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Abstract—There are many real-world classification problems
involving multiple classes, e.g., in bioinformatics, computer vi-
sion or medicine. These problems are generally more difficult
than their binary counterparts. In this scenario, decomposition
strategies usually improve the performance of classifiers. Hence,
in this paper we aim to improve the behaviour of FARC-HD
fuzzy classifier in multi-class classification problems using de-
composition strategies, and more specifically One-vs-One (OVO)
and One-vs-All (OVA) strategies. However, when these strategies
are applied on FARC-HD a problem emerges due to the low
confidence values provided by the fuzzy reasoning method. This
undesirable condition comes from the application of the product
t-norm when computing the matching and association degrees,
obtaining low values, which are also dependent on the number
of antecedents of the fuzzy rules. As a result, robust aggregation
strategies in OVO such as the weighted voting obtain poor results
with this fuzzy classifier.

In order to solve these problems, we propose to adapt the
inference system of FARC-HD replacing the product t-norm
with overlap functions. To do so, we define n-dimensional overlap
Junctions. The usage of these new functions allows one to
obtain more adequate outputs from the base classifiers for the
subsequent aggregation in OVO and OVA schemes. Furthermore,
we propose a new aggregation strategy for OVO to deal with the
problem of the weighted voting derived from the inappropriate
confidences provided by FARC-HD for this aggregation method.

The quality of our new approach is analyzed using twenty
datasets and the conclusions are supported by a proper statistical
analysis. In order to check the usefulness of our proposal, we
carry out a comparison against some of the state-of-the-art fuzzy
classifiers. Experimental results show the competitiveness of our
method.

Index Terms—Multi-classification, one-vs-one, fuzzy rule-based
classification systems, aggregations, overlaps.
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I. INTRODUCTION

UZZY Rule-Based Classification Systems (FRBCSs) are

well-known and widely used tools in the field of pattern
recognition and classification problems. They provide an inter-
pretable model by using linguistic labels in the antecedents of
their rules [1]. FRBCSs have been applied in multiple real-
world problems, including domotics [2], anomaly intrusion
detection [3], image processing [4], and medical problems [5],
among others.

In classification, two types of problems can be differentiated
depending on the number of classes that compose the output
of the problem: binary (two classes) and multi-class problems
(more than two classes). Usually, it is more difficult to build
a classifier in the latter case due to the overlapping among the
examples of the different classes of the problem, which makes
the definition of decision boundaries more complex. Even
so, multi-class problems are present in several applications
domains such as fingerprints recognition [6], handwritten
digits [7], microarrays [8] or cardiovascular disease classifi-
cation [5]. A commonly used solution to deal with multi-class
classification problems is to use decomposition techniques [9],
[10], which try to divide the original multi-class problem into
easier to solve binary classification problems, which are faced
by independent binary classifiers named base classifiers.

Different decomposition strategies have been proposed in
the specialized literature [10]. Two of the most well-known
and used ones are One-vs-One (OVO) and One-vs-All (OVA)
[9], which can be included within the wider Error Correcting
Output Codes (ECOC) framework [11]. OVO scheme divides
the original problem into as many sub-problems as possible
pairs of classes, whereas in OVA the division results in as
many sub-problems as classes in the original one. In both
strategies each binary problem is addressed by an independent
base classifier. When classifying a new example, the outputs of
all the base classifiers are combined to make the final decision
(aggregation phase).

In this paper we aim to improve the performance of FARC-
HD (Fuzzy Association Rule-based Classification model for
High-Dimensional problems) [12] in multi-class problems us-
ing decomposition strategies. Previous works have shown that
although the base classifier can be capable of solving multi-
class problems, such as FARC-HD, these strategies usually



work better than addressing the problem directly [9], [13]-
[16]. However, two main difficulties emerge when carrying
out the proposed hybridization:

1) The aggregation of the classifiers in OVA and OVO
schemes directly depends on the confidences provided
by the base classifiers. In the case of FARC-HD, due
to the usage of additive combination [17] as fuzzy
reasoning method, we consider as confidence the sum
of the association degrees obtained for each class, which
are computed by multiplying the matching degrees (of
the example with the antecedents of the rules using
the product t-norm to model the conjunction) and the
rule weight. For this reason, when combining FARC-HD
and decomposition strategies the confidences obtained
when carrying out the inference process of FARC-HD
are not suitable for the subsequent aggregation. From
our point of view, this is due to the usage of the
product in the inference of FARC-HD, which produces
small confidences with low variations for each pair of
classes and penalizes the rules with the largest number
of antecedents.

2) Aggregation strategies that usually have a robust and
accurate performance in OVO, such as the weighted
voting (WV) [18], [9], [19], do not obtain good results
when using FARC-HD as base classifier (while others
do not present this problem). Our hypothesis is that
the confidence estimation of the non-predicted class
provided by FARC-HD distorts the combination in OVO
when using this aggregation strategy.

In order to address the former problem, we propose to adapt
the inference process of FARC-HD in such a way that the
confidences obtained allow decomposition strategies to pro-
duce more accurate aggregations and consequently, can lead
to improve the classification in OVO and OVA models. To do
so, we will use overlap functions [20], which satisfy similar
properties to those of the product, in the inference of FARC-
HD. These functions allow us to obtain values with a higher
variation than those provided by the product, in such a way
that the confidences used in OVO and OVA (stored in the
score-matrix or vector) are better modeled, and hence greater
knowledge is acquired for the posterior aggregation.

Since overlaps functions are originally defined for 2-
dimensional problems, in this paper we introduce the concept
of n-dimensional overlap functions to be able to compute the
overlap among n input values. More specifically, according
to the problem related to the number of antecedents, we
propose the usage of n-dimensional overlap functions that do
not decrease the results as the number of input values (n)
increases.

In addition, aiming at facing the latter problem, we propose
an alternative to the usage of the WV in the aggregation phase
of OVO strategy. To do so, we propose an aggregation strategy
named WinWYV, which follows the idea of the WYV, in which
we do not consider the confidences obtained by non-predicted
classes, since its usage is not appropriate for the classification
in the case of FARC-HD (we will show that OVA and other
OVO aggregations are not affected by this problem).

In order to assess the quality of the methods, we use twenty

numerical datasets from the KEEL dataset repository [21]
and we contrast the results obtained using non-parametric
statistical tests, as suggested in the specialized literature [22],
[23]. In these experiments, we will study the goodness of
the usage n-dimensional overlap functions and we will also
analyze whether the usage of WinWV allows the performance
of the WV to be enhanced. Moreover, we will show the validity
of our proposal to improve the performance of FARC-HD in
multi-class problems, comparing it against the original FARC-
HD algorithm and some of the best performing fuzzy methods,
i.e., FURIA algorithm [24], IVTURSgarc.up [25], and PTTD
[26].

