
Pattern Recognition 41 (2008) 2693–2709
www.elsevier.com/locate/pr

A memetic algorithm for evolutionary prototype selection:
A scaling up approach�

Salvador Garcíaa,∗, José Ramón Canob, Francisco Herreraa

aDepartment of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
bDepartment of Computer Science, University of Jaén, 23700 Linares, Jaén, Spain

Received 8 September 2007; received in revised form 18 January 2008; accepted 14 February 2008

Abstract

Prototype selection problem consists of reducing the size of databases by removing samples that are considered noisy or not influential on
nearest neighbour classification tasks. Evolutionary algorithms have been used recently for prototype selection showing good results. However,
due to the complexity of this problem when the size of the databases increases, the behaviour of evolutionary algorithms could deteriorate
considerably because of a lack of convergence. This additional problem is known as the scaling up problem.

Memetic algorithms are approaches for heuristic searches in optimization problems that combine a population-based algorithm with a local
search. In this paper, we propose a model of memetic algorithm that incorporates an ad hoc local search specifically designed for optimizing the
properties of prototype selection problem with the aim of tackling the scaling up problem. In order to check its performance, we have carried
out an empirical study including a comparison between our proposal and previous evolutionary and non-evolutionary approaches studied in
the literature.

The results have been contrasted with the use of non-parametric statistical procedures and show that our approach outperforms previously
studied methods, especially when the database scales up.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Considering supervised classification problems, we usually
have a training set of samples in which each example is labelled
according to a given class. Inside the family of supervised clas-
sifiers, we can find the nearest neighbour (NN) rule method
[1,2] that predicts the class of a new prototype by computing a
similarity [3,4] measure between it and all prototypes from the
training set, called the k-nearest neighbours (k-NN) classifier.
Recent studies show that k-NN classifier could be improved by
employing numerous procedures. Among them, we could cite
proposals on instance reduction [5,6], for incorporating weights
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for improving classification [7], and for accelerating classifica-
tion task [8], etc.

Prototype selection (PS) is an instance reduction process con-
sisting of maintaining those instances that are more relevant
in the classification task of the k-NN algorithm and remov-
ing the redundant ones. This attempts to reduce the number
of rows in data set with no loss of classification accuracy and
obtain an improvement in the classifier. Various approaches of
PS algorithms were proposed in the literature, see Refs. [6,9]
for review. Another process used for reducing the number of
instances in training data is the prototype generation, which
consists of building new examples by combining or computing
several metrics among original data and including them into
the subset of training data [10].

Evolutionary algorithms (EAs) have been successfully used
in different data mining problems (see Refs. [11–13]). Given
that PS problem could be seen as a combinatorial problem, EAs
[14] have been used to solve it with promising results [15],
which we have termed evolutionary prototype selection (EPS).
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The increase of the database’s size is a staple problem in PS
(which is known as scaling up problem). This problem produces
excessive storage requirement, increases time complexity and
affects generalization accuracy. These drawbacks are presented
in EPS because they result in an increment in chromosome size
and time execution and also involve a decrease in convergence
capabilities of the EA. Traditional EPS approaches generally
suffer from excessively slow convergence between solutions
because of their failure to exploit local information. This often
limits the practicality of EAs on many large-scale problems
where computational time is a crucial consideration. A first
rapprochement about the use of EAs when this problem scales
up can be found in Ref. [16].

The combination of EAs with local search (LS) was named
“memetic algorithm” (MA) in Ref. [17]. Formally, a MA is
defined as an EA that includes one or more LS phases within
its evolutionary cycle [18]. The choice of name is inspired by
concept of a meme, which represents a unit of cultural evo-
lution that can show local refinement [19]. MAs have been
shown to be more efficient (i.e., needing fewer evaluations
to find optima) and more effective (identifying higher qual-
ity solutions) than traditional EAs for some problem domains.
In the literature, we can find a lot of applications of MAs
for different problems; see Ref. [20] for an understanding of
MA issues and examples of MAs applied to different domain
problems.

The aim of this paper is to present a proposal of MA for
EPS for dealing with the scaling up problem. The process of
designing effective and efficient MAs currently remains fairly
ad hoc. It is frequently hidden behind problem-specific details.
In our case, the meme used is ad hoc designed for the PS
problem, taking advantage of its divisible nature and simplicity
of hybridization within the EA itself, and allowing us good
convergence with increase of the problem size. We will compare
it with other EPS and non-EPS algorithms already studied in the
literature, paying special attention to the scaling up problem,
analysing its behaviour when we increase the problem size.

This paper is organized in the following manner. Section 2
presents the PS problem formally and enumerates some PS
methods. A review of EPS is given in Section 3. In Section 4
we explain our MA approach and meme procedure. Details
of empirical experiments and results obtained are reported in
Section 5. Section 6 contains a brief summary of the work and
the conclusions reached.

2. Preliminaries: PS

PS methods are instance selection methods [5] which expect
to find training sets offering best classification accuracy by
using the nearest neighbour rule (1-NN).

A formal specification of the problem is the following: Let−→xp an example where −→xp = (xp1, xp2, . . . , xpm, xpl), with −→xp

belonging to a class c given by xpl and a m-dimensional space
in which xpi is the value of the ith feature of the pth sample.
Then, let us assume that there is a training set TR which consists
of n instances −→xp and a test set TS composed by t instances−→xp . Let S ⊆ T R be the subset of selected samples resulted for

the execution of a PS algorithm, then we classify a new pattern
from TS by the 1-NN rule acting over S.

Wilson and Martinez in Ref. [6] suggest that the determina-
tion of the k value in the k-NN classifier may depend according
to the proposal of the PS algorithm. In k-NN, setting k greater
than 1, decreases the sensitivity of the algorithm to noise and
tends to smooth the decision boundaries. In some PS algo-
rithms, a value k > 1 may be convenient, when its interest lies
in protecting the classification task of noisy instances. In any
case, Wilson and Martinez state that it may be appropriate to
find a value of k to use during the reduction process, and then
redetermine the best value of k in the classification task. In EPS
we have used the value k = 1, given that EAs need to have the
greatest possible sensitivity to noise during the reduction pro-
cess. In this manner, an EPS algorithm could better detect the
noisy instances and the redundant ones in order to find a good
subset of instances perfectly adapted to the simplest method of
NNs. By considering only an instance during the evolutionary
process, the reduction–accuracy trade-off is more balanced and
the efficiency is improved. The implication of this fact is the use
of k =1 in the classification, as Wilson and Martinez point out.

In the next subsection, we will describe the algorithms used
in this study but not the EAs (which will be described in
Section 3).

2.1. PS methods

Algorithms for PS may be classified according to the heuristic
followed in the selection. We have selected the most representa-
tive and well-known methods belonging to the non-evolutionary
family and the algorithms that offer the best performance for
the PS problem.

• Enn [21]. Edited NN edits out noisy instances, as well as
close border cases, leaving smoother decision boundaries.
It also retains internal points. It works by editing out those
instances in which class does not agree with the majority of
classes of its k NNs.

• Allknn [22]. Allknn is an extension of Enn. The algorithm,
for i=1 to k flags as bad any instance not correctly classified
by its i NNs. When the loop is completed k times, it removes
the instances flagged as bad.

