

∂δG(δ, x) = ∂δφT (δ,R(x)),

∂δxG(δ, x) = ∂δxφT (δ,R(x))∂xR(x),

∂2G
∂xi∂xj

(δ, x) = ∂xxφT (δ,R(x))

[
∂R
∂xi

,
∂R
∂xj

]
+ (∂xφT (δ,R(x))− 1)

[
∂2R
∂xi∂xj

]
,

where, in the last expression, ∂xxφT is considered as a bilinear map and
(∂xφT − 1) as a linear map. We can see that the non-vanishing derivatives
of R appearing above are

∂R
∂x1

=

(
1
0

)
,

∂R
∂x2

=

(
0

M′(x2)

)
,

∂2R
∂x2

2

=

(
0

M′′(x2)

)
,

then, particularly,

∂2G
∂x2

1

(δ, x) =
∂2φT
∂x2

1

(δ,R(x)),
∂2G

∂x1∂x2

=
∂2φT
∂x1∂x2

(δ,R(x))M′(x2),

∂2G
∂x2

2

(δ, x) = (M′(x2))2∂
2φT
∂x2

2

(δ,R(x)) + (∂xφT (δ,R(x))− 1)

(
0

M′′(x2)

)
.

Taking into account that |M′(x2)| ≤ 1 and |M′′(x2)| ≤ 3
√

3/8, the con-
stants C1, C12 and C22 are going to be defined in terms of bounds for the
derivatives of φT (δ,R(x)).

The function ∂δφt(δ, x) is a solution of

ẏ = A(t)y + b1(t), y(0) = 0,

where

b1(t) =

(
0

−D(t, e)ω(t; δ, x)

)
.

By variation of constants

∂δφt(δ, x) =

∫ t

0

Φ(t)Φ(s)−1b1(s)ds,



3.3. DISSIPATIVE REGIME 119

then, in order to find a bound for ||∂δφT (δ,R(x))||, first we need to find a
bound for |ω(t; δ,R(x))|. Note that the expression (3.39) is valid for all the
initial conditions ω0 = ω(0; δ, x), but in our case |M(ω0)| ≤ C + π/2, then,

|ω(t; δ,R(x))| ≤ 2C + π/2.

Consequently,

||∂δφT (δ,R(x))|| ≤
∫ T

0

||Φ(T )Φ(s)−1|| ||b1(s)||ds ≤ C1 = κ||D( · , e)||1(2C+π/2).

We see that ∂δxφt(δ, x) is a matrix solution of

ẏ = A(t)y + b12(t), y(0) = 0,

where

b12(t) =

(
0 0

Λ
r(t,e)3∂δΘ(t; δ, x) sin[Θ(t; δ, x)] −D(t, e)

)
Φ(t),

then,

||∂δxφT (δ,R(x))|| ≤
∫ T

0

||Φ(T )Φ(s)−1|| ||b12(s)||ds ≤ C12,

with C12 = κ2(C1Λ||r( · , e)−3||1 + ||D( · , e)||1).

Finally, we observe that ∂2φt
∂xi∂xj

is solution of

ẏ = A(t)y + bij22(t), y(0) = 0,

where

bij22(t) =

(
0

Λ
r(t,e)3

∂Θ
∂xi

∂Θ
∂xj

sin Θ

)
.

Then∣∣∣∣∣∣∣∣ ∂2φT
∂xi∂xj

(δ,R(x))

∣∣∣∣∣∣∣∣ ≤ ∫ T

0

||Φ(T )Φ(s)−1|| ||bij22(s)||ds ≤ κ3Λ||r( · , e)−3||1.

In consequence,

||∂xxG(δ, x)|| ≤
∑

i,j∈{1,2}

∣∣∣∣∣∣∣∣ ∂2G
∂xi∂xj

∣∣∣∣∣∣∣∣ ≤ C22 = 4κ3Λ||r( · , e)−3||1 +
3
√

3(1 + κ)

8
.
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Finally, in our case, δ0 = 0 and x0 = (0, Θ̇∗(0))T. We know that |Θ̇∗(0)| ≤
C, since Θ∗(t) is a T -periodic solution, then, R(x0) = x0 and ∂xR(x0) = 1,
so, we have to find a bound for the norm of

(∂xG(0, x0))−1 = (∂xφT (0, x0)− 1)−1.

For any matrix M ∈ R2×2,

M−1 = −JM
TJ

detM
, J =

(
0 1
−1 0

)
,

since ||J || = 1, then,

||M−1|| ≤ ||M
T||

| detM |
,

on the other hand, define ∆0 = Tr(∂xφT (0, x0)), since ∂xφT (0, x0) is a sym-
plectic matrix, we have that det(∂xφT (0, x0)T−1) = 2−∆0. In consequence,

||(∂xG(0, x0))−1|| ≤ C0 =
1 + κ0

|2−∆0|
.

Summarizing, we have obtained

C0 =
1 + κ0

|2−∆0|
, C1 = κ||D( · , e)||1(2C + π/2),

C12 = κ2
(
C1Λ||r( · , e)−3||1 + ||D( · , e)||1

)
,

C22 = 4κ3Λ||r( · , e)−3||1 +
3
√

3(1 + κ)

8
,

where || · ||1 is the L1[0, 2π]-norm and the constants κ0 and κ are defined by

κ0 = exp
(
max

{
2π,Λ||r( · , e)−3||1

})
,

κ = exp
(
max

{
2π,Λ||r( · , e)−3||1 + δ∗||D( · , e)||1

})
,

where the constant δ∗ ∈ (0, 1/4) can be chosen arbitrarily as long as the
computed value δ̄ remains smaller than the chosen δ∗. We will take δ∗ = 0.01
for the linear MacDonald torque in Section 3.3.2.

The parameters ρ and R are now determined by (3.36) and (3.37). We
find the function χ(δ) defined on [0, ρ], such that

||χ(δ)− χ(0)|| ≤ R. (3.41)

Once we have constructed the branch of periodic solutions Θ = Θ∗δ(t),
we analyze the stability properties. The next Lemma on linear equations is
tailored for our purposes.
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Lemma 3.7. Let a, b, c : R → R be continuous and T -periodic functions,
also, c ∈ C1 and

∫ T
0
c(t)dt > 0. Let K > 0 be a constant such that∣∣∣∣b(t)− 1

4
c(t)2 − 1

2
ċ(t)

∣∣∣∣ < K, t ∈ [0, T ].

Let ∆0 be the discriminant of ÿ + a(t)y = 0 and assume that |∆0| < 2.
Assume that

||Φ0(t)Φ0(s)−1|| ≤ κ0, 0 ≤ s < t ≤ T,

where Φ0(t) is the matrix solution of ÿ+a(t)y = 0, such that Φ0(0) = 1, and
|| · || denotes the matrix norm induced by the maximum norm in R2. Then,
the equation

ÿ + c(t)ẏ + (a(t) + b(t))y = 0 (3.42)

is asymptotically stable if

K <
1

κ0T
ln

(
1 +

2− |∆0|
2κ0

)
. (3.43)

Proof. The change of variables η(t) = exp
(

1
2

∫ t
0
c(s)ds

)
y(t), transforms

(3.42) into

η̈ +
(
a(t) + b̃(t)

)
η = 0,

where

b̃(t) = b(t)− 1

4
c(t)2 − 1

2
ċ(t).

We observe that (3.42) is asymptotically stable if the equation for η is

stable. If we call Y =

(
η
η̇

)
, we obtain the equation

Ẏ =
(
A0(t) + b̃(t)N

)
Y,

where

A0(t) =

(
0 1
−a(t) 0

)
, N =

(
0 0
−1 0

)
.

Let Φ(t) be the matrix solution with Φ(0) = 1. Then, by variation of
constants, the equation is equivalent to

Φ(t) = Φ0(t) +

∫ t

0

Φ0(t)Φ0(s)−1b̃(t)NΦ(s)ds.
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Since the maximum norm of N is 1, then,

||Φ(t)|| ≤ κ0 + κ0µ

∫ t

0

||Φ(s)||ds.

Using Gronwall’s Lemma,

||Φ(t)|| ≤ κ0 exp (κ0µt) ,

in consequence,

||Φ(t)− Φ0(t)|| ≤ κ2
0µ

∫ t

0

exp (κ0µs) ds = κ0(exp (κ0µt)− 1).

For any real square matrix M , |TrM | ≤ 2rs(M) ≤ 2||M ||, where rs is
the spectral radius. If ∆ = Tr Φ(T ) and, using hypothesis (3.43),

|∆−∆0| ≤ 2κ0(exp (κ0µT )− 1) < 2− |∆0|.

We conclude that |∆| < 2.
The variational equation of (3.35) at Θ∗δ(t) is

ÿ + δD(t, e)ẏ +
Λ

r(t, e)3
cos[Θ∗δ(t)]y = 0.

We can interpret this equation as a perturbation of the equation for δ = 0.
In the framework of (3.42),

a(t) =
Λ

r(t, e)3
cos[Θ∗0(t)],

b(t) =
Λ

r(t, e)3
(cos[Θ∗δ(t)]− cos[Θ∗0(t)]) , c(t) = δD(t, e).

