Evolutionary Undersampling for Extremely Imbalanced Big Data
Classification under Apache Spark

I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince, F. Herrera

Abstract— The classification of datasets with a skewed class
distribution is an important problem in data mining. Evolu-
tionary undersampling of the majority class has proved to be a
successful approach to tackle this issue. Such a challenging
task may become even more difficult when the number of
the majority class examples is very big. In this scenario, the
use of the evolutionary model becomes unpractical due to
the memory and time constrictions. The divide-and-conquer
approaches based on MapReduce paradigm have already been
proposed to handle these types of problems by dividing data
into multiple subsets. However, in extremely imbalanced cases,
these models may suffer from a lack of density from the
minority class in the subsets considered. Aiming at addressing
this problem, in this contribution we provide a new big data
scheme based on the new emerging technology Apache Spark to
tackle highly imbalanced datasets. We take advantage of its in-
memory operations to diminish the effect of the small sample
size. The key point of this proposal lies on the independent
management of majority and minority class examples, allowing
us to keep a higher number of minority class examples in each
subset. In our experiments we analyze the proposed model with
several data sets with up to 17 million instances. The results
show the goodness of this evolutionary undersampling model
for extremely imbalanced big data classification.

I. INTRODUCTION

In the recent years, the amount of information that can
be automatically gathered is inexorably growing in multiple
fields such as bioinformatics, social media or physics. Thus,
new class of data mining techniques that can take advantage
of this voluminous data to extract valuable knowledge are
required. This research topic is referred to under the term: big
data [1]. Big data learning poses a significant challenge to the
research community because standard data mining models
cannot deal with the volume, diversity and complexity that
these data bring up [2]. However, the newly arisen cloud
platforms and parallelization technologies provide one with
a perfect environment to tackle this issue.

The MapReduce framework [3], and its open-source im-
plementation in Hadoop [4], were the first alternatives to
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handle data-intensive applications, which rely on a dis-
tributed file system. The development of Hadoop-based data
mining techniques has been widely spread [5], [6], because
of its fault-tolerant mechanism (recommendable for time-
consuming tasks) and its ease of use [7]. Despite its pop-
ularity, researchers have encountered multiple limitations in
Hadoop MapReduce to develop scalable machine learning
tools [8]. Hadoop MapReduce is inefficient for applications
that share data across multiple phases of the algorithms
behind them, including iterative algorithms or interactive
queries. Several platforms have recently emerged to over-
come the issues presented by Hadoop MapReduce [9], [10].
Apache Spark [11] highlights as one of the most flexible and
powerful engines to perform faster distributed computing in
big data by using in-memory primitives. This platform allows
us to load data into memory and query it repeatedly, making
it very suitable for algorithms that use data iteratively.

The class imbalance problem is challenging when it
appears in data mining tasks such as classification [12].
Focusing on two-class problems, the issue is that the positive
instances are usually outnumbered by the negative ones, even
though the positive one is usually the class of interest [13].
This problem is presented in a large number of real-world
problems [12]. Furthermore, it comes along with a series of
difficulties such as small sample size, overlapping or small
disjuncts [14]. In this scenario, one focuses on correctly
identifying the positive examples, but affecting the least to
the negative class identification. Various solutions have been
developed to address this problem, which can be divided into
three groups: data sampling, algorithmic modifications and
cost-sensitive solutions. These approaches have been success-
fully combined with ensemble learning algorithms [15].

Evolutionary undersampling (EUS) [16] falls in the cate-
gory of data sampling strategies, where the aim is to balance
the original dataset. In this case, the balancing is done by
undersampling, that is, reducing the number of negative class
examples. Differently from random undersampling where the
focus is put on balancing the dataset, EUS has a two-fold
objective. 1) To create the balanced dataset; 2) To increase
the overall performance over both classes of the problem. In
order to do so, a supervised balancing procedure is carried
out using a genetic algorithm. Once the dataset is balanced,
any standard classifier can be used to build a model that
should be able to equally distinguish both classes of the
problem. This technique is very powerful when dealing with
standard imbalanced problems, however, when shifting to a
large-scale context it becomes unfeasible since the search
space increases exponentially with the number of instances



of the problem.

