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Abstract. The ability for a user to accurately estimate the amount of
trust to be placed in a peer user is gaining more and more attention
in social network applications. Trust aggregation provides this ability
by identifying paths that connect users in the network, and by merging
trust opinions expressed by users along these paths. However, as indi-
vidual trust opinions are not always based on perfect knowledge, and
since the quality of a trust estimation propagated along a given path
may diminish as its length increases, mechanisms are needed to handle
these imperfections. In this paper, we propose a set of trust aggregation
operators that take into account knowledge defects and path length. We
investigate their properties, and discuss how they may be implemented
in practice, taking into account characteristics of the network such as the
availability of a central authority, or the need to preserve users’ privacy
by not publically disclosing their trust information.

1 Introduction

A trust network consists of agents (users) that can express their opinion about
other agents through trust scores. Trust networks are emerging as an important
tool to improve web applications such as recommender systems [1–4], e-mail
filtering [5], financial transactions [6] and many more.

Generally, not all agents are connected in a trust network. In order to predict
an agent’s trust score in one of its peers, we can search for a path linking them
and propagate trust scores along this path to obtain an estimated trust score. If
more than one path is available, we need to aggregate these trust scores to obtain
a final estimated trust score. In the aggregation process, not all trust scores may
be equally useful, due to the way in which they were obtained. In this paper, we
consider two characteristics that affect a trust score’s relative importance:

– Knowledge defects. Sometimes, an agent has insufficient information to es-
tablish a clear trust opinion in a peer, while at other times his opinion is
based on conflicting information sources. Both cases are examples of defec-
tive knowledge, and can be modelled by drawing trust scores from a bilattice
as proposed in [4]. In this way, trust scores not only reflect the intensity of
the trust relation, but also the amount of information on which it is based.



– Path length. As the number of propagation steps needed to obtain a trust
score increases, so does the chance of errors occurring and accumulating in
the process. This is also endorsed by the experiments in [2], which show that
shorter paths lead to more accurate trust estimations and recommendations.

The remainder of this paper is structured as follows: in Section 2, we recall
necessary preliminaries on (ordered) weighted average aggregation operators,
the bilattice-based trust model and trust score propagation, while in Section 3,
we propose new classes of aggregation operators taking into account knowledge
defects and path length. In Section 4, we discuss their application in a trust
network; we distinguish between “big brother” approaches in which a central
authority performs all propagation and aggregation steps, and distributed ones
in which agents process trust information autonomously and do not need to
disclose the provenance of this information to their peers. The latter approaches
become especially relevant in the light of preserving users’ privacy in web-based
applications. In Section 5, we conclude and discuss future work.

2 Preliminaries

2.1 Aggregation Operators

In this section, we review a number of frequently used strategies for aggregating
a vector 〈a1, . . . , an〉 of scalar arguments.

The simple Weighted Average (WA) operator associates weights to the values
that have to be aggregated. Let W = 〈w1, . . . , wn〉 be a weight vector such that
∀i ∈ {1, . . . , n} wi ∈ [0, 1] and

∑n
i=1 wi = 1. Then the WA-operator associated

with W is defined as:

WAW (a1, . . . , an) =
∑n
i=1 wiai∑n
i=1 wi

(1)

The Ordered Weighted Average (OWA, [7]) operator associates weights to the
ordered positions of the values that have to be aggregated. Let W = 〈w1, . . . , wn〉
be defined as above. Then the OWA-operator associated with W is defined as:

OWAW (a1, . . . , an) =
n∑
i=1

wibi (2)

where bi is the i-th largest element in {a1, . . . , an}.
The Induced Ordered Weighted Average (IOWA, [8]) operator associates

weights to the ordered positions of the values of an order inducing variable. Let
W = 〈w1, . . . , wn〉 be defined as above, and 〈v1, . . . , vn〉 a vector of values drawn
from a linearly ordered space (V,≤V ). Then the IOWA-operator associated with
W is defined as:

IOWAW (〈a1, v1〉, . . . , 〈an, vn〉) =
n∑
i=1

wibi (3)

where bi = aj iff vj is the i-th largest element in {v1, . . . , vn}.