To estimate |b(t)| we observe that η(t) = Θ∗δ(t)−Θ∗0(t) satisfies the linear
equation

η̈ + P (t)η = Q(t), (3.44)

where

P (t) =
Λ

r(t, e)3

sin[Θ∗δ(t)]− sin[Θ∗0(t)]

Θ∗δ(t)−Θ∗0(t)
, Q(t) = −δD(t, e)Θ̇∗δ(t)

In view of Lemma 3.6 we deduce that |Q(t)| ≤ ρCD(t, e). Also, |P (t)| ≤
Λ

r(t,e)3 . These estimates, together with (3.41) and (3.37) lead to

|Θ∗δ(t)−Θ∗0(t)| ≤ κ0R(ρ) + κ0ρC||D( · , e)||1, (3.45)
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where || · ||1 is the L1[0, 2π]-norm. Let us prove this. By variation of constants
in (3.44) we get that(

η(t)
η̇(t)

)
= Φ̂(t)

(
η(0)
η̇(0)

)
+

∫ t

0

Φ̂(t)Φ̂−1(s)

(
0

Q(s)

)
ds,

where Φ̂(t) is the matrix solution of the homogeneous equation η̈+P (t)η = 0.
Note that, since |P (t)| ≤ Λ

r(t,e)3 , we have that

||Φ̂(t)|| ≤ κ0 = exp
(
max

{
2π,Λ||r( · , e)−3||1

})
,

exactly as in the computation of κ0. Moreover, note that∣∣∣∣∣∣∣∣(η(0)
η̇(0)

)∣∣∣∣∣∣∣∣ = ||χ(δ)− χ(0)|| ≤ R,

since |Q(t)| ≤ ρCD(t, e), we get that

|Θ∗δ(t)−Θ∗0(t)| ≤ κ0R + κ0ρC||D( · , e)||1.

Consequently,

|b(t)| ≤ κ0Λ

r(t, e)3
(R(ρ) + ρC||D( · , e)||1),

and we can take a suitable K = K(ρ), say,

K(ρ) = κ0Λ||r( · , e)−3||∞ (R(ρ) + ρC||D( · , e)||1) +
ρ2

4
||D( · , e)||2∞

+
ρ

2
||Ḋ( · , e)||∞.

Note that, by (3.37), K(ρ) is an increasing continuous function for ρ ∈
(0, 1

4C2
0C1C22

] and such that K(ρ) → 0+ as ρ → 0+. In consequence, the

function Θ∗δ(t) obtained by Lemma 3.5 is asymptotically stable as long as

ρ < K−1

(
1

κ0T
ln

(
1 +

2− |∆0|
2κ0

))
.

In principle, we do not know if the value of ρ defined by (3.36) satisfies this
inequality. However, since the solution Θ∗δ(t) is defined for all δ ∈ [0, ρ], we
can always take a smaller value of ρ, say δ̄, satisfying the previous inequality
so that Θ∗δ(t) is asymptotically stable for all δ ∈ [0, δ̄]. With this, we have
proved Theorem 3.2.
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3.3.1 The dissipative function D(t, e)

In addition of being a planar model, equation (3.35) models the dissipative
spin-orbit with the strong assumption that the dissipative torque is propor-
tional to Θ̇. This is obvious for the so-called linear MacDonald torque in
(1.14), for which D(t, e) = r(t, e)−6, in this case we will be able to find an-
alytically the constants of our estimates, except for ∆0, which can be found
numerically.

Let us sketch a procedure to make applicable our results to other dissipa-
tive torques. We take [42] as reference. In general, to compute the dissipative
torque Td we start from a potential U depending on the position of the per-
turbing body, so that Td = rFz, where Fz is the z-component of the force
F = − gradU . It is common to expand U in power series of 1/r, via Legen-
dre polynomials, and assume that the dissipation is introduced by including
a constant small time delay ∆t in the position of the perturber. This gives
rise to the torque of equation (28) in [42]. If we take only the leading term
of the expansion we get the linear MacDonald torque, equation (30), [42].
Note that, in the expanded torque (28), [42], we work with i = 0, M1 = M∗

1 ,
r = r∗, and λ = λ∗. Consequently, we can see that each term of the expan-
sion is proportional to sin(−m∆tΘ̇/2) ≈ −m∆tΘ̇/2 and we can write the
torque in the form −δD(t, e)Θ̇. Actually, different orders of approximation
would give rise to different functions D(t, e). However, we must mention that
this procedure does not guarantee that D(t, e) is positive, which is impor-
tant to find an upper bound C ≥ |Θ̇∗δ(t)|, see Lemma 3.6, involved in the
computation of other constants of our estimates.
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Figure 3.5: Dissipative diagram for the linear MacDonald torque. The
greener regions correspond to greater admissible δ. We do not guarantee
the existence of Θ∗δ(t; e,Λ) for the region filled with the wavy pattern.

3.3.2 Quantitative estimates for the linear MacDonald
torque

In general we see that

||r( · , e)−3||∞ =
1

(1− e)3
, ||r( · , e)−3||1 =

2π

(1− e2)3/2
,

||f̈( · , e)||1 =
8e√

1− e2
,

while for the linear MacDonald torque

||D( · , e)||∞ =
1

(1− e)6
, ||D( · , e)||1 =

8 + 24e2 + 3e4

4(1− e2)9/2
π,

||Ḋ( · , e)||∞ ≤
6e

(1− e)8
.

Taking δ∗ = 0.01, we can compute the maximum admissible δ̄ = δ̄(e,Λ)
and divide the (e,Λ)-diagram in regions corresponding to different orders of
magnitude of δ̄. See Figure 3.5.

In the case of the Moon-Earth system, for which e = 0.0549, Λ = 0.00069,
we obtain that the 1 : 1 resonance is asymptotically stable for all δ smaller
than δ̄ = 2.06 · 10−20. This is actually a very small value, however, if we



126 CHAPTER 3. STABILITY OF THE 1:1 SPIN-ORBIT RESONANCE

Satellite (Planet) e Λ δ̄ ∆t(δ̄)
Moon (Earth) 0.0549 0.00069 2.06 · 10−20 11 min

Io (Jupiter) 0.0041 0.021 9.69 · 10−19 0.00057 min

Europa (Jupiter) 0.0094 0.0055 2.85 · 10−19 0.0064 min

Table 3.1: Estimates for some satellite-planet systems with strong spin-orbit
interaction. The parameters e and Λ have been taken from [16] and other
constants from [1]. The corresponding δ̄ has been obtained numerically. The
dependence of ∆t with respect to δ only depends on the parameters of the
system.

evaluate the corresponding maximum admissible delay we get ∆t(δ̄) = 11
min. Which means that, if the Moon’s response is delayed 11 minutes or
less, its asymptotic stability is guaranteed by our computations. Consider a
seismic event occurring at the center of the Moon and reaching the surface
in 11 minutes. If the Moon were homogeneous, the necessary velocity of
propagation would be of 2.74 km/s. This is reasonably consistent with the
available data from the interior of the Moon, for which the speed of p-waves
ranges from 1.0 km/s to 8.5 km/s, according to Table 24.2 in [122]. On
the contrary, as we see in Table 3.1, we are less optimistic with respect
to the direct applicability of these estimates for Io and Europa, since we
get too small values of ∆t. We do not know the ultimate reason for this
shortcoming. The roughness of our estimates could be the underlying reason.
The limitations of the model could also explain it. One of the referees has
informed us about more accurate models involving a multi-layer structure
for the satellite, like in [120]. In the framework of our study, the disparity
comes from one parameter. The delay is given by

∆t =
δ

2CM

Torb
2π

= δ
Ca6

3GM2
pR

5
sk2,s

Torb
2π

, (3.46)

where Torb is the orbital period, a is the semimajor axis of the orbit, G is the
gravitational constant, Mp is the mass of the planet, Rs is the mean radius
of the satellite and k2,s is its Love number (elasticity). The small values of
∆t for Io and Europa are mainly due to the large mass of Jupiter, which is
around 300 times the mass of the Earth. The rest of the parameters in (3.46)
are comparable for the three systems.



Chapter 4

The spin-spin model and its
double synchronous resonance

4.1 Derivation of the conservative spin-spin

model

In this section we will compute the equations of motion of the ellipsoids with
respect to the inertial frame with origin at the barycenter of the system.
We will compute the expansion of the potential energy of the system in
Section 4.1.1 and particularize it to the planar problem in Section 4.1.2.
Section 4.1.3 is devoted to find the equations of motion of the full system
of four variables (r, f, θ1, θ2), in terms of the gravitational potential energy
V = V (r, f, θ1, θ2). In Section 4.1.4 we fix the Keplerian orbit and obtain the
final model in terms of physical parameters of the system.

4.1.1 Potential of the Full Two-Body Problem

The expansion of the potential energy in the Full Two-Body Problem has
been obtained in several papers, see [119] for example. In this subsection,
and in order to introduce some notation, we present a short derivation of the
spherical harmonics expansion, following the approach of [76] and [13]. See
also a similar approach in [84] and [32]. We start from the formula

V = −G
∫ ∫

dM1(x1) dM2(x2)

|x1 − x2|
,

where each xj ∈ R3 is the position vector (with respect to the barycenter of
the system) of the mass element dMj(xj) corresponding to the ellipsoid Ej.

127
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Figure 4.1: Position vectors of the element of mass of an ellipsoid.

Making the change of variables yj = xj − rj, illustrated in Figure 4.1, and
defining y = y1 − y2, we obtain

V = −G
∫ ∫

dM1(y1) dM2(y2)

|r− y|
.

