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This work presents the use of local fuzzy prototypes as a new idea to obtain accurate local
semantics-based Takagi–Sugeno–Kang ~TSK! rules. This allow us to start from prototypes con-
sidering the interaction between input and output variables and taking into account the fuzzy
nature of the TSK rules. To do so, a two-stage evolutionary algorithm based on MOGUL
~a methodology to obtain Genetic Fuzzy Rule-Based Systems under the Iterative Rule Learning
approach! has been developed to consider the interaction between input and output variables.
The first stage performs a local identification of prototypes to obtain a set of initial local
semantics-based TSK rules, following the Iterative Rule Learning approach and based on an
evolutionary generation process within MOGUL ~taking as a base some initial linguistic fuzzy
partitions!. Because this generation method induces competition among the fuzzy rules, a post-
processing stage to improve the global system performance is needed. Two different processes
are considered at this stage, a genetic niching-based selection process to remove redundant rules
and a genetic tuning process to refine the fuzzy model parameters. The proposal has been tested
with two real-world problems, achieving good results. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

One of the most important areas for the application of Fuzzy Set Theory is
Fuzzy Rule-Based Systems ~FRBSs!. There are at least two different kinds of
FRBSs in the literature, the Mamdani1 and Takagi-Sugeno-Kang ~TSK!2,3 ones,
which differ on the composition of the rule consequent. The use of one or the other
depends on the fact that the main requirement is the interpretability or the accu-
racy of the model, respectively.
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Some automatic techniques have been proposed to learn a proper set of TSK
rules from numerical data. However, global learning of the fuzzy subspaces and
the linear relation that must be established in each of them is a hard task.4 As said
in Refs. 5–7, the learning of the premises and consequents is usually performed
separately, obtaining the optimum consequents for a previously learned premise
set without considering the interaction between input and output variables.8,9

In this context, fuzzy clustering is one of the most useful techniques, detect-
ing the possible groupings that exist and establishing some hypothesis about the
structure present in the data.8,10–12 To include output behaviors in the fuzzy parti-
tion ~i.e., to consider the output data to obtain the premises!, different works have
considered the product space of input and output variables instead of only the
input space.2,5,10 However, some authors state that fuzzy clustering and fuzzy
c-regression algorithms suffer from several drawbacks. On the one hand, they are
very sensitive to the presence of outliers.6,7,13 Furthermore, the membership of a
point to a cluster depends on the membership of such a point to all the other clus-
ters. So, the cluster centers or estimates for the parameters are poor.13 This behav-
ior is far from the TSK fuzzy nature.

Recently, these kinds of learning techniques have been taken into account as
prototype-identification algorithms, summarizing a data set by a number of repre-
sentative prototypes ~objects lying in the same space as the sample points!. This
point of view follows the original ideas of Ruspini,14 later expanded in many sig-
nificant directions by relaxing the concept of prototype in a variety of ways, for
example, line segments, ellipsoids, and so forth.15 Some works particularize this
concept by considering these prototypes as being fuzzy rules.5,8,10–12 However, the
prototype identification process still comes with the same drawbacks.

Having these concepts in mind, fuzzy rule generation methods also can be
seen as identification algorithms with fuzzy rule prototypes, that is, fuzzy model
builders whose main purpose is to extract the most suitable set of fuzzy rules from
an object ~input–output data! according to an optimization measure, which evalu-
ates the quality of the approximation. Additionally, they organize results and sum-
marize them by interest criteria to provide a more compact and useful representation
of the resulting structures.

Two main approaches can be considered to obtain FRBSs:

• Global semantics-based approach: A global collection of fuzzy sets is considered by all
the fuzzy rules. In global semantics-based FRBSs, each fuzzy set can have a real-world
meaning associated. Conversely, this approach is less flexible than the local one, pre-
senting some limitations in terms of accuracy.

• Local semantics-based approach: Each fuzzy rule has associated its own local fuzzy
sets. In local semantics-based FRBSs, the rules have more freedom to improve their
performance. However, these kinds of systems are less interpretable than the global
ones.

In this work, we propose the use of local semantics-based Mamdani fuzzy
rules as local fuzzy prototypes from which to obtain accurate local semantics-
based TSK rules. This new idea allows us to start from prototypes considering the
interaction between input and output variables and taking into account the fuzzy
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nature of the TSK rules. To do so, we present a two-stage Genetic FRBS ~GFRBS!16

following the MOGUL paradigm,17 a methodology to obtain GFRBSs under the
Iterative Rule Learning ~IRL! approach. First, we obtain an acceptable model as a
first approximation by means of a local evolutionary learning performing the iden-
tification of local prototypes. Then, a postprocessing stage considers the global
cooperation of such promising rules. Therefore, our main objective in this article
is to obtain highly accurate fuzzy models, although it involves the loss of interpret-
ability to some degree. Anyway, we must point out that there exist other research
line to improve the interpretability in TSK fuzzy systems. These improvements
are usually developed by reducing the fuzzy rule set ~usually with orthogonal trans-
formations or feature selection!,18,19 reducing the number of fuzzy sets ~usually
with similarity measures! with the subsequent merging of rules,7,20 or exploiting
the local description of the rules ~basically smoothing the consequent polynomial
function of the Takagi–Sugeno rule or isolating the fuzzy rule actions!.21,22 See
Refs. 23 and 24 for detailed coverage of the state of the art in the trade-off between
interpretability and precision.

The article is organized as follows. The next section describes the general
TSK fuzzy model structure considered in this work. Section 3 discusses the main
differences between the global and the local fuzzy prototype identification. Sec-
tion 4 presents the structure of the proposed GFRBS. Sections 5 and 6 explain in
detail each stage of the proposed GFRBS. Experimental results are shown in Sec-
tion 7. Finally, some concluding remarks are made in Section 8.

2. TSK FUZZY RULE-BASED SYSTEMS

In Refs. 2 and 3, Takagi, Sugeno, and Kang presented a mathematical tool to
procure a fuzzy model of a system. They suggested a multidimensional fuzzy rea-
soning in which the number of implications can be surprisingly decreased; that is,
we would need fewer rules in the knowledge base. This structure will be intro-
duced in the following.

2.1. Architecture

The fuzzy model is based on rules in which the consequent is not a linguistic
variable ~as in Mamdani fuzzy systems! but a function of the input variables. These
kinds of rules usually present the following structure:

Ri : If X1 is Ai1 and . . . and Xn is Ain , then Y � pi0 � pi1{X1 � {{{� pin{Xn

where Xi are the system input variables and Y is the system output variable that
determines a local linear input–output relation by means of the real-valued coeffi-
cients pij .

The output of a FRBS considering a knowledge base composed of m TSK
rules is computed as the weighted average of the individual rule outputs yi ,
i � 1, . . . , m:
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with hi � T ~A1~x1!, . . . , An~xn !! being the matching degree between the anteced-
ent part of the ith rule and the current system inputs x1, . . . , xn , and with T being a
t-norm.

The presented fuzzy reasoning is based on first dividing the ~uni- or multi-
dimensional! input space into some ~uni- or multidimensional! fuzzy subspaces
and then building a linear input–output relation in each individual subspace. As
seen, these partial relations are combined by aggregation, taking into account their
dominance in their respective area of application and the conflict existing in the
overlapped areas.3 In this way, TSK fuzzy systems present the following interest-
ing features:

• Locality: This feature allows us to represent even quite complicated nonlinear static
relationships through a collection of relatively simple local linear or nonlinear models.25

• Smooth switching: Because the outcomes are calculated as a weighted average of the
individual rule outputs, a sort of gradual activation of the individual models can be
guaranteed, procuring a smooth switching between them.25

• Existence of mathematical tools for system design: Due to the linear nature of TSK
consequents, they can be obtained by means of specific mathematical techniques,
which get the least system error for predetermined antecedents ~e.g., by least squares
estimation3 !.

The learning of TSK FRBSs is devoted to obtaining the premise and conse-
quent structures. In the Introduction we have seen some approaches to obtaining
the premises for these kinds of systems. We will be back to this later. In the fol-
lowing, we introduce some consequent structure generation approaches.

