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Abstract—Large-scale group decision making (LGDM) is 
becoming more and more common, and how to assure the 
security and quality of the decision making process has become a 
hot topic. Supply chain risk mitigation is a complex LGDM 
problem involving in many stakeholders. In the decision making 
process, a group of experts aims at reaching a consensus among 
alternatives in which non-cooperative behaviors often appear. 
Some experts might designedly form a small alliance and change 
their preferences in a direction against consensus with the aim to 
foster the alliance’s own interests. In this study, we present a 
novel large-scale consensus reaching framework based on a self-
management mechanism to manage non-cooperative behaviors. 
In the proposed framework, experts are classified into different 
subgroups using a clustering method, and they provide their 
evaluation information, i.e., the multi-criteria mutual evaluation 
matrices (MCMEMs), regarding the obtained subgroups based 
on their performance. The subgroups’ weights are generated 
dynamically from the MCMEMs, which are in turn used to 
update experts’ weights. This mechanism allows penalizing the 
weights of the experts with non-cooperative behaviors. Detailed 
comparison analysis is presented to verify the validity of the 
proposed consensus framework for supply chain risk mitigation. 

Keywords—consensus reaching process, large-scale group 
decision making, non-cooperative behaviors, supply chain risk 
mitigation, self-management mechanism 

I. INTRODUCTION 
Supply chain risk management [20, 31] is very important 

for a company, and there are many elements and stakeholders 
to be considered in this complex decision process. To mitigate 
the supply chain risk, a group of experts could be asked to 
make a choice among several alternatives, which can be 
regarded as a group decision making process. 

Group decision making (GDM) [12] refers to a process in 
which a group of experts aim at obtaining a collective solution 
based on their opinions on a decision problem. And the 
consensus reaching process (CRP) [3, 6, 8, 17, 23, 24] is 
usually used to help improve the consensus level among 
experts. 

In the past few years, with the development of information 
technology and society, decision contexts become more and 
more complex as a large number of stakeholders are often 
involved, as it is the case in  supply chain risk management 
contexts. To cope with this type of decision situation, a number 
of large-scale group decision models have been proposed [18, 
21, 22, 29, 30]. In a large-scale consensus reaching process 
(LCRP), because experts usually are from different domains 
and have different interests, they might adopt non-cooperative 
behaviors to achieve their own goals. For example, to solve a 
supply chain risk management problem a number of experts are 
going to make a choice among several alternatives. There may 
be situations that  some experts will form an alliance and 
express their preferences in a direction against consensus to 
benefit. Thus, managing experts’ non-cooperative behaviors is 
the key to assure the security and quality of the LCRP 
outcome. In the existing literature, two mainstream research 
approaches have been developed to deal with non-cooperative 
behaviors in the GDM: (1) managing non-cooperative 
behaviors in the aggregation process of the GDM [25, 26], 
which mainly analyzes the influence of the non-cooperative 
behaviors on the aggregation outcome; (2) managing non-
cooperative behaviors in the consensus process of the GDM [9, 
18, 21], which focuses on how to achieve a consensus under 
the presence of non-cooperative behaviors.  

By analyzing existing non-cooperative behavior studies, we 
find that there are still some gaps should be filled: (1) models 
in [25, 26] only discuss the non-cooperative behaviors in the 
aggregation process in GDM problems. However, non-
cooperative behaviors often appear in the CRP, which presents 
more complex characteristics; (2) models in [18, 21] to manage 
non-cooperative behaviors in the CRP depend on a moderator. 
However, in a practical decision problem, it could be difficult 
for a moderator to carry out such heavy and complicated task. 
(3) model in [9] manages non-cooperative behaviors based on 
mutual evaluation matrices in the CRP. However, in LCRP the 
mechanism cannot work well because it could be difficult to 
manage mutual evaluation matrices among a large group of 
experts. 
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Motivated by the challenge to cope with non-cooperative 
behaviors in LCRP of supply chain risk management, in this 
study we propose a novel large-scale consensus framework 
based on a self-management mechanism, which allows 
penalizing the weights of the experts with non-cooperative 
behaviors. 

The rest of this paper is organized as follows: Section II 
introduces the preliminaries. Section III proposes the novel 
consensus framework based on a self-management mechanism 
for supply chain risk mitigation. And then detailed simulation 
analysis are presented in section IV to verify the validity of the 
proposed framework. Finally, conclusion and future work are 
concluded in Section V. 

II. PRELIMINARIES 
This section introduces some basic knowledge regarding 

the additive preference relations, consensus reaching process 
and the LCRP. 