Recall that r = r2− r1. The usual expansion in spherical harmonics gives us

V = −G
∑

(l,m)∈Υ

Ql,m
Yl,m(r̂)

|r|l+1
, (4.1)

where
Υ = {(l,m) ∈ Z2 : 0 ≤ |m| ≤ l}

and the multipolar moments of the system Ql,m are defined by

Ql,m =

∫ ∫
|y|lȲl,m(ŷ) dM1(y1) dM2(y2), (4.2)

where the upper bar indicates complex conjugation. We use the Schmidt
semi-normalization1 of the spherical harmonics in the same way as in [13].
Assume that, in the inertial frame, r has spherical coordinates (r, ϑ, φ), then,
the spherical harmonics are defined by

Yl,m(ϑ, φ) = (−1)m

√
(l −m)!

(l +m)!
Pl,m(cosϑ) exp(imφ),

where the associated Legendre polynomials are given by

Pl,m(x) =
1

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l, x ∈ [−1, 1].

1With this choice, the Legendre polynomials can be written in terms of the spherical
harmonics as

Pl(r̂ · ŷ) =

l∑
m=−l

Yl,m(r̂)Ȳl,m(ŷ).
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Note that, since y = y1−y2, we cannot factorize the integral in (4.2) into
factors that involve quantities associated to each body separately. However
we can express this integral as a sum of factorized terms. For this we can
define the auxiliary normalized solid harmonics

Yl,m(x) =
|x|lYl,m(x̂)√

(l −m)!(l +m)!
, x ∈ R3,

and apply the translation formula, given in equation (313) in [117],

Yl,m(y1 − y2) =
∑
λ1,µ1

∑
λ2,µ2

Yλ1,µ1(y1)Yλ2,µ2(−y2), (4.3)

where λj and µj are integers running all the values such that

0 ≤ λj ≤ l, λ1 + λ2 = l; −λj ≤ µj ≤ λj, µ1 + µ2 = m.

Then, using the parity relation Yl,m(−x̂) = (−1)lYl,m(x̂), the expression (4.2)
becomes

Ql,m√
(l −m)!(l +m)!

=

∑
λ1,µ1

∑
λ2,µ2

(−1)λ2
M1R

λ1
1 Z

1)
λ1,µ1√

(λ1 − µ1)!(λ1 + µ1)!

M2R
λ2
2 Z

2)
λ2,µ2√

(λ2 − µ2)!(λ2 + µ2)!
, (4.4)

where, the complex Stokes coefficients2 of each ellipsoid are given by

Z
j)
λ,µ =

1

MjRλ
j

∫
|yj|λȲλ,µ(ŷj) dMj(yj), (4.5)

and Rj is the mean radius of Ej.
Finally, since in the potential energy the summation range is 0 ≤ l ≤ ∞,

−l ≤ m ≤ l, which are all the possible terms, then, from (4.1) and (4.4) we

2The quantities Z
j)
l,m provide the expansion of the potential created for the body Ej .

They are related to the usual parameters C
j)
l,m and S

j)
l,m by

C
j)
l,m + iS

j)
l,m = (−1)m

2

1 + δm,0

√
(l −m)!

(l +m)!
Z̄
j)
l,m, m ≥ 0,

where δm,n is the Kronecker delta.
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can write

V = −GM1M2

|r|
∑

(λ1,µ1)∈Υ
(λ2,µ2)∈Υ

(−1)λ2γλ1,µ1

λ2,µ2

(
R1

|r|

)λ1
(
R2

|r|

)λ2

×

× Z1)
λ1,µ1

Z
2)
λ2,µ2

Yλ1+λ2,µ1+µ2(r̂), (4.6)

where we defined the constants

γλ1,µ1

λ2,µ2
=

√
(λ1 + λ2 − µ1 − µ2)!(λ1 + λ2 + µ1 + µ2)!

(λ1 − µ1)!(λ1 + µ1)!(λ2 − µ2)!(λ2 + µ2)!
.
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4.1.2 Potential of the ellipsoidal spin-spin model

Note that the terms in the expansion (4.6), and in particular Z
j)
λ,µ, have to

be computed with respect to the inertial frame. Let us call Ej-frame to the
fixed body frame of each ellipsoid, formed by its center and its principal
directions associated respectively to aj, bj and cj. Let Zj)λ,µ be the Stokes
coefficients computed with respect to the Ej-frame. The Ej-frame is rotated,
with respect to the inertial frame, with the rotation labelled by the Euler
z-y-z angles (α, β, γ) = (θj, 0, 0).

Let x ∈ R3 be a vector with spherical coordinates (|x|, ϑj, φj) with respect
to the Ej-frame and (|x|, ϑ, φ) with respect to the reference frame formed by
the center of the body Ej and the directions parallel to those of the inertial
frame. The relation between spherical harmonics Yl,m(x̂) computed with
respect to both systems of reference is the following

Yl,m(ϑj, φj) =
l∑

m′=−l

Yl,m′(ϑ, φ)D̄l
m,m′(α, β, γ)

where Dl
m,m′(α, β, γ) is the (m,m′)-element of the Wigner D-matrix associ-

ated to the rotation given by the Euler z-y-z angles (α, β, γ), see [117]. Then,
from (4.5),

Z
j)
λ,µ =

λ∑
µ′=−λ

Dλ
µ,µ′(α, β, γ) Zj)λ,µ′ . (4.7)

From the definition of the Wigner D-matrices, see for instance equa-
tion (186) in [117], in our planar case they are diagonal Dλ

µ,µ′(θj, 0, 0) =
δµ,µ′ exp(−iµ′θj), where δµ,µ′ is the Kronecker delta. Then,

Z
j)
λ,µ = Zj)λ,µ exp(−iµθj).

Now we can express (4.6) in terms of Zj)λ,µ. In [5] an expansion of the
potential created by a homogeneous ellipsoid was computed. Incidentally, a
complicated general expression for Zj)λ,µ was computed there as well. In the
next Proposition we summarize some remarkable properties of those quanti-
ties.

Proposition 4.1. Let Zl,m be Stokes coefficients of an homogeneous ellipsoid
computed in its own fixed body frame. They have the following properties

1. Zl,m ∈ R.

2. Zl,m ≡ 0 if either l or m are odd numbers.
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3. Zl,−2n = Zλ,2n, with n integer.

Proof.

1. Let us choose convenient units such that both the mass and the mean
radius of the ellipsoid equal 1. Take spherical coordinates (r, ϑ, φ) in
the fixed body frame, then, the distance rE(ϑ, φ) from the center of the
ellipsoid E to its surface si given by

1

rE(ϑ, φ)2
= sin2 ϑ

(
cos2 φ

a2
+

sin2 φ

b2

)
+

cos2 ϑ

c2

then, if we take the density ρ, from (4.5),

Zl,m =(−1)mρ

√
(l −m)!

(l +m)!
×

×
∫ 2π

φ=0

∫ π

ϑ=0

∫ rE(ϑ,φ)

r=0

rl+2 drPl,m(cosϑ) exp(−imφ) dcosϑ dφ

=
(−1)mρ

l + 3

√
(l −m)!

(l +m)!
×

×
∫ 2π

φ=0

∫ π

ϑ=0

rE(ϑ, φ)l+3Pl,m(cosϑ) exp(−imφ) dcosϑ dφ (4.8)

Since rE(ϑ,−φ) = rE(ϑ, φ), if we take the change of variable φ = −φ′,
we obtain that Zl,m equals its complex conjugate, then, it must be real.

2. We can change variables yi = −y′ in (4.5),

Zl,m =

∫ ∫ ∫
−y′ inside E

| − y′|lȲl,m(−ŷ′)dM(−y′)

= (−1)3

∫ ∫ ∫
y′ inside E

|y′|lȲl,m(−ŷ′)(−1)3dM(y′)

= (−1)lZl,m,

where we used Yl,m(−x̂) = (−1)lYl,m(x̂). Then, Zl,m ≡ 0 if l is odd.
Note that this particular result is independent of the reference frame.

From (4.8) we see that Zl,m is computed integrating the function
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I(ϑ) =

∫ 2π

φ=0

rE(ϑ, φ)l+3 exp(−imφ) dφ

Since rE(ϑ, φ) depends on φ through sin2 φ and cos2 φ, we know that
rE(ϑ, π − φ) = rE(ϑ, φ). Now, if we take the change of variables φ =
π − φ′, we obtain that I(ϑ) = (−1)mĪ(ϑ). Since I(ϑ) must be real,
then, I(ϑ) ≡ 0 for odd m.

3. If we apply the symmetry relation Yl,m(x) = (−1)mȲl,−m(x) we can
easily see that Zl,−m = (−1)mZ̄l,m. Since m is even and Zl,m is real,
we have finished the proof.

Remark 4.1. Regarding these properties, a convenient expression to compute
numerically Z2k,2n, with k ≥ 0 and n integers, is

Z2k,2n =
3

4πR2k

√
(2k − 2n)!

(2k + 2n)!

∫
B

Re((aZ − ibY )2n)×

× [(aX)2 + (bY )2 + (cZ)2]k

[(aX)2 + (bY )2]n
P2k,2n

(
cZ√

(aX)2 + (bY )2 + (cZ)2

)
dX dY dZ,

(4.9)

where R is the mean radius of the ellipsoid, a, b and c are its principal semi-
axes, Re indicates the real part and B is the unit ball, defined by X2 + Y 2 +
Z2 ≤ 1. Moreover, Z2k,2n can be written only in terms of M and the principal
moments of inertia because

a =

√
5(−A+ B + C)

2M
, b =

√
5(A− B + C)

2M
, c =

√
5(A+ B − C)

2M
.