In [17], we proposed a MapReduce-based EUS scheme to
tackle imbalance big data problems. This model splits the
dataset into multiple chunks that are processed in different
nodes (mappers) in such a way that EUS can be applied
concurrently. Even though this model can scale to very large
datasets, it may suffer from the small sample size problem.
Within this divide-and-conquer procedure, a high number
of maps implies having a considerably smaller amount of
minority class examples in each one, what amplifies the lack
of density problem.

In this work, we propose a big data scheme for ex-
tremely imbalance problems implemented under Apache
Spark, which aims at solving the lack of density problem in
our previous model. We aim to exploit the flexibility provided
by Spark, using other in-memory operations that alleviate
the consumption costs of existing MapReduce alternatives.
Multiple parallel operations compose the proposed frame-
work. First, the whole training dataset is split into chunks,
and the positive examples are extracted from it. Then, we
broadcast the positive set, so that, all the nodes have a single
in-memory copy of the positive samples. For each chunk
of the negative data, we aim to obtain a balanced subset
of data using a sample of the positive set. Later, EUS is
applied to reduce the size of both classes and maximize
the classification performance, obtaining a reduced set that
is used to learn a model. Finally, the different models are
combined to predict the classes of the test set. The source
code of this model as well as the ones used in the experiments
of this work are available at GitHub'.

The paper is structured as follows. Section II provides
background information about imbalanced -classification,
EUS and MapReduce. Section III describes the proposal.
Section IV analyzes the empirical results. Finally, Section
V summarizes the conclusions.

II. BACKGROUND

This section briefly describes the topics used in this paper.
First, the MapReduce paradigm and the Spark framework
are introduced in Section II-A. Then, the state-of-the-art on
imbalanced big data classification is presented (Section II-B),
and the EUS algorithm is recalled (Section II-C).

A. MapReduce and Hadoop/Spark Frameworks

The MapReduce programming paradigm [3] is a scalable
data processing tool designed by Google in 2003. It was
designed to be part of the most powerful search-engine on
the Internet, but it rapidly became one of the most effective
techniques for general-purpose data intensive applications.

MapReduce is based on two user-defined operations: Map
and Reduce. The Map function reads the raw data as key-
value pairs <key,value>, and transforms them into a set
of intermediate <key’,value’> pairs. Both key and value
types are defined by the user. Then, MapReduce gener-
ates multiple lists with all the values with the same key
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<key’,list(value’)> (shuffle phase). Finally, the Reduce func-
tion takes the grouped output from the maps and aggregates
it into a smaller set of pairs <key”,value”>. Figure 1 shows
a flowchart of MapReduce.
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Fig. 1: Data flow overview of MapReduce

Apache Hadoop [18] is the most popular open-source
implementation of MapReduce. It is widely used because of
its performance, open source nature, installation facilities and
its distributed file system (Hadoop Distributed File System,
HDFS). Despite its popularity, Hadoop and MapReduce
cannot deal with online or iterative computing, producing
significant computational costs to reuse the data.

Apache Spark is a novel solution large-scale data process-
ing to solve the drawbacks of Hadoop. Spark is part of the
Hadoop Ecosystem and it uses the HDFS. This framework
proposes a set of in-memory primitives, beyond the stan-
dard MapReduce, aiming at processing data more rapidly
on distributed environments. Spark is based on Resilient
Distributed Datasets (RDDs), a special type of data structure
used to parallelize the computations in a transparent way.
These parallel structures let us persist and reuse results
efficiently, since they are cached in memory. Moreover,
they also let us manage the partitioning to optimize data
placement, and manipulate data using transparent primitives.

B. Imbalanced classification in the Big Data context

A two-class classification dataset is imbalanced when
it contains more instances from one class than from the
other one. How to measure the performance of classification
algorithms is a key issue in this framework, where the
accuracy rate (percentage of correctly classified examples) is
no longer valid. The most commonly considered alternatives
in this scenario are the Area Under the ROC Curve (AUC)
and the g-mean. The AUC (Area Under the ROC-Curve) [19]
provides a scalar measurement of how well a classifier can
trade off its true positive (TP,..:.) and false positive rates
(FPqte). A popular approximation [12] of this measure is
given by
1 + TPTate - FPrm‘,e
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Otherwise, the g-mean is obtained by computing the
geometric mean between the true positive rates and true



negative rates (TN,.,¢.) obtained by the classifier:

g-mean — TPTate . TNrate (2)

The interest of this measure resides in the fact that equal
weights are assigned to the classification accuracy over both
classes. Both measures are interchangeably and extensively
used in numerous experimental studies with imbalanced
datasets [12], [16].