A. Additive preference relations 
There are two basic elements in a GDM problem: a set of 

alternatives, 1 2{ ,  ,...,  } ( 2)= ≥nX x x x n  ; and a set of experts, 

1 2{ ,  ,...,  } ( 2)= ≥mE e e e m . Each expert can express his/her 
preference on X  using different preference representation 
structures [4, 7, 11, 15]. Additive preference relation which is 
widely used in many GDM models is also adopted in this paper. 

Definition 1 (Additive preference relation). An expert ke  
expresses his/her preferences on a set of alternatives X   by a 
matrix, ( )k k

ij n nP p ×= , in which [0,1]k
ijp ∈  denotes the expert’s 

preference degree of alternative ix  over jx . It is assumed that 
the preference relation satisfies the additive reciprocity 
property, i.e., 1+ =ij jip p , ,∀i j . 

For simplicity, we call additive preference relations simply 
preference relations below. 

B. Consensus reaching process 
Many CRP models based on preference relations have been 

proposed in the specialized literature, which normally consist 
of a consensus process and a selection process.  

(1) Consensus process aims at improving the consensus 
level among experts [5, 13, 18], and it comprises two parts: 
consensus measure and feedback adjustment. 

(a) Consensus measure [5, 13, 18] is used to compute the 
level of agreement among experts. In this paper, we adopt the 
approach presented in [18] which is described below. 

For a pair of experts ( , )k le e , a preference similarity matrix, 

( )kl
ij n n

PS ps
×

= , is defined, where 1 | |kl k l
ij ij ijps p p= − − . Let ωk  

and ωl  be the weights of experts ( , )k le e , respectively. The 

following consensus matrix, ( )
×

= ij n n
CM cm , with element 

           
1 1

1 1 1 1
/m m m mkl

ij kl ij klk l k k l k
cm psω ω− −

= = + = = +
=        (1) 

and min{ , }ω ω ω=kl k l  is computed [18]. The consensus level 
can be computed at the following three different levels: 

(i) Consensus level on a pair of alternatives ( , )i jx x , 

                                  =ij ijcp cm                                      (2) 

(ii) Consensus level on alternative ix , 

                           
1,

/ ( 1)
= ≠

= −n
i ijj j i

ca cm n                     (3) 

(iii) Collective consensus level, 

                       
1

/
=

= n
ii

cl ca n                                   (4) 

(b) Feedback adjustment [9, 18] is used to help experts 
modify their preferences to improve the consensus level among 
experts. In this paper, this process is described below. 

Let ( )
×

=k k
ij n n

P p  be the preference relation of expert ke , 

( )
×

=c c
ij n n

P p  be the collective preference relation, and 

( )
×

=k k
ij

n n
P p  be the adjusted preference relation of expert ke . 

The adjustment process obeys following rules: 

        
[min( , ),max( , )],     

1  ,                                    

k k c k c
ij ij ij ij ij

k k
ji ij

p p p p p if i j

p p if i j

∈ >

= − <
        (5) 

(2) Selection process aims to help experts find a solution to 
a decision problem. It is usually comprises two stages [9]. 

(a) Aggregation phase is used to obtain the collective 
preference relation, ( )

×
=c c

ij n n
p p . In this study, the WA 

operator is adopted in this process: 

 1 2
1 2 1

... ...ω ω ω ω ω
=

= + + + + + = mc k m k
ij ij ij k ij m ij k ijk

p p p p p p  (6) 

where [0,1]ω ∈k  is the weight of expert ke  and 
1

1ω
=

=m
kk

. 

(b) Exploitation phase is used to rank the alternatives. This 
is done by associating a collective preference value, iCV , to 
each alternative ix . In this paper we use the following method 
to calculate  iCV . 

1
/n c

i ijj
CV p n

=
= , 1, 2...,=i n                      (7) 

3308



According to Eq. (7), a ranking of alternatives can be 
obtained.  

C. Large-scale consensus reaching process 
Different from traditional GDM with a small number of 

experts participating in, the LCRP problem involves a large 
number of experts. Numerous methods have been proposed to 
cope with this type of problem in the existing literature, which 
usually obey the following scheme (e.g., [18]): firstly, a 
clustering method is adopted to classify the experts into a 
number of subgroups; then, a consensus process is utilized to 
improve the consensus level among experts; and finally, a 
selection method is used to obtain a collective group preference 
and the ranking of alternatives. 

From above analysis, it is obvious that the most prominent 
feature of LCRP models is the application of a clustering 
process. In existing literature, there are many clustering 
methods available [2, 14, 16] to perform this task. In this study 
the method proposed in [16] is adopted. 