2.2 Bilattice-Based Trust Network Model

According to the proposal in [4], we model a trust network as a triplet (A,E,R)
where (A,E) is a directed graph with the agents as nodes, and directed trust
links as edges. The mapping R : E → [0, 1]2 associates a trust score R(e) = (t, d)
with every edge e between agents x and y, such that t represents the degree of
trust of x in y, and d the degree of distrust. The set of trust scores can be
endowed with the following bilattice structure:

BL� = ([0, 1]2,≤t,≤k,¬) (4)

where ≤t is a trust ordering, ≤k is a knowledge ordering and ¬ a negation
operator, defined as follows:

(t1, d1) ≤t (t2, d2) iff t1 ≤ t2 and d1 ≥ d2

(t1, d1) ≤k (t2, d2) iff t1 ≤ t2 and d1 ≤ d2

¬(t1, d1) = (d1, t1)

≤t orders trust scores ranging from full distrust (0, 1) to full trust (1, 0). ≤k
orders trust scores ranging from ignorance/no knowledge (0, 0) to fully conflicting
knowledge (1, 1). Trust scores (t, d) with t + d < 1 are called incomplete, while
those with t+ d > 1 are called inconsistent. In both cases, there is a knowledge
defect, which can be quantified by the following [0, 1]-valued measure:

kd(t, d) = |1− t− d| (5)

Trust scores with kd(t, d) = 0, i.e., t+ d = 1, are said to have perfect knowledge.
When explicit trust and distrust values in [0, 1] are given for every trust relation
in the network, these can be used for t and d. Otherwise, t and d should be derived
from the given numerical or linguistic values that represent trust statements in
the given trust network.

2.3 Trust Score Propagation

In trust networks, propagation operators are used to handle the problem of
estimating a trust score in an unknown agent by inquiring through third party
agents. For our purposes, a trust score propagation operator Prop is a ([0, 1]2)2 →
[0, 1]2 mapping; given the trust score of agent x in agent y, and the trust score
of y in z, it predicts the trust score of x in z. Trust score propagation operators
have been studied extensively in [4]; here we mention just one example of such
an operator, defined by, for (t1, d1), (t2, d2) in [0, 1]2,

Prop((t1, d1), (t2, d2)) = (min(t1, t2),min(t1, d2)) (6)

This operator reflects the basic strategy of taking over information only from
trusted sources: it copies the opinion of y in z, but only to the extent that x
trusts y.



Although Prop defined by (6) is associative, this is not required in general.
For propagation over paths with more than 2 edges, it is therefore necessary to
fix the evaluation order. Here, as in [9], we assume that a right-to-left evaluation
order is used for propagation, illustrated below for a three-edge path:

Prop((t1, d1), (t2, d2), (t3, d3)) = Prop((t1, d1), P rop((t2, d2), (t3, d3))) (7)

With this order, each agent along the path combines its trust score in its suc-
cessor with the propagated trust score it receives from this successor. In this
way, an agent needs to have access only to the trust scores it has issued, and
propagation does not require the intervention of a central authority.

3 Trust Score Aggregation

In general, a trust score aggregation operator is a mapping Ω : ([0, 1]2)n →
[0, 1]2 (n ≥ 1), where the arguments are trust scores as defined in Section 2.2.
Note that the operators from Section 2.1 require scalar values as arguments.
As such, they are not directly applicable to aggregate a set of trust scores.
Therefore, in accordance with the proposal from [9], we propose trust score
aggregation operators that consist of two separate operators, one applied to the
trust component and one to the distrust component. Before presenting their
definition, we list a number of desirable properties that a trust score aggregation
operator should ideally satisfy, based on the recommendations in [9].

3.1 Properties

A trust score aggregation operator Ω may satisfy the following properties:

1. Idempotence (RQ1). For (t, d) in [0, 1]2,

Ω((t, d), . . . , (t, d)) = (t, d) (8)

2. Knowledge-invariant trust monotonicity3 (RQ2). For (ti, di), (t′i, d
′
i) in [0, 1]2,

if (ti, di) ≤t (t
′

i, d
′

i) and ti + di = t
′

i + d
′

i (i = 1, . . . , n), then

Ω((t1, d1), . . . , (tn, dn)) ≤t Ω((t′1, d
′
1), . . . , (t′n, d

′
n)) (9)

3. Commutativity (RQ3). If π is a permutation of {1, . . . , n}, then for (ti, di)
in [0, 1]2 (i = 1, . . . , n),

Ω((t1, d1), . . . , (tn, dn)) = Ω((tπ1 , dπ1), . . . , (tπn , dπn)) (10)

4. Neutral element (0, 0) (RQ4). For (ti, di) in [0, 1]2 (i = 1, . . . , n− 1),

Ω((t1, d1), . . . , (tn−1, dn−1), (0, 0)) = Ω((t1, d1), . . . , (tn−1, dn−1)) (11)
3 The original property (RQ2) from [9] required monotonicity of Ω w.r.t. both ≤t and
≤k, but is restricted here to monotonicity of ≤t in case the amount of knowledge in
the trust scores remains invariant; monotonicity of ≤k then becomes trivial.