Big data solutions for classification problems can be
affected by the presence of class imbalance. They can even
worsen the problem if they are not properly designed. For
example, an imbalanced dataset distributed across different
nodes will maintain the imbalance ratio in each one, but
it will have an even lower sample size due to the original
division procedure. As a result, data subsets will be more
affected by the small sample size problem than the original
one, which is known to hinder classifier learning [12].
Therefore, meaningless classifiers can be learned in each
node if they are treated independently without taking this
issue into account first.

In [20], a set of data level algorithms to address im-
balanced big data classification where tested (random un-
der/oversampling and SMOTE). After applying these pre-
processing mechanisms the Random Forest classifier [23]
was applied. In other respects, the authors of [24] developed
a fuzzy rule based classification system to deal with the
class imbalance problem in a big data scenario adding a
cost-sensitive model to the MapReduce adaptation of the
algorithm. In [17], a preliminary approach to make EUS
work in a big data setting was developed following a two-
level parallelization model. As we have already mentioned,
the greatest problem of this model was the small-sample
size of the minority class, whose management with Hadoop
framework was not fully automatic.

C. Evolutionary Undersampling

EUS [16] was developed as an extension of evolutionary
prototype selection algorithms with special attention at the
class imbalance problem [26]. In the case of EUS, the
original objective of reducing the training set for the k-
Nearest Neighbors (ENN) slightly changes, giving more
focus to the balancing of the dataset and to the correct iden-
tification of both classes of the problem in the subsequently
used classifier. In order to obtain this new data subset, the
instances of original dataset are encoded in a chromosome,
which is evolved from randomly undersampled datasets until
the best solution found cannot be further improved. The
improvement is measured in terms of the fitness function,
which in described afterwards.

In EUS, a binary chromosome is used to encode each
possible solution. In the chromosome each bit represents the
presence (1) or absence (0) of an instance in the training set.
The search space is reduced by only considering the majority
class instances for removal, including always all the minority
class instances in the final dataset.

In order to rank the quality of the chromosomes a fitness
function taking into account the balancing of the dataset and

the expected performance of the selected instances is used.
The performance is estimated by the leave-one-out technique
using the 1NN classifier and is measured by the g-mean
(defined in Eq. (2)). The complete fitness function is as
follows:

'IL+
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g-mean — P

where n™ is the number of positive instances, N~ is the
number of selected negative instances and P is a penalization
factor that focuses on the balance between both classes. P is
set to 0.2 as recommended by the authors, since it provides
a good trade-off between both objectives.

As a search algorithm, the CHC evolutionary algorithm
[27] is chosen due to its excellent balance between explo-
ration and exploitation. CHC is an elitist genetic algorithm
making use of the heterogeneous uniform cross-over (HUX)
for the combination of two chromosomes. It also considers
an incest prevention mechanism and instead of applying
mutation, it carries out a reinitialization of the population
when the evolution does not progress.

III. EUS-EXTIMBBD: EVOLUTIONARY UNDERSAMPLING
FOR EXTREMELY IMBALANCED BIG DATA

In this section we describe the proposed scheme for EUS
of extremely imbalanced big data. First, we motivate our
proposal in Section III-A, stating the main drawbacks of
our previously proposed scheme. Then, Section III give the
details of the proposed model.

A. Motivation

The use of EUS in big data problems is interesting because
it reduces the data size, in contradistinction to oversampling
methods that generate even more data [20]. As a result,
building classification models becomes a faster process.
This data size reduction can also be achieved by random
undersampling (RUS). However, RUS may discard important
data of the majority class due to its random nature, while
EUS guides the undersampling process to balance the dataset
and preserve (or even improve) the accuracy in both classes.