• Pop [23]. This algorithm consists of eliminating the samples
that are not within the limits of the decision boundaries. This
means that its behaviour is in opposite direction from that of
Enn and Allknn.

• Rnn [24]. The reduced NN rule searches a minimal and con-
sistent subset which correctly classifies all the learning in-
stances.

• Drop3 [6]. An associate of −→xp is that sample −→xi which has−→xp as NN. This method removes −→xp if at least as many of
its associates in TR would be classified correctly without −→xp .
Prior to this process, it applies a noise reduction filter (Enn).

• Ib3 [25]. It introduces the acceptable concept, based on the
statistical confidence of inserting a certain instance in the
subset, to carry out the selection.
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• Cpruner [26]. C-Pruner is a sophisticated algorithm con-
structed by extending concepts and procedures taken from
algorithms Icf [27] and Drop3.

• Explore [28]. Cameron-Jones used an encoding length
heuristic to determine how good the subset S is in describing
TR. Explore is the most complete method belonging to this
group and it includes three tasks:
◦ It starts from the empty set S and adds instances if only

the cost function is minimized.
◦ After this, it tries to remove instances if this helps to min-

imize the cost function.
◦ Additionally, it performs 1000 mutations to try to improve

the classification accuracy.
• Rmhc [29]. First, it randomly selects a subset S from TR

which contains a fixed number of instances s (s=%|T R|). In
each iteration, the algorithm interchanges an instance from
S with another from T R − S. The change is maintained if it
offers better accuracy.

• Rng [30]. It builds a graph associated with TR in which a
relation of neighbourhood among instances is reflected. Mis-
classified instances by using this graph are discarded follow-
ing a specific criterion.

2.2. The scaling up problem

Any algorithm is affected when the size of the problem which
it is applied increases. This is the scaling up problem, charac-
terized for producing:

• Excessive storage requirements.
• Increment of time complexity.
• Decrement of generalization capacity, introducing noise and

over-fitting.

A way of avoiding the drawbacks of this problem was proposed
in Ref. [16], where a stratified strategy divides the initial data
set into disjoint strata with equal class distribution. The number
of strata chosen will determine their size, depending on the
size of the data set. Using the proper number of strata we can
significantly reduce the training set and we could avoid the
drawbacks mentioned above.

Following the stratified strategy, initial data set D is divided
into t disjoint sets Dj , strata of equal size, D1, D2, . . . , Dt

maintaining class distribution within each subset. Then, PS al-
gorithms will be applied to each Dj obtaining a selected subset
DSj . Stratified prototype subset selected (SPSS) is defined as

SPSS =
⋃
j∈J

DSj , J ⊂ {1, 2, . . . , t}. (1)

3. EPS: a review

In this section, we will review the main contributions that
have included or proposed an EPS model.

The first appearance of application of an EA to PS problem
can be found in Ref. [31]. Kuncheva applied a genetic algorithm
(GA) to select a reference set for the k-NN rule. Her GA maps
the TR set onto a chromosome structure composed by genes,

each one with two possible states (binary representation). The
computed fitness function measures the error rate by application
of the k-NN rule. This GA was improved in Refs. [32,33].

At this point, all EPS algorithms reviewed above correspond
to adapting a classical GA model to PS problem. Later, a de-
velopment of more conditioned EPS algorithms to the problem
is made. The first example of this can be found in Ref. [34].
In this paper, an estimation of distribution algorithm (EDA) is
used.

A GA design for obtaining an optimal NN classifier is pro-
posed in Ref. [35]. Ho et al. propose an intelligent genetic al-
gorithm (IGA) based on orthogonal experimental design used
for PS and feature selection. IGA is a GGA that incorporates
an intelligent crossover (IC) operator. IC builds an orthogonal
array (OA) (see Ref. [35]) from two parents of chromosomes
and searches within the OA for the two best individuals ac-
cording to the fitness function. It takes about 2�log2(�+1)	 fitness
evaluations to perform an IC operation, where � is the number
of bits that differ between both parents. Note that only an ap-
plication of IC on large-size chromosomes (resulting chromo-
somes from large-size data sets) could consume a high number
of evaluations.

The technical term EPS has been adopted by Cano et al. in
Ref. [15], in which they analyse the behaviour of different EAs,
steady-state GAs (SSGAs), GGAs, the CHC model [36] and
PBIL [37] (which can be considered as one of the basic EDAs).
The representation of solutions as chromosomes follows the
guidelines in Ref. [31], but fitness function used in these models
combines two values: classification rate (clas_rat) by using 1-
NN classifier and percentage reduction of prototypes of S with
regards to TR (perc_red):

Fitness(S) = � · clas_rat + (1 − �) · perc_red. (2)

Finally, as a multi-objective approach, we can find an EPS
algorithm in Ref. [38].

In our empirical study, the four models developed in Refs.
[15,36,37] together with the IGA proposal [35] will be used to
compare with the MA-EPS proposal. In order to prepare IGA
to be applied only as PS method, we ignore feature selection
functionality. We must point out that the GGA described in Ref.
[15] is really an improved model of Kuncheva’s and Ishibuchi’s
GGAs.

4. A MA for EPS

In this section, we introduce our proposal of MA for EPS.
It is a steady-state MA (SSMA) that makes use of a LS or
meme specifically developed for this purpose. In Section 4.1
we introduce the foundations of the SSMAs. In Section 4.2
we explain the details of the proposed algorithm. Finally, in
Section 4.3 we clarify the application of the ad hoc meme in
the algorithm.

4.1. Steady-state MAs

In SSGA usually one or two offspring are produced in each
generation. Parents are selected to produce offspring and then
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1. Select two parents from the population.

2. Create one/two offspring using crossover and mutation.

3. Evaluate the offspring with the fitness function.

4. Select one/two individuals in the population, which may

be replaced by the offspring.

5. Decide if this/these individuals will be replaced.

Fig. 1. Pseudocode algorithm for the SSGA model.

a decision is made as to which individuals in the population to
select for deletion in order to make room for the new offspring.
The basic algorithm steps of SSGA are shown at Fig. 1.

In step 4, one can choose the replacement strategy
(e.g., replacement of the worst, the oldest, or a randomly chosen
individual), and step 5, the replacement condition (e.g., re-
placement if the new individual is better, or unconditional
replacement). A widely used combination is to replace the
worst individual only if the new individual is better. We will
call this strategy the standard replacement strategy. In Ref.
[39] it was suggested that the deletion of the worst individuals
induced a high selective pressure, even when the parents were
selected randomly.

Although SSGAs are less common than GGAs, different au-
thors [40,41] recommend the use of SSGAs for the design of
MAs because they allow the results of LS to be kept in the
population from one generation to the next.

SSMAs integrate global and local searches more tightly than
generational MAs. This interweaving of the global and local
search phases allows the two to influence each other, e.g., the
SSGA chooses good starting points, and LS provides an ac-
curate representation of that region of the domain. In contrast,
generational MAs proceed in alternating stages of global and
local searches. First, the GGA produces a new population, then
the meme procedure is performed. The specific state of meme
is generally not kept from one generation to the next, though
meme results do influence the selection of individuals.