III. THE LARGE-SCALE CONSENSUS FRAMEWORK BASED 
ON A SELF-MANAGEMENT MERCHANISM FOR SUPPLY CHAIN 

RISK MITIGATION 
This section proposes the LCRP problem in supply chain 

risk management with non-cooperative behaviors, and formally 
presents its resolution framework. 

A. LCRP problem in supply chain risk management with 
non-cooperative behaviors 
In a LCRP problem in supply chain risk management, some 

experts may collude with other experts and adopt non-
cooperative behaviors to further their own goals. As mentioned 
in Section I, the consensus building among a large number of 
experts has become a hot topic of research, and non-
cooperative behaviors usually appear in LCRP. Therefore it is 
important to study it and to tackle it with appropriate 
theoretically based models, and it is necessary to design a 
LCRP framework to cope with this situation. 

B. The large-scale consensus framework for supply chain 
risk mitigation 
As mentioned in section II-C, the resolution of LCRP 

problems usually obeys a scheme consisting of three different 
parts: clustering process, consensus process and selection 
process [18]. By integrating experts’ weights generated 
dynamically into the LCRP, we propose a novel large-scale 
consensus framework based on a self-management mechanism 
for supply chain risk mitigation. In the proposed framework, 
the following four parts are differentiated as Fig. 1. 

(1) Clustering process. A clustering algorithm is applied to 
classify experts into a number of subgroups. 

(2) Dynamically generating weights process. Experts 
provide the MCMEMs regarding subgroups, and then 
subgroups’ weights can be obtained from the MCMEMs. 
Finally, experts’ weights can be updated dynamically by the 
obtained subgroups’ weights, which are presented in Section 
III-C. 

 
Fig. 1. The large-scale consensus framework for supply chain 
risk management 

(3) Consensus process. Consensus measure is used to 
compute the consensus level among experts, and feedback 
adjustment is applied to help them improve the consensus level 
when the consensus level is below a satisfactory threshold . 

(4) Selection process. Aggregation phase and exploitation 
phases are carried out to obtain the collective group preference 
relation and ranking of alternatives, respectively. 

C. Dynamically generating weights process 
Experts provide and update their MCMEMs regarding 

subgroups based on some criteria. And then subgroups’ 
weights can be obtained from the MCMEMs. Finally, they are 
employed to update experts’ weights. 

(1) MCMEMs. It is assumed that there are h  subgroups 
1 2{ , ,..., }= hG G G G  as a result of the application of the 

clustering process. Let 1 2{ , ,..., }yc c c c=  be a set of criteria of 
MCMEMs, and let 1 2( , ,..., )T

yκ κ κ κ=  be a weight vector of 

criteria, in which [0,1]iκ ∈  and 
1

1y
jj

κ
=

= . Experts will 
provide and update their MCMEMs about these subgroups in 
each consensus round. 

Expert ke  provides his/her MCMEMs, ( )
×

=k k
ij h y

V v , in 

which k
ijv  denotes the evaluation value that expert ke  assigns 

to the subgroup iG  with respect to the criterion jc . If ∈k ie G , 
=k

ijv null ; otherwise, [0,100]∈k
ijv . The MCMEM of subgroup 

( 1,2,..., )=tG t h , ( ) ×=t tG G
ij h yV v  is obtained by averaging the 

provided MCMEMs of the subgroup members: 

/ || ||
∈

=t

k t

G k
ij ij t

e G

v v G                           (8) 

where || ||tG  denotes the number of experts in this subgroup. 
And the MCMEM of the large group, ( ) ×=G G

ij h yV v , is 
obtained by averaging all subgroups’ MCMEMs. 
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1

/ ( 1)
=

= −t
h GG

ij ijt
v v h                        (9) 

(2) Obtaining the individuals’ weights. GV  is normalized 
GV  as follows. 

     1

1

/ ,       ,  1, 2,...,

1 /
,    cos   ,  1, 2,...,

(1 / )

=

=

= =

= =

hG G G
ij ij ij ji

G
ijG

ij jh G
iji

v v v for the benefit criterion a j y

v
v for the t criterion a j y

v

   (10) 

The evaluation value that the large group assigns to the 
subgroup iG  can be computed as 

1

y G
i j ijj

vζ κ
=

= . A large 

value of iζ  indicates that the large group believes the subgroup 

iG  is quite important. Let 1 2( , ,..., )hGG G Tλ λ λ λ=  be the 
weight vector of 1 2{ , ,..., }= hG G G G . We can obtain the 
weights of subgroups by solving the following nonlinear 
programming model: 

min  2
1
( )i

h G
ii

ζ λ
=

−  

1
1

. .
0, (1, 2,..., )

i

i

h G
i

G
s t

i h

λ

λ
=

=

≥ =
                       (11) 

By solving model (11), we have 

                                
1

i
yG G

j ijj
vλ κ

=
=                                 (12) 

Then, the obtained subgroups’ weights are used to update 
the experts’ weights. The updated weight of expert ∈k ie G , 

ωk , can thus be defined as follows: 

                       (1 ) iG
k kω ρω ρ λ= + −                            (13) 

where ρ  is a parameter used to control the amount of change 
in updating the experts’ weights. 