In [17], we proposed a two-level parallelization scheme
based on MapReduce and a windowing scheme for EUS. In
the first level, a MapReduce process allowed us to divide
the computational effort over different machines, creating
different chunks of data. These subsets approximately contain
the same number of instances and maintain the original
imbalance ratio of the problem (if the original training set
is properly shuffled). Thus, we run EUS for each subset,
obtaining a balanced set that was later used to build a
decision tree. The windowing scheme was applied on top of
the MapReduce parallelization to reduce the computational
time required by the fitness function of EUS. In order to
do so, in each iteration of the evolutionary process, only
one stratum of data was used to evaluate the population,
which was changed in each iteration following a round-robin
policy. Finally, after the building phase, a new MapReduce



process was applied to classify the test set with the previously
learned models. Figure 2 presents a flowchart of this model.

In what follows, we denote this scheme as Evolutionary
Undersampling for Imbalanced Big Data (EUS-ImbBD).
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Fig. 2: Data flow of EUS-ImbBD.

This model suffers of two main drawbacks that motivates
this work:

o Although EUS-ImbBD can handle very large datasets
with the appropriate number of nodes, it may experience
troubles to tackle extremely imbalanced problems in
which the imbalance ratio is very high. In these cases,
the amount of positive examples in the different chunks
of the data created by the MapReduce process may not
be sufficient (or even null) to guide an EUS process.
This problem is known as the small sample size or lack
of density problem. This is the main point motivating
our works, since EUS-ImbBD becomes not totally scal-
able in this scenario.

o EUS-ImbBD requires to concatenate two MapReduce
phases, to build a model and to classify a test set,
respectively. Hadoop is inefficient with these types of
models, whereas Spark allows us to avoid the startup
costs. In Section IV the differences between Hadoop and
Spark implementations of this scheme can be observed.

The aim of this paper is tackle both issues by designing an
imbalance big data model, which relies on the flexibility an
in-memory operations of Apache Spark.

B. EUS-S-ExtImbBD: A Spark-based Design of Evolutionary
Undersampling for Extremely Imbalanced Big Data

This section introduces the proposed scheme in terms of
multiple Spark distributed operations. Algorithm 1 shows the
pseudo-code of the whole method with precise details of the
functions utilized from Spark and Figure 3 summarizes the
data flow of the algorithm. In the following, we describe the
most significant instructions, enumerated from 1 to 12.

Let trainFile be the training set stored in the HDFS as
a single file. This file is formed of h HDFS blocks that

Algorithm 1 EUS-S-ExtImbBD

Require: trainFile; testFile; #Maps;
{Building Phase}
. trainRDD < textFile(trainFile, #Maps).cache()
: posTrainRDD = trainRDD filter(line — line.contains(”positive”)).collect()
: negTrainRDD = trainRDD filter(line — line.contains(’negative”))
. posTrainBroadcast = broadcast(posTrainRDD)
: models <— negTrainRDD.mapPartitions(negTrainPartition —
createModel(negTrainPartition, posTrainBroadcast.value)).collect()
{Classification Phase}
: testRDD < textFile(testFile)
: modelsBroadcast = broadcast(models)
. classification = testRDD.mapPartitions( testPartition —
classify(testPartition, modelsBroadcast) )
9: confMatrix < calculateConfusionMatrix(classification.toArray)
10: (AUC, GM) < computePerformance(confMatrix)

DN W =
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can be accessed from any computer. The building phase
starts reading the whole trainFile set from HDFS as an
RDD, splitting the dataset into an user-defined number of
#Map disjoint subsets (Instruction 1). This operation spreads
the data across the computing nodes, caching the different
subsets (Map1,Maps,...,Map,,) into memory.

Next, we split this dataset into two subsets: positive set
posTrainRDD and negative set negTrainRDD, which contain
only positive and negative instances, respectively. The filter
transformation provided by Spark is used for this purpose
(Instructions 2 and 3).

Assuming that the number of positive instances fit in-
memory, the whole posTrainRDD is collected and broadcast
to all the computing nodes (Instruction 4). The broadcast
function of Spark allows us to keep a read-only variable
cached on the main memory of each machine rather than
copying it with each tasks. Note that this can be a limitation
of the current model, since if the number of positive instances
is too high it may not fit in memory. However, this set of
instances is stored only once in each node independently of
the number of tasks executed in it. In the current real-world
problems we are facing, with an extremely high imbalance
ratios, this situation is difficult to be found. Anyway, in
the future our aim is to further investigate problems with
this scenario even though they may not suffer from the
small-sample size problem due to the fact that more positive
instances are available.