Recalling the definitions of q and d in (4.17), the first non-vanishing
Stokes coefficients are given by

Z0,0 = 1, Z2,0 = −1

2

q

MR2
, Z2,2 =

√
3

8

d

MR2
, (4.10)

Z4,0 =
15

56

d2 + 2q2

M2R4
, Z4,2 = −15

28

√
5

3

d q

M2R4
, Z4,4 =

15

8

√
5

14

d2

M2R4
,

(4.11)
and it seems that, in general, Z2k,2n has the form of a homogeneous polyno-
mial of degree k with respect to q/(MR2) and d/(MR2).
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In order to simplify expression (4.6), recall that r is the vector pointing
from the center of E1 to the center of E2. Then, the spherical coordinates of r
with respect to the inertial frame are (r, ϑ = π/2, φ = f). The non-vanishing
terms of (4.6) are such that λj = 2lj and µj = 2mj. Let us call from now on
l = l1 + l2 and m = m1 +m2. We can apply the formula

Y2l,2m(π/2, f) =

√
(2l − 2m)!

(2l + 2m)!
P2l,2m(0)e2imf ,

and the following property of the associated Legendre polynomials

P2l,2m(0) =
(−1)l−m

4l
(2l + 2m)!

(l −m)!(l +m)!
,

see for instance equation (68) in [117]. Then, we can write the potential
keeping only the real part of V , so that the final expression potential is

V = −GM1M2

r

∑
(l1,m1)∈Υ
(l2,m2)∈Υ

Γl1,m1

l2,m2

(
R1

r

)2l1 (R2

r

)2l2

×

×Z1)
2l1,2m1

Z2)
2l2,2m2

cos(2m1(θ1 − f) + 2m2(θ2 − f)), (4.12)

where

Γl1,m1

l2,m2
=

(−1)l−m

4l
√

(2l1 − 2m1)!(2l1 + 2m1)!(2l2 − 2m2)!(2l2 + 2m2)!
×

× (2l − 2m)!(2l + 2m)!

(l −m)!(l +m)!
. (4.13)

The first terms of the expansion (4.12) can be computed using (4.10) and
(4.11). The terms corresponding to l = l1 + l2, for l = 0, 1 and 2, are shown
in (4.16).
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4.1.3 The planar Lagrangian model

Let the Lagrangian of the system be L = T−V , where T is the kinetic energy
and V the potential energy of the system. Recall that the positions of the
bodies are r1 = −M2r and r2 = M1r, where the relative position vector is
defined by r = r2 − r1 = r exp(if). Besides, for each body, the angle θj
defines the orientation of the axis associated to aj. We are going to use r, f ,
θ1 and θ2, depicted in Figure 1.10, as the Lagrangian variables of our system.
The total orbital kinetic energy is given by

Torb =
1

2
(M1ṙ1

2 +M2ṙ2
2) =

µ

2
ṙ2 =

µ

2
(ṙ2 + r2ḟ 2),

where µ = M1M2 is the the reduced mass of the system (recall M1 +M2 = 1).
While the rotational kinetic energy is Trot = 1

2
C1θ̇

2
1 + 1

2
C2θ̇

2
2. In the previous

subsection we derivated the full expression of the potential energy of the
system V = V (r, f, θ1, θ2), equation (4.12). The Euler-Lagrange equations
corresponding to the Lagrangian L = Torb(r, ṙ, ḟ)+Trot(θ̇1, θ̇2)−V (r, f, θ1, θ2)
are

C1θ̈1 = −∂θ1V, C2θ̈2 = −∂θ2V, (4.14)

µr̈ = µrḟ 2 − ∂rV, f̈ = − 1

µr2
∂fV − 2

ṙḟ

r
. (4.15)

Note that, in the case of ellipsoids, the expansion of the potential energy
(4.12) has the form V =

∑∞
n=0 V2n, where V2n is proportional to 1/r2n+1.

The first terms of the expansion are

V0 = −GM1M2

r
.

V2 = −GM2

4r3
(q1 + 3d1 cos(2(θ1 − f)))− GM1

4r3
(q2 + 3d2 cos(2(θ2 − f))) ,

V4 = − 3G

43r5
{12q1q2 + 15

7
[M2

M1
d2

1 + 2M2

M1
q2

1 + M1

M2
d2

2 + 2M1

M2
q2

2]

+d1M2

{
[20 q2

M2
+ 100

7
q1
M1

] cos(2(θ1 − f)) + 25 d1

M1
cos(4(θ1 − f))

}
+d2M1

{
[20 q1

M1
+ 100

7
q2
M2

] cos(2(θ2 − f)) + 25 d2

M2
cos(4(θ2 − f))

}
+6d1d2 cos(2(θ1 − θ2)) + 70d1d2 cos(2(θ1 + θ2)− 4f)},

(4.16)
where we defined the parameters

dj = Bj −Aj, qj = 2Cj − Bj −Aj. (4.17)
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Note that dj is proportional to C
j)
22, whereas qj is proportional to C

j)
20, where

C
j)
nm are the usual coefficients in the expansion of the gravitational potential

of the ellipsoid Ej. The quantity dj/Cj measures the oblateness of the section
of the ellipsoid in the plane of motion, whereas, qj/Cj measures the flattening
with respect to the plane. If Aj ≤ Bj ≤ Cj, then, qj ≥ dj ≥ 0. Note that
the term V0 contains the dynamics of two point masses, V2 the uncoupled
spin-orbit dynamics and V4 the spin-spin coupled dynamics between θ1 and
θ2. The coupling terms appear in the last line of (4.16).
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4.1.4 The Keplerian assumption

The complete dynamics of the system is given by Equations (4.14) and (4.15),
with V in (4.12). In this paper we impose that the orbital motion is Kep-
lerian, i.e., we keep only V0 in the orbital part (4.15). Besides, in the spin
part (4.14), we truncate V ignoring terms of order 1/r7 and higher, then
V ≈ V0 + V2 + V4. The resulting system is

C1θ̈1 = −∂θ1(V0 + V2 + V4), C2θ̈2 = −∂θ2(V0 + V2 + V4), (4.18)

µr̈ = µrḟ 2 − ∂rV0, f̈ = − 1

µr2
∂fV0 − 2

ṙḟ

r
. (4.19)

Note that, since ∂θjV0 = 0, the system (4.19) is now decoupled from (4.18).
Its solution is r = r(t), f = f(t) given by Equations (1.10) to (1.12) and
depends on the eccentricity of the orbit e and its semimajor axis a.

Let us now write V2 and V4 in a more convenient way. The quantity Mja
2

is a sort of orbital moment of inertia of the body Ej. Then, we can define

d̂j =
dj

Mja2
, q̂j =

qj
Mja2

, (4.20)

so that d̂j measures the equatorial oblateness of Ej with respect to the size
of the orbit and q̂j measures the flattening of Ej with respect to the size of
the orbit.

Taking into account that in our units G = a3, the terms V2 and V4 can
be written in a compact way as

V2 = −1

4

(
a

r(t)

)3

(Λ0 + Λ1 cos(2θ1 − 2f(t)) + Λ2 cos(2θ2 − 2f(t))) (4.21)

and

V4 = −1

4

(
a

r(t)

)5 ∑
(m1,m2)∈Ξ

Λm1
m2

cos(2m1(θ1− f(t)) + 2m2(θ2− f(t))) (4.22)

where
Ξ = {(m1,m2) ∈ Z2 : |m1|+ |m2| ≤ 2},

and the following Λ parameters are defined by

Λ1 = 3d1M2, Λ2 = 3d2M1, (4.23)

Λ1
0 = Λ−1

0 =
5

56
(7q̂2 + 5q̂1)Λ1, Λ0

1 = Λ0
−1 =

5

56
(7q̂1 + 5q̂2)Λ2, (4.24)
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Λ2
0 = Λ−2

0 =
25

32
d̂1Λ1, Λ0

2 = Λ0
−2 =

25

32
d̂2Λ2, (4.25)

Λ1
1 = Λ−1

−1 =
35

16
d̂1Λ2 =

35

16
d̂2Λ1, Λ−1

1 = Λ1
−1 =

3

16
d̂1Λ2 =

3

16
d̂2Λ1 (4.26)

Λ0 = q1M2 +q2M1, Λ0
0 =

9

4
q̂1q2M1 +

15

112
(Λ1d̂1 +6q̂1q1M2 +Λ2d̂2 +6q̂2q2M1).

With the last definitions we can write equations (4.18) as Cj θ̈ = T Cj , where
T Cj = −∂θj(V2 + V4) are the conservative torques of the spin-spin model
shown in (1.20). This can be checked with the expressions (4.21) and (4.22).
Note that mjΛ

m1
m2

is in all cases proportional to the corresponding Λj. Then,
the equations of the conservative spin-spin model (4.18) can be written in
terms of the physical parameters in the following symmetric way for j = 1, 2,

0 = θ̈j +
λj
2

{( a

r(t)

)3

sin(2θj − 2f(t))+

+

(
a

r(t)

)5 [5

4

(
q̂3−j +

5

7
q̂j

)
sin(2θj − 2f(t)) +

25d̂j
8

sin(4θj − 4f(t))

+
3d̂3−j

8
sin(2θj − 2θ3−j) +

35d̂3−j

8
sin(2θ3−j + 2θj − 4f(t))

]}
, (4.27)

where

λj =
Λj

Cj
= 3

dj
Cj

µ

Mj

.

