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Abstract: Rejection-associated gene expression has been characterized in renal allograft biopsies
for cause. The aim is to evaluate rejection gene expression in subclinical rejection and in biopsies
with borderline changes or interstitial fibrosis and tubular atrophy (IFTA). We included 96 biopsies.
Most differentially expressed genes between normal surveillance biopsies (n = 17) and clinical rejection
(n = 12) were obtained. A rejection-associated gene (RAG) score was defined as its geometric mean.
The following groups were considered: (a) subclinical rejection (REJ-S, n = 6); (b) borderline changes
in biopsies for cause (BL-C, n = 13); (c) borderline changes in surveillance biopsies (BL-S, n = 12);
(d) IFTA in biopsies for cause (IFTA-C, n = 20); and (e) IFTA in surveillance biopsies (IFTA-S, n = 16).
The outcome variable was death-censored graft loss or glomerular filtration rate decline ≥ 30 %
at 2 years. A RAG score containing 109 genes derived from normal and clinical rejection (area
under the curve, AUC = 1) was employed to classify the study groups. A positive RAG score was
observed in 83% REJ-S, 38% BL-C, 17% BL-S, 25% IFTA-C, and 5% IFTA-S. A positive RAG score was
an independent predictor of graft outcome from histological diagnosis (hazard ratio: 3.5 and 95%
confidence interval: 1.1–10.9; p = 0.031). A positive RAG score predicts graft outcome in surveillance
and for cause biopsies with a less severe phenotype than clinical rejection.

Keywords: renal transplantation; biopsies; rejection; transcriptomics; microarrays; borderline changes;
interstitial fibrosis and tubular atrophy

1. Introduction

Rejection-associated gene expression has been well-characterized in for cause renal allograft
biopsies. Three groups of rejection gene transcripts have been differentiated: (a) gene transcripts
that are shared by T cell-mediated and antibody-mediated rejection; (b) specific differentially
expressed transcripts in T cell-mediated rejection; and (c) specific differentially expressed transcripts in
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antibody-mediated rejection [1–3]. Rejection-associated gene expression is shared among different
transplanted organs [4] and is involved in the immune response against infection, cancer, or autoimmune
diseases [5]. They are also expressed in surveillance biopsies with subclinical rejection [6], and in
biopsies with a histological diagnosis below the threshold of rejection such as borderline changes or
interstitial fibrosis and tubular atrophy (IFTA).

Subclinical rejection in surveillance biopsies has been associated in some studies with decreased
renal allograft survival [7–9]. It has been shown in a study comparing clinical and subclinical rejection
that both phenotypes shared differentially expressed genes and pathways. These data suggest that
there exists a continuum of alloimmune activation in both situations [10].

The significance of borderline changes is difficult to interpret since it can represent true T
cell-mediated rejection (TCMR), acute kidney injury associated with ischemia-reperfusion or other
types of tissue injury [11]. Thus, it is not surprising that the histological definition of borderline
changes has been modified over the years. In the first Banff meeting, this category was defined as the
presence of mild tubulitis (t1) associated with mild to severe interstitial inflammation (i1–i3) [12]. Later,
the classification was modified, and biopsies showing mild to severe tubulitis (t1–t3) without interstitial
inflammation (i0) were included in this category [13]. Recently, it has been described that patients with
biopsy scoring ≥ i1t1 have a poorer outcome than patients with biopsies displaying i0t1 [14], leading
to the actual definition of borderline changes as at least i1t1 [15]. Therapeutic approaches towards
borderline changes vary in different clinical settings. The diagnosis of borderline changes in biopsies
for cause leads to anti-rejection treatment with steroid pulses in most cases, while in many centers the
presence of borderline changes in surveillance biopsies is not treated. Thus, borderline changes are
considered a heterogeneous diagnosis, ranging from mild inconsequential inflammation that is resolved
without a specific treatment to full blown TCMR [16–18]. Microarray studies in biopsies for cause
displaying borderline changes have shown that most cases designated borderline by histopathology
are found to be non-rejection by molecular phenotyping [11]. In the setting of surveillance biopsies,
it has been shown that molecular changes of rejection are correlated with histological diagnosis of
TCMR or borderline rejection, but this molecular pattern is not associated with graft outcomes [19].