After that, the main map phase starts over the #Map
partitions (negTrainPartition) of negative set negTrainRDD
(Instruction 5). The mapPartitions(func) transformation runs
the function defined in Algorithm 2 on each block of the
RDD concurrently. This function builds a model from the
available data, i.e., a subset of negTrainPartition, and the
whole posTrainBroadcast set. Depending on the dataset at
hand, we may encounter two different situations:

o The number of positive examples is smaller or equal
than the number of negative ones in the negTrainParti-
tion. In this case, all the positive instances are added
to the current subset trainingSet, obtaining a dataset
with a lower imbalanced ratio than the original one (or
almost balanced). In our experiments, when the resulting
imbalanced ratio is greater or equal than 1.5, EUS is
exclusively applied over the majority class. However,



~
\

Collect

Broadcast
Positive instances

Al the nodes get ac
0 all positive instances
-

Evolutionary

Training undersampling
+

data | |

U

Filter Instances by class

(in each mapper)

Mapper M

Build ecision tree model «
1

"""""""" Predict
Use the model to
predict the class

Mapper 1

Testing
data

Predicted class
Predicted class
Predicted class
Predicted class 1,

Model
Aggregation

Mapper 2

Predicted class
Predicted class
Predicted class |~
Predicted class

Predicted class
Predicted class
Predicted class
Predicted class.
Predicted class.
Predicted class

Wi Predicted class
Predicted class

Broadcast model
All the nodes get access
to the ensemble

Predicted class
Predicted class
Predicted class
Predicted class

Predicted class |/
Predicted class |

Predicted class
Predicted class

Driver node

Fig. 3: Data flow of EUS-ExtImbBD.

if the problem is almost balanced (/R <= 1.5 as
suggested in the literature), instances from both classes
are considered in the selection procedure, since the
balancing looses importance in favor of an appropriate
interaction between the instances of both classes (always
maintaining a balance between their presence).

« When we the size of the positive class is larger than that
of the negative one, we make use of a random subset
of positive instances posTrainSubset from the whole
positive set posTrain. Our aim is to balance the class
distribution before applying EUS to reduce the size of
both classes while focusing on maintaining a balance
and obtaining the best performance as possible.

Algorithm 2 CreateModel function

Then, the classification step estimates the class associated
to each test example. Given that in big data problems the
test set can also be very large, we assume this set is also
stored in the HDFS as a single file (testFile), and read it as
an RDD (Instruction 6). In order to classify the instances in
each block, the models are broadcast to the main memory
of all the computing nodes of the cluster (Instruction 7). A
new map operation will tackle each subset of the test set.
Algorithm 3 summarizes the operations that are carried out.
Basically, the predictions in each block are estimated by the
majority vote of the all the decision trees built in the previous
phase (Instruction 8). Finally, the classification performed is
collected in the driver and the performance measures are
computed (Instructions 9 and 10).

Require: negTrainPartition, posTrain { posTrain comes from the broadcast variable }
1: if posTrain.size() < negTrainPartition.size() then

2: trainingSet = posTrain U negTrainPartition

3: else

4. posTrainSubset <— takeRandomSubset(posTrain, negTrainPartition.size() )
5: trainingSet <— posTrainSubset U negTrainPartition

6: end if

7: reducedTrainSet <—EUS_windowing(trainingSet)

8: model < buildModel(reducedTrainSet)

9: return model

In both cases, EUS is applied with the windowing scheme.
We refer the reader to [17] for more details on this respect.
At the end of the EUS stage, a reduced and balanced set of
instances (reducedTrainSet) is obtained. Then, the learning
phase is carried out, which consists of building a decision
tree. More specifically, we consider the well-known C4.5
algorithm [29] for its great behavior in classifier ensembles.

As a result of the map phase, we obtain #Map decision
trees that are returned to the driver and collected in Instruc-
tion 5 of Algorithm 1.

Algorithm 3 Classify

Require: testPartition, models
1: testPartitionPredictions <— testPartition.foreach{
instance — majority(models.foreach{ model — model.classify(instance) })}
{majority takes and array of predicted classes and returns the most repeated one}
2: return testPartitionPredictions

As a final remark, note that the EUS algorithm could be
easily replaced by other data sampling approaches, without
changing the general framework we propose in here.