4.2. SSMA model for PS problem

The main characteristics of our proposed MA are:

• Population initialization: The first step that the algorithm
makes consists of the initialization of the population, which
is carried out by generating a population of random chromo-
somes.

• Representation: Let us assume a data set denoted TR with n
instances. The search space associated with the instance se-
lection of TR is constituted by all the subsets of TR. There-
fore, the chromosomes should represent subsets of TR. This
is achieved by using a binary representation. A chromosome
consists of n genes (one for each instance in TR) with two
possible states: 0 and 1. If the gene is 1, then its associated
instance is included in the subset of TR represented by the
chromosome. If it is 0, then this does not occur.

• Fitness function: Let S be a subset of instances of TR to eval-
uate and be coded by a chromosome. We define a fitness
function considering the number of instances correctly clas-
sified using the 1-NN classifier and the percentage of reduc-
tion achieved with regard to the original size of the training
data. The evaluation of S is carried out by considering all the
training set TR. For each object y in S, the NN is searched
for among those in the set S\{y}

Fitness(S) = � · clas_rat + (1 − �) · perc_red.

The objective of the MA is to maximize the fitness function
as defined. Note that the fitness function is the same as that
used by EPS models previously proposed.

• Parent selection mechanism: In order to select two parents
for applying the evolutionary operators, binary tournament
selection is employed.

• Genetic operators: We use a crossover operator that randomly
replaces half of first parent’s bits with second parent’s bits
and vice versa. The mutation operator involves a probability
that an arbitrary bit in a genetic sequence will be changed to
its other state.

• Replacement strategy: This will use a standard replacement
strategy, which was defined above.

• Mechanism of LS application: It is necessary to control the
operation of the LS over the total visited solutions. This is
because the additional function evaluations required for total
search can be very expensive and the MA in question could
become a multi-restart LS and not take advantage of the
qualities of the EAs. In order to do this, we have included
in the algorithm the Adaptive PLS Mechanism, which is an
adaptive fitness-based method that is very simple but it offers
good results in Ref. [41]. Indeed, this scheme assigns a LS
probability value to each chromosome generated by crossover
and mutation, cnew:

PLS =
{

1 if f (cnew) is better than f (Cworst ),

0.0625 otherwise,
(3)

where f is the fitness function and Cworst is the current worst
element in the population. As was observed by Hart [42],
applying LS to as little of 5% of each population results in
faster convergence to good solutions.

• Termination condition: The MA continues carrying out iter-
ations until a specified number of evaluations is reached.

Fig. 2 shows the SSMA pseudocode. After the initialization
of the population is done, each generation of the algorithm is
composed by a selection of two parents (step 3), together with
the application of the genetic operators: crossover to create two
offspring (step 4) and mutation applied to each one (with the
corresponding probability associated per bit at step 5). At this
point, the two individuals generated are evaluated, followed by
computation of the value of PLS mechanism for each offspring.
A LS optimization is performed here only if the mechanism
decides so. The computation of the value of PLS is done in
step 8 and in the next step, the result of adaptive mechanism
is determined with an uniform distribution u(0, 1). After step
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1. Initialize population.

2. While (not termination-condition) do

3.Use Binary Tournament to select two parents

4.Apply crossover operator to create offspring

(Off1, Off2)

5. Apply mutation to Off1 and Off2

6. Evaluate Off1 and Off2

7.Foreach Offi

8. InvokeAdaptive-PLS-mechanism to obtain PLSi

for Offi

9. If u(0,1) < PLSi
 then

10. Perform meme optimization for Offi

11. End if

12. End for

13. Employ standard replacement for Off1 and Off2

14. End while

15. Return the best chromosome

Fig. 2. Pseudocode algorithm for the proposed MA.

number 12, the replacement strategy can be carried out. The
algorithm returns the best chromosome of the population once
the stop criterion is satisfied.

4.3. Ad hoc meme procedure

In this subsection, we explain the procedure of optimization
via LS performed within the evolutionary cycle described in
Fig. 2 (step 10) according to the following structure: firstly
we present the evaluation mechanism with total and partial
evaluations; secondly, we present the pseudocode describing
the whole procedure; thirdly, we will explain the two strategies
used associated to fitness improvement, improving accuracy
stage and avoiding premature convergence stage with loss of
the local objective; and finally, an illustrative example is shown.

4.3.1. Evaluation mechanisms
During the operation of the SSMA, a fixed number of eval-

uations must take place in order to determine the quality of
the chromosomes. We can distinguish between total evaluation
and partial evaluation.

• Total evaluation consists of a standard evaluation of per-
formance of a chromosome in EPS, computing the NN of
each instance belonging to the selected subset and counts the
correctly classified instances. Total evaluations always take
place outside the optimization procedure, that is, within the
evolutionary cycle.

• Partial evaluation can be carried out on a neighbour solution
of a current instance that has already been evaluated and dif-
fers only in one bit position changed from value 1 to 0. If
a total evaluation counts as one evaluation in terms of tak-
ing account of number of evaluations for the stop condition,

a partial evaluation counts as

PE = Nnu

n
, (4)

where Nnu is the number of neighbours updated when a
determined instance is removed by meme procedure and n=
|T R| is the size of the original set of instances (also the size
of the chromosome). Partial evaluations always take place
inside the local optimization procedure.

The SSMA computes total evaluations; when we consider a
partial evaluation we add to the counter evaluation variable the
respective partial value PE (expression (4)). Therefore, a certain
number of partial evaluations (depending on the PE values) will
be considered as a total evaluation.

4.3.2. Description of the optimization procedure
The meme optimization procedure used (step 10 in Fig. 2)

in this method is an iterative process that aims to improve indi-
viduals of a population by reducing the number of prototypes
selected and by enhancing classification accuracy.

The pseudocode described in Fig. 3 corresponds to the pro-
cedure in question. It can be described as follows: To achieve
the double objective (to improve the number of classified pat-
terns while reducing the subset size) the procedure considers
neighbourhood solutions with m − 1 instances selected, where
m is equal to the number of instances selected in a current chro-
mosome (positions with value 1 in the chromosome). In other
words, a neighbour is obtained by changing 1 to 0 in a gene.
In this way, the number of samples represented in a chromo-
some after optimization has been carried out will always be
less than or equal to the initial number of samples selected in
the chromosome. The algorithm in Fig. 3 receives as inputs the
chromosome to optimize and its list of associated neighbours,
called U (lines 1–3). The R list will include the identifiers of the
instances that have already been removed without having ob-
tained a sufficient gain according to the threshold value. The U
list contains the identifiers of the instances considered the NNs
of each instance. U has room for n identifiers of instances. It
links the instance identified by a number stored in the ith cell as
the NN of the instance identified by the number i. In this way,
the search of the NN of each instance is only needed when the
instance is removed from the subset selected. Note that the U
list could be upgraded in order to contain more of one neigh-
bour per instance; the case explained here is the easiest.

A partial evaluation can take advantage of U and of the di-
visible nature of the PS problem when instances are removed.