2.2. Consequent Structure Generation

The most common approaches for the generation of the consequent structure
in TSK FRBSs are the following26:

• Global least squares: This gives the best solution in terms of the squared model out-
put.18,27,28 It is computationally expensive but the most used. This technique is very
sensitive to the presence of outliers and to overfitting when training data is not quite
representative.

• Local least squares: This neglects the overlap between the validity functions and esti-
mates the parameters for each local linear model separately by a least squares technique
with the data weighted according to their validity.5,12 It is much more efficient than
global estimation and reduces overfitting.

• Product space clustering: Under this approach for product space partitioning, the
Gustafson–Kessel algorithm29 automatically obtains the rule consequent parameters as
a by-product.9,10 It is similar to a global least squares if it converges ~presenting the
same drawbacks!.
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• Evolutionary algorithms: In the last few years, many different approaches have been
presented taking evolutionary algorithms30 as their base. Examples of these kinds of
methods are to be found in Refs. 31 and 32. In this article, we will choose this approach,
but any of the others could be used.

Other approaches for the estimation of the consequent model parameters in
TSK FRBSs are the orthogonal transformation-based methods,8,22 the use of neu-
ral networks,27,33 and so on.

3. LOCAL VERSUS GLOBAL FUZZY RULE
PROTOTYPE IDENTIFICATION

In this work, we propose the use of Mamdani fuzzy rules as fuzzy prototypes
to identify a set of fuzzy subspaces grouping data with similar behavior. As we
have seen, two different approaches can be considered to obtain these kinds of
rules, those based on global and local semantics. From this point of view, we could
obtain two different kinds of fuzzy prototypes, the global and the local ones. Each
of them presents different advantages and drawbacks in terms of accuracy and
interpretability. Figure 1 shows a graphical comparison of both kinds of fuzzy
prototypes.

As a consequence of the inflexibility of the concept of linguistic variable,
those approaches based on global semantics present the following drawbacks34:

• There is a lack of flexibility in the FRBS because of the rigid partitioning of the input
and output spaces.

• When the system input variables are dependent among them, it is very hard to fuzzy
partition the input spaces.

• The homogeneous partitioning of the input and output spaces when the input–output
mapping varies in complexity within the space is inefficient and does not scale to high-
dimensional spaces.

• The size of the fuzzy rule base directly depends on the number of variables and linguis-
tic terms in the system. Obtaining an accurate FRBS requires a significant granularity
amount; that is, it needs the creation of new linguistic terms. This granularity increase
causes the number of rules to rise significantly, which may cause the system to lose the
capability of being interpretable for human beings.

On the other hand, instead of considering a global semantics-based approach,
we could consider a local approach. In this case, the local fuzzy prototypes are
based on rules presenting the following structure:

Ri : If X1 is Ai1 and . . . and Xn is Ain , then Y is B

where Ai and B are fuzzy sets specific to each fuzzy rule.
Approaches based on local semantics present interesting advantages that make

them very suitable for fuzzy modeling purposes:

• The expressive power of the rules that present their own specificity in terms of the fuzzy
sets involved in them, thus introducing additional degrees of freedom in the system.

• The number of rules is adapted to the complexity of the problem, needing fewer rules
in simple problems, and being able to use more rules if it is necessary. This is likely to
be of benefit in tackling the curse of dimensionality when scaling to multidimensional
systems.
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However, an important drawback of this local approach is that these kinds of
systems are less interpretable than the global ones. Nevertheless, these kinds of
FRBSs can be interpreted from a local point of view, and make use of expert knowl-
edge and deductive processes.

The choice between how interpretable and how accurate the model must be
usually depends on the user’s needs for a specific problem, and it will condition
the kind of FRBS selected to model it. As well as that, in this article we focus on
developing more accurate fuzzy models, which can provide approximate solutions
to different problems, especially real-world problems with accuracy requirements.
Therefore, we propose the use of local semantics-based Mamdani rules as local
fuzzy prototypes for local identification of TSK fuzzy rules. Figure 2 represents
this concept.

In the literature, many works have considered both approaches to obtain TSK
FRBSs based on global2,3,5,9,35 and local7,8,11,25,32 semantics. Figure 3 depicts both
kinds of systems. In this work, we will focus on local semantics-based TSK FRBSs,
those in which Aij represent fuzzy sets specific to each fuzzy rule.

Figure 1. Graphical comparison between global and local fuzzy prototypes. ~a!Global semantic-
based Mamdani rules as global fuzzy prototypes. ~b! Local semantic-based Mamdani rules as
local fuzzy prototypes.
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Figure 2. TSK consequents identification from local fuzzy prototypes.

Figure 3. Graphical comparison between ~a! a global and ~b! a local semantics-based TSK
FRBS.
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4. MULTISTAGE STRUCTURE OF THE PROPOSED GFRBS

In this section, we present a two-stage GFRBS to generate local semantics-
based TSK FRBSs. It is based on the existence of a set of input–output training
data EN � $e1, . . . , el , . . . , eN % with el � ~ex1

l , . . . , exn
l , ey l !, N being the data set

size and n being the number of input variables.
The local identification of prototypes induces competition among rules by

only considering the quality of the approximation performed by each rule. To do
so, the proposed method has been integrated in MOGUL17 by using an IRL-based
approach. However, the global cooperation among rules should be considered in
order to increase the generalization power of the system modeled. Following the
MOGUL approach, a postprocessing stage is considered for this purpose. This
way, the learning method substantially reduces the search space size by dividing
the genetic learning process into two stages.

In this way, our method follows the ideas of the method presented by Yen
et al.22 in which global learning and local learning are combined in a single pro-
cess. In our case, this process is divided in several stages; that is, first local learn-
ing is performed and then global learning is performed in a postprocessing phase.

Table I presents a summary of the main algorithm steps. The algorithm basi-
cally consists of the following stages:

1. Local Process for Identifying Prototypes. This stage performs a local identification of
local semantics-based TSK rules following the IRL approach and based on an evolu-
tionary generation process within MOGUL. The method takes as a base some initial
linguistic fuzzy partitions. Then, for each iteration of the method:
• A set of candidate global fuzzy prototypes is obtained by generating the global

semantics-based Mamdani-type fuzzy rule best covering every example.
• Then, the most promising Mamdani-type rule is selected and locally tuned to iden-

tify the local fuzzy prototype best grouping the data located in the corresponding
subspace ~the best local semantics-based Mamdani-type fuzzy rule!. This process
for local refinement of global prototypes is based on a ~1 � 1!-Evolution Strategy
~~1 � 1!-ES!.30

• Finally, the obtained prototype is added to the final set of fuzzy prototypes. The data
covered by this set to a certain degree are removed and not considered for future
iterations. The iterative process ends when no more uncovered training data remain.

Once the set of local fuzzy prototypes ~grouping similar data! is obtained and consid-
ering the same antecedents, the existing partial linear input–output relation is com-
puted using the data located in each input subspace by means of a ~m,l!-ES.30

Table I. Structure of the proposed GFRBS.

Local Process for Identifying Prototypes
Step 0. Initial linguistic partitioning
Step 1. Obtain the best global prototype, GPr

Step 2. Identify the best local prototype, LPrR ES~1�1!~GPr !
Step 3. Introduce LPr in the final set of fuzzy prototypes
Step 4. If uncovered data remain, go to Step 1
Step 5. Linear consequents derivation, LrR ES~m,l!~LPr

x !

Postprocessing Stage
~a! Genetic niching-based selection process
~b! Genetic tuning process
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2. Postprocessing Stage. Because the genetic generation method proposed in the previous
stage induces competition among the fuzzy rules and the cooperation is slightly consid-
ered by means of the rule penalization criterion, a postprocessing stage to improve
system performance is needed. Two different processes are considered at this stage, the
genetic niching-based selection process and the genetic tuning process:
~a! Genetic Niching-Based Selection Process. This summarization component has the

aim of selecting the subset of rules best cooperating among the rules generated in
the previous stage. This is capable of generating not only a single simplified TSK
FRBS as output from the process but different ones presenting the best possible
cooperation among the fuzzy rules composing them, and thereby the best possible
behavior.