IV. EXPERIMENTAL STUDY
This section establishes the experimental setup (Section
IV-A) and discusses the results obtained (Section IV-B.2).
A. Experimental Framework

In order to assess the proposed method for imbalanced
big data, we consider two big data datasets with very high
IR. The first dataset comes from the Evolutionary Big Data



Competition ECBDL’14 [30], [6]. For this study, we consider
two subsets of 25% and 50% of the instances, respectively.
The second dataset corresponds to the KDD Cup 1999 data
set, available in the UCI machine learning repository [31].
Since it contains multiple classes, we have formed several
case studies from them, obtaining as a result two-class im-
balanced problems. Specifically, we have taken the majority
class (i.e., DOS) in comparison with the rest of the minority
classes (i.e., PRB, R2L and U2R) in order to investigate
the influence of different IRs. The data characteristics are
summarized in Table I.

TABLE I: Data sets considered for the experimental study.

Data set #features  #negative  #positive IR
ECBDL’ 14 (50%) 631 17101086 344333 49
ECBDL’ 14 (25%) 631 8550324 172386 49

Kddcup DOS vs. PRB 41 3883370 41102 94.48
Kddcup DOS vs. R2L 41 3883370 1126 3448.82
Kddcup DOS vs. U2R 41 3883370 52 74680.25

In this study, independently of the technology (Hadoop
or Spark) used, we distinguish between two different ap-
proaches to tackle imbalanced big data classification:

o EUS-ImbBD: EUS for Imbalanced Big Data, i.e., the
model presented in [17], which consists of dividing the
training set in a single MapReduce operation.

o EUS-ExtImbBD: EUS of Extremely Imbalanced Big
Data problems, i.e., the scheme presented in this work,
which considers the positive and negative training ex-
amples separately.

Originally, EUS-ImbBD was implemented under Hadoop
(EUS-H-ImbBD), whereas EUS-ExtImbBD has been de-
signed for Spark (EUS-S-ExtImbBD). However, in order to
be able to perform a comparison between Hadoop and Spark
technologies, we have implemented these models in both
technologies, naming them as EUS-H-ExtImbBD and EUS-
S-ImbBD, respectively. The comparison between Hadoop
and Spark implementations will be done using KDD Cup
dataset, as this was the one considered in the original work.
Note that the application of EUS-ExtImbBD within Hadoop,
one must manually pre-partition the training dataset into
positive and negative sets, and the MapReduce stage is
applied simply over the negative set, as it was done in [17],
whereas the positive set has to be read in all the tasks (even
if they are in the same node).

In addition to these models, we have implemented RUS
in Spark under the original ImbBD scheme as a comparison
algorithm, calling it RUS-S-ImbBD. Since RUS objective is
to randomly balance the dataset eliminating negative class
examples, this can be done in each mapper regardless of the
number of instances from both classes in it, and hence it
is not necessary to apply it under the scheme proposed for
extremely imbalance data.

It is important to note that for the last two data sets
presented in Table I, we have so few positive examples

that the EUS-ImbBD approach cannot be applied, and EUS-
ExtImbBD is required.

TABLE II: Parameter settings for the used methods.

Method Parameter values

EUS-ImbBD[17]  MapReduce Building: Number Of Maps = 128/256/512; Number Of Reducers:1

Windowing in Majority Class = Imbalanced Ratio

MapReduce Classification: Number Of Maps = Same as Building phase; Number Of Reducers:0

EUS-ExtImbBD Building phase: Number Of Maps = 128/256/512/1024/2048;
Windowing in majority class= IR; Windowing in both classes = 5

Classification phase: Number Of Maps = Same as Building phase;

RUS-S-ImbBD Building phase: Number Of Maps = 1024/2048;

Classification phase: Number Of Maps = Same as Building phase;

In our experiments we consider a 5-fold stratified cross-
validation model, meaning that we construct 5 random par-
titions of each dataset maintaining the prior probabilities of
each class. Each fold, corresponding to 20% of the data is
used once as test set, evaluated on a model trained on the
combination of the 4 remaining folds. The reported results
are taken as averages of the five partitions. To evaluate our
model, we consider the AUC and g-mean measures recalled
in Section II-B. Moreover, we evaluate the time requirements
of the methods in two ways:

o Building time: we will quantify the total time in seconds
spent by our method to generate the resulting learned
model.

o Classification time: this refers to the time needed in
seconds to classify all the instances of the test set with
the given learned model.