It is worth mentioning that the terms with q̂j and d̂j in (4.27) were missing
in the model used in [7] due to the dumbbell simplification for one of the
bodies in the derivation of the equations. Not all the parameters appearing
in (4.27) are free because the following identities hold

C1 + C2 = 1, Λ1d̂2 = Λ2d̂1, Λ1q̂2 = Λ2q̂1. (4.28)

In consequence, our model depends on six independent parameters with phys-
ical meaning (e; C1, λ1, λ2, d̂1, q̂1). Moreover, in (4.27) we see that spin of the
ellipsoid E2 is affected by the spin-spin coupling with a strength essentially
given by d̂1, and vice versa.
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4.2 Linear stability of the double synchronous

resonance in the conservative model

In this section we deal with the conservative system with the notation in
(1.23), that is more convenient for our purpose. The main result is Theo-
rem 4.2. It determines a region of linear stability of the double synchronous
resonance in the space of parameters of the system.

4.2.1 Existence of the odd 2π-periodic solution

The system (1.23) can be written as

CΘ̈ + F (t,Θ) = 0, (4.29)

where

Θ =

(
Θ1

Θ2

)
, C =

(
C1 0
0 C2

)
, Cj > 0,

and F (t,Θ) is the bounded function given by

F (t,Θ) =

(
a

r(t)

)3(
Λ1 sin Θ1

Λ2 sin Θ2

)
+

+

(
a

r(t)

)5 ∑
(m1,m2)∈Ξ

(
m1

m2

)
Λm1
m2

sin(m1Θ1 +m2Θ2) + 2f̈(t)

(
C1

C2

)
. (4.30)

Note that equation (4.29) is invariant under the change (t,Θ)→ (−t,−Θ),
since f(−t) = −f(t) and r(−t) = r(t). Then, if Θ(t) is a solution of (4.29),
so it is −Θ(−t). On the other hand, for e = 0, we have f(t) = t and r(t) = a,
meaning that the system (4.29) is that of two coupled free pendula. For this
case, the trivial solution Θ(t) ≡ 0 is a stable equilibrium. Then, for e 6= 0, it
is natural to look for the 2π-periodic continuation of Θ(t) ≡ 0 in the family
of the odd solutions of (4.29), say, solutions satisfying Θ(−t) = −Θ(t). This
is equivalent to solve the Dirichlet problem{

CΘ̈ + F (t,Θ) = 0,
Θ(0) = Θ(π) = 0.

(4.31)

It is well known from nonlinear analysis that the system (4.31) has at least
one solution because F (t,Θ) is bounded. We can give a simple proof for this.
Let Θ(t) = ϑ(t, v) be the solution of (4.29) satisfying initial conditions Θ(0) =
0, Θ̇(0) = v ∈ R2. Solutions of the problem (4.31) are in correspondence
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with the solutions of the equation ϑ(π, v) = 0. From (4.29), we know that ϑ
satisfies the following integral equation

ϑ(t, v) = vt−
∫ t

0

(t− s)C−1F (s, ϑ(s, v)) ds. (4.32)

Let || · || be a norm in R2, for instance, the maximum norm or the Eu-
clidean one. We will employ the same notation for the corresponding in-
duced matrix norm in R2×2. Since there exists a positive number M ≥
||C−1F (t,Θ)||, then

||ϑ(t, v)− vt|| ≤M
t2

2
,

for each t ∈ R. If we take t = π, then, ||Φ(v)|| ≤ Mπ/2, with Φ(v) =
v−ϑ(π, v)/π and v ∈ R2. Hence, we can apply Brouwer’s fixed-point theorem
to guarantee that Φ(v) has a fixed point for some v0 satisfying ||v0|| ≤Mπ/2.
For such point we have that ϑ(π, v0) = 0, and the corresponding ϑ(t, v0)
satisfyies (4.31).
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4.2.2 Uniqueness of the solution

We know now that the Dirichlet problem (4.31) has a solution, however, it
is not necessarily unique. For instance, if Λ > 1, there is not a unique solu-
tion for the free pendulum equation ẍ + Λ sinx = 0, x ∈ R, with Dirichlet
conditions x(0) = x(π) = 0. See [86]. We would like to determine suffi-
cient conditions on the space of parameters of the system such that there is
uniqueness for the problem (4.31).

We can prove uniqueness by a contradiction argument. Define the follow-
ing matrix

C1/2 =

(√
C1 0
0
√
C2

)
and its inverse C−1/2 = (C1/2)−1. Let Θ(0)(t) and Θ(1)(t) be two non-identical
solutions of (4.31). Then, we can check that y(t) = C1/2(Θ(1)(t)−Θ(0)(t)) is
a solution of the Dirichlet problem{

ÿ + A(t)y = 0,
y(0) = y(π) = 0,

(4.33)

with A(t) a symmetric3 matrix given by

C1/2A(t)C1/2 =

∫ 1

0

∂ΘF (t,Θ(λ)(t)) dλ, (4.34)

where Θ(λ)(t) = λΘ(1)(t) + (1− λ)Θ(0)(t) and

F (t,Θ) =

(
F1(t,Θ)
F2(t,Θ)

)
, ∂ΘF (t,Θ) =

( ∂F1

∂Θ1

∂F1

∂Θ2
∂F2

∂Θ1

∂F2

∂Θ2

)
.

The statement of uniqueness is given in Theorem 4.1. We can prove it by
guaranteeing that (3.9) has only the trivial solution. In the proof we are going
to apply the following lemma to (4.33) for a generic matrix A(t) ∈ Rd×d. But
first we need some definitions. Let 〈 · , · 〉 be the Euclidean inner product in
Rd and || · || its corresponding norm. Let 1 be the unit matrix in Rd×d.

Definition 4.1. Let A1, A2 ∈ Rd×d be two symmetric matrices. We say that
A1 ≤ A2 if, for the corresponding quadratic forms, 〈A1 y, y〉 ≤ 〈A2 y, y〉 for
all y ∈ Rd.

Lemma 4.1. Assume that, for some γ < 1, the matrix A(t) ∈ Rd×d is such
that A(t) ≤ γ1 for each t ∈ [0, π]. Then, the only solution of ÿ + A(t)y = 0,
y ∈ Rd, with Dirichlet conditions y(0) = y(π) = 0 is the trivial one.

3In this paper we use properties of linear systems with symmetric coefficient matrices.
C−1∂ΘF (t,Θ) is not symmetric, but we obtain the desired structure using C1/2. See [126].
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Proof. Proceed by contradiction. Let y(t) be a non-trivial solution of
ÿ + A(t)y = 0, y(0) = y(π) = 0, then,∫ π

0

〈ÿ(t), y(t)〉+

∫ π

0

〈A(t)y(t), y(t)〉 = 0,

integrating by parts it follows that∫ π

0

||ẏ(t)||2 =

∫ π

0

〈A(t)y(t), y(t)〉.

Let yn(t) be the components of the vector y(t). From the Sobolev in-
equality

∫ π
0
|yn(t)|2 ≤

∫ π
0
|ẏn(t)|2, see [128] or [91], we get that∫ π

0

||y(t)||2 ≤
∫ π

0

〈A(t)y(t), y(t)〉.

This contradicts the hypothesis A(t) ≤ γ1 for some γ < 1. Then, y(t) must
be the trivial solution.

Let us define the matrix Ã(t,Θ) = C−1/2∂ΘF (t,Θ)C−1/2,

Ã(t,Θ) =

(
a

r(t)

)3(Λ1

C1 cos Θ1 0

0 Λ2

C2 cos Θ2

)
+

(
a

r(t)

)5 ∑
(m1,m2)∈Ξ

(
m2

1

C1
m1m2√
C1C2

m1m2√
C1C2

m2
2

C2

)
Λm1
m2

cos(m1Θ1 +m2Θ2). (4.35)

We will use the maximum norm

||y|| = max{|y1|, |y2|}, y =

(
y1

y2

)
,

and its induced norm in matrices

||A|| = max {|A11|+ |A12|, |A21|+ |A22|} , A =

(
A11 A12

A21 A22

)
.

Theorem 4.1. Assume that e ∈ [0, 1) and the parameters of the problem
satisfy

1 >
1

(1− e)3
max

{
Λ1

C1

(1 + α1),
Λ2

C2

(1 + α2)

}
, (4.36)

where

αj
Λj

Cj
=

1

(1− e)2

∑
(m1,m2)∈Ξ

(
m2
j

Cj
+
|m1m2|√
C1C2

)
Λm1
m2
. (4.37)

Then, there exists a unique solution of the Dirichlet problem (4.31), denoted
by Θ∗(t).
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Proof. Using the fact that a/r ≤ 1/(1 − e) by (1.11), equations (4.36)
and (4.37) imply that 1 > ||Ã(t,Θ)|| for all (t,Θ) ∈ R3, where we use the
maximum norm. Furthermore, if ρ(A) is the spectral radius of A, the well
known inequality ||Ã(t,Θ)|| ≥ ρ(Ã(t,Θ)) guarantees that γ1 ≥ Ã(t,Θ) for
some γ < 1. Then, γ1 ≥ A(t) for A(t) defined in (4.34). Now a direct
application of Lemma 4.1 finishes the proof.