The rest of this paper is organized as follows. In Section II,
we briefly introduce FARC-HD and decomposition strategies
and we describe some of the aggregations for OVO that we
use in this paper. Section III contains a detailed description of
our proposals to use FARC-HD with decomposition strategies
and puts forward the definition of the n-dimensional overlap
functions. The set-up of the experimental framework is given
in Section IV and the analysis of the results obtained is
presented in Section V. Finally, Section VI concludes this

paper.

II. PRELIMINARIES

In this section, we first recall some concepts about FRBCSs
and we briefly explain the FARC-HD algorithm [12] (Section
II-A). Then we describe OVO and OVA decomposition strate-
gies and some of the OVO aggregation methods studied in the
literature (Section II-B). Finally, we review the related works
in Section II-C.

A. Fuzzy Rule-Based Classification Systems and FARC-HD

A classification problem consists in learning a mapping
function called classifier from a set of training examples,
named training set, that allows one to classify previously
unknown examples. Let z, = (Tp1,...,2Zpn) be the p't
example of the training set which is composed of P examples,
where z,; is the value of the i-th attribute (i = 1,2,...,n)
of the p-th training example. Each example belongs to a class
yp € C={C1,Cy,...,Cp, }, where m is the number of classes
of the problem.

We find multiple techniques used to cope with classification
problems. Among them, FRBCSs are widely used because
they provide an interpretable model by means of the use of
linguistic labels in their rules [1].

The two main components of FRBCSs are the following
ones:

1) Knowledge base: It is composed of both the rule base
(RB) and the database, where the rules and the mem-
bership functions are stored, respectively.

2) Fuzzy reasoning method: This is the mechanism that
classifies examples using the information stored in the
knowledge base.

In this work we focus on a fuzzy rule learning algorithm
known as FARC-HD [12], since it is currently one of the



most accurate and interpretable FRBCSs in the literature. This
algorithm makes use of the following rule structure:

Rule R; : If 21 is Aj; and ... and x,, is A,

1
then Class = C; with RW; )

where R; is the label of the j-th rule, z = (z1,...,2,) is
an n-dimensional pattern vector that represents the example,
Aj; is a fuzzy set, C; € C is the class label and RW; is
the rule weight, which is computed using the most common
specification, i.e., the fuzzy confidence value or certainty factor
defined in [27]:

>

zpEClassC}

P
Z MAj (xp)
p=1

where 14, (z,) is the matching degree of the example x, with
the antecedent part of the fuzzy rule R;, which is computed
using the Eq. (3), shown further in this subsection. In the case
of FARC-HD, linguistic labels are modeled using uniformly
distributed triangular membership functions, which form a
strong partition (Fig. (1)).

HA; (xp)
RW; =CF; =

2

1.0

0.0 1.0

Fig. 1. Linguistic labels partitioning in FARC-HD.
In order to generate the rule base, FARC-HD applies a
learning process composed of three steps:

1) Fuzzy association rule extraction for classification: With
the aim of obtaining the fuzzy rule base, a search tree
[28] is constructed for each class. To do so, the frequent
itemsets (an item is a linguistic label) are computed
using the support and confidence. Finally, the fuzzy rules
are generated from the obtained frequent itemsets. The
number of linguistic terms in the antecedents of the rules
is limited by the maximum depth of the tree.

2) Candidate rule prescreening: This phase makes use of
subgroup discovery to preselect the most interesting
rules from the rule base obtained in the previous stage by
means of a pattern weighting scheme [29]. The weights
of the examples are based on the coverage of the fuzzy
rules.

3) Genetic rule selection and lateral tuning: An evolution-
ary algorithm is used both to perform a lateral tuning of
the fuzzy sets [30] and to select the most accurate rules
from the rule base generated in the previous steps.

Let z, = (xp1, ..., Tpn) be a new example to be classified,
FARC-HD applies a fuzzy reasoning method called additive
combination [17], computed in four steps.

1) Matching degree. In this step the strength of activation

of the if-part for all rules in the RB with the pattern x,,

is computed.

HA; (xp) = T(;“Aﬂ (xpl)a sy HA n, (xpnj)) 3)

where (14, (zp;) is the matching degree of the example
with the i-th antecedent of the rule R;, 7" is a t-norm
(in the case of FARC-HD the product), and n; is the
number of antecedents of the rule.

2) Association degree. The association degree of the pattern
x, with each rule in the RB is computed.

bj(xp) = pa, (zp) - RW; “4)

3) Confidence degree. In this stage the confidence degree
for each class is computed. To obtain the confidence
degree of a class, the association degrees of the rules of
that class, i.e., those whose consequent class is the class
we are considering, are summed.

Z bj(mp)’

R;ERB; C;=l

1=1,2,...

confi(z,) = ,m

(&)
4) Classification. The class that obtain the highest confi-
dence degree is the predicted one.

Class = arg lz?”llmxm(wnfl(fﬂp)) (6)

As we can observe in the rule structure and the fuzzy
reasoning method, FARC-HD is capable of solving multi-class
classification problems directly. However, previous works have
shown that decomposition strategies usually work better than
addressing the problem directly [9], [10], [13]-[16]. Therefore,
we propose to use the decomposition strategies with the aim of
improving the performance of FARC-HD when facing multi-
class problems. However, as we have stated in the introduction,
we will show that there are some issues we need to address
when combining FARC-HD and these strategies.

B. Decomposition strategies

Decomposition strategies [10] divide the original multi-
class problem into simpler binary problems that are faced
by independent binary classifiers, which are referred as base
classifiers. These strategies can be used both with classifiers
that are able to face only two-class classification problems and
those having an inherent multi-class support. In this paper we
consider two of the most used decomposition strategies in the
literature: One-Versus-One (OVO) and One-Versus-All (OVA)
[9] strategies.

1) One-Versus-One (OVO): OVO decomposition divides a
problem of m classes into m(m — 1)/2 binary sub-problems
(all possible pairs of classes). Each problem is faced by a
binary classifier, which is responsible for distinguishing a
pair of classes {C;,C;}. When classifying a new example,
each base classifier will return a pair of confidence degrees
rij,rji € [0,1] in favour of classes C;, C;, respectively (if
only a confidence degree is given for the predicted class, the
other is usually computed as 7;; = 1 — ry;, being C; the
predicted one). The outputs (confidence degrees) provided by
all the base classifiers are stored in the score-matrix R as



follows:

)

Since each binary sub-problem is faced by an independent
classifier, we normalize the score-matrix such that the range
of the confidences provided by all classifiers is the same.
This normalization is very important when using FARC-HD
because it does not return confidences in [0,1] that can be
interpreted as probabilities. The score-matrix is normalized as

follows.
rij = {

Finally, the outputs of the base classifiers are aggregated
and the predicted class is obtained. This aggregation step is a
key factor for the classification process [9]. In this paper, we
consider four well-known OVO aggregation methods.