~b! Genetic Tuning Process. Then, the evolutionary tuning process will be applied over
these definitions and the most accurate will be the one given as the output of the
two-stage GFRBS. Therefore, a model not presenting the best behavior after the
second stage may be the best one after the third stage due to the fact that the new
membership function shapes and consequent parameters make its rules cooperate
in a better way.

In the following sections both stages are presented in depth. After that, some
experiments are shown.

5. GFRBS I: LOCAL PROCESS FOR IDENTIFYING PROTOTYPES

This section presents the iterative process proposed for the local identifi-
cation of fuzzy prototypes and the derivation of the corresponding TSK linear
consequents. It is based on the Soft Constrained Learning-based evolutionary gen-
eration process presented in Ref. 36 to generate the set of local semantics-based
Mamdani rules best covering the input–output data ~local fuzzy prototypes!. Then,
the corresponding TSK consequents are obtained by means of the ~m,l!-ES pre-
sented in Ref. 31.

The discussion starts introducing some criteria to be considered in this method.
Taking these criteria into account, the algorithm to obtain local semantics-based
TSK FRBSs is proposed. Finally, the two ESs considered in the algorithm are
explained.

5.1. Some Considerations on the Stopping Criterion
and the Fitness Function

Because this method is based on local covering measures to induce competi-
tion among rules, considering the completeness and consistency properties37 is
recommended to improve the behavior of the generated fuzzy rule bases. A fuzzy
rule base is complete if it is possible to infer a proper output for every input and
consistent if it does not contain contradictions.

In our case, completeness is verified by demanding that each example is cov-
ered to a degree e � ℜ ~determined by the system expert!. It is achieved through
an iterative process that will finish when each example is covered with a covering
degree greater than e.
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On the other hand, to verify the consistency, the positive and negative exam-
ple concepts38 are considered in the fitness function by means of several criteria.
An example is positive for a fuzzy rule when it matches with its antecedent and
consequent, and it will be considered a negative example when it matches with its
antecedent and not with its consequent. Hence, the fewer negative examples each
rule has, the more consistent the fuzzy rule base is. Anyway, some negative exam-
ples are accepted when it presents a large number of positive examples.

Thereby, the accuracy of a simple fuzzy rule,a Ri , on the set of examples, EN ,
is measured by using a multicriteria fitness function, designed to take into account
three different criteria. This allows us to procure the consistency of the final set of
generated rules. The criteria considered by the fitness function are:

• High frequency value38: The frequency of a fuzzy rule, Ri , through the set of exam-
ples, EN , is defined as

CEN
~Ri ! �

(
l�1

N

Ri ~el !

N

with Ri ~el ! being the covering degree of the fuzzy rule Ri over the example el ~ante-
cedent and consequent part!.

• High average covering degree over positive examples38: With Ev
� ~Ri !� $el � EN s.t.

Ri ~el ! � v% being the set of positive examples with a covering degree greater than or
equal to v � @0,1# , and nv

� ~Ri ! � 6Ev� ~Ri !6, the average covering degree on Ev
� ~Ri !

can be defined as

Gv~Ri ! � (
el�Ev

� ~Ri !

Ri ~el !

nv
� ~Ri !

• Small negative example set39: With E�~Ri !� $el � EN s.t. Ri ~el !� 0 and Ai ~x l !� 0%
being the set of negative examples, nRi

� � 6E�~Ri !6 and Ai ~{! being the antecedent cov-
ering degree of the rule Ri over an example, the penalty function on the set of negative
examples is

gn~Ri
� ! � �

1, if nRi

� � k { nv
� ~Ri !

1

nRi

� � k{nv
� ~Ri !� exp~1!

, otherwise

where we allow up to k{nv
� ~Ri ! negative examples per rule without any penalty, with

k � @0,1# , and exp~1! is the Napierian number.

These criteria are combined into a fitness in the following way ~rules obtain-
ing higher values in this function will be more accurate!:

F~Ri ! � CEN
~Ri !{Gv~Ri !{gn~Ri

� !

aWith global or local nature.

918 ALCALÁ ET AL.

International Journal of Intelligent Systems DOI 10.1002/int



5.2. Identification Algorithm

Once the values of e, v, and k ~defined in the previous subsection! are given
by the GFRBS designer, the method for identification of local semantics-based
TSK FRBSs may be summarized in the following algorithm:

Initializations:
~a! Initialize the set of examples Ep to EN .
~b! Set the example covering degree CV @l #R 0, l � 1, . . . , N.
~c! Initialize the final set of prototypes Bi to empty.

Step 0 Initial linguistic partitioning: A strong fuzzy partition ~those in which the sum of mem-
bership degrees within the variable domain is kept to 1! is considered for each variable.
At this point, we should note that we are using uniform triangular-shaped membership
functions ~see Figure 1a!.

Step 1 Obtain the best global prototype, GPr :
• Initialize the candidate fuzzy rule set Bc to empty.
• For every el � Ep , generate the fuzzy rule Rc best covering it by taking the linguistic

label of the fuzzy partition best matching with the el component value for each vari-
able. If Rc � Bc , add it to Bc .

• Evaluate all the fuzzy rules contained in Bc and select the one obtaining the highest
value in the fitness function: Rr s.t. F~Rr !� maxRi�Bc ~F~Ri !!

• Let GPr be Rr .

Step 2 Identify the best local prototype, LPrR ES~1�1!~GPr !.

Step 3 Introduce LPr in the final set of fuzzy prototypes: Bi R LPr .

Step 4 If uncovered data remain go to Step 1:
~a! For every el � Ep do

~i! CV @l #R CV @l #� LPr ~el !, with LPr ~el ! being the covering degree of the proto-
type LPr over the example el .

~ii! If CV @l #� e then remove it from Ep .
~b! If Ep � À return to Step 1.

Step 5 Linear consequents derivation, Lr R ES~m,l!~LPr
x !: For every LPr � Bi , take the same

antecedents, LPr
x , and obtain the corresponding linear input–output relation, Lr , consid-

ering the data located in the corresponding input subspace. Replace the fuzzy conse-
quent of LPr � Bi by Lr .

In the following subsections, the ~1�1!-ES and the ~m,l!-ES, considered in
the Steps 2 and 5 of the proposed algorithm, will be explained.

5.3. ~111!-ES for Local Refinement of Global Prototypes

Let GPr be the global prototype to be adapted. This process, based on a
~1 � 1!-ES,30 performs a local tuning on GPr ~Step 2! to identify the local proto-
type best grouping the sample data located in its covered region. In the following,
its main components are pointed out.

Coding scheme. A solution is directly encoded in a chromosome C, by join-
ing the definition points of each one of the n � 1 triangular-shaped membership
functions composing the corresponding fuzzy prototype: C � ~a1, b1, c1!. . .
~an , bn , cn !~an�1, bn�1, cn�1!, with n being the number of input variables.
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Mutation scheme. Two changes have to be performed in the usual ES muta-
tion scheme when this technique is applied to this problem:

• On the one hand, two restrictions imposed in the membership function locations and
shapes must be considered in the ES: it must lie in a local interval and it must be mean-
ingful. With Ci � ~x0, x1, x2 ! being a membership function to be adapted, the associated
interval of performance is @Ci

l ,Ci
r #� @x0 � ~x1 � x0 !/2, x2 � ~x2 � x1!/2# . Moreover,

x0 � x1 � x2 must be verified. Hence, an incremental optimization of the individual
parameters is required because the intervals of performance for each one of them depend
on any of the others. Thus, the mutated fuzzy set Ci

' � ~x0
' , x1

' , x2
' ! is obtained by first

defining the mutated value x1
' in the interval @x0, x2 # , and then defining the values x0

'

and x2
' in the intervals @Ci

l , x1
' # and @x1

' ,Ci
r # , respectively.

• On the other hand, the parameter s usually determines the mutation strength for all the
individual parameters in ESs. However, in this case the membership functions encoded
are defined over different universes. For this reason, the definition of multiple step sizes
for each component, si �s{si �s{s~xi !, has to be performed. For a concrete member-
ship function being mutated, s~xi ! is computed before each xi is adapted. These values
are respectively calculated as

s~x1! �
Min~x1 � x0, x2 � x1!

2

s~x0 ! �
Min~x0 � Ci

l , x1
' � x0 !

2

and

s~x2 ! �
Min~x2 � x1

' ,Ci
r � x2 !