Remark 4.2. Note that, as in the spin-orbit problem, there are two special
cases for which Θ∗ can be computed explicitly for some combination of pa-
rameters satisfying (4.36). If Λj = 0 and Λm1

m2
= 0 for m1m2 6= 0, for each

e ∈ (0, 1) the solution is the synchronous resonance of the uncoupled system

Θ∗(t) = 2(t− f(t, e))

(
1
1

)
. (4.38)

On the other hand, if e = 0 the solution is Θ∗(t) = 0.
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4.2.3 Linear stability of the solution

Now we are interested in the stability properties of the solution Θ∗(t), which
should be seen as 2π-periodic and odd from now on. In the following we will
find a region of parameters guaranteeing stability of the (scaled) linearized
system of (1.23) at the periodic solution Θ∗, say,

ÿ + A(t)y = 0, (4.39)

where we take the symmetric matrix A(t) now defined by

A(t) = Ã(t,Θ∗(t)) = C−1/2∂ΘF (t,Θ∗(t))C−1/2,

and Ã(t,Θ) was defined in (4.35).
Recall from Section 1.3.3 that the conservative spin-spin model has a

time-dependent Hamiltonian structure given by (1.21). The variational equa-
tions associated to periodic solutions, like (4.39), are linear Hamiltonian sys-
tems with periodic coefficients. We will abbreviate them by LPH systems4.
These systems have some special properties that we will use in the following.
For the general theory see [126] or [43]. For example, assume that ϕ is a
Floquet multiplier of an LPH system. Then, its inverse ϕ−1, its complex
conjugate ϕ̄ and ϕ̄−1 are also multipliers and have the same multiplicity as
ϕ. This is stated in Corollary 6 of Chapter 1.1 of [43]. Let us point out two
interesting consequences. First, a necessary condition for stability of an LPH
system is that all its Floquet multipliers must have modulus 1. Second, an
LPH system can never be asymptotically stable. In order to do continuation
of periodic solutions to the dissipative regime we will need the concept of
strong stability for LPH systems.

Definition 4.2. Let A0(t) ∈ Rd×d be a fixed symmetric and T -periodic ma-
trix. Assume that the there exists a number ε > 0 such that the equation
ÿ + A∗(t)y = 0 is stable for all A∗(t) ∈ Rd×d symmetric and T -periodic

satisfying
∫ T

0
||A∗(t)− A0(t)|| < ε. Then, ÿ + A0(t)y = 0 is strongly stable.

In other words, if an LPH system is strongly stable, then, any sufficiently
small perturbation of it is stable. The perturbation should keep the Hamilto-
nian structure. Let us illustrate this with an example of the so-called Mathieu
equation. Consider the 2π-periodic equation

ẍ+
1

4
(1 + ε cos t)x = 0, x ∈ R.

4The linear system Cÿ + ∂ΘF (t,Θ∗(t))y = 0 is an LPH system in the general sense.
However, for simplicity, we particularize the general theory to (4.39).
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For ε = 0 it is stable, but not strongly stable, because we can always find a
small number ε 6= 0 such that the corresponding equation is not stable. This
is called parametric resonance, see [4].

Strong stability can be characterized with the Floquet multipliers of the
system. For example, take an LPH system whose multipliers belong to the
unit circle. If the multiplicity of all the multipliers is one, then the system
is strongly stable. However, the converse is not true. M. Krein developed
a theory to determine if a system is strong stable with further algebraic
properties of the multipliers. For our purpose of making continuation of
periodic solutions the following property is relevant.

Proposition 4.2. Assume that ÿ + A(t)y = 0, with A(t) ∈ Rd×d symmet-
ric and T -periodic, is strongly stable. Then, neither 1 nor −1 are Floquet
multipliers of the system.

We will not prove this property because it is a particular result of the
general theory. Nonetheless, it can be inferred by the paragraph previous to
Theorem 10 in Chapter 1.2 of [43], that is the main result of Krein’s theory.

Some sufficient conditions for strong stability of (4.39) are given by the
following Lyapunov-like stability criterion, from Test 4, in [126], Chapter III,
Section 7.

Stability test 4.1. The equation ÿ+A(t)y = 0, with A(t) ∈ Rd×d symmetric
and 2π-periodic, is strongly stable provided that, for all x ∈ Rd\{0},∫ 2π

0

〈A(t)x, x〉 dt > 0 and

∫ 2π

0

Tr(A(t)) dt <
2

π
. (4.40)

This stability test is the main tool for the proof of the next theorem.

Theorem 4.2. Assume that the parameters of the model satisfy the following
conditions.

1

π2
>

1

(1− e)3

(
Λ1

C1

+
Λ2

C2

)
+

1

(1− e)5

∑
(m1,m2)∈Ξ

(
m2

1

C1

+
m2

2

C2

)
Λm1
m2
, (4.41)

1

4π
> M :=

1

(1− e)3
max

{
Λ1

C1

,
Λ2

C2

}
+

+
1

(1− e)5

∑
(m1,m2)∈Ξ

max

{
|m1|
C1

,
|m2|
C2

}
Λm1
m2

+
4e
√

1− e2

(1− e)4
, (4.42)

cos(2π2M) min

{
Λ1

C1

,
Λ2

C2

}
> max

{
α1

Λ1

C1

, α2
Λ2

C2

}
, (4.43)

with αj defined in (4.37). Then the solution Θ∗(t) is strongly linearly stable.



146 CHAPTER 4. THE SPIN-SPIN MODEL

Note that the second condition of (4.40) is guaranteed by (4.41). The
first condition of (4.40) is a bit more complicated, but its proof is immediate
by the following two lemmas.

Lemma 4.2. The components of the solution Θ∗(t) satisfy the following
bounds |Θ∗j(t)| ≤ 2π2M , |Θ̇∗j(t)| ≤ 2πM provided that M ≥ ||C−1F (t,Θ∗(t))||.

Proof. Integrating the identity Θ̈∗(t) + C−1F (t,Θ∗(t)) = 0 and taking
the first component,

Θ̇∗1(t) = Θ̇∗1(t0)−
∫ t

t0

u1 C−1F (s,Θ∗(s)) ds,

where u1 is the row vector (1, 0). Then, for t ∈ [t0, t0 + 2π],

|Θ̇∗1(t)| ≤ |Θ̇∗1(t0)|+
∫ t0+2π

t0

||C−1F (s,Θ∗(s))|| ds ≤ |Θ̇∗1(t0)|+ 2πM,

where || · || indicates a matrix norm induced by a norm in R2. Since Θ∗1(t)
is 2π-periodic, we can choose t0 such that Θ̇∗1(t0) = 0. The same is applica-
ble to Θ2 for a possibly different t0, consequently, |Θ̇∗j(t)| ≤ 2πM for all t.
Furthermore, since Θ∗1(0) = 0,

Θ∗1(t) =

∫ t

0

Θ̇∗1(s) ds,

and, due to the odd symmetry of Θ∗1(t), it is enough to consider t ∈ [0, π].
Then, |Θ∗1(t)| ≤ 2π2M . The same is true for Θ∗2(t).

Lemma 4.3. The conditions (4.42) and (4.43) are sufficient so that A(t) =
Ã(t,Θ∗(t)) ≥ γ1 for some γ > 0.

Proof. The proof this lemma is based on the following fact. Considering
the partial ordering of symmetric matrices given by Definition 4.1, the con-
ditions (4.42) and (4.43) imply that the term proportional to 1/r3 in (4.35)
dominates the other term, that is proportional to 1/r5. Let us prove it. We
can compute the derivatives of f(t) using Equations (1.10) to (1.12) and get

f̈(t) = −2e
√

1− e2 sin(u(t))

(1− e cos(u(t)))4
,

where u is the eccentric anomaly. Using the maximum norm we see from
(4.42) and (4.30) that 1/(4π) > M ≥ ||C−1F (t,Θ∗(t))||. Furthermore, from
Lemma 4.2 we know that |Θ∗j(t)| ≤ 2π2M , then, we can see graphically that

cos Θ∗1(t) ≥ cos(2π2M) > 0,
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therefore,(Λ1

C1 cos Θ∗1(t) 0

0 Λ2

C2 cos Θ∗2(t)

)
≥ cos(2π2M) min

{
Λ1

C1

,
Λ2

C2

}
1. (4.44)

On the other hand, let us define

B = −
(

a

r(t)

)2 ∑
(m1,m2)∈Ξ

(
m2

1

C1
m1m2√
C1C2

m1m2√
C1C2

m2
2

C2

)
Λm1
m2

cos(m1Θ∗1(t) +m2Θ∗2(t)).

As we did in the Proof of Theorem 4.1, we can take the maximum norm and
obtain that

max

{
α1

Λ1

C1

, α2
Λ2

C2

}
≥ ||B|| ≥ ρ(B)

where ρ(B) is the spectral radius of B, then,

max

{
α1

Λ1

C1

, α2
Λ2

C2

}
1 ≥ B.

From this inequality, (4.44) and the definition (4.35) of Ã(t,Θ), we prove
that Ã(t,Θ∗(t)) ≥ γ1 with

γ = cos(2π2M) min

{
Λ1

C1

,
Λ2

C2

}
−max

{
α1

Λ1

C1

, α2
Λ2

C2

}
> 0.