Tij
Tij T
0.5

ifr,;, Z#0orr; #£0
Tij 7 Tji # ®

if Tijg = Tji = 0

o Voting strategy (VOTE) [31]. Each base classifier votes
for the predicted class and the class having the largest
number of votes is given as output:

Class = arg ,maz Z Sij ©)]

""" 1<j#i<m
where s;; is 1 if r;; > r;; and O otherwise.
o Weighted Voting (WV) [18]. Each base classifier votes for
both classes based on the confidences obtained for them.
The class having the largest value is given as output:

Z Tij (10)

Class = arg mazx
= m
1<j#i<m

i=1,...,

e Non-Dominance Criteria (ND) [32]. The score-matrix is
considered as a fuzzy preference relation. Then class with
the highest non-dominance degree is the predicted one:

Class = arg max {1 — maw rél} an
i=1,....m j=1,....m
where R’ is the strict score-matrix.

o Learning valued preference for classification (LVPC)
[33], [34]. This aggregation strategy, as in ND, considers
the score-matrix as a fuzzy preference relation. In this
manner, the original relation is decomposed into three
new relations with different meanings: the strict prefer-
ence, the conflict, and the ignorance. In order to obtain
the output class, a decision rule based on voting strategy
is proposed:

N;

N; + N;

(12)
where NN, is the number of examples from the class ¢ in
the training data, Cj; is the degree of conflict (the degree
to which both classes are supported), I;; is the degree of
ignorance (the degree to which none of the classes are
supported), and P;; and P;; are the strict preference for
¢ and j, respectively. These variables are computed as

1
Class = arg _max P + iCZ-j +

i=1,....m
1<j#i<m

follows:
Cij =min{r;;,75}
Pij =1 — Cyj

Iij =1 —max {’I“ij,Tji}

Py =1y —

Owing to the way in which the multi-class problem is
divided in OVO scheme, there is an issue inherent to this
decomposition method: the non-competent classifiers [19].
The learning process of each base classifier is performed
using only the examples belonging to the two classes that
this classifiers will classify and consequently, it ignores the
examples belonging to other classes. Therefore, the remainder
classes are unknown for these classifiers and their outputs
are irrelevant when classifying examples of those classes.
However, these outputs are aggregated in the same way as
the relevant ones, possibly misleading the correct labeling of
the example. Although this is an interesting line, it is out of
the scope of this paper and we leave it as a future research
line.

2) One-Versus-All (OVA): OVA decomposition divides a
problem of m classes into m binary problems, which are ad-
dressed by independent binary classifiers. Each base classifier
distinguishes one of the classes from all other classes. The
learning process of these classifiers is performed using the
whole training data, considering the examples from the single
class as positives and the rest of examples as negatives. When
classifying a new example, each base classifier will return a
confidence degree r; € [0, 1] in favour of the class C;, which
will be stored in a score-vector R:

R=(r,... (13)

7T7;7...,Tm)

As in OVO, we need to normalize the score-vector such that
the range of the confidences provided by all classifiers is the
same. In order to do so, we also need the score-vector in which
the confidences obtained by each classifier for the negative
class are stored (R). With both vectors, the normalization of
the score-vector R is performed as follows.

75

Ti T

Ty = (14)
Finally, the most commonly used aggregation in OVA con-

sider the usage of the maximum value in the score-vector, and

thus the class with the highest confidence will be predicted.

C. Related works

Decomposition strategies can be included in the broader cat-
egories of ensembles and multiple classifier systems (MCSs)
[35], [36]. These types of systems aim to improve the classi-
fication performance by the combination of several classifiers.
In fact, ensembles and MCSs are usually referred to those
methods where the base classifiers are able to predict any of
the classes of the problem; however, decomposition techniques
are also formed of sets of classifiers, but there is a major
difference: each base classifier is not able to predict all the
classes in the problem (only two of them or two combinations
of different classes are predicted). Such an important differ-



ence has produced rather different approaches for each type
of method.

Traditional ensembles aim to produce diverse base classi-
fiers [37], whose differences in their predictions allow them to
increase the performance, since they complement each other.
Widely used ensemble methods are Bagging [38] and Boosting
[39], [40]. These type of methods have been also considered
in the fuzzy community, where different approaches have
been proposed using fuzzy systems as base classifiers [41]—
[44]. In [41], the authors combined the FRBCSs obtained
in the pareto front of a multi-objective optimization genetic
algorithm. An extension of the classical Random Forests (a
variant of bagging) using fuzzy decision trees was presented
in [42], [45]. Boosting in the fuzzy context was applied in
[46]. The authors of [43], [44], [47] developed a method-
ology to construct FURIA-based multi-classifiers in a series
of works, including all the different phases of an ensemble,
from its construction (also bagging-based) to the combination
procedure presented in the latter work. All these type of
models are usually no longer interpretable, and hence the fuzzy
classifiers are used instead of other weak classifiers such as
the commonly used decision trees to take advantage of the
fuzzy decision boundaries to reach highly accurate models,
which may need the usage of thousands of rules [44], even
though some authors focused on reducing this number [48].
Moreover, FURIA [24] has been one of the most extended
base classifier in this framework, which by itself is not as
interpretable as classical FRBCSs [1], since it make use of
hyper-rectangles adjusted for each rule instead of using the
same linguistic labels in each rule. For this reason, in this paper
we only deal with decomposition-based ensembles, which may
maintain part of the interpretability of the original models.

Otherwise, decomposition strategies have also attracted at-
tention as a way of improving classification in multi-class
problems with FRBCSs [26], [32], [34], [49]. In this frame-
work, different base classifiers have been used (Fuzzy Ripper
[34], FH-GBML [50] or SLAVE [51]), as well as different
combination methods have been proposed such as the Non-
Dominance criterion (ND) in [32] or the Learning Valued
Preference for Classification (LVPC) [34], [49] already de-
scribed in Section II-B. In these papers, the authors considered
the score-matrix as a preference relation from which the best
alternative should be predicted. In order to do so, the conflict
and ignorance were modeled in [49] and thereafter applied
in the Fuzzy Ripper algorithm presented in [34]. Similarly
but with a different approach to output the class from the
score-matrix, the authors in [32] proposed the usage of the ND
criterion, showing good results with FH-GBML and SLAVE
classifiers. In addition, in [26] the authors presented the Top-
Down induction of Fuzzy Pattern Trees (PTTD), which made
use of OVA approach.