2

If the mutated value xi
' lies outside of its expected interval, the value of the interval

extreme closer to it is taken.

Fitness function. It is based on the function, F~{!, presented in Section 5.1.
This function looks for the most general rule, widening its applicability and cov-
ering more examples with the least possible number of inconsistencies. However,
to get a better interaction rate among rules, a penalty function based on a low niche
interaction rate criterion39 is used to avoid excessive proximity among them. With
Ni � ~Ni x, Ni y!, i � 1, . . . , 6Bi 6, the centers of the local fuzzy prototypes already
identified ~those in Bi !, and T being a t-norm ~the minimum in this article!, the
following penalty function will be considered:

LNIR~C! � 1 � NIR~C!

NIR~C! � max
i
$T ~C1~Ni x1!, . . . ,Cn~Ni xn !,Cn�1~Ni y!!%, i � 1, . . . , 6Bi 6

C ; IF X1 is C1 and . . . and Xn is Cn THEN Y is Cn�1
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Finally, the used fitness function is defined as

F '~C! � F~C!{LNIR~C!�CEN
~C!{Gv~C!{gn~C

�!{LNIR~C!

5.4. ~m,l!-ES for Identification of TSK Consequents

Let LPr
x be the fuzzy input subspace of the local fuzzy prototype LPr . This

process, based on the ~m,l!-ES presented in Ref. 31, computes the existing par-
tial linear input–output relation Lr ~TSK rule consequent! of the data located in
LPr

x. This evolutionary process is applied on every LPr � Bi in the Step 5 of the
identification algorithm ~see Section 5.2!. The main aspects of this process are
described in the following ~for more information about the ~m,l!-ES, refer to
Ref. 30!.

Coding scheme. The ?x part of the m individuals in the ES population is com-
posed of the n � 1 values defining the TSK consequent, ?x � p1, p2, . . . , pn , p0 ~see
Section 2.1!. However, due to the infinite nature of such values, their intervals of
performance cannot be defined. This problem is solved by the angular coding,
presented in Ref. 31. It is based on coding the values of the angles instead of the
tangent ones for each TSK rule consequent parameter ~including p0 ! that provide
us fixed variable intervals, ~�~p/2!, p/2!, and a whole representation of the solu-
tion search space. Therefore, to code the parameter values, the arc tangent func-
tion is used ~Figure 4 shows some examples!:

AC : IRr ��p
2

,
p

2
�; AC~x!� arctan~x!

Figure 4. Examples of angular coding.
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Initial pool. To generate the initial population, the following indices and the
set Eu must be computedb:

ymed �

(
el�EN

y l

6EN 6
; ymin � min

el�EN

$ y l %; ymax � max
el�EN

$ y l %

hmax � max
el�EN

$hl %; Eu� $el � EN s.t. hl � u{hmax %

Then, the initial population is generated in three different steps:

1. One individual is generated setting the parameters pi , i �1, . . . , n, to zero and p0 to the
angular coding of ymed .

2. g individuals are generated, with g � $0, . . . ,m � 1% being provided by the GFRBS
designer, setting the parameters pi to zero and p0 to the angular coding of a random
value in @ ymin , ymax # .

3. The remaining m�g�1 individuals are generated by setting the parameters pi to small
angular values computed in the interval ~�~p/2!, p/2! and p0 to the angular coding of
a value computed from a randomly selected element e in Eu in such a way that e belongs
to the hyperplane defined by the TSK rule consequent. Thus, parameters pi are set by
using the function f ~x, z!� z{~p/2!{x q , with x and z generated at random in @0,1# and
$�1,1% , respectively, q is provided by the GFRBS designer, and p0 is set to the angular
coding of y �(k�1

n AC�1~ pk !{xk , with AC�1~b!� tan~b!.

Fitness function. The fitness function is composed of a local error measure,
computed on the set of examples E '� $el � EN s.t. LPr

x ~exl !� 0%—the examples
in the input fuzzy subspace defined by the prototype antecedent:

(
ek�E '

hk{~ey k � S~ex k !!2

with hk � T ~LPr
x1 ~ex1

k !, . . . , LPr
xn ~exn

k !!, and S~ex k ! being the output of the TSK
rule with the ex k input.

6. GFRBS II: POSTPROCESSING STAGE

It is possible that the iterative nature of the identification stage may cause the
appearance of an overfitting phenomenon. This happens when some examples are
covered to a higher degree than the desired one and it makes the obtained fuzzy
rule base perform worse because of the existence of redundant rules. Rule selec-
tion methods38– 41 directly select a subset of rules from a given fuzzy rule set to
minimize the number of rules while at the same time maintaining ~or even improv-
ing! system performance. Redundant and inefficient rules that degrade the perfor-
mance are eliminated, thus obtaining a more cooperative fuzzy rule set and therefore

bWith u � @0.5, 1# being defined by the GFRBS designer.
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involving a potential improvement of system accuracy. Moreover, in many cases
accuracy is not the only requirement of the model, and interpretability becomes an
important aspect. Reducing model complexity is a way to improve system reada-
bility; that is, a compact system with a low number of rules requires minor effort
to be interpreted.

On the other hand, due to the same reason, the latter stage induces competi-
tion among rules and global cooperation is slightly considered. Improving the way
in which the fuzzy rule base performs interpolative reasoning by inducing better
cooperation among the rules would make the FRBS more accurate.

To solve these problems and to improve system accuracy, a postprocessing
stage has been developed. This consists of two evolutionary processes. The first
one performs a rule selection on the previously identified TSK fuzzy rule base,
removing inefficient and/or redundant rules in order to improve the cooperation
among them. The second one tunes the simplified fuzzy rule base parameters ~mem-
bership functions and consequent parameters!. It will enable rational behavior and
improved performance of the FRBS and is a necessary condition to solve complex
problems when an accurate solution is required. In the following subsections both
processes are presented.

6.1. Genetic Niching-Based Selection Process

This process, presented in Ref. 39, performs an iterative generation of com-
pact fuzzy rule bases, Bsj, j � 1, . . . , S, with S being the number of required differ-
ent solutions. It is based on the Sequential Niche Technique42 and a basic genetic
selection process.38 In each iteration, this basic process is applied, penalizing the
fitness function of the individuals close to the solutions from previous iterations
~those in the same niche!. It is based on a standard binary-coded Genetic Algo-
rithm ~GA!, whose characteristics are presented in the following. The general
scheme for this basic GA is showed in Figure 5.

Coding scheme and initial pool. Let Bi be the TSK rule set derived from the
previous step, m � 6Bi 6, and let Bs be a subset of Bi . Each chromosome is a binary
string C � ~c1, . . . , cm ! representing a subset Bs of candidate rules to constitute the
set of rules finally obtained, Bsj . In this way, ci � 1 denotes that Ri � Bs and
ci � 0 denotes that Ri � Bs .

The whole initial gene pool is generated at random, but one individual with
all ci �1 is included in the initial population representing the complete previously
obtained rule set Bi .

Fitness function. The fitness function is based on the mean square error
~MSE! over the example set EN and on the completeness property ~notice that
Rj~el ! will be the covering degree of the rule Rj over the antecedents of the exam-
ple el !. Let t be the minimum training set completeness degree accepted ~given by
the GFRBS designer!, M be the number of rules, CR~Cj !~el ! � �j�1, . . . ,M Rj~el !,
and R~Cj ! be the set of rules coded in Cj . The completeness degree of R~Cj ! over
EN is CD~R~Cj !, EN ! � �el�EN

CR~Cj !~el !. The final fitness function penalizing
the lack of completeness is
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F~Cj ! � �
1

26EN 6
(

el�EN

~ y l � S~x l !!2, if CD~R~Cj !, EN !� t

`, otherwise

with S~x l ! being the output value of the FRBS using the set of rules coded in
R~Cj ! when the input variable values are x l � ~x1

l , . . . , xn
l ! and yl is the known

desired value obtained from el .
However, to consider the niche concept, a modified fitness function F ' is

needed. This function is obtained by using a function G~Cj , S! that penalizes the
closeness of Cj to the set S of the previously obtained solutions. Thus, the modi-
fied fitness function F ' is defined as F '~Cj ! � F~Cj !{G~Cj , S! and the penaliza-
tion function G as

G~Cj , S! � �
`, if d � 0

2 � �d

r
�b, if d � r and d � 0

1, otherwise

with r being the niche radius, b the power factor determining how concave or
convex the penalization curve is ~both defined by the GFRBS designer!, and with

Figure 5. Flowchart of a standard GA.
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d � minsi�S $H~Cj , si !% being the Hamming distance to the closest solution in S
with H~Cj , si ! defined as H~Cj , si !�(i�1

m 6Cji � sji 6.
Selection scheme and genetic operators. The selection procedure is Baker’s

stochastic universal sampling43 together with the elitist selection. The genetic oper-
ators are the classical two-point crossover and the uniform mutation.