The presence of IFTA in biopsies for cause has been described in association with
antibody-mediated rejection, T cell-mediated rejection, glomerulonephritis, and other diseases affecting
the graft. On the other hand, IFTA without the presence of a well-defined post-transplant disease is
observed in a proportion of patients [20,21]. In surveillance biopsies, IFTA with interstitial inflammation
in healthy areas is associated with decreased graft survival when compared with biopsies with IFTA
without inflammation [8].

Microarray studies in surveillance biopsies with IFTA have described the presence of
rejection-associated transcripts [7]. These observations inspired the definition of chronic T
cell-mediated rejection as the presence of moderate to severe inflammation in areas of fibrosis
(i-IFTA ≥ 2 and t ≥ 2) [22].

The aim of the present study is to characterize rejection-associated gene transcripts in for cause
and surveillance biopsies with subclinical rejection, borderline changes and IFTA.

2. Results

2.1. Patients

Between July 2015 and August 2018, 435 renal graft biopsies were performed, and 188 biopsies
had a third core of tissue stored in the nephrology biobank for microarray studies. Since in 7 patients
extracted RNA was of insufficient quality for analysis, 181 patients were considered. Patients with
the following histological diagnosis were discarded: chronic pyelonephritis (1), focal and segmental
glomerular sclerosis (5), membranous nephropathy (2), IgA nephropathy (6), C3 glomerulopathy
(1), polyoma virus BK nephropathy (4) and diabetic nephropathy (1). Histological diagnosis of the
considered 161 biopsies is shown in Table 1. Since rejection was an infrequent diagnosis, all cases were
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included in the microarray study. For the remaining groups, biopsies with the longest follow up were
included to complete a total of 96 biopsies (Table 1). Clinical characteristics of the included patients
and histological scores are summarized in Tables 2 and 3.

2.2. Principal Component Analysis Using Gene Transcripts

The principal component analysis showed that rejection in indication and surveillance biopsies
clustered in the left upper quadrant, normal surveillance biopsies in the lower right quadrant,
while borderline changes and IFTA tended to cluster in between (Figure 1).

Figure 1. Principal component analysis of the microarray and histological diagnosis in for cause and
surveillance biopsies. REJ-C, rejection in biopsies for cause (n = 12); Normal-S, normal surveillance
biopsies (n = 17); REJ-S, rejection in surveillance biopsies (n = 6); BL-C, borderline changes in biopsies
for cause (n = 13); BL-S, borderline changes in surveillance biopsies (n = 12); IFTA-C, interstitial fibrosis
and tubular atrophy in biopsies for cause (n = 20); IFTA-S, interstitial fibrosis and tubular atrophy in
surveillance biopsies (n = 16).

2.3. Rejection-Associated Gene Score (RAG Score)

We described the most differentially expressed genes between biopsies for cause with clinical
rejection and normal surveillance biopsies. For this purpose, we adjusted FC and p-value to obtain
approximately the 100 most differentially expressed genes between these two groups. A total of 109
differentially expressed genes (p-value < 0.01 and fold change (FC) > log 1.75) were obtained as listed
in Supplement Table S1. The geometric mean of these 109 differentially expressed genes was calculated
to obtain a RAG score.

The RAG score was similar between rejection in biopsies for cause (REJ-C) and subclinical rejection
(REJ-S). In borderline changes in biopsies for cause (BL-C), borderline changes in surveillance biopsies
(BL-S), interstitial fibrosis and tubular atrophy in biopsies for cause (IFTA-C), and IFTA in surveillance
biopsies (IFTA-S) the score was significantly lower than in rejection biopsies. On the other hand, it was
significantly higher in BL-C, BL-S, and IFTA-C, than in normal biopsies. There were no differences in
the RAG score between IFTA-S and, normal surveillance biopsies (Normal-S) (Figure 2).