However, recent developments with fuzzy classifiers are not
only related to ensemble strategies. Taking into account the
good properties of FRBCSs, several approaches [24], [25],
[52]-[54] have been proposed aimed at improving the trade-
off between accuracy and interpretability [55]. FURIA [24] ex-
tended the RIPPER algorithm using fuzzy rules and it provides
accurate results. In [52], authors combined a feature selection

process using the so-called modulator functions and a fuzzy
rule extraction mechanism based on fuzzy clustering. Castro
et. al [53] defined a fuzzy classifier using general fuzzy rules
and a new mechanism aimed at solving the conflicts among
them. In [54], authors defined a new approach to design fuzzy
classifiers using k-means clustering and a memetic algorithm
to find the optimal values of fuzzy rules and membership
functions. In order to improve the interpretability of TSK fuzzy
classifiers, the usage of a minimax probability was proposed in
[56]. Finally, Sanz et. al [25] provided a framework to improve
the performance of FRBCSs using interval-valued fuzzy sets.

On account of the different fuzzy methodologies described
above, we have considered to include those following a similar
philosophy to our proposal in the experimental study. More
specifically, we have considered both aggregations defined in
the fuzzy context (ND and LVPC) [32], [34], [49], the PTTD
[26] method as an OVA based fuzzy system as well as FU-
RIA [24] and IVTURS [25] as state-of-the-art fuzzy classifiers.
Finally, we should mention that none of the ensemble/multi-
classifier approaches previously enumerated has addressed the
problem affecting the inference that we aim to overcome in
this paper.

III. INTRODUCING N-DIMENSIONAL OVERLAP FUNCTIONS
TO ADAPT FARC-HD BEHAVIOUR IN OVA AND OVO

In this paper, we propose to combine FARC-HD with
OVA and OVO decomposition strategies in order to improve
the performance of FARC-HD in multi-class classification
problems. However, the confidences provided by FARC-HD
are not adequate for them due to the use of the product
to compute the association degree, as we will show in the
experimental analysis. Thus, the inference process needs to be
adapted for the sake of a better synergy between FARC-HD
and decomposition schemes.

In the remainder of this section, we first describe the
way in which we introduce FARC-HD in OVO and OVA
models, as well as the problems that we have to address when
carrying out this combination (Section III-A). Next, we recall
the concept of two-dimensional overlap functions and we
present the new definition of n-dimensional overlap functions,
as well as their construction method (Section III-B). Then,
we describe the modification of the inference of FARC-HD
using n-dimensional overlap functions aiming at improving
the synergy between FARC-HD and decomposition strategies
(Section III-C). Finally, we present a new aggregation strategy
for the OVO model named WinWV that solves the problems
of the WV with the confidences of FARC-HD (Section III-D).

A. Using FARC-HD as base classifier in the OVA and OVO
strategies

In order to use OVO and OVA strategies with FARC-HD, we
need to fill the score-matrix of OVO (Eq. (7) and the score-
vector of OVA (Eq. (13)) with the confidences provided by
FARC-HD for each class. More specifically, we consider as
confidences the confidence degree for each class computed
using Eq. (5). Both the matching and the association degrees



of the example with the fuzzy rules are computed by Eq. (3)
and (4), respectively, using the product t-norm.

When low values are aggregated using the product t-norm,
the range in which the result can vary is small (the lower
the input values are, the smaller the range becomes), which
may happen when computing the matching degree of several
fuzzy rules. This effect is further accentuated as the number
of antecedents of the rules increases, which implies that the
association degrees of those rules with more antecedents will
be smaller and will have a lower variation. This behaviour
implies that the confidences stored in the score-matrix and
score-vector will have low variations as well, which is not
desirable for the subsequent aggregation performed in OVO
and OVA schemes. Consequently, it seems suitable to modify
the inference process in such a way that the aggregation of the
values involved in the computation of the association degrees
is made using functions whose results are in a wider range,
maintaining more information for the aggregation process
(Section III-C).

The previous problem does not affect the behaviour of
the original FARC-HD, since the confidences obtained after
the inference process are not used beyond classification and
hence, this variation does not affect the final result given
by the algorithm. However, in decomposition strategies, the
confidences provided by FARC-HD are used in the aggregation
phase, and hence the predictions are used beyond the decision
of the class prediction of the base classifiers. Thus, a low
variation in the confidences might have a negative effect in
OVO and OVA models, which is especially reflected in the
unexpected behaviour of robust aggregation strategies used in
OVO, such as the WV, as we will show in the experimental
study. For this reason, a new aggregation strategy that solves
the problems of the WV is needed (see Section III-D).

B. n-dimensional overlap functions

The concept of overlap function [20] was introduced in
image processing in order to classify those pixels that it
was not clear whether they belonged to the object or to the
background. This concept has been applied in many image
processing problems [57]-[59] and used in [60] to model the
indifference in preference relations. However, the application
range of these functions has turned out to be much wider,
since they allow one to recover many of the characteristics
of the t-norms without imposing the associativity. Precisely
because the associativity is not demanded, the extension of
the concept of overlap function to dimensions higher than two
is not direct. Moreover, this extension is necessary in order to
use overlap functions in problems in which the associativity
is not necessary or even natural and in which t-norms have
been used. In this paper, we propose a definition of overlap
function in any finite dimension, which particularly allows one
to recover the two-dimensional case. Additionally, we present
the construction method of overlap functions using rational
expressions.

We first recall the following definition of two-dimensional
overlap functions:

Definition 1: [20] A function O : [0,1] x [0,1] — [0, 1] is
an overlap function if satisfies the following conditions :

1) O(x,y) = O(y,x) for all x,y € [0,1].

2) O(z,y) =0 if and only if x -y = 0.

3) O(z,y) =1ifand only if x-y=1.

4) is increasing.

5) is continuous.

Following this concept we define the extension of the
previous two-dimensional overlap functions to n dimensions:

Definition 2: An n-dimensional function O™ : [0,1]" —
[0,1] with n > 2 is a n-dimensional overlap function if the
following properties hold:

1) O™ is symmetric.

2) O™(x1,...,x,) =0 if and only if ] z; =0.
i=1

..,xy) = 1if and only if [] z; = 1.
i=1

3) O™(xy,.
4) O™ is increasing.
5) O™ is continuous in each of the variables.

Example 1: The following functions are examples of n-
dimensional overlap functions:

1) The minimum is a n-dimensional overlap function which
is also a t-norm.

O™(xy...,xp) =min(zy,...,T,) (15)
2) Take p > 0. Then the function
n p
O™(x1,...,Tpn) = (Hmz> (16)
i=1

is a n-dimensional overlap function. Furthermore, O™ is
associative if and only if p = 1.

a) If p = 1 we recover the product, which is a t-norm

as well. N
On(.’El,...,l'n):Hxi (17)
i=1
b) If p= % we have the geometric mean:
On(l‘hl‘g,...,l'n) = (18)
3) The harmonic mean is a n-dimensional function:
O"(x1,22,...,Zn)
n
— ifx; #0, foralli=1,...,n
I e e #
0 otherwise.
(19)

4) The function

O"(z1,...,10,) = sin <72T <H a:> ) (20)
=1

1 . . .
where o < o is another example of n-dimensional
n

overlap function.