Now we see that Lemma 4.3 implies the first condition of (4.40) because
〈A(t)x, x〉 ≥ γ||x||2 > 0.
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4.3 The synchronous resonance in the dissi-

pative regime

Recall from (1.22) that the dissipative spin-spin model takes the form of the
system

Θ̈ + diag(δ)D(t)Θ̇ + C−1F (t,Θ) = 0, δ =

(
δ1

δ2

)
, δj ≥ 0, (4.45)

with D(t) = (a/r(t))6. We know from Theorem 4.2 that, for δ = 0, there
exists an odd 2π-periodic solution Θ∗(t), that is strongly linearly stable in the
set of the parameters space satisfying the conditions given in Equations (4.41)
to (4.43).

The main result of this section is Theorem 4.3. There we will see that
the conservative periodic solution Θ∗(t) can be continued in the presence of
friction to an asymptotically stable periodic solution Ψ∗(t, δ). However, the
odd symmetry of the solution is lost because (4.45) is not invariant under
the change (t,Θ) → (−t,−Θ) as in the conservative case. The proof of
Theorem 4.3 is mainly based on Theorem 2 in [91] and on classical results
on continuation of periodic solutions summarized in the next proposition.

Proposition 4.3. Let F be a real analytic function F = F(t, x, ζ), such that
F(t + T, x, ζ) = F(t, x, ζ), with t ∈ R, x ∈ Rn, ζ ∈ Rd. Assume that the
equation ẋ = F(t, x, 0) has a T -periodic solution x = p(t).

1. Suppose that 1 is not a Floquet multiplier of the corresponding varia-
tional equation at x = p(t),

ẏ = ∂xF(t, p(t), 0)y.

Then, for ζ 6= 0, with small enough norm ||ζ||, the equation ẋ =
F(t, x, ζ) has a T -periodic solution x = pc(t, ζ) such that pc(t, 0) = p(t).
Moreover, pc(t, ζ) is an analytic function and it is unique of each ζ.

2. If additionally, p(t) is asymptotically stable, then this is also true for
pc(t, ζ).

For the detailed proof of this proposition, see Theorems 1.1 and 1.2 in
Chapter 14, [31]. Now we can state the main theorem.

Theorem 4.3. Assume that the parameters of the system satisfy the condi-
tions in Theorem 4.2. If |δj| are small enough, then there exists a function
Ψ∗(t, δ), analytic in both entries, satisfying
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i) Ψ∗(t, 0) = Θ∗(t) for each t ∈ R.

ii) Ψ∗(t, δ) is a 2π-periodic solution of (4.45). Moreover, if |Λm1
m2
| are small

enough, then, Ψ∗(t, δ) is asymptotically stable.

Proof. Recall that the conservative periodic solution Θ∗(t) is strongly
linearly stable. Proposition 4.2 guarantees that 1 is not a Floquet multi-
plier of the variational equation at Θ∗(t). Then, we can apply the first item
of Proposition 4.3 to make the analytic continuation of the periodic solu-
tion from the conservative (δj = 0) to the dissipative regime (δj > 0). We
conclude that there exists a unique analytic 2π-periodic solution Ψ∗(t, δ) of
(4.45) such that Ψ∗(t, 0) = Θ∗(t) for small enough δj.

Let us explain more in detail the proof that the continuation is asymp-
totically stable. If Λm1

m2
= 0 for all (m1,m2) ∈ Ξ, then (4.45) takes the form

of two uncoupled dissipative spin-orbit equations

Θ̈j + δj

(
a

r(t)

)6

Θ̇j +
Λj

Cj

(
a

r(t)

)3

sin Θj = 0. (4.46)

Besides, conditions in Equations (4.41) to (4.43) guarantee that, for
Λm1
m2

= 0, the conservative solution Θ∗(t) is strongly linearly stable. We can
see the solution Θ∗(t) split in two components Θ∗j(t), each of them is a solu-
tion of the conservative spin-orbit problem (4.46) with δj = 0. Now we can
apply Theorem 2 in [91] that guarantees that each equation in (4.46) has an
asymptotically stable 2π-periodic solution Θ∗j,δj(t) provided that δj ∈ (0, δ̄j].

Here δ̄j are small numbers quantified in [91]. Moreover, Θ∗j,δj(t) is the unique

continuation of Θ∗j(t) = Θ∗j,0(t).
Let us consider (4.46) as a system of two equations. This system has an

asymptotically stable 2π-periodic solution Ψ∗(t, δ) = (Θ∗1,δ1(t),Θ∗2,δ2(t))T such
that Ψ∗(t, 0) = Θ∗(t). If |Λm1

m2
| are small, we can see (4.45) as a perturbation

of the system (4.46) and apply the second item of Proposition 4.3. In this
way we guarantee that Ψ∗(t, δ) has a 2π-periodic continuation for Λm1

m2
6= 0

that is asymptotically stable if |Λm1
m2
| are small enough.

Note that for asymptotic stability we require not only that |δj| should be
small, but also |Λm1

m2
|. We would like to erase this condition on the coupling

parameters Λm1
m2

. However, from a theoretical point of view, this is certainly
difficult to address in general since we deal with systems of differential equa-
tions. Let us explain this point. The variational equation of (4.45) near
Ψ∗(t, δ) is

η̈ + diag(δ)D(t)η̇ + C−1∂ΘF (t,Ψ∗(t, δ))η = 0, δ =

(
δ1

δ2

)
. (4.47)
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For e 6= 0, (4.47) is a linear 2π-periodic system of two equations of second
order. In [91], asymptotic stability was proved for the spin-orbit problem
taking advantage of the following fact. Any second order periodic equation
ẍ + a1(t)ẋ + a0(t)x = 0, x ∈ R, an(t) = an(t + T ), can be converted into a
Hill’s equation χ̈+α(t)χ = 0, α(t) = a0(t)− 1

4
a1(t)2− 1

2
ȧ1(t), by the change of

variables χ(t) = x(t) exp(1
2

∫ t
0
a1(s) ds). See [77]. We can see the dissipative

problem (a1(t) 6= 0) as a perturbation of the conservative one (a1(t) = 0).
Assume that ẍ+ a0(t)x = 0 is strongly stable, then χ̈+ α(t)χ = 0 is stable.
Since it is a Hill’s equation (also a LPH system), the modulus of the Floquet
multipliers of χ̈ + α(t)χ = 0 is 1. Now we undo the change of variables and
conclude that the modulus of the Floquet multipliers of ẍ+a1(t)ẋ+a0(t)x = 0
is smaller than 1, therefore, it is asymptotically stable. However, it is not
clear how to perform an analogous procedure in (4.47). The main obstacle
is the non-commutativity of matrices due to the asymmetric nature of the
dissipative problem (δ1 6= δ2). Actually, if we follow the same steps, we end
up with a system of equations that is no longer periodic for δ1 6= δ2. The
numbers δj depend on several parameters of the bodies and we do not see
any good physical reason to impose both dissipative parameters to be equal.
In fact, if δ1 6= δ2, in principle the dissipative spin-spin model cannot be
considered conformally symplectic as the spin-orbit problem. See [20]. From
this discussion, we conclude that this it is necessary a deeper theoretical
study, but it is beyond the scope of this paper.

On the other hand, let us see that for e = 0, the solution of (4.47) is
asymptotically stable. The solution given by Theorem 3.2 is Ψ∗(t, δ) ≡ 0.
Taking y = C1/2η, the corresponding variational equation is

ÿ + diag(δ)ẏ + Ay = 0, (4.48)

where A is the symmetric constant matrix given by

A =

(
ξ1 σ
σ ξ2

)
=

(Λ1

C1 0

0 Λ2

C2

)
+

∑
(m1,m2)∈Ξ

(
m2

1

C1
m1m2√
C1C2

m1m2√
C1C2

m2
2

C2

)
Λm1
m2
.

Note that, by conditions (4.42) and (4.43), A is a positive definite matrix.
See Lemma 4.3. The characteristic polynomial of equation (4.48) is

p(ω) = ω4 + (δ1 + δ2)ω3 + (ξ1 + ξ2 + δ1δ2)ω2 + (ξ1δ2 + ξ2δ2)ω + detA.

Equation (4.48) is asymptotically stable if and only if all the roots of
p(ω) have negative real parts. This can be checked with the Routh-Hurwitz
criterion, see [49]. According to it, all the roots of the polynomial have
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negative real parts if and only if the associated Hurwitz determinants of the
polynomial are strictly positive, say,

D1 = δ1 + δ2, D2 = δ2
1δ2 + δ2

2δ1 + ξ1δ1 + ξ2δ2,

D3 = D2
1σ

2 + δ1δ2(D1(ξ1δ2 + ξ2δ2) + (ξ1 − ξ2)2), D4 = D3 detA.

Since A is positive definite, we get asymptotic stability for all δ1 and δ2 such
that both are non-negative and at least one is different from zero.
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4.4 Applications

Recall from the end of Section 4.1 that our model depends on six independent
physical parameters (e; C1, λ1, λ2, d̂1, q̂1), where e is the orbital eccentricity,
Cj the moment of inertia of Ej with respect to the cj-axis, λj = Λj/Cj is the

oblateness of Ej in the plane of motion, and d̂j and q̂j are, respectively, the
oblateness and the flatness of Ej with respect to the size of the orbit.