To validate this result, we considered the T cell-mediated rejection most differentially expressed
genes in kidney transplants as reported by Venner et al. [23], the common rejection module reported
by Khatri et al. [4] and the constant of rejection reported by Wang et al. [5]. These three gene sets were
identified in our microarray and a rejection score for each of these three gene sets was calculated as the
geometrical mean in our sample. We observed that rejection genes described in these studies were
significantly higher in rejection than in the other groups. Using the rejection scores obtained from
these three studies, we observed that rejection genes in BL-C were significantly higher than in normal
biopsies. The rejection scores obtained from Wang et al. and Khatri et al., were significantly higher
in BL-C than in IFTA-S. However, there was no difference in the expression of rejection gene score
between BL-C, BL-S, and IFTA-C (Figure 3).
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Table 1. Available and included for cause and surveillance biopsies.

Available Biopsies Included Biopsies

For Cause Surveillance For Cause Surveillance

Normal 0 39 0 17
Borderline changes 19 18 13 12

IFTA 35 32 20 16
TCMR 6 5 6 a 5 c

ABMR 6 1 6 b 1 d

Total 66 95 45 51

IFTA, interstitial fibrosis and tubular atrophy; TCMR, T cell-mediated rejection; ABMR, antibody-mediated rejection. a 3 cases of TCMR grade I and 3 cases grade II; b 2 cases of active
ABMR and 4 cases of chronic active ABMR; c 2 cases of TCMR grade I and 3 cases grade II and d 1 case of active ABMR.

Table 2. Demographic data for recipients and donors as well as clinical data at the time of biopsy.

Variable Normal REJ-C REJ-S BL-C BL-S IFTA-C IFTA-S p-Value

N 17 12 6 13 12 20 16

Age (y) 54 ± 13 43 ± 12 53 ± 21 59 ± 11 b 57 ± 13 b,c 46 ± 15 c 52 ± 17 0.060

Sex (m/f) 12/5 6/6 4/2 8/5 9/3 16/4 10/6 0.610

1st Tx/Re-Tx 17/0 8/4 6/0 13/0 12/0 18/2 12/4 0.002

Donor age (y) 56 ± 15 44 ± 16 59 ± 15 59 ± 14 53 ± 16 58 ± 11 57 ± 16 0.226

HLA (A + B + DR) mm 3.8 ± 1.0 3.7 ± 1.4 4.0 ± 1.9 3.9 ± 1.0 3.8 ± 0.7 3.5 ± 1.3 3.7 ± 1.1 0.942

DGF (no/yes) 15/2 10/1 6/0 5/8 10/2 14/1 13/3 0.010

Rejection (no/yes) 17/0 8/4 4/2 12/1 9/3 19/1 14/2 0.082

Induction (ATG/IL2RAb) 4/13 7/5 2/4 4/15 7/9 4/14 7/9 0.295

Immunosuppression
TAC + MMF + S/other 16/1 10/2 4/2 9/4 12/0 14/6 16/0 0.036

Time biopsy (m) 6 ± 5 51 ± 57 a 6 ± 6 b 25 ± 27 7 ± 4 b,d 77 ± 78 a,c,e 7 ± 5 b,f <0.001

Creatinine (mg/dL) 1.3 ± 0.3 2.0 ± 0.6 a 1.4 ± 0.2 2.5 ± 0.8 a,b,c 1.3 ± 0.3 b,d 2.1 ± 0.7 a,c,e 1.4 ± 0.3 b,d,f <0.001

UPCR (g/g) 0.4 ± 0.3 1.7 ± 1.5 a 0.3 ± 0.1 b 1.1 ± 1.2 a,b,c 0.3 ± 0.2 b,d 1.3 ± 0.9 a,c,e 0.3 ± 0.3 b,d,f <0.001

DSA (no/yes) 17/0 8/4 5/1 13/0 12/0 20/0 16/0 <0.001

Tx, transplant; HLA mm, HLA mismatches at the loci A + B + DR; DGF, delayed graft function; TAC + MMF + S, tacrolimus associated with mycophenolate and steroids; UPCR, urinary
protein to creatinine ratio; DSA, HLA donor specific-antibodies determined by Luminex technology. a p < 0.05 vs. normal, b p < 0.05 vs. REJ-C, c p < 0.05 vs. REJ-S, d p < 0.05 vs. BL-C,
e p < 0.05 vs. BL-S, f p < 0.05 vs. IFTA-C by Scheffé test.
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Table 3. Histological Banff scores.