As we have shown, both the product, which is used in the
original FARC-HD, and the minimum, which is another t-



norm that is commonly used in FRBCs, are examples of n-
dimensional overlap functions. Finally, we present a construc-
tion method for n-dimensional overlap functions using rational
expressions.

Theorem 1: The mapping O™ [0,1]* — [0,1] is a
n-dimensional overlap function if and only if there exist
fog:10,1]™ — [0, 1] with

flar, ... zn)
) +g(x, ...

o™ (z1,. ..

7xn) -

f(xl,..

s Tn)
where
1) f and g are symmetric.
2) f is non-decreasing and g is non-increasing.
n

3) f(x1,...,2,) =0 if and only if [] x; = 0.
i=1

.,&p) =0 if and only if [] ; = 1.
i=1

4 g(z,..

5) f and g are continuous.

Proof. To see the necessity, assume that O™ is a n-
dimensional overlap function. We can define f(z1,...,z,) =
O™(x1,...,2y) and g(xy1,...,2,) = 1 — fla1,...,2n).
Hence, the properties (1)-(5) of the Theorem are direct and
also:

flxr,. .. zn)
'7:6”) +!]($1a--

o On(fbl, ce
f(zla e -axn) 1

Let us take a look at what happens with the sufficiency.
We must see that the function defined in Eq. (1) is in fact a
n-dimensional overlap function. The continuity, the symmetry
and the monotony are evident. Also:

»Tn)

O"(z1,...,xn) =0iff f(z1,...,2,) =0 iff H‘Tl =0
i=1

and O™(x1,...,x,) = Liff f(x1,...,2,)

= flz1...,2n) + g(z1, ...
that is, if and only if g(xq,...

n
H €Ty = 1.
i=1

7$n)

,Zy) = 0 and if and only if

Example 2: The function

1

i=1
n B
(-Hl ) + e

is an example of n-dimensional overlap function.

O™ (a1, . ..

vxn) -

C. Modification of the inference process using n-dimesional
overlap functions

Once the n-dimensional overlap functions and the construc-
tion methods have been presented, we show the proposed
modification of the inference process of FARC-HD in order
to improve the aggregation in OVO and OVA strategies. More
specifically, we propose to compute the matching degree and
the association degree of the example with the fuzzy rules

using the previously defined n-dimensional overlap functions.
To do so, we replace the t-norm in the matching degree
computation (Eq. (3)) by an overlap function (Eq. (21)):

stagmg (Tpny)) (1)

We must stress that the matching degree is employed to
compute both the support and the confidence used in the first
step of the learning algorithm shown in Section II-A. Thus, this
modification also affects the learning process of the algorithm
as well.

Similarly, we substitute the product in the association degree
computation (Eq. (4)) by an overlap function, according to Eq.
(22).

HA; (xp) = On(/u‘Aﬂ (xpl)a cee

bj(wp) = O(pa, (zp), RW;)
= O(On(ﬂAﬂ (%1), sy A n; (xp"j))7 RWj)

The reason for computing the association degree using an
overlap function instead of the product is the same as in the
case of the matching degree, that is, the low variation of the
association degrees obtained when multiplying the matching
degree and the rule weight.

In this paper, we have considered five different overlap
functions to observe their effect in the rule base and their
influence on the accuracy of the model (for the sake of brevity,
in the experiments we take the overlap O in Eq. (22) the same
as O™). Each overlap function returns lower or higher values
than the rest for the same input tuple. According to the values
returned by the overlap functions, we can establish an order
among them. Thus, we will consider that an overlap function
is greater than other one if the values returned by the first
function are higher than those returned by the second one for
the same arguments. A short description of each function is
shown below, sorted in ascending order by the returned value:

e Product (PROD): The returned value is the product of
input values (Eq. (17)). Indeed, this is the case of the
original FARC-HD, and hence we are able to recover the
original method using the proposed extension of overlap
functions.

e Minimum (MIN): Returns the minimum of input values
(Eq. (15)). This is a t-norm as well, but unlike the product,
the returned value does not decrease when the number of
arguments increases. The minimum is commonly used in
FRBCs.

e Harmonic Mean (HM): The returned value is the har-
monic mean of input values if all of them are different
than zero and 0 otherwise (Eq. (19)).

o Geometric Mean (GM): Returns the geometric mean of
input values (Eq. (18)).

e Sine (SIN): This an example of an overlap function that
returns higher values than means (Eq. (20)). The use of
this type of functions is interesting in order to check what
happens in these cases. In the experiments carried out in

(22)

Section V, we take « = —.
2n

Among the considered overlap functions, the first one is
the product (used in the original FARC-HD). The product is
a t-norm that returns values with a lower variation than the



other functions and whose returned value decreases as the
number of arguments increases. Next, we have the minimum,
which is a t-norm as well, but whose returned value does not
depend on the number of arguments. Then, we consider the
harmonic and the geometric means as representatives of means
that return higher values than t-norms [61]. Finally, we have
considered a function (SIN) that returns higher values than
means. This variety of overlap functions allows us to have a
general overview in the experiments (Section V).

According to Eq. (19) and (18), both the harmonic and the
geometric means return 0 when one of the arguments is 0.
This property is satisfied by t-norms as well, and it is very
important to conserve the necessary discrimination capability
of FARC-HD. In the experimental study, we will show that
another desirable property that the overlaps should satisfy in
order to work well in our framework is the idempotence, which
is satisfied if:

O"(z,...,z)==x (23)

Among the previous overlaps, the minimum, the harmonic
mean and the geometric mean satisfy this property.

In Fig. (2a) and (2b) we can graphically observe the
previously mentioned differences in the values returned by
each overlap function (we depict overlaps with n = 2 to
ease the visualization of their behavior). Fig. (2a) depicts the
behavior of the overlap functions when aggregating a value
with the value 1, whereas Fig. (2b) shows the returned values
when aggregating a value with itself. Looking at Fig. (2a)
and (2b), we can see that the proposed n-dimensional overlap
functions provide a higher variation than the product when
the input arguments are small. However, both figures show
that there is a huge difference between the SIN and the rest of
the overlap functions. In fact, in Fig. (2b) we can observe that
the returned value is greater than the input arguments when
aggregating a value with itself, which might not be a desirable
behavior in this framework, as it may produce a loss of the
discrimination capabilities of FARC-HD.

D. Adapting the Weighted Voting to FARC-HD confidence
estimation: WinWVv

In addition to the adaptation of the inference process of
the base classifiers to OVO and OVA using overlap functions,
we propose a new aggregation method for the OVO strategy
named WinWYV, which is a modification of the WV that does
not achieve the expected results.