5. Opposite arguments (RQ5).

Ω((1, 0), . . . , (1, 0)︸ ︷︷ ︸
n times

, (0, 1), . . . , (0, 1)︸ ︷︷ ︸
n times

) = (1, 1) (12)

3.2 Aggregation Operators

Below, we discuss various strategies for trust aggregation based on WA, OWA
and IOWA operators. We first describe the generic procedure for their applica-
tion:

1. Given are n trust scores 〈(t1, d1), . . . , (tn, dn)〉. Determine m, the number of
arguments (ti, di) (i = 1, . . . , n) such that kd(ti, di) < 1. If kd(ti, di) = 1, the
trust score does not take part in the remainder of the aggregation process.

2. If m = 0, the aggregation process terminates at this step, and the final
result is set to (1, 1) if at least one of the arguments equals (1, 1), and to
(0, 0) otherwise.

3. Renumber the remaining m trust scores to 〈(t1, d1), . . . , (tm, dm)〉.
4. With the same conditions as in Section 2.1, determine weight vectors W =
〈w1, . . . , wm〉 and W ′ = 〈w′1, . . . , w′m〉 and, in the case of an IOWA operator,
vectors 〈v1, . . . , vm〉 and 〈v′1, . . . , v′m〉 of values for an order inducing variable.

5. The final aggregated trust score equals, for WA, OWA and IOWA, respec-
tively:

WAW,W ′((t1, d1), . . . , (tm, dm)) = (WAW (t1, . . . , tm),WAW ′(d1, . . . , dm))
OWAW,W ′((t1, d1), . . . , (tm, dm)) = (OWAW (t1, . . . , tm), OWAW ′(d1, . . . , dm))

IOWAW,W ′( (〈t1, v1〉, 〈d1, v
′
1〉),

. . . ,
(〈tm, vm〉, 〈dm, v′m〉))

=
(IOWAW (〈t1, v1〉, . . . , 〈tm, vm〉),
IOWAW ′(〈d1, v

′
1〉, . . . , 〈dm, v′m〉))

The principle of eliminating all (0, 0) and (1, 1) scores beforehand corresponds
to the intuition that these trust scores do not contribute any usable information,
because they represent total ignorance and complete inconsistency, respectively,
and should thus not participate to the aggregation process.

Weighted Average Trust Score Aggregation. As stated in the introduc-
tion, trust scores that exhibit a high knowledge defect (too little, or too much
knowledge), are considered less useful in deriving a final trust estimation. In or-
der to penalize this knowledge defect, we can construct weight vectors W = W ′,
such that, for i = 1, . . . ,m,

wi =
1− kd(ti, di)∑m
j=1 1− kd(tj , dj)

(13)

It is also possible to construct weights based on the path length associated with
a trust score. In this scenario, we additionally need the vector 〈p1, . . . , pm〉, such



that pi is the number of propagations (path length) needed to obtain the trust
score (ti, di). The longer a trust score’s path length, the smaller its associated
weight should be. This can be obtained by putting W = W ′, such that ∀i, j =
1, . . . ,m, piwi = pjwj . That is, for i = 1, . . . ,m,

wi =
1
pi∑m
j=1

1
pj

(14)

Both weighting strategies can easily be combined to take into account both
knowledge defect and path length, i.e., for i = 1, . . . ,m,

wi =
1−kd(ti,di)

pi∑m
j=1

1−kd(tj ,dj)
pj

(15)

It may be verified that the resulting WAW,W ′ have properties (RQ1) (on con-
dition that all path lengths are equal), (RQ2) (on condition that path lengths
remain invariant), as well as (RQ3) and (RQ4). Only (RQ5) does not hold; for
instance, using (13), under the premises of this property, the outcome will be(

1
2 ,

1
2

)
rather than (1, 1). In general, it is difficult to impose this property using

a WA operator.