Variable Normal REJ-C REJ-S BL-C BL-S IFTA-C IFTA-S

N 17 12 6 13 12 20 16
Glomeruli (N) 16 ± 8 16 ± 6 17 ± 5 17 ± 6 21 ± 11 17 ± 8 23 ± 12

Gs (%) 7 ± 7 22 ± 23 12 ± 16 22 ± 15 12 ± 14 31 ± 24 10 ± 6
g 0.1 ± 0.3 1.4 ± 1.1 0.8 ± 1.3 0.2 ± 0.4 0.4 ± 0.8 0.3 ± 0.6 0.2 ± 0.4
i 0.1 ± 0.2 1.3 ± 1.1 1.5 ± 0.5 1.2 ± 0.7 0.7 ± 0.6 0.1 ± 0.3 0.1 ± 0.2
t 0 1.2 ± 0.9 1.8 ± 0.7 1.0 ± 0 1.0 ± 0.6 0.2 ± 0.4 0.1 ± 0.3
v 0 0.3 ± 0.6 0.5 ± 0.5 0 0 0 0

ah 0.2 ± 0.4 1.4 ± 1.2 0 1.0 ± 0.9 0.7 ± 0.-6 1.3 ± 1.2 0.6 ± 0.6
cg 0 0.7 ± 0.9 0 0 0.2 ± 0.6 0.2 ± 0.5 0
ci 0.1 ± 0.3 1.2 ± 0.9 0.8 ± 1.0 1.3 ± 0.6 0.9 ± 0.8 1.8 ± 0.8 1.3 ± 0.5
ct 0.6 ± 0.5 1.1 ± 0.8 1.0 ± 0.6 1.2 ± 0.4 1.0 ± 0.4 1.6 ± 0.9 1.1 ± 0.3
cv 0.4 ± 0.7 0.8 ± 0.8 0.3 ± 0.5 1.0 ± 0.8 0.4 ± 0.5 1.3 ± 1.2 0.9 ± 0.8

mm 0.1 ± 0.2 0.5 ± 0.7 0 0.1 ± 0.3 0 0.2 ± 0.7 0
ptc 0.1 ± 0.2 1.4 ± 0.8 0.7 ± 1.2 0.6 ± 0.8 0.4 ± 0.8 0.5 ± 0.8 0.1 ± 0.2
C4d 0 0.3 ± 0.5 0 0 0 0 0

i-IFTA 0.4 ± 0.9 2.1 ± 1.3 2.2 ± 1.3 2.1 ± 0.8 1.3 ± 1.1 2.2 ± 1.0 1.8 ± 0.9
t-IFTA 0.2 ± 0.4 0.9 ± 0.6 0.8 ± 0.4 0.7 ± 0.7 0.6 ± 0.7 0.7 ± 0.6 0.7 ± 0.5
i-total 0.1 ± 0.2 1.3 ± 0.6 1.7 ± 0.6 1.5 ± 0.7 0.8 ± 0.6 0.7 ± 0.5 0.4 ± 0.3

Gs, percentage of globally sclerosed glomeruli; g, glomerulitis; i, interstitial infiltrate; t, tubulitis; v, endothelialitis; ah, arteriolar hyalinosis; cg, transplant glomerulopathy; ci, interstitial
fibrosis; ct, tubular atrophy; cv, intimal thickening; mm, mesangial matrix increase; C4d, deposition of C4d in peritubular capillaries; i-IFTA, inflammation in areas of interstitial fibrosis;
t-IFTA, tubulitis in atrophic tubules.
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Figure 2. Rejection-associated gene score in the different study groups. REJ-C, rejection in biopsies for
cause (n = 12); Normal-S, normal surveillance biopsies (n = 17); REJ-S, rejection in surveillance biopsies
(n = 6); BL-C, borderline changes in biopsies for cause (n = 13); BL-S, borderline changes in surveillance
biopsies (n = 12); IFTA-C, interstitial fibrosis and tubular atrophy in biopsies for cause (n = 20); IFTA-S,
interstitial fibrosis and tubular atrophy in surveillance biopsies (n = 16). ANOVA p-value 6.27 × 10−12.