We will also investigate how these measures are affected
by modifying the number of maps. The experiments have
been carried out on twelve nodes in a cluster: a master node
and eleven computing nodes. Each one of these computing
nodes has 2 Intel Xeon CPU E5-2620 processors, 6 cores
per processor (12 threads), 2.0 GHz and 64GB of RAM. The
network is Gigabit ethernet (1Gbps). In terms of software,
we have used the Cloudera’s open-source Apache Hadoop
distribution (Hadoop 2.6.0-cdh5.4.2) and Spark 1.5.1. A
maximum of 216 concurrent tasks are available.

B. Results and discussion

This section presents and analyzes the results obtained
in the experimental study. We divide this section into two
parts: Subsection IV-B.1 briefly compares Hadoop and Spark
implementations, and Subsection IV-B.2 deeply analyzes the
performance of the proposed approach in a larger problem.

1) Comparing Hadoop vs. Spark: The goal of this sub-
section is to compare the Hadoop and Spark technologies in
terms of efficiency, when they implement the same model. To
do this, we focus on the three different variants of the Kddcup
dataset. The EUS-ImbBD approach is used for DOS vs. PRB
dataset, whereas EUS-ExtImbBD is applied in the other two
Kddcup versions as explained before. Table III shows the
runtime required in both building and classification phases,
depending on the technology used, as well as the percentage
of improvement obtained with Spark over Hadoop.

According to this table, we can state that:



TABLE III: Running times obtained by the Hadoop and Spark implementations of EUS-ImbBD and EUS-ExtImbBD.

Hadoop-based Spark-based Spark improvement

Dataset No. of maps | Build time (s) Classif. time (s) | Build time(s) Classif. time (s) | Build time Classif. time
Kddcup DOS vs. PRB 128 422.4786 34.264 297.5048 0.2942 29.58% 99.14%
256 240.4662 36.7934 143.3428 0.3566 40.39% 99.03%

512 156.4354 48.424 87.0195 0.2739 44.37% 99.43%

Kddcup DOS vs. R2L 128 4447252 31.7255 320.8192 0.0876 27.86% 99.72%
256 266.2424 36.1147 187.4562 0.1024 29.59% 99.72%

512 178.8536 42.0057 148.319 0.1371 17.07% 99.67%

Kddcup DOS vs. U2R 128 459.6002 31.8436 340.2297 0.0986 25.97% 99.69%
256 248.1038 35.5862 193.0784 0.1081 22.18% 99.70%

512 152.3752 46.6194 101.683 0.1275 33.27% 99.73%

« Even though the same EUS process has been applied
in both technologies, the Spark-based implementation
has always reported a faster runtime in both building
and classification phases. It is remarkable that applying
EUS-ExtImbBD, Spark is still much faster, although
the Hadoop version already started from two manually
partitioned datasets (whose added cost is not included
in the runtime). Moreover, it is specially significant the
reduction in terms of classification, due to the startup
costs of Hadoop MapReduce.

o From the flexibility point of view, Spark has allowed
us to apply the whole procedure in a single program,
while in Hadoop, multiple MapReduce programs needs
to be chained. Hence, Spark is more versatile.

In conclusion the use of Spark has provided us a greater
flexibility and efficiency. In the next experiments, we will
only consider Spark to tackle larger datasets.

2) Analysis of the performance: To analyze the perfor-
mance of the proposed EUS-S-ExtImbBD scheme, we focus
on the ECBLD’ 14 dataset. Tables IV and V show the results
obtained by our proposal in comparison to the previous al-
ternative (EUS-S-ImbBD) and random undersampling (RUS-
S-ImbBD) in ECBLD’14 (25%) and ECBLD’14 (50%),
respectively. All of these techniques are implemented under
Apache Spark for a faster computation. The averaged AUC,
g-mean, building and classification runtime are presented,
depending on the number of mappers used (#Maps).