As we described in Section II-B, each base classifier pro-
vides a pair of confidence degrees r;;,7;; € [0, 1] in favor of
classes C;, C}, so that r;; is the confidence predicting the class
C; and r;; is the confidence predicting the class C';. Although
we have improved the confidences provided by FARC-HD
making them more suitable for the OVO strategy, we will show
that the WYV is still not working as expected. From our point
of view, the reason is that the confidence estimation of the
non-predicted class distorts the aggregation phase in OVO, as
we will show in Section V.

Likewise, the LVPC strategy does not work properly with
this type of confidences, as it can be observed in [32]. In this
case, the confidence for the non-predicted class does not allow

one to model the conflict and ignorance degrees properly.
Notice that if these terms were not considered the original
WYV would be recovered. For this reason, we focus on solving
the problems of the WV with the confidence estimation of the
non-predicted class.

To do so, we propose to consider only the confidence of
the predicted class, whereas that of the non-predicted class
is not taken into account. Therefore, the WinWV aggregation
strategy works as follows:

D s

1<j#i<m

(24)

Class = arg max
i=1

yraay

where s;; is r;; if r;; > r;; and O otherwise. Notice that
OVA and other combination strategies in OVO such as VOTE
and ND (Section II-B) managing the confidence for the non-
predicted class differently need not be modified in order to
achieve competitive results.

IV. EXPERIMENTAL FRAMEWORK

In this section, we present the set-up of the experimental
framework used to develop the experiments carried out in
Section V. First, we describe the datasets selected for the
experimental study (Section IV-A). Next, we show the pa-
rameter setup considered for each method (Section IV-B).
Finally, we introduce the statistical tests that are necessary to
assess whether significant differences exist among the results
obtained (Section IV-C).

A. Datasets

In order to analyze the performance of our proposal, we
have considered twenty datasets selected from the KEEL
dataset repository [21]. Table I summarizes the features of
the selected datasets, showing for each dataset the number
of examples (#Ex.), number of attributes (#Atts.), number of
numerical (#Num.) and nominal (#Nom.) attributes, and the
number of classes (#Class.).

To carry out the different experiments we consider a 5-fold
stratified cross-validation model, i.e., we randomly split the
dataset into five partitions of data, each one containing 20% of
the patterns, and we employed a combination of four of them
(80%) to train the system and the remaining one to test it. We
use three different seeds for the execution of the methods in
each partition. In this manner, the result for each dataset is
obtained by computing the average of the five partitions using
the three seeds in each one. Instead of the commonly used
cross-validation and in order to correct the dataset shift, that
is, when the training data and the test data do not follow the
same distribution [62], [63], we will use a recently published
partitioning procedure called Distribution Optimally Balanced
Cross Validation [64].

B. State-of-the-art fuzzy classification methods used for com-
parison

In this section we briefly describe the different methods
used throughout the experiments and the configuration that
we have considered for each one. We have selected three
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Fig. 2. Values returned by the different overlap functions.
TABLE I cp - .
SUMMARY OF THE FEATURES OF THE DATASETS USED IN THE When classifying a new example, the class predicted by
EXPERIMENTAL STUDY. FURIA is the one with maximal support. If the example
Id. Dataset #Ex. #Atts. #Num. #Nom. #Class. is not covered by any rule, a rule generalization (stretch-
At autos 159 25 15 10 6 ing) is carried out and all rules are replaced by their
bal  balance 625 4 4 0 3 minimal generalizations, which is obtained by deleting
cle cleveland 297 13 13 0 5 all antecedents that are not satisfied by the query. In the
con contraceptive 1473 9 6 3 3 case of a tie, a decision in favor of the class with highest
eco ecoli 336 7 7 0 8 frequency is made
gla glass 204 9 9 0 7 quency : _
hay hayes-roth 132 4 4 0 3 . IVTURS{FARC,HD [25]: This metbod uses FARC-HD t.o
iiiris 150 4 4 0 3 accomplish the fuzzy rule learning process and then, it
new newthyroid 215 5 5 0 3 substitutes the original fuzzy sets by interval-valued (IV)
pag pageblocks 548 10 10 0 3 fuzzy sets and it modifies the inference process using
pen penbased 1100 16 16 0 10 IV . thod. This infi
sat  satimage 643 36 36 0 7 an uzzy reasoning method. This inference process
seg  segment 2310 19 19 0 7 uses IV restricted equivalence functions to increase the
shu  shuttle 2175 9 9 0 5 relevance of the rules in which the equivalence of the
tae tae IS5 3 2 3 interval membership degrees of the patterns and the ideal
thy  thyroid 72021 21 0 3 membership degrees is greater. In addition, it combines a
veh vehicle 846 18 18 0 4 . . .
vow vowel 990 13 13 0 1 tuning of the parameters used in the IV fuzzy reasoning
win  wine 178 13 13 0 3 method and rule selection, in order to both decrease the
yea yeast 1484 8 8 0 10 complexity and increase the performance of the system.

e PTTD [26]: This method constructs a fuzzy pattern tree
for each class (OVA decomposition) whose inner nodes

recognized state-of-the-art fuzzy classifiers to compare against are marked with generalized fuzzy logical operators and

. - . . ;. whose leaf nodes are associated with linguistic terms on
our proposal, in addition to the comparison against the original . . . .
FARC-HD algorithm. input attributes. The learning algorithm used by PTTD

builds the pattern tree in a top-down manner.
e FURIA [24]: This algorithm modifies and extends the

RIPPER rule induction algorithm [65]. In particular, FU-
RIA learns fuzzy rules of the form given in Eq. (1) instead
of conventional rules, using fuzzy sets with trapezoidal
membership functions. Additionally, the model built by C. Performance measure and statistical tests
FURIA learns unordered rule sets instead of rule lists.
The learning process is divided in two stages:

The configuration of the previous methods and that of our
proposal is shown in Table II.

In order to test the performance of the different methods,
we have used the most common metric, that is, the accuracy
1) Learn a rule set for each class using OVA decompo-  rate. This metric is defined as percentage of correctly classified

sition. To do so, a modified and extended version of examples related to the total number of examples. However,
RIPPER is applied, which can be divided into the accuracy rate may not properly reflect the behaviour of dif-
building and the optimization phase. ferent algorithms in multi-class problems as they do not take
2) Extract the fuzzy rules by fuzzifying RIPPER’s rules  into account the classes of the examples in its computation.
using a greedy algorithm. Therefore, the usage of additional metrics (not opposite, yet



TABLE I
SETUP OF THE METHODS PARAMETERS.