Next, we explain the concepts necessary to understand the
procedure. Two functions are very useful in this procedure:

• Nearest_NeighbourS(·): This function returns the NN of an
instance considering only those instances selected by the
chromosome S. It requires as input an integer that will be the
identifier of an instance within the training set TR, which is
composed of n instances. The output will also be an integer
that identifies the nearest instance of the input belonging to
the S subset (or selected instances in the chromosome).
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Fig. 3. Pseudocode of meme optimization.

• cls(·): This function returns the class that the instance
belongs to.

From step 4 to 14 in Fig. 3, the procedure tries to find instances
for removing from the subset selected (which are randomly cho-
sen). Once a choice of removal is done, the procedure attempts
to compute the gain of this choice, making a backup copy of
the U structure at step 8 (the choice may not be good). In or-
der to do this, it locates the instances which have the choice of
removal as NN and updates the new NN (step 10) by using the
remainder of instances belonging to the subset. Meanwhile, it
simultaneously computes the gain, checking if the new neigh-
bours produce a success or a fail in the classification of the in-
stance (steps from 11 to 16). This gain, computed in a relative
and efficient way, allows the algorithm to decide if the choice
of removal is maintained or discarded. The gain only refers to

classification accuracy, since the reduction profit is implicit by
the fact that the choice is always a removal.

Looking at Fig. 3, the variable called gain maintains an ac-
count of LS contributions carried out when a move on the
meme procedure is performed. It may be negative or positive,
depending on whether or not the NN of an instance changes the
class label of the previous NN. A negative contribution, which
subtracts 1 from the local objective, is caused when the new
neighbour misclassifies a correctly classified instance. A posi-
tive contribution, which adds 1 to the local objective, is caused
when the new neighbour classifies correctly a badly classified
instance. A null contribution is caused when an instance main-
tains the same state of classification, which remains misclas-
sified or correctly classified. This process is carried out over
all instances whose NN has changed by using the identifiers of
NNs stored in structure U, appropriately updated after a move
of meme procedure.

The acceptance of a choice of removal depends upon the gain
in accuracy that the algorithm is looking for, which is defined
according to the current LS stage.

4.3.3. LS stages
Two stages can be distinguished within the optimization pro-

cedure. Each stage has a different objective and its applica-
tion depends on the progress of the actual search process: the
first one is an exclusive improvement of fitness and the second
stage is a strategy for dealing with the problem of premature
convergence.

• Improving accuracy stage: This starts from the initial assign-
ment (a recently generated offspring) and iteratively tries to
improve the current assignment by local changes. If, in the
neighbourhood of the current assignment, a better assign-
ment is found, it replaces the current assignment and it con-
tinues from the new one. The selection of a neighbour is ran-
domly made without repetition from among all the solutions
that belong to the neighbourhood. In order to consider an
assignment as better than the current one the classification
accuracy must be greater than or equal to the previous one,
but in this last case, the number of selected instances will be
lower than previously, so the fitness function value is always
increased.

• Avoiding premature convergence stage: When the search pro-
cess has advanced, a tendency of the population to premature
convergence toward a certain area of the search space takes
place. A local optimization promotes this behaviour when
it considers solutions with better classification accuracy. In
order to prevent this, the meme optimization procedure pro-
posed will accept worse solutions in the neighbourhood, in
terms of accuracy of classification. Here, the fitness function
value cannot be increased; it may be decreased or maintained.

The parameter threshold is used in order to determine the way
the algorithm operates depending on the current stage. When
threshold has a value greater or equal to 0, then the stage
in progress is the improving accuracy stage because a new
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Class Instances

A {1, 2, 3, 4, 5, 6, 7}

B {8, 9, 10, 11, 12, 13}

Current Solution Neighbour Solution

0110110100010Representation 0100110100010

U structure {3, 5, 8, 8, 3, 2, 6, 2, 8, 8, 3, 2, 3} {12, 5, 8, 8, 2, 2, 6, 2, 8, 8, 8, 2, 8}

Gain {1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0} {-1,·,·,·,0,·,·,·,·,·,+1,·,+1}

Correct classified  patterns 7 − 1+1+1

Partial evaluation account: PE =
Nnu

n = 4
13

Number of correct classified patterns: 8

7

→

→

→

→
→

Fig. 4. Example of a move in meme procedure and a partial evaluation.

generated chromosome via meme optimization is accepted
when its fitness contribution is not negative (gain�0). Note
that gain = 0 implies that the new chromosome is as good as
the original considering accuracy objective, but it will have
fewer instances (improving reduction objective). On the other
hand, if threshold value is less than 0, then the stage in progress
is the avoiding premature convergence stage because the new
chromosome is accepted when its fitness contribution is not
positive. This process is described in Fig. 3 in step 18.

Initially, the algorithm starts with a threshold value equal to
0. The parameter is affected by three possible conditions:

• After a certain number of generations, the classification ac-
curacy of the best chromosome belonging to the population
has not been improved: threshold = threshold + 1.

• After a certain number of generations, the reduction of the
subset selected with respect to the original set of the best
chromosome belonging to the population has not been im-
proved: threshold = threshold − 1.

• After a certain number of generations, neither accuracy nor
reduction objectives have been improved: threshold value
does not change.

The exact number of generations was tested by an empirical
way, and at the end we checked that a value of 10 generations
worked appropriately.

Once the change is accepted due to the fact that the gain
equals or exceeds the current threshold, in step 19 of Fig. 3,
the new fitness value for the optimized solution is computed as

fitnessgain =
(

gain

n
· 100 + 1

n
· 100

)/
2.

That is, the gain obtained is changed in terms of percentage of
classification accuracy and this value is added to the percent-
age of reduction profit, which is always 1/n given that a LS
movement is always a removal of an instance.

4.3.4. Example of ad hoc meme
An example is illustrated at Fig. 4, where a chromosome of 13

instances is considered. Meme procedure removes the instance

Table 1
Small data sets characteristics

Name N. instances N. features N. classes

Bupa 345 7 2
Cleveland 297 13 5
Glass 294 9 7
Iris 150 4 3
Led7Digit 500 7 10
Lymphography 148 18 4
Monks 432 6 2
Pima 768 8 2
Wine 178 13 3
Wisconsin 683 9 2

number 3. Once removed, the instance number 3 cannot appear
in the U structure as NN of another instance. U must be updated
at this moment obtaining the new NNs for the instances that
had instance number 3 as NN. Then a relative objective with
respect to the original chromosome fitness is calculated (the
gain of instances 1, 5, 11 and 13). The result obtained is a
new chromosome with a higher number of correctly classified
patterns (8 instead of 7) that, as well, takes up only 4 of the
13 evaluations, a number which will count towards the total of
evaluations carried out.