Figure 3. Rejection gene score according to the most differentially expressed genes in Venner et al. [23],
Khatri et al. [4], and Wang et al. [5] applied to our set of biopsies ((A–C) respectively). REJ-C, rejection
in biopsies for cause (n = 12); Normal-S, normal surveillance biopsies (n = 17), REJ-S, rejection in
surveillance biopsies (n = 6); BL-C, borderline changes in biopsies for cause (n =13); BL-S, borderline
changes in surveillance biopsies (n = 12); IFTA-C, interstitial fibrosis and tubular atrophy in biopsies
for cause (n = 20); IFTA-S, interstitial fibrosis and tubular atrophy in surveillance biopsies (n = 16).
ANOVA p-value 9.46 × 10−10, 2.16 × 10−9, 5.08 × 10−10 for graphs (A–C); respectively.

2.4. RAG Score and Outcome

There was no overlap in the RAG score between REJ-C biopsies and Normal-S biopsies (Figure 2).
By receiver operating curve analysis, the best cut off was 5.89 (Youden’s index) with an area under the
curve of 1. Accordingly, the studied groups of biopsies were classified as positive (≥5.89) or negative
(<5.89) RAG score (Figure 4).

In the 5 study groups, graft outcome (death-censored graft loss or 2-year eGFR
deterioration ≥ 30%) was associated with histological diagnosis and with RAG score (Figure 5).

Regarding the control groups, none of the Normal-S group and 6 out of 12 patients with REJ-C
reached the composite endpoint.

Multivariate Cox regression analysis showed that RAG score ≥ 5.89 was an independent predictor
of graft outcome from histological diagnosis (hazard ratio: 3.5 and 95% confidence interval: 1.1–10.9;
p = 0.031). Survival analysis excluding patients with subclinical rejection yielded similar results
(p = 0.004 for univariate and p = 0.037 for multivariate analysis).
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Figure 4. Positive (≥5.89) and negative (<5.89) rejection-associated gene score in the different histological
categories in surveillance and for cause biopsies. The number of biopsies in each group according to
the rejection-associated gene score is displayed. REJ-C, rejection in biopsies for cause; Normal, normal
surveillance biopsies, REJ-S, rejection in surveillance biopsies; BL-C, borderline changes in biopsies
for cause; BL-S, borderline changes in surveillance biopsies; IFTA-C, interstitial fibrosis and tubular
atrophy in biopsies for cause; IFTA-S, interstitial fibrosis and tubular atrophy in surveillance biopsies.

Figure 5. Death-censored graft loss or 2-year eGFR deterioration ≥ 30 % from the date of biopsy
in the different histological categories (left panel) and in biopsies with a positive or negative
rejection-associated gene (RAG) score (right panel). REJ-S rejection in surveillance biopsies; BL-C,
borderline changes in biopsies for cause; BL-S, borderline changes in surveillance biopsies; IFTA-C,
interstitial fibrosis and tubular atrophy in biopsies for cause; IFTA-S, interstitial fibrosis and tubular
atrophy in surveillance biopsies.

3. Discussion

In the present study, most differentially expressed genes between normal surveillance biopsies
and biopsies for cause with rejection, were consistent with rejection-associated gene sets reported by
others [4,5,23]. These lists of gene sets have been obtained by different approaches. Venner et al. [23]
described the most differentially expressed genes between T cell-mediated rejection and all other
diagnoses, including antibody-mediated rejection in biopsies for cause. Khatri et al. [4] employed
eight independent data sets from kidney, liver, heart, and lung transplants to characterize the top
rejection differentially expressed genes between organs. Wang et al. [5] considered top differentially
expressed genes in allograft or cancer rejection, autoimmune disease, and tissue damage during
infection. The concordance in the characterization of the top expressed genes during rejection between
studies employing different strategies, reflects the stereotyped effector immune response leading to
tissue damage triggered by different injuries. In our study, the RAG-score mainly is composed by a set
of genes related with antigen presentation, T-cell activation, cytotoxic proteins, chemokine expression,
B-cell, and plasma-cell transcripts.