Algorithm Parameters

FURIA

Num. of optimizations: 2
Num. of folds: 3

FARC-HD and
IVTURSEARC-HD

Num. of linguistic labels per variable: 5
Minimum Support: 0.05
Minimum Confidence: 0.8
Maximum depth: 3

Parameter k: 2

Evaluations: 20000

Number of individuals: 50

« parameter: 0.02

Bits per gen: 30

Rule weight: certainty factor
Inference: Additive Combination

PTTD e parameter: 0.25%

Beam size: 5

complementary) increases the strength of the experimental
study, yielding more complete conclusions. For this reason
we have also considered Cohen’s kappa [66] measure as
an evaluation criterion, which evaluates the portion of hits
that can be attributed to the classifier itself (i.e., not to
mere chance), relative to all the classifications that cannot be
attributed to chance alone.

For multi-class problems, kappa is a very useful, yet simple,
meter for measuring a classifier’s classification rate while com-
pensating for random successes. The major difference between
the classification rate and Cohen’s kappa is the scoring of
the correct classifications, since Cohen’s kappa scores the
successes independently for each class and aggregates them.
This way of scoring is less sensitive to randomness caused by
a different number of examples in each class. Nevertheless,
for the sake of space we cannot include the experimental
study carried out with this metric, but we provide it as a
supplementary material of the paper. Anyway, we should stress
that the conclusions drawn are equivalent to those obtained
with accuracy along the whole experimental study.

Besides the performance measures used to evaluate the
quality of the models, we want to study how the different
overlap functions affect the rule base size. To do so, we
consider the average number of rules and antecedents by rule
for each overlap function in both OVO and OVA models
(considering all base classifiers) and the FARC-HD algorithm
(directly executed without decomposition strategies).

In order to give a statistical support to the analysis of the
results, we carry out some non-parametric tests [22]. More
specifically, we use the Wilcoxon signed-ranks test [67] to
perform pairwise comparisons, the Aligned Friedman test [68]
to check whether there are statistical differences among a
group of methods and the Holm post-hoc test [69] to find
the algorithms that reject the null hypothesis of equivalence
against the selected control method. A complete description
of these tests and software for their use can be found on the
website available at: http://sci2s.ugr.es/sicidm/.

V. EXPERIMENTAL STUDY

In this section, we analyze the results obtained by our
proposals developing an experimental study composed of three

steps (the same is done with kappa in the supplementary
material):

1) We analyze the effect of overlap functions in the final
performance of the model and we also study whether
our new aggregation strategy for OVO (WinWV) allows
to improve the results of the WV (Section V-Al). Ad-
ditionally, we show how the usage of overlap functions
affects the size of the rule base and the training times
(Section V-A2).

2) We show whether our new model is a suitable solution
for multi-class problems compared with the original
FARC-HD [12] and we analyze which decomposition
strategy obtains better results (Section V-B).

3) We study whether our proposal improves the results
obtained by some of the state-of-the-art fuzzy classifiers,
such as FURIA [24], IVTURSgarc.up [25], and PTTD
[26] (Section V-C).

A. Study of the behavior of n-dimensional overlap functions

In this section we first study the effect of the different
overlap functions in the final performance of the system
(Section V-Al) and then we show the impact of these functions
in the rule base and in the training times (Section V-A2).
Additionally, in order to check whether the proposed new
aggregation strategy for OVO (WinWV) solves the problems
of the WV with the confidences provided by FARC-HD, a
comparison between the WV and the WinWV is performed
(also in Section V-Al).

Tables III and IV show the accuracy rate obtained in testing
by each method in all datasets, together with the standard
deviation (shown with £). As we can observe in Table III,
on the one hand, we execute the FARC-HD algorithm directly
(with no decomposition strategies) using the five overlap
functions considered in this paper (PROD, MIN, HM, GM,
SIN). On the other hand, we present the results of OVA and
OVO models considering the previously mentioned overlap
functions for those aggregation strategies that are not affected
by the confidences of FARC-HD in the case of OVO (ND and
VOTE), whereas those being affected (LVPC, WV) are shown
in Table IV, together with our proposed solution (WinWV).

1) Analysis of the system’s performance:

As we can observe in Tables III and IV, in the case of
the original FARC-HD, the replacement of the product by an
overlap function does not seem to produce an improvement in
the results. However, in the case of OVA and OVO models, we
find that the greater overlap function we use, the better results
we obtain in general (although the GM does not improve the
results of the HM, due to the fact that they exhibit a similar
behaviour). The exception to this situation is the usage of the
greatest overlap function considered in this paper (SIN). This
could be due to the fact that this function returns aggregated
values that can be greater than the input ones,
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which is not a desirable behaviour in an inference system
because part of the discrimination power is lost. Therefore,
we can observe that there is a limit beyond which an overlap
function might be too great to obtain good results. Anyway,
no meaningful conclusions can be extracted without carrying
out the proper statistical analysis.

In order to detect significant differences among the results
of each overlap function used throughout the experiments,
we carry out the Aligned Friedman test and the Holm post-
hoc test, whose results are shown in Table V. These results
are grouped in columns according to the method used to
perform the comparison and in rows according to the overlap
function used to compute the association degree (which is
the subject of the study). The first column corresponds to
the different overlap functions over the original FARC-HD,
while in the second one OVA model is considered. The rest
of the columns correspond to the different OVO aggregation
strategies considered in this work (LVPC, ND, VOTE, WV
and WinWV). The value of each cell corresponds to the rank
obtained with the Aligned Friedman test that compares the
different overlap functions for each method (that is, a Aligned
Friedman test is carried out for each group of methods in
a column). The value shown in brackets corresponds to the
adjusted p-value obtained by the Holm post-hoc test using as
control method the one achieving the smallest rank in the same
column, which is shown in bold-face. The adjusted p-value
is underlined when there are statistical differences (o = 0.1
considering the ratio between datasets and algorithms).

TABLE V
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE THE DIFFERENT
OVERLAPS.
FARC-HD OVA ovoND  gvoVOTE  gyoWinWV  gyolVPC  gyoWV
PROD  43.80 57.90 (0.128) 5523 (0327) 56.53 (0.269) 54.40 (0.747) 37.90 4238
MIN  48.63 (0967) 5172 (0.282) 49.03 (0.708) 49.77 (0.672) 46.42 (1.000) 41.22 (0.717) 42.95 (1.000)
HM  50.22 (0.967) 3823 4052 40.95 4383 5405 (0.157)  43.90 (1.000)
GM 5625 (0.699) 48.95 (0.282) 4565 (0.708) 43.65 (0.768) 47.95 (1.000) 5667 (0.122) 49.13 (1.000)
SIN  53.60 (0.856) 5570 (0.170) 62.08 (0.075) 61.60 (0.097) 59.90 (0.319) 62.65 (0.028) 74.15 (0.002)

As it can be observed in the first column of Table V, in
the original FARC-HD the best aggregation method is the
product, although there are no statistical differences between
the five aggregations. However, in OVA and OVO models,
we can observe that the greater the overlap function we use
is, the better the results we obtain are (although the GM is
greater than the HM, both of them have a similar behaviour),
except in the case of the SIN, due to the fact that it can give
as output a value which is greater than all the input values,
which seems to distort the aggregation process in the OVA
and OVO strategies.