6.2. Genetic Tuning Process

This method is an adaptation of that proposed in Ref. 31 to tune TSK FRBSs
based on global semantics. To consider a local semantics approach, changes in the
coding scheme and in the computation of the variation intervals have to be done,
but the remaining characteristics will remain unchanged. This genetic tuning pro-
cess adjusts the antecedent membership function definitions of the fuzzy rules
obtained from the previous stage as well as their consequent parameters, trying to
improve global FRBS performance by minimizing a global error measure over the
example set.

It is based on a hybrid GA-ES algorithm in which each individual represents
a complete knowledge base. A ~1 � 1!-ES is considered as a genetic operator to
locally tune a percentage d of the best individuals in each generation. The GA
components are presented in the following.

Coding scheme. The individuals are composed of two well-differentiated
parts, C 1 and C 2 , which code the definition of the antecedent membership func-
tions and the consequent parameters, respectively. The C 1 part is an array built by
joining the partial representations of the antecedents of each one of the m fuzzy
rules composing the FRBS, Ci

1 , with n being the number of input variables, such
that

Ci
1 � ~ai1, bi1, ci1, . . . , ain , bin , cin !, i � 1, . . . , m

C 1 � C1
1 C2

1 . . .Cm
1

Before the tuning process starts, the variation intervals for each fuzzy set
coded in the first part of any chromosome are calculated from the preliminary
FRBS as

@Dij
min , Dij

max # � �aij �
bij � aij

2
, cij �

cij � bij

2
� , i � 1, . . . , m, and j � 1, . . . , n

In the same way, C 2 is obtained by joining the consequent parameters of each
one of the m fuzzy rules in the TSK fuzzy system, Ci

2. These parameters are coded
considering the angular coding ~see Section 5.4!, by which each gene in C 2 has
the same variation interval ~�~p/2!, p/2!. Finally, C 2 is defined as

Ci
2 � ~ pi0, pi1, . . . , pin !, i � 1, . . . , m

C 2 � C1
2 C2

2 . . .Cm
2
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Pool initialization. Let M be the population size; the available knowledge
contained in the preliminary FRBS is used to initialize these M individuals in three
different ways:

1. The preliminary knowledge base is directly coded in the first chromosome.
2. The genes of the first part, C 1, of the following ~M/2!�1 chromosomes are initiated at

random in their respective variation intervals, taking the genes of the second part, C 2,
from the preliminary knowledge base.

3. The remaining M/2 are generated completely at random, with the values in C 2 gener-
ated from a normal distribution N~0, d !.

In this initialization process, the variation intervals for each gene aij , bij , or cij of a
fuzzy set Cij

1 , defined by ~aij , bij , cij ! in C 1 , are computed as

@aij
l , aij

r # � �aij �
bij � aij

2
, aij �

bij � aij

2
�

@bij
l , bij

r # � �bij �
bij � aij

2
, bij �

cij � bij

2
�

and

@cij
l , cij

r # � �cij �
cij � bij

2
, cij �

cij � bij

2
�

These intervals are only used in this initialization process.
Operators and fitness function. The stochastic universal sampling43 is con-

sidered together with the elitist selection as in the previous stage. The fitness func-
tion is the MSE on the example set EN , represented by the following expression:

F~Cj ! �
1

26EN 6
(

el�EN

~ y l � S~x l !!2

The offspring population is generated by using the max-min-arithmetical cross-
over44 and Michalewicz’s nonuniform mutation.45 If Cv� ~c1, . . . , ck , . . . , cH ! and
Cw � ~c1

' , . . . , ck
' , . . . , cH

' ! are going to be crossed, the resulting descendents of the
max-min-arithmetical crossover are the two best of the next four offspring:

O1 � aCw � ~1 � a!Cv

O2 � aCv� ~1 � a!Cw

O3 with c3k � min$ck , ck
' %

O4 with c4k � max$ck , ck
' %

with a being a constant parameter chosen by the GFRBS designer.
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In the case of the Michalewicz’s nonuniform mutation, a gene ck , with a vari-
ation interval @ckl , ckr # , is mutated as ck

' � ck � D~t, ckr � ck ! with probability 0.5
or as ck

' � ck � D~t, ck � ckl ! otherwise. With t being the current generation, the
function d~t, y! returns a value in the range @0, y# such that the probability of d~t, y!
being close to 0 increases with the number of generations. This function is formu-
lated as d~t, y!� y~1 � r ~1�~t/T !!b !, with r being a random number in @0,1# , T the
total number of generations, and b being selected by the user to determine the
dependency with t.

With Dij
min and Dij

max being the extreme values of the variation interval of a
fuzzy set Cij

1 , defined by ~aij , bij , cij ! in C 1 , the intervals of performance for each
gene aij , bij , or cij of Cij

1 in the mutation process will be computed as

aij � @aij
l , aij

r # � @Dij
min , bij #

bij � @bij
l , bij

r # � @aij , cij #

cij � @cij
l , cij

r # � @bij , Dij
max #

Evolution strategy. As an additional genetic operator, a ~1�1!-ES is consid-
ered with the same coding scheme and the same fitness function as those in the
GA. For the first part of the chromosome C 1 , the ~1 � 1!-ES works in a way
similar to that presented in Section 5.3. However, there is a little difference when
C 2 is considered, because an incremental adaptation of the parameters is not nec-
essary in this case and the ES works in the usual way.30 Moreover, because all the
C 2 components are defined on the same interval of performance, ~�~p/2!, p/2!,
the same step size is used for all of them ~with si � 0.00001!.

7. EXPERIMENTAL STUDY

In this section, we analyze the behavior of the local semantics-based TSK
two-stage GFRBS ~in the following called Local Evolutionary Learning of TSK,
LELrTsk!, when solving two different real-world problems. The first is an elec-
trical engineering distribution problem46 and the second is the Sunspots time series
prediction.47 Some well-known methods from the literature are considered for com-
parison purposes. We have chosen different methods aiming to obtain highly accu-
rate FRBSs, instead of very interpretable ones. Table II shows a summary of their
main characteristics.

On the other hand, in order to see some interesting characteristics of the pro-
posed method, an internal comparison ~with some methods within the MOGUL
paradigm! has been performed considering the first problem. The methods used
will be introduced in Section 7.1.1.

Unless we specify something else, the initial linguistic partitions considered
by some of the proposed methods are comprised by five linguistic terms with
triangular-shaped fuzzy sets giving meaning to them. The same values for all the
related parameters have been considered ~i.e., 0.6 as crossover probability in all
the genetic approaches!. Finally, the values of the parameters considered for
LELrTsk are the following:

PROTOTYPE IDENTIFICATION TO LEARN ACCURATE TSK FRBS 927

International Journal of Intelligent Systems DOI 10.1002/int



• Local process for identifying prototypes: e � 1.5, v � 0.05, and k � 0.1 in the fitness
function; c � 0.9 and 100 iterations for the ~1�1!-ES; m�15, l�100, g� 0.2{m� 3,
u� 0.7, q � 5, ?r � ~r ?x , r As , r ?a!� ~2,0,0!, ;z� ~z ?x ,z As ,z ?a!� ~m,m,1!, ~ns , na!� ~0,0!,
and 500 iterations for the ~m,l!-ES.

• Genetic niching-based selection process: Three solutions, t�1.5, r � 2.5% of the num-
ber of rules in the preliminary set of rules ~0.25{m!, b� 0.5, N � 61, Pc � 0.6, Pm � 0.1,
and 500 generations.