We have two type of estimates. The first type in (4.36) guarantees unique-
ness of the synchronous resonance in the conservative regime. The second
one in Equations (4.41) to (4.43) guarantees linear stability of the same solu-
tion. Our estimates depend on certain values αj in (4.37). To write them in
terms of the physical parameters, we use the definitions in Equations (4.23)
to (4.26), then

∑
(m1,m2)∈Ξ

m2
j

Cj
Λm1
m2

=λj

(
25

4
d̂j +

25

28
q̂j +

19

4
d̂3−j +

5

4
q̂3−j

)
, (4.49)

∑
(m1,m2)∈Ξ

|m1m2|√
C1C2

Λm1
m2

=
19

4

√
C1

C2

λ1d̂2 =
19

4

√
C2

C1

λ2d̂1, (4.50)

∑
(m1,m2)∈Ξ

|mj|
Cj

Λm1
m2

=λj

(
25

8
d̂j +

25

28
q̂j +

19

4
d̂3−j +

5

4
q̂3−j

)
. (4.51)

Now we are ready to apply our estimates to specific cases.

4.4.1 Real systems

In one hand, the Pluto-Charon binary is the largest known system that is
in double synchronous resonance. The physical parameters of the system
relevant for the spin-spin model are shown in Table 4.1. Pluto is almost
twice the size of Charon, contains the 89% of the mass and the 97% of the
body moment of inertia (Cj) of the system. Besides, the size of the orbit
is quite large (a = 27.2) compared to the sizes of the bodies. This results
in very small values of d̂j of order 10−7, which means this is a certainly
weak spin-spin coupling. The orbit has a very small eccentricity e = 0.0002.
Recall that the double synchronous resonance of the circular case (e = 0) is
the trivial solution Θ(t) ≡ 0, both for the conservative case (1.23) and the
dissipative case (1.22). The asymptotic stability of the solution for any value
of the dissipative parameters is easily guaranteed, as it was shown at the end
of Section 3.3 using equation (4.48). For the real eccentricity, the solution
Θ∗(t) of (1.23) oscillates very close to zero and our estimates guarantee the
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System Mj aj Cj λj d̂j q̂j a e

Pluto 0.89 1.65 0.97 3.3 · 10−5 1.5 · 10−7 1.2 · 10−6

27.2 2.0 · 10−4

Charon 0.11 0.84 0.03 2.4 · 10−3 3.5 · 10−7 8.2 · 10−7

Patroclus 0.56 1.7 0.60 0.11 2.6 · 10−4 1.2 · 10−3

18.2± 0.5 0.02± 0.02
Menoetius 0.44 1.6 0.40 0.14 2.2 · 10−4 9.9 · 10−4

Table 4.1: Real physical parameters for two binary systems. For Pluto and
Charon, we take the largest values of λj, d̂j and q̂j obtained from data in
[61]. The parameters of Patroclus and Menoetius are obtained from data in
[36] and the orbital parameters from [79].

uniqueness and linear stability of solution. Furthermore, Theorem 4.3 shows
the existence of an asymptotically stable solution Ψ∗(t, δ) of the dissipative
model provided that δj, d̂j and q̂j are small enough. Unfortunately, this last
result is not quantified in this paper for the real parameters.

On the other hand, the Trojan binary asteroid 617 Patroclus is a sys-
tem whose components are of similar size, mass and moment of inertia. See
the physical parameters of its components, Patroclus and Menoetius, in Ta-
ble 4.1. Each body has a diameter of around one hundred kilometres, almost
ten times smaller than Charon. Patroclus and Menoetius have a more oblate
ellipsoidal shape than Pluto and Charon and the size of the orbit in this case
(a = 18.2 ± 0.5) is smaller. In consequence, the corresponding dynamical
parameters λj, d̂j and q̂j are several orders of magnitude larger. The orbital
eccentricity is not measured with enough precision, e = 0.02±0.02. With our
estimates, we are able to guarantee the uniqueness of the solution Θ∗(t) of
(1.23) for eccentricities up to e = 0.04. However, we fail to guarantee linear
stability even for e = 0. The main reason is that the stability test given by
the conditions (4.40) is not fine enough for such large values of λj. In the
following subsection we will explain what is the range of parameters that is
covered by our study.
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4.4.2 Stability diagrams in the space of parameters

Note that all the terms appearing in Equations (4.49) to (4.51) are positive.
Since q̂ ≥ d̂, and, in order to reduce the parameters in the upper bounds for
the expressions in Equations (4.49) to (4.51), we can take d̂j = q̂j. In this
way, we reduce the independent parameters to five (e;λ1, λ2, C1, q̂1). Note
now that, to take q̂1 = 0 is equivalent to break the coupling of the system,
resulting in two independent spin-orbit problems.

We will consider two special cases with three free parameters. In one
hand, the case of identical bodies, that we compare with the asteroid 617
Patroclus. Here the parameters are e, λj = λ and q̂j = q̂. On the other hand,
the case when E1 is twice the size of E2, that we compare with the Pluto-
Charon system. Here we consider the same density and the free parameters
are e, λ2 and q̂1, whereas the dependent parameters are λ1 = 2−3λ2 and
q̂2 = 2−5q̂1.

Figure 4.2 shows regions in the space of parameters for which there is
uniqueness and linear stability of the double synchronous resonance according
to our theoretical estimates. We see that we cover the Patroclus-Menoetius
system (top panels) only for the uniqueness of the solution but not for the
linear stability. In contrast, the Pluto-Charon system (bottom panels) is
covered for linear stability as well. We can compare the diagrams of q̂ = 0 and
q̂1 = 0 with the theoretical estimates obtained in [91], shown in Figure 4.3.
We see that, although the uniqueness region is similar, the stability region
(in yellow) is considerably larger in Figure 4.3 than those in Figure 4.2.
This shows that the mathematical techniques used in [91] are much finer
than in this paper. In [91] we used generalized Lyapunov criteria using Lp-
norms, with p ∈ [1,∞], see [128], and upper and lower solutions to bound
the amplitude of the solution. Instead, in this paper we use the stability test
given by (4.40), that is of type L∞, and a rougher bound for the amplitude
of the solution in Lemma 4.2. Since the model is quite new, here we initiate
the analysis with a simpler approach. Besides, the mathematical tools are
not as well developed for systems of equations as for standard second order
scalar equations.

We see in Figure 4.2 that an increase in the value of q̂ results in a global
reduction of the regions that we estimated theoretically, both for stability
and uniqueness regions. This behavior can be compared with the numerical
plots in Figure 4.4. We focus only on the case of equal bodies. Here we
see how the instability region changes when we increase q̂. There are some
interesting phenomena.

1. For q̂ = 0 there is only one bifurcation point for the unstable solution
in the λ-axis at (e, λ) = (0, 0.25). However, for q̂ > 0, it becomes two
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Figure 4.2: Stability diagrams in the (e, λ)-plane of the synchronous reso-
nance of the spin-spin model. Top: both bodies are equal. Bottom: one
body is double the size of the other. The double synchronous resonance is
unique under the dashed lines (right) and linearly stable under the black
lines (left) for the indicated value of q̂. In the left we see zoomed views of
the stable regions. The more yellow is the region indicates that stability is
guaranteed for larger values of q̂. The gray regions in the right are unstable
for the uncoupled system (spin-orbit), i.e., with q̂ = 0.



156 CHAPTER 4. THE SPIN-SPIN MODEL

Figure 4.3: Stability diagram in the (e, λ)-plane of the spin-orbit in [91],
Figure 3.

Figure 4.4: Stability diagrams in the (e, λ)-plane in the case of equal bodies.
The six plots in the left show the unstable region in gray for different values
of q̂. The image in the right shows the six diagrams superimposed. Darker
tones of gray indicate more overlapping between unstable regions.



4.4. APPLICATIONS 157

bifurcation points at (0, λ(1)) and (0, λ(2)), with 0 < λ(1) < λ(2) < 0.25.
This opens a small window of stability at the points (e, λ) with e close
to 0 and λ ∈ (λ(1), λ(2)).

2. For q̂ = 0, apart from the instability region bifurcating from the λ-axis,
there is another one bifurcating from the e-axis at (e, λ) ≈ (0.682, 0).
The existence of such bifurcation was studied in [91]. However, for
q̂ > 0, it looks that the last bifurcation point moves to the right,
at the same time that the two instability regions merge into a single
one. This shows that turning on the coupling has a stabilizing effect of
the synchronous resonance for large e and small λ. This holds up to a
critical q̂ ∈ (0.05, 0.1) for which another unstable region bifurcates from
the e-axis. This region merges with the large one at some q̂ ∈ (0.1, 0.2).
This leaves an island of stability for large e and small λ.

3. In the right panel of Figure 4.4 we see that there are some regions (the
darkest ones), that remain unstable, not very affected by changes in
q̂. Instead, the lighter regions show more susceptibility to change their
stability when q̂ changes.

In Figure 4.4 we have taken large values of q̂, compared to the real values
in Table 4.1. From its definition in (4.20) and (4.17) we see that q̂ ≤ 1/a2 for
equal bodies (M = 0.5, C = 0.5). In order to be consistent with the Keplerian
orbit approximation, a should be quite larger than 1, that gives the scale of
the objects. For example, a of order 10 would give an upper estimate of q̂
of order 10−2. In consequence, for more realistic parameters, we should not
consider the appearance of the additional instability region bifurcating from
the e-axis from large q̂.
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tions, Birkhäuser, Boston, MA, 2002, https://doi.org/10.1007/

978-0-8176-8134-0.

[68] S. Krantz and H. Parks, The Implicit Function Theorem: History,
Theory, and Applications, Birkhäuser, New York, NY, 2003, https:
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