5. Experimental study

This section presents the framework used in the experimen-
tal study carried out together with results. To scale appropri-
ately the problem we have used three sizes of problems: small,
medium and large. We intend to study the behaviour of the al-
gorithms when the size of the problem increases. When consid-
ering large data sets, stratification process [16] is used obtain-
ing strata of medium size. The small-size data sets are summa-
rized in Table 1 and medium and large data sets can be seen in
Table 2. The data sets have been taken from the UCI Machine
Learning Database Repository [43]. Ringnorm data set comes
from DELVE project.1

1 URL: http://www.cs.toronto.edu/∼delve/.

http://www.cs.toronto.edu/~delve/
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Table 2
Medium and large data sets characteristics

Name N. instances N. features. N. classes

Nursery 12 960 8 5
Page-Blocks 5476 10 5
Pen-Based 10 992 16 10
Ringnorm 7400 20 2
Satimage 6435 36 7
Spambase 4597 57 2
Splice 3190 60 3
Thyroid 7200 21 3

Adult (large) 45 222 14 2

We will distinguish two models of partitions used in this
work:

• Tenfold cross-validation classic (Tfcv classic): where TRi ,
i = 1, . . . , 10 is a 90% of D and T Si is its complemen-
tary 10% of D. It is obtained as the following equations
indicate:

TRi =
⋃
j∈J

Dj , (5)

J = {j/1�j �(i − 1) and (i + 1)�j �10},
TSi = D\T Ri . (6)

• Tenfold cross-validation strat (Tfcv strat): where SPSSi is
generated using the DSj instead of Dj (see Section 2.2).

SPSSi =
⋃
j∈J

DSj ,

J = {j/1�j �b · (i − 1) and (i · b) + 1�j � t}. (7)

The data sets considered are partitioned using the tfcv classic
(see expressions (5) and (6)) except for the adult data set, which
is partitioned using the tfcv strat procedure with t = 10 and
b=1. (see expression (7)). Deterministic algorithms have been
run once over these partitions, whereas probabilistic algorithms
(including SSMA) run 3 trials over each partition and we show
the average results over these trials.

Whether small, medium or large data sets are evaluated, the
parameters used are the same, as specified in Table 3. They
are specified by following the indications given for their re-
spective authors. With respect to the standard EAs employed in
the study, GGA and SSGA, the selection strategy is the binary
tournament. The mutation operator is the same one used in our
model of SSMA while SSGA uses standard replacement strat-
egy. The crossover operator used by both algorithms defines
two cut points and interchanges substrings of bits.

To compare results we propose the use of non-parametric
tests, according to the recommendations made in Ref. [44].
They are safer than parametric tests since they do not assume
normal distribution or homogeneity of variance. As such, these
non-parametric tests can be applied to classification accuracies,
error ratios or any other measure for evaluation of classifiers,

Table 3
Parameters used in PS algorithms

Algorithm Parameters

CHC Pop = 50, Eval = 10 000, � = 0.5
IGA Pop = 10, Eval = 10 000

pm = 0.01, � = 0.5
GGA Pm = 0.001, Pc = 0.6, P op = 50

Eval = 10 000, � = 0.5
PBIL LR = 0.1, Mutshif t = 0.05, pm = 0.02, Pop = 50

NegativeLR = 0.075, Eval = 10 000
SSGA Pm = 0.001, Pc = 1, P op = 50

Eval = 10 000, � = 0.5
Ib3 Acept level = 0.9, Drop level = 0.7
Rmhc S = 90%, Eval = 10 000
Rng Order = 1
SSMA Pop = 30, Eval = 10 000, pm = 0.001, pc = 1

� = 0.5

even including model sizes and computation times. Empirical
results suggest that they are also stronger than the parametric
test. Demšar recommends a set of simple, safe and robust non-
parametric tests for statistical comparisons of classifiers. We
will use two tests with different purposes, the first of which
is the Iman and Davenport test [45], a non-parametric test,
derived from the Friedman test, and equivalent to the repeated-
measures ANOVA. Under the null-hypothesis, which states that
all the algorithms are equivalent, a rejection of this hypothesis
implies the existence of differences of performance among all
the algorithms studied. The second is the Wilcoxon signed-
ranks test [46]. This is analogous to the paired t-test in non-
parametrical statistical procedures; therefore, it is a pairwise
test that aims to detect significant differences in the behaviour
of two algorithms.

We will present four types of tables according to the subse-
quent structure:

(1) Complete results table: This shows the average of the re-
sults obtained by each algorithm in all data sets evaluated
(small or medium group of data sets). These tables are
grouped in columns by algorithms. For each one it shows
the average reduction, accuracy in training and accuracy
in test data with their respective standard deviations (SDs)
(see for example Table 4). The two last rows compute the
average and SD over the average results obtained on each
data set, respectively.

(2) Summary results table: This shows the average of the re-
sults obtained by each algorithm in the data sets evaluated
(small or medium group of data sets). The columns show
the following information (see for example Table 9):
• The first column shows the name of the algorithm.
• The second and third columns contain the average exe-

cution time and the SD associated to each algorithm of
the run of 10-fcv. They have been run in a HP Proliant
DL360 G4p, Intel Xeon 3.0 GHz, 1 GB RAM.

• The fourth and fifth columns show the average reduction
percentage and associated SD from the initial training
sets.
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Table 4
Average results for EPS algorithms over small data sets

Data set Measure CHC GGA IGA PBIL SSGA SSMA

Red. Tra. Tst. Red. Tra. Tst. Red. Tra. Tst. Red. Tra. Tst. Red. Tra. Tst. Red. Tra. Tst.

Bupa Mean 97.13 73.24 58.76 92.27 78.58 59.57 81.61 83.09 63.69 91.3 78.39 64.61 90.82 79.19 62.25 95.01 76.55 63.99
SD 0.81 1.49 6.75 1.48 1.1 7.39 1.93 1.47 9.27 0.91 1.05 4.64 1.87 1.67 7.18 0.72 1.41 4.11

Cleveland Mean 98.35 63.48 58.75 95.45 64.76 54.8 86.32 68.72 51.49 94.94 64.98 55.77 94.02 65.16 52.52 97.84 63.51 57.47
SD 0.3 0.92 5.91 0.87 1 5.45 2.15 1.03 7.16 0.83 0.8 4.94 1.09 1.45 6.29 0.72 0.92 6.51

Glass Mean 94.34 74.04 65.39 90.91 76.44 65.87 80.74 82.55 68.89 91.06 76.18 64.58 90.34 75.86 65.83 92.58 76.12 66.07
SD 0.86 1.51 9.97 0.99 1.91 13.28 1.82 1.65 10.7 1.66 2.36 9.49 1.69 1.94 12.37 1.32 1.74 10.51

Iris Mean 96.81 97.41 96.67 95.56 97.63 94 93.33 98.81 94 96.07 98.07 96 95.41 97.41 95.33 96.07 97.93 95.33
SD 0.47 0.76 3.33 0.33 0.55 4.67 0.66 0.49 3.59 0.58 0.76 4.42 0.93 0.68 4.27 0.67 1.4 5.21

Led7Digit Mean 96.58 68.71 64 95.64 68.64 63.8 95.16 65.89 67.6 93.91 68.67 66 95.71 66.44 64.8 96.71 54.11 75.4
SD 0.18 2.88 7.32 0.18 3.27 4.85 0.33 2.21 4.18 0.78 3.09 2.53 0.37 3.18 5.15 0.45 8.78 4.29

Lymphography Mean 96.55 54.36 39.49 91.96 57.21 35.26 86.27 60.59 40.57 94.75 54.88 41.71 92.33 55.57 43.62 94.67 55.78 42.88
SD 0.68 1.42 9.99 1.5 1.52 9.83 2.2 2.35 11.1 1.31 1.92 13.85 2.32 3.11 9.94 1.52 2.51 12.12