• Genetic tuning process: M � 61, Pc � 0.6, Pm � 0.1, a � 0.35, b � 5, d � 0.001, 1000
generations, 25 ~1 � 1!-ES iterations, a� 0 and c � 0.9 ~the updating amount of Rech-
enberg’s 1/5-success rule in the ~1 � 1!-ES30 !.

To see that the proposed method takes a reasonable computing time ~to solve
off-line data-driven learning problems!, we have included the computing time of
the methods considered for comparison in the tables of results of both problems.
Notice that we have used a Pentium 4 with a CPU to 2.40 GHz to run the methods
and that the computing times have been rounded to minutes.

7.1. Estimating the Length of Low Voltage Lines

For an electricity distribution company, it may be of interest to measure the
maintenance costs of its own electricity lines. These estimations could be useful to
allow them to justify their expenses. However, in some cases these costs cannot be
directly calculated. The problem comes when trying to compute them for low volt-
age lines for the following reasons. Although maintenance costs depend on the
total length of the electrical line, the length of low voltage lines would be very
difficult and expensive to measure because they are contained in little villages and
rural nuclei. The installation of these kinds of lines is often very intricate and, in
some cases, one company can serve more than 10,000 rural nuclei.

For this reason, the length of low voltage lines cannot be directly computed.
Therefore, it must be estimated by means of indirect models. The problem involves
relating the length in meters of the low voltage line of a certain village with the
following two variables: the number of users in the village and the mean of the
distances in meters from the center of the town to the three furthest clients in it

Table II. Summary on the methods considered for comparison with other techniques.

Ref. Method FRBS type Semantics FP Algorithm type MOGUL

3 Ts Tsk G Ah + Ls
35 Lt Tsk G � Ga
31 M-Tsk Tsk G Ah + Es + Ga �

27 Anfis Tsk G Bnn + Ls

10 Fmid Tsk L � Fc
48,49 Grnn Grnn L Ah

FP: methods including output behavior in the fuzzy partition, MOGUL: methods considering
the MOGUL paradigm, G: global, L: local, AH: ad hoc method, GA: genetic algorithm, ES:
evolutionary strategy, GRNN: generalized regression neural network, LS: least squares estima-
tion, BNN: backpropagation neural network, FC: fuzzy clustering-based method.
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(village radius).46 We were provided with the measured line length, the number of
inhabitants, and the mean distance from the center of the town to the three furthest
clients in a sample of 495 rural nuclei. Table III presents a summary of the main
characteristics of this problem.

To evaluate the models obtained from the different methods considered in
this article, this sample has been randomly divided into two subsets, a training set
with 396 elements and a test set with 99 elements, 80% and 20%, respec-
tively.c The existing dependency of the two input variables with the output vari-
able in the training and test data sets is shown in Figure 6 ~notice that they present
strong nonlinearities!.

In this problem, it would be preferable that the solutions obtained verify the
following requirement: they have not only to be numerically accurate in the prob-
lem solving, but these solutions should be almost locally interpretable by human
beings. Therefore, the use of gray-box techniques such as fuzzy modeling is
recommended.

7.1.1. Internal Comparison

To see how the identification process affects to the learning, two ad hoc algo-
rithms have been developed for comparison as TSK prototype identification algo-
rithms together with their Mamdani counterparts. These methods are based on two
simple Mamdani fuzzy rule generation methods for global and local fuzzy proto-
typing, respectively ~they are presented in Section A of the Appendix!. Moreover,
to see some interesting characteristics of the proposed method, the counterpart
method to obtain local semantics-based Mamdani rules within the MOGUL para-
digm ~M-Scl36 ! is also analyzed. The M-Scl algorithm has been tested on this
problem in previous works, presenting good results in comparison to other related
techniques. Table IV shows a summary of the main characteristics of the methods
considered.

The results obtained by the considered methods following the MOGUL par-
adigm17 are shown in Table V, where #R stands for the number of rules and
MSEtra and MSEtst , respectively, for the mean square error obtained over the train-
ing and test data. The best results are highlighted in boldface.

cBoth data sets considered are available at http://decsai.ugr.es/;casillas/fmlib/.

Table III. Electrical problem characteristics.

Input variable X1: Number of users
Input variable X2: Village radius
Output variable Y: Low voltage line length
Number of examples: 495

Domain of X1: @1, 320#
Domain of X2: @60, 1673.329956#
Range of Y: @80, 7675#
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Analyzing the model obtained by our LELrTsk method, we can conclude
that it presents the best performance in approximation ~MSEtra ! and generaliza-
tion ~MSEtst !, with improvements of about 17.3% in test and 12.7% in training
over M-Scl, the method achieving the best generalization capability among the
remaining ones considered. Notice that the three models obtained by our LELrTsk
method are the best ones in the table.

On the other hand, two important aspects should be pointed out. First, there
are significant differences among the methods considering Mamdani rules and their

Figure 6. ~a! ~X1,Y ! and ~X2,Y ! dependency in the training data; ~b! ~X1,Y ! and ~X2,Y ! depen-
dency in the test data.

Table IV. Summary on the methods considered for internal comparison.

Ref. Method
FRBS
type Semantics FP

Algorithm
type MOGUL

50 � 36 Wm + Tun Mam G Ah + Ga �

51 � 52 Wca + Tun Mam L Ah + Ga �

36 M-Scl Mam L � Il + Es + Ga �

— WmrTsk Tsk G Ah + Es + Ga �

— WcarTsk Tsk L Ah + Es + Ga �

For FP, MOGUL, G, L, AH, GA, and ES see Table II; IL: iterative learning.
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counterparts considering TSK ones, presenting more or less the same number of
rules. Second, the results obtained in training by WmrTsk and WcarTsk are sig-
nificantly better than the ones with Wm + Tun and Wca + Tun. However, they
present overfitting, as their respective prototype identification algorithms obtain
models with too few rules. The same happens for M-Scl and LELrTsk in train-
ing, although in this case the improvements are also significant in test.

Therefore, it seems that the selection of the prototype identification algo-
rithm is an important issue and that to choose any Mamdani fuzzy rule generation
method is not sufficient.

7.1.2. Comparison with Other Techniques

In this section, we have used the techniques summarized at the beginning of
Section 7. In the case of Ts, Fmid, and Grnn, the only parameters considered are,
respectively, the number of rules, the number of clusters ~rules!, and the spread of
the radial basis functions. All these parameters directly determine the final train-
ing performance of the obtained model and the higher their value, the lower the
MSE. However, it was the contrary for test data, and the higher their value, the
higher the MSE on the test set. In this work, all the integer values from 0 to 100
have been tried for these parameters, taking as a result the one presenting the best
value in test ~4 as the maximum number of rules for Ts, 5 clusters for Fmid, and 48
as the spread value for Grnn!. The results obtained by the methods mentioned are
presented in Table VI.

Some previous approaches including output behaviors in the fuzzy partition-
ing ~see Section 1! have been considered. In view of these results, we can say that
the proposed method outperforms the best results obtained by the remainder, with
improvements of about 13.34% in test and 27.32% in training over Ts, the method
achieving the best generalization capability except the proposed approach. More-
over, the computing time of the proposed method is reasonable for this sort of
problem.

Table V. Results obtained by the multistage GFRBSs in the electrical problem.

Identification Niching-based selection Tuning

Method #R MSEtra MSEtst #R MSEtra MSEtst MSEtra MSEtst

Wm + Tun 13 298446 282058 — 175337 180102
Wca + Tun 20 356434 311195 — 175887 180211
M-Scl 31 431904 435649 19 226403 222550 148036 191339

20 227261 227105 142108 166578
16 227232 225789 136826 177612

WmrTsk 13 167693 155424 — 137942 170707
WcarTsk 20 167513 156546 — 128152 191996
LELrTsk 31 169354 156165 26 165498 155045 124022 137752

25 165152 154593 131473 153237
26 165162 154640 127958 168778
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Notice that practically all these present methods result in overfitting except
when a low number of rules are considered ~see the case of Anfis, in which the
number of rules can not be specified by the user!. It causes these methods to obtain
fuzzy models with poor accuracy. In our case, the obtained models present a good
balance between approximation and generalization, even considering a higher num-
ber of rules. This fact denotes the good fuzzy partitioning that this method achieves.