TABLE IV: Results obtained in ECBLD’14 (25%)

Method #Maps | Build time(s) Classif. time(s) | AUC ~ GM
EUS-S-ImbBD 4096 243.8191 0.3376 | 0.5600 0.3714
2048 420.2240 0.6048 | 0.4885 0.3886
1024 790.6699 0.5408 | 0.6648 0.6582
EUS-S-ExtImbBD | 4096 1156.8111 2.0065 | 0.6644 0.6644
2048 1775.9417 3.0516 | 0.6655 0.6650
1024 3268.2816 4.9365 | 0.6733 0.6717
RUS-S-ImbBD 4096 276.0484 0.3616 | 0.6319 0.6027
2048 233.7217 0.4657 | 0.4595 0.4426
1024 224.8443 0.5298 | 0.6564 0.6502

From these tables we can highlight several factors:
o When the number of maps is increased, we can observe

TABLE V: Results obtained in ECBLD’ 14 (50%)

Method #Maps | Build time(s) Classif. time(s) | AUC GM
EUS-S-ImbBD 8192 497.0958 0.4999 | 0.5556 0.3572
4096 775.2016 0.5531]0.4821 0.4276
2048 1476.3512 0.7878 | 0.6674 0.6645
EUS-S-ExtImbBD | 8192 2181.5089 3.5404 | 0.6641 0.6640
4096 3456.5938 6.0428 | 0.6662 0.6657
2048 6433.8072 9.4064 | 0.6731 0.6704
RUS-S-ImbBD 8192 557.4869 0.5540 | 0.6319 0.6066
4096 518.1471 1.0960 | 0.4659 0.4339
2048 483.7361 1.0960 | 0.6651 0.6622

how the EUS-S-ImbBD scheme falls into the small
sample size problem. The reduction of the number of
positive examples in the different maps makes AUC
and GM measures to drastically drop when more maps
are required. AUC values are sometimes even lower
than 0.5 meaning that an inappropriate model has been
learned (worse than random guessing).

e On the other side, the proposed EUS-S-ExtImbBD has
been able to avoid this issue by using a higher number
positive examples in each map. We can observe how
the decrease in precision when the number of maps is
increased is much smoother in this case. Nevertheless,
since EUS is dealing with a larger number of examples
in each map in comparison with EUS-S-ImbBD, the
total runtime required becomes higher for this proposal.

o Comparing with the application of a simple random
undersampling (RUS-S-ImbBD), we can observe that
the capabilities of EUS are maintained and that it is able
to outperform RUS in terms of precision. Of course, the
time required by RUS is much lower, since it does not
involve any heuristic mechanism to select elements from
the negative class.

o Note that the number of concurrent tasks in the used
cluster is 216. Thus, we cannot expect a linear speedup
in the runtime required by RUS. We do appreciate a
linear complexity reduction for EUS due to the quadratic
complexity of this problem.

o Finally, the small sample size problem in EUS-S-
ImbBD and RUS-S-ImbBD can be clearly observed



attending at their instability when addressing the same
problem with different number of mappers. Notice that
after the sampling process a C4.5 decision tree is built,
and not only its building process is affected by the
number and class of the examples selected but also its
pruning may vary (which can explain the instability of
these models).

Attending at these results, one can conclude that the new
EUS model for addressing extremely imbalanced problems
with Spark overcome the problems of our previous alterna-
tives. Moreover, the flexibility of Spark has allowed us to
make a simple and fully automatic implementation of the
proposed model.

V. CONCLUDING REMARKS

In this contribution we have devised a big data scheme to
deal with the rare situation where data scarcity (of a partic-
ular class) remains to be a problem despite the vast quantity
of available data. The application of the proposed strategy
enables EUS to be applied on big datasets with extremely
skewed class distributions by an effective use of the avail-
able data. Our implementation is based on multiple parallel
operations and takes advantage of the in-memory operations
provided by Apache Spark. Our experimental study shows
the benefits of using Spark as parallelization technology and
the advantages of our new framework to soften the lack
of density issue presented in these extremely imbalanced
problems. As future work, we consider the development of
efficient big data strategies that can deploy preprocessing
mechanisms such as hybrid oversampling/undersampling ap-
proaches in the big data context. Regarding the proposed
method, techniques to deal with extremely imbalanced prob-
lems where the positive class does not fit in the main memory
of the computing nodes will be studied.
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