Monks Mean 99.05 96.86 97.27 93.98 94.62 92.3 84.83 98.15 85.75 92.34 94.57 89.17 92.31 94.88 93.39 97.66 97.22 96.58
SD 0.23 0.42 2.65 0.73 0.99 3.71 1.61 0.81 6.98 1.13 1.31 7.15 1.08 1.27 3.72 1.27 1.31 3.26

Pima Mean 98.78 80.14 75.53 95.11 81.57 70.73 86 86.81 70.84 91.9 82.03 72.27 94.23 83.02 73.32 97.38 82.15 73.21
SD 0.28 0.87 3.11 0.75 0.7 4.87 0.71 0.78 2.68 0.49 0.57 2.96 0.64 0.97 4.53 0.68 0.67 5.5

Wine Mean 96.94 98.69 94.93 95.69 98.69 93.82 93.76 99.88 94.97 96.32 98.63 94.41 94.69 98.69 97.19 96.44 98.69 93.82
SD 0.51 0.81 4.62 0.71 0.9 4.61 1.01 0.25 6.78 0.59 0.73 5.56 1.29 0.81 3.75 0.68 0.34 6.31

Wisconsin Mean 99.44 97.57 96.56 99.08 97.71 96 98.22 98.04 95.28 98.54 97.66 96.99 99.06 97.76 96.57 99.38 97.65 96.57
SD 0.08 0.28 2.42 0.2 0.18 2.46 0.42 0.23 3.33 0.28 0.23 1.86 0.26 0.25 3.08 0.09 0.19 2.32

GLOBAL Mean 97.40 80.45 74.74 94.57 81.59 72.62 88.62 84.25 73.31 94.11 81.41 74.15 93.89 81.40 74.48 96.38 79.97 76.13
SD 1.53 16.27 20.63 2.37 15.13 20.69 6.03 14.86 18.95 2.47 15.58 19.08 2.58 15.63 19.86 1.92 17.76 18.94
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• The last four columns include the accuracy mean and
SD when 1-NN is applied using S; the first two show
the training accuracy when classifying TR with S, while
the last two show the test accuracy when classifying TS
with S.

In the fourth, sixth and eighth columns, the best result per
column is shown in bold.

(3) Wilcoxon’s test tables for n × n comparisons: Given that
the evaluation of only the mean classification accuracy over
all the data sets would hide important information and that
each data set represents a different classification problem
with different degrees of difficulty, we have included a sec-
ond type of table that shows a statistical comparison of
methods over multiple data sets. As we have mentioned,
Demšar [44] recommends a set of simple, safe and robust
non-parametric tests for statistical comparisons of classi-
fiers, one of which is the Wilcoxon signed-ranks test [46].
This is analogous to the paired t-test in non-parametrical
statistical procedures; therefore, it is a pairwise test that
aims to detect significant differences in the behaviour of
two algorithms. In our study, we always consider a level of
significance of � < 0.05.
Let di be the difference between the performance scores of
the two classifiers on ith out of N data sets. The differences
are ranked according to their absolute values; average ranks
are assigned in case of ties. Let R+ be the sum of ranks for
the data sets in which the second algorithm outperformed
the first, and R− the sum of ranks for the opposite. Ranks
of di = 10 are split evenly among the sums; if there is an
odd number of them, one is ignored:

R+ =
∑
di>0

rank(di) + 1

2

∑
di=0

rank(di), (8)

R− =
∑
di<0

rank(di) + 1

2

∑
di=0

rank(di). (9)

Let T be the smaller of the sums, T = min(R+, R−).
The Wilcoxon signed-ranks test is more sensitive than the
t-test. It assumes commensurability of differences, but only
qualitatively: greater differences count still more, which
is probably to be desired, but absolute magnitudes are ig-
nored. From the statistical point of view, the test is safer
since it does not assume normal distributions. Also outliers
(exceptionally good/bad performances on a few data sets)
have less effect on Wilcoxon than on the t-test. Wilcoxon’s
test assumes continuous differences di , which therefore
should not be rounded to, say, one or two decimals since
this would decrease the power of the test due to a high
number of ties.
A Wilcoxon table, in this paper, is divided into two parts:
In the first part, we carry out a Wilcoxon test using as the
performance measure the accuracy classification in the test
set, while in the second part, a balance of reduction and
classification accuracy is used as the performance measure.
This balance corresponds to 0.5 · clas_rat + 0.5 · perc_red.
The structure of the tables presents Nalg × (Nalg + 2) cells

to compare all the algorithms in them. In each of the Nalg ×
Nalg cells three symbols can appear: +, − or =. They
show that the algorithm situated in that row is better (+),
worse (−) or equal (=) in behaviour (accuracy or balance
accuracy–reduction) to the algorithm that appears in the
column. The penultimate column represents the number of
algorithms with worse or equal behaviour to the one that
appears in the row (without considering the algorithm itself)
and the last column represents the number of algorithms
with worse behaviour than the one that appears in the row.

(4) Wilcoxon’s test tables to contrast results for a control al-
gorithm: These tables are made up of three columns: In
the first one, the name of the algorithm is indicated, in the
second and third columns, symbols +, − or = show the
existence or absence of significant differences between the
control algorithm and the algorithm specified in the row,
according to accuracy performance and accuracy–reduction
balance performance, respectively. Note that in this type of
tables, a symbol + indicates that the control method is bet-
ter than the algorithm in the row. In the previous type of
tables, the meaning of the symbols is just the opposite; that
is, for example, a symbol + indicates that the algorithm in
the row is better than the algorithm located at the column.

(5) Computation of Iman and Davenport statistic tables: We
follow the indications given in Ref. [44] incarrying out
Iman and Davenport test. It ranks the algorithms for each
data set separately, starting by assigning the rank of 1 to
the best performing algorithm. Let r

j
i be the rank of the

jth of k algorithms on the ith of N data sets. The Iman and
Davenport statistic is defined as

FF = (N − 1)�2
F

N(k − 1) − �2
F

, (10)

in which �2
F is the Friedman statistic

�2
F = 12N

k(k + 1)

⎡
⎣∑

j

(
1

N

∑
i

r
j
i

)2

− k(k + 1)2

4

⎤
⎦ . (11)

FF is distributed according to the F-distribution with k −1
and (k − 1)(N − 1) degrees of freedom.
These tables are made up of four columns. In the first and
second, information about the conditions of the experiment
is indicated: the type of result that is measured and the
scale of the data sets, respectively. In the third, the com-
puted value of FF is shown and, in the last column, the
corresponding critical value of the F-distribution table with
� = 0.05 is indicated. If the value FF is higher than its as-
sociated critical value, then the null-hypothesis is rejected
(this implies a significant difference of results among all
methods considered).

We divide the experimental study into two groups: Compar-
ison among EPS algorithms and comparison of our proposal
with other non-EPS methods. The large-size data sets will be
separately studied with the objective of ascertaining if the be-
haviour of the new proposal when the stratification process
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Table 6
Iman and Davenport statistic for EPS algorithms

Performance Scale FF Critical value

Accuracy Small 2.568 2.422
Accuracy Medium 5.645 2.485
Accuracy–reduction Small 14.936 2.422
Accuracy–reduction Medium 179.667 2.485

is employed follows the tendency shown for EAs [16]. A fi-
nal subsection will be included to illustrate a time complex-
ity analysis considering EPS algorithms over all the medium
size data sets considered and to study how the execution time
of SSMA is given out among evolutionary and optimization
stages.