Ordered Weighted Average Trust Score Aggregation. Ordering the trust
(resp., distrust) values decreasingly prior to computing their weighted average
offers additional flexibility to the aggregation process. As an example, the fol-
lowing weighting strategy generalizes the proposal made in [9]; for i = 1, . . . ,m,

wi =
max(0, d mmt

e − i+ 1)
d m

mt
e(d m

mt
e+1)

2

, w′i =
max(0, d mmd

e − i+ 1)
d m

md
e(d m

md
e+1)

2

(16)

with mt,md ∈ {2, . . . ,m}. For instance, if mt = 2, it means that half of the trust
degrees receive a strictly positive weight. Because of the way the weights are
constructed, the weight for the highest trust degree will be strictly greater than
the second one, etc. Different values for mt and md may be chosen; for instance,
if mt < md, the distrust degree of the aggregated trust score will depend on
fewer arguments than the trust degree. Using these weights, OWAW,W ′ satisfies
all properties from Section 3.1, including (RQ5).

It is also possible to combine the WA weighting strategies (13)–(15) with
OWA weights. In this case it is important to realize that the WA weights are
associated to a fixed argument, and the OWA weights to an ordered position. In
particular, let wOWA

i and w′
OWA
i be weights defined as in (16) and wWA

πi
and

w′
WA
πi

weights defined as in (13)–(15), where π (resp. π′) permutes the weights
in a way that tπ1 ≥ tπ2 ≥ ... ≥ tπn

(resp. dπ′
1
≥ dπ′

2
≥ ... ≥ dπ′

n
). Then combined

weights can be calculated as:

wi =
wOWA
i wWA

πi∑n
j=1 w

OWA
j wWA

πj

, w′i =
w′
OWA
i w′

WA
π′

i∑n
j=1 w

′OWA
j w′WA

π′
j

(17)



Using these combined weights, however, OWAW,W ′ no longer satisfies (RQ2).

Induced Ordered Weighted Average Trust Score Aggregation. Since
the order inducing variable appearing in the IOWA approach does not need
to be scalar, further flexibility can be introduced in the trust aggregation pro-
cess. In particular, we may consider combinations of trust/distrust degrees, path
length and/or knowledge defect as potential order inducing variables, provided
a suitable linear order can be imposed on them.

As a first example, we define the value of the order inducing variables as

vi = (kd(ti, di), ti), v′i = (kd(ti, di), di), (18)

i = 1, . . . ,m, and order these values decreasingly according to the linear order
≤kd on [0, 1]2 defined by, for (k1, r1), (k2, r2) in [0, 1]2,

(k1, r1) ≤kd (k2, r2)⇔ (k1 > k2) ∨ (k1 = k2 ∧ r1 ≤ r2) (19)

In other words, trust scores with lower knowledge defects are ordered first, and
in case of equal knowledge defect, the higher trust (resp., distrust) value prevails.

Another option is to define vi = (pi, ti) and v′i = (pi, di), i = 1, . . . ,m, and
order these values decreasingly according to the linear order ≤p on N × [0, 1]
defined by, for (p1, r1), (p2, r2) in N× [0, 1],

(p1, r1) ≤p (p2, r2)⇔ (p1 > p2) ∨ (p1 = p2 ∧ r1 ≤ r2) (20)

In this case, trust scores associated to the shortest path are ordered first, and
the trust/distrust degrees are used to determine the order in case of equal path
length.

Weight vectors W,W ′ can be constructed in the same way as for the OWA
operators, with the same properties fulfilled. For instance, using (16), trust scores
with the highest associated value for the order inducing variable get the highest
weights. It is also possible to consider combined approaches that take into ac-
count both knowledge defect and path length, but as we have seen before, the
combination of (16) with (13)–(15) results in the loss of (RQ2).

Instead, we may incorporate path length and knowledge defect simulta-
neously using alternative order inducing variables vi = (pikd(ti, di), ti) and
v′i = (pikd(ti, di), di), and ordering their values decreasingly according to the lin-
ear order ≤p,kd on R+× [0, 1] defined as follows for (s1, r1), (s2, r2) in R+× [0, 1]:

(s1, r1) ≤p,kd (s2, r2)⇔ (s1 > s2) ∨ (s1 = s2 ∧ r1 ≤ r2) (21)

Using these order inducing variables, and weights W,W ′ defined by (16), we can
verify that IOWAW,W ′ fulfils all requirements in Section 3.1.

4 Application to Trust Networks

In this section, we discuss how the proposed aggregation operators can be used
within a trust network (A,E,R) as defined in Section 2.2 to estimate trust scores.