7.2. The “Sunspots” Time Series

Sunspots, often larger in diameter than the Earth, are dark blotches on the
sun. They were first observed around 1610, shortly after the invention of the tele-
scope.47 Yearly averages have been recorded since 1700. The sunspot numbers are
defined as k~10g � f !, where g is the number of sunspot groups, f is the number of
individual sunspots, and k is used to reduce different telescopes to the same scale.53

The observations are shown as black squares in Figure 7. The average time between
maxima is 11 years. Notice, however, that the time between maxima ranges from 7
to 15 years.

The underlying mechanism for sunspot appearances is not exactly known. No
first principles theory exists, although it is known that sunspots are related to other
solar activities. For example, the magnetic field of the sun changes with an aver-
age period of 22 years. Sunspots usually appear in pairs, corresponding to mag-
netic dipoles. Sunspot pairs reverse their polarity from one cycle to the next,
reflecting the underlying magnetic cycle. The sunspot series has served as a bench-
mark in the statistics literature.

The goal of time series prediction can be stated succinctly as follows: given
a sequence y~1!, y~2!, . . . y~N ! up to time N, find the continuation y~N � 1!,
y~N � 2!. . . . The series may arise from the sampling of a continuous time system
and be either stochastic or deterministic in origin.

In time-series prediction, there are two forms to measure the output errors:

• Single-Step Prediction: where external inputs to the method are true observed data
• Iterative Prediction: where external inputs to the method are predicted outputs from

previous iterations.

Table VI. Comparison of the models obtained by different methods in the
electrical problem.

Method #R/Complexity MSEtra MSEtst

Time
~min!

Ts 4 170644 158949 2
Lt 4 169761 160110 5
M-Tsk 20 132917 167826 6
Anfis 20 108279 923650 1

Fmid 5 181040 164670 1
Grnn ~396 � 2! neur. 170460 198140 1

LELrTsk 26 124022 137752 10
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Single-step prediction has usually been used in the literature. In this way, we
will use single-step prediction to analyze the methods. To estimate the perfor-
mance of the methods we check the normalized mean square error ~nMSE !:

nMSE~N !�

(
l�1

N

~targetl � predictioni !
2

(
l�1

N

~targetl � mean~target !!2
�

1

s 2
{

1

N
{(

l�1

N

~ f ~L � l !� f '~L � l !!2

where l � 1, . . . , N enumerates the points in the withheld data set, target and
f ~L � l ! are the true value of the time series, prediction and f '~L � l ! are the
output of the method, and s2 denotes the sample variance of the observed time
series in the data set. This kind of fitting error describes how well the points are
approximated by the surface over the input space.

Many works try to analyze sunspot data using linear and nonlinear methods.
The sunspots of years 1700 through 1920 were chosen to be the training set, and
the sunspots of years 1921 through 1994 were chosen for single-step prediction.
Errors are calculated considering the following four sets of data:

1. Years 1921 through 1955
2. Years 1956 through 1979
3. Years 1980 through 1994
4. Years 1921 through 1994.

Figure 7. The sunspot data.
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7.2.1. Adaptation of Time-Series to System Modeling

In this work we have used a temporal window with four delays. These delays
are the 1, 2, 4, and 8 delay from the predicted data. In Figure 8, we can see the
window considered.

Therefore, we will only use four points but we will cover eight delays ~as was
proposed in Ref. 54!. Because this problem will be solved with fuzzy modeling-
based techniques, each delay should be considered as an input variable for these
kinds of methods. Following this approach, all the methods consider four input
variables.

7.2.2. Comparison with Other Techniques

In this section, we have used an additional method for comparison purposes,
WNet55 ~a short description is included in Section B of the Appendix!. However,
the main aim is not to compete with these kinds of techniques; the main aim is to
have a reference point with a classic method for time-series prediction, previously
used to solve this problem. Notice that we have not denoted the computing time
~min! of WNet because the WNet’s results are extracted from Ref. 55 and the
authors did not denote it.

As in the case of the first problem, the only considered parameter in Ts, Fmid,
and Grnn is the number of rules, the number of clusters ~rules!, and the spread of
the radial basis functions, respectively. For these parameters, we have used all the
integer values from 0 to 100, taking as a result the one presenting the best value in
test ~2 as a maximum number of rules for Ts, 5 clusters for Fmid, and 15 as spread
value for Grnn!. In this problem, we have utilized three and five linguistic terms
in the initial linguistic partitions considered by some of the methods. The results
obtained by the methods mentioned are presented in Table VII, where #L stands
for the number of labels in the input variables, and nMSEtra and nMSEtst , respec-
tively, for the normalized mean square error obtained over the training and test
data.

In view of these results, we can say that the proposed method outperforms
the best results obtained by the remainder, with improvements of about 28.95%
in test and 56.46% in training over WNet, the method achieving the best

Figure 8. Temporal window.
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generalization capability, considering five labels. Notice the good results also
obtained by the proposed method considering three labels and only 15 rules.

As in the first problem, practically all these methods present overfitted results
except considering a low number of rules. It causes these methods to obtain fuzzy
models with a poor accuracy. Moreover, the computing time of Anfis is overwhelm-
ing when we use five labels. In our case, the obtained models present a good bal-
ance between approximation and generalization, even considering a higher number
of rules. Notice that, when we increase the number of labels, the model obtains
better results and the number of rules does not increase so much. This fact denotes
the good fuzzy partitioning that this method achieves.

7.3. Method Analysis

To analyze the behavior of the proposed LELrTsk, we have focused on the
problem of estimating the length of low voltage lines for an electricity distribution
company. Figure 9 illustrates the evolution chart of the fitness value obtained by
the LELrTsk method considering the most accurate model. The chart depicts the
values of the best individual in each generation ~for the identification process it is
the MSE of the model every time a new rule is added, one iteration!. The obtained
chart clearly states the convergence power of the LELrTsk algorithm and allows
us to analyze the efficiency of the different processes composing it.

Analyzing the chart, we can observe how the identification process appropri-
ately converges, increasing the model performance until the end. The system per-
formance is only decreased in the 10th iteration. However, the corresponding rule
is kept after the selection process, considering it as a necessary rule. The selection
process presents fast convergence and it is the process obtaining the lesser improve-
ments, which is cogent because it is only devoted to removing inefficient or

Table VII. Comparison of the models obtained by different methods on the sunspot
time-series.

nMSEtra nMSEtst

Method #L #R/Complex. 1700–1920 1921–55 1956–79 1980–94 1921–94 Times

Ts 2 2.6404 2.6783 3.0586 3.8606 2.8431 3
Lt 3 3 0.3489 0.2201 2.2367 1.7651 1.3130 2
Anfis 3 72 0.0026 1448.9 1487.6 4182.6 1917.7 17
M-Tsk 3 36 0.5009 0.2132 1.0933 1.1291 0.7312 11
Lt 5 1 0.2732 0.2232 1.4733 2.3056 1.1318 2
Anfis 5 Computing time overwhelming ~the method handles 625 rules!
M-Tsk 5 140 0.1466 0.4164 1.2098 1.8161 0.9857 26

Fmid 5 0.3318 0.2319 0.3181 0.4715 0.3072 1
Grnn ~213 � 2! neur. 1.1097 6.6488 1.3243 8.2819 4.9287 1
WNet 21 neur. 0.0820 0.0860 0.3500 0.3130 0.2190 —

LELrTsk 3 15 0.0752 0.0983 0.2599 0.1610 0.1659 12
LELrTsk 5 57 0.0357 0.1325 0.2217 0.1324 0.1556 27
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redundant rules for the tuning process. Finally, the tuning process gradually
improves system performance ~practically until the end!, presenting significant
improvements.

Figure 10 graphically depicts the best TSK model obtained from the pro-
posed method. Each rule in the figure can be interpreted as a local linear model
acting on its definition subspace. Notice that some very specific rules have been
obtained. These kinds of rules are devoted to model points that are quite different
than their neighbors ~outliers or noise points! allowing us to decrease the general-
ization error.