5.1. Part I: comparing SSMA with EAs

In this section, we carry out a comparison that includes all
EPS algorithms described in this paper.

Tables 4 and 5 show the average results for EPS algorithms
run over small and medium data sets, respectively.

Iman and Davenport test’s result is presented in Table 6.
Tables 7 and 8 present the statistical differences by using
Wilcoxon’s test among EPS algorithms, considering accuracy
performance and accuracy–reduction balance performance,
respectively.

The following conclusions from examination of Tables 4–8
can be pointed out:

• In Table 4, SSMA achieves the best test accuracy rate. EPS
algorithms are prone to present over-fitting obtaining a good
accuracy in training data but not in test data. The SSMA
proposal does not stress this behaviour in a noticeable way.

• When the problem scales up, in Table 5, SSMA presents the
best reduction and accuracy in training and test data rates.

• The Iman–Davenport statistic (presented in Table 6) indicates
the existence of significant differences of results among all
EPS approaches studied.

• Considering only the performance in classification over test
data in Table 7, all algorithms are very competitive. Statisti-
cally, SSMA always obtains subsets of prototypes with equal
performance to the remaining of the EPS methods, improv-
ing GGA with the use of small databases and GGA and CHC
when the problem scales-up to a medium size.

• When the reduction objective is included in the measure of
quality, Table 8, our proposal obtains the best result. Only
CHC presents the same behaviour in small data sets. When
the problem scales up, SSMA again outperforms CHC.

Finally, we provide a map of convergence of SSMA, in
Fig. 5, in order to illustrate the optimization process carried
out on the satimage data set. In it, the two goals, reduction and
train accuracy, are shown. We can see that the two goals are
opposite, but the trend of the two lines of convergence usually
rises.
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Table 7
Wilcoxon table for EPS algorithms considering accuracy performance

6 5 4 3 2 1 � >

Small data sets
CHC (1) = = = = + 5 1
GGA (2) − − = = − 2 0
IGA (3) = = = = = 5 0
PBIL (4) = = = = = 5 0
SSGA (5) = = = + = 5 1
SSMA (6) = = = + = 5 1

Medium data sets
CHC (1) − = = = = 4 0
GGA (2) − − = = = 3 0
IGA (3) = = = = = 5 0
PBIL (4) = = = = = 5 0
SSGA (5) = = = + = 5 1
SSMA (6) = = = + + 5 2

Table 8
Wilcoxon table for EPS algorithms considering reduction–accuracy balance performance

6 5 4 3 2 1 � >

Small data sets
CHC (1) = + + + + 5 4
GGA (2) − = = + − 3 1
IGA (3) − − − − − 0 0
PBIL (4) − = + = − 3 1
SSGA (5) − = + = − 3 1
SSMA (6) + + + + = 5 4

Medium data sets
CHC (1) − = + + + 4 3
GGA (2) − − + + − 2 2
IGA (3) − − − − − 0 0
PBIL (4) − − + − − 1 1
SSGA (5) − + + + = 4 3
SSMA (6) + + + + + 5 5
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Fig. 5. Map of convergence of the SSMA algorithm on satimage data set.

5.2. Part II: comparing SSMA with non-evolutionary
algorithms

Tables 9 and 10 show the average results for non-EPS al-
gorithms together with the SSMA proposal run over small and

medium data sets, respectively. This table summarizes the mean
and SD of the results carried out over all data sets.

The Iman–Davenport test result is presented in Table 11.
Table 12 summarizes the existence or absence of statistical dif-
ference by using Wilcoxon’s test between the SSMA proposal
and remaining non-EPS methods (as we mentioned before, ev-
ery cell presents the comparison of SSMA with the respective
algorithm in the row. The symbol + indicates better behaviour
of SSMA than that of the corresponding one in the row).

We can show the following:

• In Table 9, the SSMA proposal clearly outperforms the other
algorithms taking account of accuracy performance in test
data.

• When the problem scales up, SSMA presents the best accuracy
rate and the second best rate of reduction (results shown in
Table 10).

• Non-EPS algorithms usually present a lower run-time than
that of the EPS algorithm. However, those non-EPS algo-
rithms that present best behaviour in both objectives are also
algorithms with high running times.
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Table 9
Average results for non-EPS algorithms over small data sets

Algorithm Time (s) SD time (s) % Red. SD red. % Ac. trn. SD ac. trn % Ac. test SD ac. test

1-NN 0.2 0.00 − − 72.89 18.63 72.22 19.15
Allknn 0.18 0.03 37.00 23.97 77.51 16.29 72.60 18.40
Cpruner 0.26 0.02 92.59 5.09 66.38 24.16 65.31 23.22
Drop3 0.71 0.02 83.43 8.85 73.43 15.17 67.69 19.06
Enn 0.13 0.01 25.50 19.56 77.47 15.16 73.21 18.38
Explore 0.83 0.03 97.66 1.16 77.59 16.78 74.42 19.60
Ib3 0.17 0.01 68.34 19.85 64.16 22.95 69.96 20.18
Pop 0.05 0.01 14.56 15.17 70.49 20.19 72.10 19.60
Rmhc 11.82 0.05 90.18 0.17 83.68 14.25 73.93 19.44
Rng 1.35 0.03 25.07 20.45 78.24 15.31 73.85 18.32
Rnn 3.18 0.05 92.40 4.56 74.41 17.57 73.11 17.70
SSMA 6.38 0.16 96.37 1.92 79.97 17.76 76.13 18.94

Table 10
Average results for non-EPS algorithms over medium data sets

Algorithm Time (s) SD time (s) % Red. SD red. % Ac. trn. SD ac. trn % Ac. test SD ac. test

1-NN 72.93 0.15 – – 89.11 7.75 87.79 8.94
Allknn 34.39 0.31 18.68 13.49 88.46 11.33 85.21 12.94
Cpruner 23.83 0.07 89.08 3.56 81.31 15.51 80.52 16.09
Drop3 99.48 0.82 88.17 8.35 81.99 9.88 78.84 13.35
Enn 13.48 0.03 12.22 10.21 87.85 10.66 85.98 12.14
Explore 1525.52 92.27 98.74 1.03 91.44 4.96 88.99 7.21
Ib3 2.70 0.05 77.42 17.83 84.91 10.80 86.36 9.49
Pop 1.20 0.04 23.17 32.94 86.09 13.55 84.97 13.78
Rmhc 6572.53 172.08 90.00 0.01 94.30 3.57 89.53 7.61
Rng 3149.19 26.62 7.20 4.90 89.92 7.74 87.99 9.14
Rnn 26 428.38 271.56 93.65 4.25 88.85 7.45 86.04 9.57
SSMA 3775.75 184.13 98.01 1.79 92.44 4.85 89.66 7.28

• As we can see in Table 12, Wilcoxon’s test considers the ex-
istence of competitive algorithms in terms of classification
accuracy. None of the non-EPS algorithms outperforms our
proposal in both considerations of evaluation. The unique al-
gorithm that equals the result of SSMA when the reduction
and accuracy are combined is Explore. Note that this last
algorithm obtains a greater reduction rate than SSMA, but
our approach improves upon it when we consider the classi-
fication performance. This fact is interesting given that, al-
though a good trade-off between reduction–accuracy is re-
quired, accuracy in terms of classification is more difficult to
improve upon than the reduction, so the solutions contributed
by SSMA may be considered of higher quality.