We observed that the RAG-score was not different in surveillance biopsies with subclinical rejection
and biopsies for cause with clinical rejection. RAG-score was binarized to classify biopsies as rejection
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or non-rejection. Only one out of six patients with rejection in surveillance biopsies had a negative
RAG-score. This observation suggests that in subclinical rejection, as it has been previously described
in clinical rejection [2], there is a reasonable concordance between histological and molecular diagnosis.
Furthermore, this observation argues in favor for treating patients with subclinical rejection [18,24,25]

In biopsies for cause with borderline changes or IFTA, and in surveillance biopsies with borderline
changes, RAG-score was higher than in normal surveillance biopsies but lower than in biopsies with
clinical rejection. A rejection signal was observed in 83% of surveillance biopsies with rejection, 38% of
biopsies for cause with borderline changes, 25% of biopsies for cause with IFTA, 17% of surveillance
biopsies with borderline changes and 5% of surveillance biopsies with IFTA. The RAG score variability
in these groups suggests that there were patients with and without rejection signal in each diagnostic
category. Finally, surveillance biopsies with IFTA were not different from normal surveillance biopsies
pointing out that stable grafts with IFTA are immunologically quiescent.

The clinical significance of borderline changes is difficult to interpret ranging from true rejection
to non-specific inflammation [16]. Lipman et al. [26] showed that inflammatory gene expression
in surveillance biopsies was negative in biopsies with normal histology, intermediate in borderline
changes, and high in rejection biopsies. Enhanced inflammatory gene expression in surveillance
biopsies with borderline changes and rejection was confirmed in a study evaluating early 6-week
surveillance biopsies [19]. However, in this study, enhanced inflammatory gene expression was higher
in patients with delayed graft function than in patients with immediate function, suggesting that,
in early surveillance biopsies, inflammatory gene expression may also reflect injury-repair response.
In the other hand, no association between inflammatory gene expression and 2-year graft outcome was
observed. However, studies evaluating the utility of histologic diagnosis in early surveillance biopsies
to predict outcome have shown that a long follow up is necessary to show an association between
early inflammation and graft events [27–30]. In the present study, RAG-gene score in biopsies with
borderline changes was higher in biopsies for cause than in surveillance biopsies. A similar observation
was reported in a study comparing early biopsies for cause and 3-month surveillance biopsies [31].
These data suggest that functional deterioration in patients with borderline changes could be partly
explained by enhanced rejection associated gene expression. In biopsies for cause with borderline
changes, a positive RAG-score, suggests that these cases represent true rejection. This result agrees
with previous studies reporting a rejection molecular signature in a similar proportion of cases [11,32].

In patients with IFTA, the RAG-score was positive in one quarter of biopsies for cause and only
in 1 out of 20 surveillance biopsies. Graft survival is shortened in surveillance biopsies with IFTA
and inflammation in comparison to biopsies with IFTA without inflammation [7,33]. In one-year
surveillance biopsies with IFTA and inflammation an overexpression of innate immune transcripts,
antigen presentation and cytotoxic T-cell has been described suggesting that mediators of rejection
signaling are activated [34]. In another study also evaluating 12-month surveillance biopsies without
rejection, biopsies with IFTA expressed macrophage, IFN-gamma, T-cell antigen presentation and
T-cell toxicity associated genes [35]. Characterization of differentially expressed genes between normal
biopsies and biopsies with IFTA has confirmed that genes related to immune response, inflammation
and matrix deposition are overexpressed in biopsies with fibrosis [36]. Furthermore, in a study
including for cause and surveillance biopsies, Modena et al. [6] not only described the presence of
rejection associated genes in biopsies with IFTA and inflammation, but also in biopsies with IFTA
without inflammation. Finally, in another study, it has been observed that there is an overexpression of
T cell, IFN-gamma, macrophage and injury-repair transcripts in biopsies with inflammation in healthy
areas. By contrast, in biopsies with IFTA and inflammation in scarred areas there is an overexpression
of B cells, immunoglobulins, mast cells, and a different set of injury-repair transcripts [37].