8. CONCLUDING REMARKS

In this work, we propose the use of local fuzzy prototypes as a first approxi-
mation to obtain accurate local semantics-based TSK fuzzy rules. A two-stage evo-
lutionary algorithm considering the interaction between input and output variables
has been developed following the MOGUL paradigm. First, we obtain an accept-
able model as a first approximation by means of a local evolutionary learning
performing the identification of local prototypes. Then, a postprocessing stage con-
siders the global cooperation of such promising rules to improve the fuzzy model
performance.

Figure 9. Process convergency to the best solution: ~a! the whole learning process; ~b! local
process for identifying prototypes; ~c! postprocessing stage.
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The proposed evolutionary learning method has been compared with other
methods to solve two real-world problems. From the results obtained the follow-
ing conclusions can been drawn:

• The election of the prototype identification algorithm is an important issue, because the
quality of the initial promising rules ~prototypes! highly depends on this process.

• The use of fuzzy prototypes to identify an initial set of TSK rules allow us to consider
the completeness and consistency properties by means of a sophisticated fuzzy rule gen-
eration method. In this way, we can obtain high quality fuzzy rules ~prototypes! from
which we can generate TSK models presenting a good balance between approximation
and generalization.
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10. Babuška R. Fuzzy modeling for control. Boston, MA: Kluwer Academic; 1998.
11. Delgado M, Gómez-Skarmeta AF, Martín F. A fuzzy clustering based rapid-prototyping

for fuzzy rule-based modeling. IEEE Trans Fuzzy Syst 1997;5:223–233.
12. Kumar A, Agrawal DP, Joshi SD. A GA-based method for constructing TSK fuzzy rules

from numerical data. In: Proc 12th IEEE Int Conf on Fuzzy Systems ~FUZZ’03!; 2003.
pp 131–136.

13. Ménard M. Fuzzy clustering and switching regression models using ambiguity and dis-
tance rejects. Fuzzy Set Syst 2001;122:363–399.

14. Ruspini EH. A new approach to clustering. Inform Contr 1969;15:22–32.
15. Bezdek JC. Fuzzy clustering. In: Ruspini EH, Bonisone PP, Pedrycz W, editors. Handbook

of computation. Amsterdam: Institute of Physics Press; 1998.
16. Cordón O, Herrera F, Hoffmann F, Magdalena L. Genetic Fuzzy Systems: Evolution-

ary tuning and learning of fuzzy knowledge bases. Singapore: World Scientific; 2001.
17. Cordón O, del Jesus MJ, Herrera F, Lozano M. MOGUL: A methodology to obtain genetic

fuzzy rule-based systems under the iterative rule learning approach. Int J Intell Syst
1999;14:1123–1153.

18. Pal N, Eluri VK, Mandal GK. Fuzzy logic approaches to structure preserving dimension-
ality reduction. IEEE Trans Fuzzy Syst 2002;10:277–286.

19. Yen J, Wang L. Simplifying fuzzy rule-based models using orthogonal transformation meth-
ods. IEEE Trans Syst Man Cybern B Cybern 1999;29:13–24.
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APPENDIX: LEARNING METHODS CONSIDERED
IN THE EXPERIMENTAL STUDY

A.1. Ad Hoc Learning Methods

Four ad hoc methods have been developed to study some interesting charac-
teristics of the proposed learning process:

• WmrTsk: A two-stage GFRBS composed of Wang and Mendel’s method50 as a rapid
identification of global fuzzy prototypes, the linear consequent derivation proposed in
this article ~see Step 5 of the local process for identifying prototypes in Section 5!, and
the global semantics-based TSK genetic tuning process presented in Ref. 31.

• WcarTsk: A two-stage GFRBS composed of the Weighted Counting Algorithm51 as a
rapid identification of local fuzzy prototypes, the linear consequent derivation proposed
in this article ~see Step 5 of the local process for identifying prototypes in Section 5!,
and the local semantics-based TSK genetic tuning process proposed in this article ~see
Section 6.2!.

• Wm + Tun: A two-stage GFRBS to obtain global semantics-based Mamdani fuzzy rules.
First, the primary rule in importance is obtained in each fuzzy input subspace consider-
ing Wang and Mendel’s well-known ad hoc generation method.50 Then, the global
semantics-based genetic tuning process presented in Ref. 36 ~a real-coded GA! is used
to adjust the parameters of the membership functions. The number of labels for each
variable is determined by the user.

• Wca + Tun: A two-stage GFRBS to obtain local semantics-based Mamdani fuzzy rules.
In a way similar to the previous algorithm, the Weighted Counting Algorithm51 is con-
sidered to obtain a preliminary set of rules, and the local semantics-based genetic tuning
process presented in Ref. 52 ~a real-coded GA! adjusts the parameters of the member-
ship functions.

A.2. Learning Methods from Other Authors

Eight methods from other authors have been considered for comparison ~in
most cases with accuracy purposes!:

• Ts: This was the first approach to learning global semantics-based TSK FRBSs.3 This
method assumes some input variables and some initial premise parameters, which are
iteratively obtained by a heuristic combinatorial search. Consequent parameters are opti-
mally adjusted with respect to these premises by means of a least squares estimation
algorithm and, finally, the premise parameters are readjusted. This is accomplished con-
sidering the simplex algorithm, which is based on a nonlinear optimization method. The
maximum number of rules is determined by the user.

• Lt: A single-stage GFRBS following a global semantics approach.35 It is based on a
binary-coded GA that jointly performs the derivation of the premise parameters and the
learning of the consequent linear parameters, the number of rules, and the number of
labels per variable. However, in our implementation we make use of a real coding scheme
because it is more efficient when real values are considered. The maximum number of
labels in the variables is defined by the user.

• Anfis: A neural FRBS presented by Jang27 to obtain global semantics-based TSK FRBSs.
The TSK fuzzy inference system is represented in a layered, feedforward network struc-
ture. Jang proposed a two-pass algorithm to adjust the parameters using a modified error-
backpropagation optimization algorithm. In the forward pass, the premise parameters
are held fixed and the consequent parameters are adjusted by least squares estimation.
In the backward pass, the network error is backpropagated through the network and the

940 ALCALÁ ET AL.

International Journal of Intelligent Systems DOI 10.1002/int



premise parameters are adjusted by gradient descent while the consequent parameters
are held fixed. The number of labels in the variables is defined by the user. In our imple-
mentation we consider triangular membership functions. Nevertheless, the method behav-
ior is very similar to the original one considering Gaussian membership functions.

• WNet: This method, presented by Weigend et al.,55 builds a feedforward network with
backpropagation ~the error backpropagation algorithm of Rumelhart et al.56 ! and weight
elimination.

• Fmid: This method builds input–output TSK fuzzy models from data by means of the
Gustafson-Kessel fuzzy clustering method.10,29 It uses fuzzy clustering in the product
space of the premises and the consequents to approximate a nonlinear system by a col-
lection of local linear models. Each local model then corresponds to a fuzzy rule of the
TSK type. The number of clusters ~local semantics-based TSK fuzzy rules! is chosen by
the user.

• Grnn: A method to perform function approximation with a generalized regression neu-
ral network,48,49 those having a radial basis layer and a special linear layer. It finds the
smallest network that can solve the problem within a given error goal. The spread of
the radial basis functions is considered as a learning factor. The larger the spread, the
smoother the function approximation will be. To fit data closely, a spread smaller than
the typical distance between input vectors should be considered. To fit the data more
smoothly, a larger spread should be set. GRNN sets the first layer weights to the trans-
posed input vectors ~training data premises!, and the first layer biases are all set to 0.8326/
spread. The second layer weights are set to the target vectors ~training data consequents!.

• M-Scl: A two-stage GFRBSs based on the Soft Constrained Learning presented in Ref. 36
to obtain local semantics-based Mamdani fuzzy rules. The first stage is composed of an
evolutionary generation process very close to the local identification algorithm pro-
posed in this article—without the linear consequent derivation. The second stage ~post-
processing! is composed of a genetic niching-based selection process and a genetic tuning
stage.

• M-Tsk: A two-stage GFRBS presented in Ref. 31 to obtain global semantics-based TSK
rules. It is based on an iterative rule generation process and a postprocessing stage per-
forming a genetic niching-based selection and a global semantics-based genetic tuning.
The number of labels considered in the premises is determined by the user.
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