• There are algorithms, for example Allknn, Rng or Pop, that
have a similar performance in classification accuracy but that
do not achieve a high reduction rate. This could be critical
when large data sets need to be processed. A small reduction
rate implies a small decrease in classification resources (stor-
age and time); therefore, an application of these algorithms
on large data sets lacks interest.

In relation to the superiority of the proposed algorithm, we
are able show difference in the results obtained by SSMA and
the ones obtained by CHC and Explore by means of graphical

Table 11
Iman and Davenport statistic for non-EPS algorithms

Performance Scale FF Critical value

Accuracy Small 6.009 1.938
Accuracy Medium 5.817 1.969
Accuracy–reduction Small 56.303 1.938
Accuracy–reduction Medium 68.583 1.969

representations of the difference in reduction and test accuracy
between SSMA and the two mentioned algorithms over all data
sets.

Fig. 6 displays these representations, where the positive bars
indicate superiority of SSMA. The bias of SSMA is to obtain less
reduction than its two strong competitors, but it achieves a better
accuracy than them when the problem scales up, more notably
when compared with CHC. Note that SSMA outperforms them
in accuracy on 12 data sets to the two main competitors.

5.3. Part III: a large-size case study

We have seen before the promising results offered by SSMA
in small and medium sized databases. However, a size limit
of data sets exists which makes the execution of an EPS
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algorithm over them impossible. This limit depends on the al-
gorithms employed, the properties of data treated and easiness
of reduction of instances in the data set. We could argue that,

Table 12
Wilcoxon table for comparing SSMA with Non-EPS algorithms

Accuracy Acc. · 0.5 + red. · 0.5

Small data sets
Allknn = +
Cpruner + +
Drop3 + +
Enn = +
Explore = =
Ib3 + +
Pop = +
Rmhc = +
Rng = +
Rnn + +

Medium data sets
Allknn = +
Cpruner + +
Drop3 + +
Enn = +
Explore + =
Ib3 + +
Pop = +
Rmhc = +
Rng = +
Rnn + +
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Fig. 6. Difference of results between SSMA and CHC and SSMA and Explore. (a) SSMA vs. CHC. (b) SSMA vs. Explore.

surely, it may not be possible to handle a size of a data set
above 20,000 instances with EPS due to a time complexity of
the evaluations of O(n2 ·m). SSMA proposal may get closer this
limit.

In this case, authors in Ref. [16] recommend the use of Strat-
ification, which could be combined with a cross-validation pro-
cedure as can be seen in expression (7). By using the Tfcv-Strat,
we have run the algorithms considered in this study over the
data set adult with t = 10 and b = 1. We chose these parame-
ters to obtain subsets whose size is not too large as well as to
show the effectiveness of the combination of an EPS and the
stratification procedure.

Fig. 7 shows a representation of an opposition between
the two objectives: reduction and test accuracy. Each algo-
rithm located inside the graphic gets its position from the
average values of each measure evaluated (exact position cor-
responding to the beginning of the name of the algorithm).
Across the graphic, there is a line that represents the thresh-
old of test accuracy achieved by the 1-NN algorithm without
preprocessing.

As we can see, all EPS methods are above the 1-NN hori-
zontal line. The graphic clearly emphasizes three methods as
best with their position in the graphic at top-right. In addition
to this, we can remark that the SSMA algorithm achieves the
highest accuracy rate, and it is only surpasses in the reduction
objective by the CHC model.

Fig. 8 presents the opposition reduction–accuracy for non-
EPS algorithms. Ib3 and Pop algorithms have been removed
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Fig. 8. Accuracy in test vs. reduction in adult data set for non-EPS algorithms.

from the graphic because of their poor accuracy and reduction,
respectively.

The results offered by SSMA situate the algorithm at the top
of the remaining methods that are nearest in the x-axis. This
fact points to its superiority over the nearest methods. However,
others methods further from it in x-axis are above SSMA in y-
axis. The case studied practically shows the same behaviour
as in previous cases, so it may be specified a generalization
capacity of the results independently of the size of data.

5.4. Part IV: time complexity analysis for EPS

A way of estimating the efficiency of EPS algorithms could
be by an empirical study. This implies a study of the execu-
tion time of each method by using different sizes of training
data. We have showed the results obtained by using a graphical
representation in Fig. 9 for medium size data sets.

As it can be seen in Fig. 9, the most efficient EPS algorithms
are SSMA and CHC. Time complexity of an algorithm basically

depends on two factors:

• Reduction capacity: When an EPS algorithm can quickly
reduce the subset of instances selected in the chromosome, an
evaluation will have to compute NNs over less data in order
to calculate the fitness value. CHC and SSMA are inclined
towards a tendency of removing instances and then improving
classification accuracy, thus obtaining a good reduction rate.
Remaining EPS algorithms try to improve both objectives
simultaneously.

• Operational cost: In this case, any algorithm has an opera-
tional cost of time in all its procedures. For example, a GGA
algorithm must sort and apply crossover and mutation op-
erators to a part of a population, whereas PBIL must gen-
erate new populations from a single probability vector that
receives all possible modifications. This explains why GGA
takes more time than PBIL even if the former has a higher
reduction rate than the latter. SSMA takes advantage of the
partial evaluation mechanism, which is an efficient procedure
to evaluate chromosomes.
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6. Conclusion

This paper presents a memetic algorithm for evolutionary
prototype selection and its application over different sizes of
data sets, paying special attention to the scaling up problem.

An experimental study was carried out to establish a com-
parison between this proposal and previous evolutionary and
non-evolutionary approaches studied in the literature. The main
conclusions reached are as follows:

• Our proposal of SSMA presents a good reduction rate and
computational time with respect to other EPS schemes.

• SSMA outperforms the classical PS algorithms, irrespective
of the scale of data set. Those algorithms that could be com-
petitive with it in classification accuracy are not so when the
reduction rate is considered.

• When the PS problem scales up, the tendency on the part of
classical EPS is to inappropriately converge to two objectives
(accuracy and reduction) at the same time.

• Considering all types of data sets, SSMA outperforms or
equalizes all methods when both objectives have the same
importance. Furthermore, it usually outperforms in test ac-
curacy other methods that obtain good rates of reduction.

Finally, we would like to point out in conclusion that our SSMA
proposal allows EPS to be competitive with other models for
PS when the size of the databases increases, tackling the scaling
up problem with excellent results.

An open problem, beyond of the scope of this paper, consists
of hybridizing feature selection and weighting with the SSMA
proposal in order to obtain a better behaviour in low complexity
classifiers (like 1-NN) [47]. Future research will be focus on
this together with tackling the prototype generation process
with real-coded evolutionary algorithms.
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