Assume a and x are two agents in A such that there is at least one path from a
to x, but no directed edge from a to x. Examples of this situation are given in
Figure 1. We now consider two strategies to predict the trust score of a in x.
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Fig. 1. Examples of trust networks

4.1 Aggregation With a Central Authority (“Big Brother”)

In the first approach, all acyclic paths between a and x are considered. For
every path, a propagated trust score is calculated, and at the end, all of these
propagated trust scores are aggregated. This approach is called a Big Brother
approach, since a central authority that maintains all trust information (network
topology and trust scores) is needed. Any of the aggregation operators introduced
in Section 3 can be used to compute the final estimated trust score.

Example 1. In the left hand side network in Figure 1, there are four a-x paths,
all of them of length 3 (abex, abfx, acfx and adgx). If we use Eq. (6) to propa-
gate, then the trust scores corresponding to these paths are (0.4, 0.1), (0.4, 0.3),
(0.7, 0.3) and (0.5, 0.5), with knowledge defects 0.5, 0.3, 0 and 0, respectively.
Constructing the weight vectors W1 = W ′1 by Eq. (13), we get

WAW1,W ′
1
((0.4, 0.1), (0.4, 0.3), (0.7, 0.3), (0.5, 0.5)) = (0.525, 0.331) (22)

If we construct weights W2 and W ′2 as in (16) with mt = 2,md = 4 we get

OWAW2,W ′
2
((0.4, 0.1), (0.4, 0.3), (0.7, 0.3), (0.5, 0.5)) = (0.633, 0.5) (23)

The same result is obtained if we combine these weights with those in (13) using
(17) , and also if we use W2 and W ′2 in the IOWA strategy where the order
inducing variables vi and v′i are defined as in (18).

4.2 Aggregation Without a Central Authority

If a central authority is lacking, a distributed strategy may be pursued in which
agent a asks all agents it is connected to for their opinion of x. Whenever a
successor s is directly connected to x, it returns the corresponding trust score



to a. Otherwise, it returns a recursively calculated trust score that represents
its opinion about x. Agent a then applies propagation to its own trust score
in s, and the trust score supplied by s. Finally, a aggregates the trust scores
established for its various successors. This is an example of a privacy-preserving
approach, since the agents do not have to reveal their trust opinions to a central
authority. In this case, aggregation operators incorporating path length may
not be suitable, since they require the path length to be transferred along with
the trust score as an extra parameter (additional overhead), and moreover this
information might be confidential (privacy breach).

On the other hand, if we want to penalize trust scores based on the amount
of nodes they have passed through in the trust network, we can apply a so-called
ageing function after every propagation step. For example, given a parameter α
(0 < α < 1) and a trust score (t, d), we can define the ageing function fα by

fα(t, d) =
{

(αt, αd) if t+ d ≤ 1;
(1− α(1− t), 1− α(1− d)) else. (24)

It is clear that the ageing function increases the knowledge defect; if we subse-
quently aggregate the results using an aggregation operator that incorporates
knowledge defect, trust scores that have come a longer way through the network
will have a smaller associated weight.

Example 2. In the right hand side network of Figure 1, a asks c and b for an
opinion of x; b responds by returning its trust score in x, to which a applies
propagation and ageing (assume α = 0.9), i.e., f0.9(Prop(0.8, 0.2), (0.8.0.2)) =
(0.72, 0.18). Agent c applies the same operation to the score it gets from d, i.e., it
returns (0.18, 0.72) to a; by another propagation and ageing step, a transforms
this score to (0.162, 0.54). If we construct weights W = W ′ as in (13), we obtain

WAW,W ′((0.72, 0.18), (0.162, 0.54)) = (0.475, 0.338). (25)

5 Conclusion and Future Work

In this paper, we have presented and investigated a range of strategies that
can be used to aggregate trust scores, and which take into account aspects of
the trust network such as the relative knowledge defect of trust scores, and the
length of the path that is needed to obtain them. We have also investigated their
properties and illustrated their application within a trust network.

In a next step, we plan to validate the introduced aggregation operators
experimentally. In particular, we will set up a series of leave-one-out experiments
in which a particular edge in the trust network is hidden, and the goal is to
predict the corresponding trust score using the remaining connections. On the
other hand, we also want to establish the usefulness of the proposed aggregation
operators in recommender systems; in this case, the use of a given operator is
measured by means of the accuracy it achieves in predicting a user’s ratings for
given items.



As another part of our future work, we plan to further refine the aggregation
strategy to take into account other aspects of the trust network. One possible
extension includes the incorporation of an authority function, which reflects that
in obtaining a trust score, some agents are always more important than others
(e.g., because they have built up a strong reputation).
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