In summary, the above-mentioned studies suggest that in patients with IFTA, especially when it is
associated with inflammation, there is an over expression of rejection associated genes. In the present
study, the inflammatory burden in for cause or surveillance biopsies with IFTA was relatively low.
However, a significant proportion of biopsies for cause with IFTA were classified as rejection according
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to the RAG-score. Altogether our data confirm that there is a discrepancy between histological
diagnosis and gene score [38], especially in patients without a histological diagnosis of clinical rejection,
i.e., borderline changes and IFTA.

Finally, a positive RAG-score was associated with graft outcome in the study groups.
This association was independent from biopsy indication and histological diagnosis. Interestingly,
this association was confirmed when patients with subclinical rejection were excluded from the analysis.
The main limitation of the study is the lack of a validation cohort to confirm the utility of RAG-score to
predict outcome. However, in another study evaluating the utility of a rejection gene score in patients
with IFTA without inflammation, either in for cause or surveillance biopsies, there was an association
between a high rejection gene score and graft survival [6]. Another limitation is the reduced sample
size, especially to evaluate the utility of the RAG-score in surveillance biopsies.

4. Materials and Methods

4.1. Patients

All adult patients biopsied between July 2015 and August 2018, who gave their informed consent
to obtain an additional biopsy core for the nephrology biobank were considered. For the present
study, 2 controls and 5 study groups were defined. Control groups were (a) normal surveillance
biopsies (Normal-S) and (b) rejection (T cell-mediated and antibody-mediated rejection) in biopsies for
cause (REJ-C). The study groups were (a) rejection (T cell-mediated and antibody-mediated rejection)
in surveillance biopsies (REJ-S); (b) borderline changes in biopsies for cause (BL-C); (c) borderline
changes in surveillance biopsies (BL-S); (d) IFTA in biopsies for cause (IFTA-C); and (e) IFTA in
surveillance biopsies (IFTA-S). Clinical T cell-mediated rejection was treated with steroid boluses,
active antibody-mediated rejection with plasmapheresis, intravenous immunoglobulins, and rituximab
while chronic antibody-mediated rejection was not treated. REJ-S and BL-C were treated according to
the attending physician criteria. BL-S and IFTA-C were not treated.

Clinical and demographic characteristics of patients were recorded and anti HLA antibodies
at the day of transplant and at the time of biopsy were determined by Luminex technology using
the product LIFECODES LifeScreen Deluxe (Gen-Probe-Immucor, Stanford, CT, USA). The present
study has been approved by our ethical committee (Comité Etico de Investigación Clínica del Hospital
Universitari Vall d’Hebron PR(AG)369/2014, approval date 1 December 2014) and has been performed
in accordance with the Declaration of Helsinki, and is consistent with the Principles of the Declaration
of Istanbul on Organ Trafficking and Transplant Tourism.

4.2. Biopsies

Renal biopsies were performed under ultrasound guidance by trained radiologists with a 16-gauge
automated needle. Three cores of tissue were obtained: one was processed for optical microscopy;
one was embedded in OCT for immunofluorescence and the other one was stored in RNA later for
molecular studies.