Finally, experts’ updated weights are normalized: 

1
/ m

k k ii
ω ω ω

=
=                                 (14) 

IV. APPLICATION OF THE PROPOSED LARGE-SCALE 
CONSENSUS FRAMEWORK FOR SUPPLY CHAIN RISK 

MITIGATION 
In this section, we introduces a common non-cooperative 

behavior in LCRP of supply chain risk management contexts, 
and we applies the proposed large-scale consensus framework 
to manage it. Detailed simulation analysis is presented to verify 
the validity of the proposed framework. 

A. Non-cooperative behaviors in LCRP of supply chain risk 
management contexts 
In LCRP of supply chain risk management contexts, it is 

naturally that some experts might form an alliance which may 
adopt non-cooperative behaviors to further their own interests. 
To cope with this decision situation, firstly we introduce a 
concept of subgroup successive similarity: for any two 
subgroups in two successive consensus rounds, if the two 
subgroups share a large number of experts, then the two 
subgroups are considered similar and can be regarded as same. 
The successive similarity degree can be described as follows: 

Let , 1−i zG  be a subgroup in consensus round 1−z , ,j zG  be 
a subgroup in consensus round z , then 

, 1 ,, , 1 , , 1 ,|| || / || ||
i z j zG G i z j z i z j zS G G G G

− − −=            (15) 

is considered as the similarity degree between the two 
subgroups. Let ( [0,1])α α ∈  be a given threshold. If 

, 1 ,,i z j zG GS α
−

> , the two subgroups are considered the same. 

Based on the concept of subgroup successive similarity, we 
consider the following common large-scale group non-
cooperative behaviors I. 

Large-scale group non-cooperative behavior I 

In LCRP of supply chain risk management contexts, 
experts’ opinions will reach a consensus if they modify their 
preference relations according to the advice of feedback 
adjustment. However, a subgroup’s preference relation might 
diverge from the group to further its own interests, and the 
deviation between the subgroup’s preference relation and the 
group’s preference relation could be very large. In this study, 
we call this type of behavior large-scale group non-cooperative 
behavior I. 

Let ,( )i zGP  be the preference relation of subgroup ,i zG  and 
( , )c zP  be the group’s preference relation in consensus round z . 

The deviation between them can be computed as follows: 

, ,( ) ( , ) 2
1 1,

| | / ( )i z i zn nG G c z
ij iji j j i

N p p n n
= = ≠

= − −           (16) 

Let ( [0,1])β β ∈  be a given threshold. If ,i zGN β≥ , then 
we say that the subgroup ,i zG  features large-scale group non-
cooperative behavior I. 

B. Simulation experiments 
In this section, we design a simulation experiment to verify 

the validity of the proposed framework for managing non-
cooperative behaviors in LCRP. 

In the simulation experiment, we generate the initial 
experts’ preference relations randomly. After the clustering 
process, experts provide their MCMEMs. The MCMEMs 
involve three criteria: professional skill, fairness and 
cooperation. In existing literature, a number of methods are 
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proposed to set the criterion weights in multiple criteria 
decision making (e.g., [1, 27, 28]). For instance, In this paper 
we set that all criterion weights are equal to manage large-scale 
group non-cooperative behavior I. We design simulation 
experiment I based on the following natural hypotheses 1. 

Hypothesis 1: If a subgroup features large-scale group non-
cooperative behavior I, then experts in other subgroups will 
decrease the evaluation value of this subgroup regarding the 
criterion “ cooperation”. 

Simulation experiment I is described as follows. 

Step 1: Let 1=z . Initialize experts’ preference relations 
and weights. And we set that m  experts, G , have non-
cooperative behavior I. 

Step 2: Clustering. Classify experts into a number of 
subgroups 1, 2, ,{ , ,..., }z z h zG G G  by the clustering method. 

Step 3: MCMEMs. If 1=z , for  ( 1,2,..., )∈ =k te G t h , 
( , ) =k z
tjv null ; for ,∉k t ze G , generate ( , )k z

tjv  randomly from 
interval [80,100] . If 2≥z , according to hypothesis 1, experts 
in other subgroups will decrease the evaluation values of the 
subgroup G  regarding the criterion “cooperation”. The 
process is described as follows: 

( , )
,

( , )
, ,

( , )

,                                               

[80,100],                                        &

[80,100],                                        

k z
ij k i z

k z
ij k i z i z

k z
ij k i

v null e G

v e G G G

v e G

= ∈

∈ ∉ ≠

∈ ∉ , ,

( , )
, ,

& & 1,2

[max(80 100 ,0),  100 100 ],   & & 3
z i z

k z
ij k i z i z

G G j

v e G G G jθ θ

= =

∈ − − ∉ = =

      Step 4: Obtain experts’ weights and collective preference 
relation. Based on obtained MCMEMs, use (8)-(12) to obtain 
subgroups’ weights, 1, 2, ,( , ,..., )z z h zG G Gλ λ λ λ= . Then use the 
obtained subgroups weights to update experts’ initial weights 
by (13)-(14) and obtain collective preference relation by (6). 

Step 5: Consensus measure. Use (1)-(4) to obtain the 
consensus level cl  among experts. If ≥cl cl  or max≥z z , then 
go to step 7; otherwise, continue with the next step. 

Step 6: Feedback adjustment. For ∉ke G , use (5) to 

modify their preference relations; for ke G∈ , generate experts’ 
preference relations, and guarantee that the deviation between 
the subgroup G  and the large group is larger than β . 

Let 1= +z z , then go to step 2. 

Step 7: Output. If ≥cl cl , then 1=s ; otherwise, 0=s . 
Output z  and s . 

Note 1: (1) the parameter z  denotes the iteration number to 
achieve a consensus among experts; (2) the parameter s  
reflects whether the given consensus level cl can be achieved; 
(3) the parameter  ( [0,1])θ θ ∈  denotes the penalty coefficient, 
with a larger θ  value denoting a larger penalty strength. 

C. Comparitive analysis 
In this section, we compare the proposed large-scale group 

non-cooperative behaviors management framework against the 
traditional LCRP to verify the validity of our framework.  

In traditional CRP models, experts’ weights remain 
unchanged. The traditional methods can be also exported to 
manage large-scale GDM after some minor modifications. In 
our simulation experiment I, when deleting the dynamically 
generating weights process, we could obtain the traditional 
LCRP, i.e., we remove steps 3-4 in Simulation experiments I to 
obtain simulation experiment I * , which can be used to 
describe traditional LCRP.  

Let max6,  5,  0.9,  0.2θ= = = =n z cl , and 10m = . When 
setting different input parameters m  and β  for simulation 

methods I * and I, we run these two simulation experiments 
1000 times, and we can obtaining the average values of s  and 
z . The simulation results are described in Fig. 2. 
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Fig. 2. Average s  and z  values in Simulation experiments I 
and I * under different parameters m  and β  

From Fig. 2, we have the following observations: 

(1) The consensus success ratios in the proposed 
framework are clearly higher than those in the traditional 
LCRP, which means that the proposed framework can improve 
the success ratio of achieving a consensus among experts by 
managing the large-scale group non-cooperative behavior I. 

(2) There are obviously fewer average consensus rounds in 
the proposed framework than those in the traditional LCRP, 
which means that the proposed framework can accelerate the 
speed to achieve a consensus among experts. 

V. CONCLUSION  
In LCRP of a practical supply chain risk management 

problem, it is common that some experts may collude with 
other experts and adopt non-cooperative behaviors to further 
their own goals. In this paper we propose a novel large-scale 
consensus framework based on a self-management mechanism 
for managing non-cooperative behaviors in this decision 
situation. In the proposed framework, experts will provide and 
update their MCMEMs based on subgroups’ performance from 
which subgroups’ weights could be obtained. Then experts’ 
weights can be updated dynamically by the obtained 
subgroups’ weights, and they are integrated into the LCRP. We 
consider a common large-scale group non-cooperative 
behavior in LCRP. If a subgroup is detected to use this non-
cooperative behavior, experts in other subgroups will decrease 
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the evaluation values of this subgroup which allows decreasing 
the weights of experts in this subgroup. Also, we design 
detailed simulation experiment to verify the validity of the 
proposed framework.   

In fact, social relationships [8, 10] among experts may also 
play a key role in the consensus building. Meanwhile, decision 
elements could be changed dynamically during the LCRP, 
examples of which are the experts’ participation rate, or the 
number of available alternatives [19]. We believe that it could 
be very interesting in future work to investigate and cope with 
the social relations issues and dynamic elements under the self-
management mechanism-based framework in the large-scale 
group consensus building. 
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