The first core was embedded in formalin, paraffin-fixed and 2–4 m thick sections were stained with
haematoxylin-eosin, periodic acid Schiff, Masson’s trichrome, and silver methenamine. Histological
lesions were evaluated according to Banff criteria [15] and accordingly the definition of borderline
changes was: i≥ 1 and t≥ 1. All biopsies were stained with an anti-SV40 antibody. Immunofluorescence
studies were done in 3-µm cryostat sections stained with FITC-conjugated anti-human IgG, IgA, IgM,
C3, C4, lambda and kappa light chains. C4d was stained with indirect immunofluorescence with a
monoclonal antibody (Quidel, San Diego, CA, USA) and deposition in peritubular capillaries was
graded according to the Banff criteria. The third score was treated with Ambion® RNAlater® Tissue
Collection reagent as indicated by the manufacturer and frozen at −80 ◦C.
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4.3. RNA Extraction and Microarray Hybridization

Total RNA extraction from renal biopsies was performed by lysing the cells with the TissueLyser
II and following the RNAeasy Mini Kit (QIAGEN). RNA quantity and quality were analyzed with
the NanoDrop ND2000 (Thermo Scientific, Wilmington, DE, USA) and the Bioanalyzer (Agilent
Technologies, Sta. Clara, CA, USA).

Microarrays service was carried out by the High Technology Unit (UAT) at Vall d’Hebron Research
Institute (VHIR), Barcelona (Spain), using a GeneTitan® System according to the procedure described
by the manufacturer. One plate, containing 96 Clariom S arrays, was used for this experiment.
These arrays provide an accurate measurement of the human transcriptome at a gene-level, by using
probes covering more than 20,000 well-annotated genes, distributed through constitutive exons.

Briefly, 70 ng of total RNA from each sample were used as starting material. The quality of
the isolated RNA was measured previously by capillary electrophoresis (Bioanalyzer 2100, Agilent
Technologies, Sta. Clara, CA, USA). Single stranded-cDNA suitable for labeling was generated
from total RNA using the WT PLUS Reagent Kit (ThermoFisher Scientific, Lutterworth, UK),
according to the manufacturer’s instructions. Purified sense-strand cDNA was fragmented, labeled,
and hybridized to the arrays using the GeneTitan Hybridization, Wash and Stain Kit for WT Plates
(ThermoFisher Scientific, Lutterworth, UK). The plate was loaded into the GeneTitan and, after array
scanning, raw data quality control was performed to check the performance of the whole processing.

4.4. Statistics

Results are expressed as raw numbers for categorical variables and as the mean ± standard
deviation for continuous variables. Comparison between groups for categorical variables was done
by chi-squared test with continuity correction. Comparison between groups for continuous variables
was done by analysis of variance (ANOVA) with Scheffé post hoc test for individual comparisons.
Kaplan–Meier survival curves with log-rank test and Cox’s proportional hazard model were employed
for survival analysis. A composite outcome variable including death-censored graft loss and eGFR
deterioration ≥ 30% at 2-years was defined. All p-values were two-tailed and p-value < 0.05 was
considered significant.

Bioinformatic analysis was performed at the Statistics and Bioinformatics Unit (UEB) of the
Vall d’Hebron Institute of Research (VHIR, Barcelona, Spain). Robust Multi-array Average (RMA)
algorithm [39] was used for pre-processing microarray data. Background adjustment, normalization,
and summarization of raw core probe expression values were defined so that the exon level values were
averaged to yield one expression value per gene. Selection of differentially expressed genes was based
on a linear model analysis with empirical Bayes modification for the variance estimates [40]. To account
for multiple testing, p-values were adjusted to obtain stronger control over the false discovery rate
(FDR), as described by the Benjamini and Hochberg method [41].

Principal component analysis was performed with normalized data from all the genes used in the
differential expression analysis. Differentially expressed genes were selected based on a p-value < 0.01
and base 2 logarithmic fold change > 1.75. In order to validate our rejection-associated gene set,
we calculated in our array the geometric mean of the gene expression of the published list of genes
described by Venner et al. [23], Khatri et al. [4], and Wang et al. [5].

5. Conclusions

In conclusion, the present data support the utility of the characterization of rejection-associated
genes in biopsies with borderline changes, IFTA, and subclinical rejection to improve the risk
stratification. These data also raise the question whether characterization of rejection gene expression
in biopsies without a clinical and histological diagnosis of rejection may be useful to adjust
immunosuppressive treatments and improve outcome.
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