Hence, the best method to compute the association degree
for OVA and OVO in almost all cases are those obtaining
the highest aggregated values preserving the idempotence
(although the geometric and harmonic means return similar
values, the latter one tends to obtain better results but without
statistical differences). The exception to this situation is when
we use LVPC and WV strategies, since they are severely
affected by the poor quality of the confidences of the non-
predicted classes, which is accentuated in LVPC due to the
difficulty in modeling the conflict and ignorance terms (as we

have mentioned in Section III-D). However, we must recall
that removing these terms the original WV is recovered. On
this account, we only focus on WV strategy.

For the sake of solving the problem of the WV with
the confidences, we propose a new aggregation strategy for
OVO (WinWV) which considers only the confidences of the
predicted classes. This way, we want to study whether our
proposal allows to improve the results of the WV when using
FARC-HD and OVO. In the results presented in Table III, we
can observe that the results obtained by WV are different from
those obtained by the remainder OVO aggregations (except for
LVPC which suffers the same problem), in the sense that using
overlap function has no effect on the results. Focusing on the
differences between WV and WinWV, we can observe that the
usage of WinWV allows to enhance the results of WV.

In order to support this finding, we have carried out a
number of pair-wise comparisons using the Wilcoxon signed-
ranks test, where we confront the original WV method against
the proposed modification for each overlap function considered
in this study. Table VI shows the results of these comparisons,
where R+ and R- indicate the ranks obtained by WV and
WinWYV, respectively. As we can observe, the new aggregation
strategy statistically outperforms the original WV method with
all overlap functions.

TABLE VI
WILCOXON TEST TO COMPARE THE WV AND THE WINWV.
Comparative R+ R- p-value  Hypothesis
OVOpop, vs. OVOPIWY 700 203.00 0.000  Rej. OVOMDYY 95%
OVOY Y vs. OVORIWY 21,00 189.00 0.002  Rej. OVOYI™Y 959
OVOJy vs. OVONIWY 1450 19550 0.001  Rej. OVOM™Y 959
OvVO&y vs. OVORI™Y 1350 19650  0.001  Rej. OVOG™Y 95%
OVORY vs. OVOSIWY 550 20450 0.000  Rej. OVOIYY 95%

2) Analyzing the effect of the usage of n-dimensional over-
lap functions in the rule base size and the training time:

In addition to the performance of the different overlap
functions, we want to study the impact of these functions
in the size of the rule base and in the time needed for its
construction. Table VII shows the average number of rules
and antecedents by rule obtained when the considered over-
lap functions are used in FARC-HD (without decomposition
strategies) and in OVA and OVO models, as well as the number
of base classifiers (#BC) employed in OVA and OVO for
each dataset. As it can be appreciated in Table VII, the usage
of a greater overlap function implies a growing trend of the
number of rules and a higher complexity of those rules (more
antecedents). Thus, there is a relationship between the value
returned by the overlap function and the size of the rule base
(the greater the overlap function the larger the rule base).
It is also interesting to note that the execution times of the
methods with the different overlap functions (shown in Table
VIII) follows the same trend (the construction of the rule base
is only shown since the computational time required by the
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different aggregations in OVO is negligible). The reason is
that the use of greater overlap functions implies that the aggre-
gation of the matching degrees returns higher values and thus,
a higher number of rules and antecedents is needed in order
to maintain or improve the discrimination capability (therefore
affecting the computational time needed). Moreover, due to the
fact that we focus on overlap functions that are independent
of the number of antecedents of the rule, the penalization
of those rules with more antecedents is minimized. As a
consequence, more rules with larger number of antecedents
can be learned, which better describe the examples. Table VII
confirms this situation, where we can find that the average
number of rules of the product is the lowest one among the
five overlap functions and increases when considering a greater
overlap function.

In Table VII we observe that the average number of rules
obtained in OVA and OVO is lower than that obtained in
FARC-HD. The reason is that we consider the average of
all base classifiers and since they solve binary problems, the
definition of the decision boundary in each binary problem is
simpler than in the original multi-class problem, which implies
that fewer rules are needed in each base classifier. We can
also observe that in the case of OVO the number of rules
generated by the base classifiers is lower than in OVA, since
the binaries problems solved in OVO are simpler. In the same
way, the rules generated in OVA and OVO are simpler than
those generated in the original FARC-HD algorithm (at the
same time the rules generated in OVO are simpler than in
OVA, for the reason explained before), but obviously, we have
more classifiers in the case of OVA and OVO.

B. Studying the usefulness of decomposition strategies for
FARC-HD

In this section we want to check whether our new model
improves the performance of the original FARC-HD algo-
rithm when addressing multi-class classification problems. We
have shown that the harmonic mean is the overlap function
that obtains the best results when using OVO and OVA.
Thus, before performing a comparison against FARC-HD, we
analyze which aggregation strategy for OVO obtains better
performance using the harmonic mean. As we can observe in
the results provided by the Aligned Friedman test in Table
IX, there are no statistical differences among ND, VOTE, and
WinWV (as usually occurs among OVO aggregations [9]).
For this reason, we will consider the aggregation strategy that
obtains the highest accuracy according to Tables III and IV
and the lowest ranks according to Table IX (VOTE).

TABLE IX
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE THE DIFFERENT
AGGREGATIONS IN OVO.

algorithm rank APV
ovoyE 3230
OVORD 3510 1.000
OVOJIWY 36,55 1.000
OVOy 69.47  0.002
OVOLFC  79.08  0.000

In order to check whether there are statistical differences
among OVA, OVO, and the original FARC-HD, we show the

results of the Aligned Friedman test in Table X. It can be
observed that OVO model statistically outperforms the original
FARC-HD algorithm and obtains better results than the OVA
model, which is in accordance with the findings using other
classifiers [9].

TABLE X
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE OVA, OVO, AND
FARC-HD.

algorithm rank APV

20.23
31.55
39.73

OVOTE
OVAum
FARC-HD

0.040
0.001

C. Analyzing the quality of FARC-HD_OVO versus state-of-
the-art fuzzy classifiers

This section analyzes the performance of our model against
three recognized state-of-the-art fuzzy classifiers, i.e., the
IVTURSEgarc.up algorithm [25] by Sanz et al., the FURIA al-
gorithm [24] by Hiihn and Hiillermeier, and the PTTD method
[26] by Senge and Hiillermeier. The results in testing of these
three algorithms along with those obtained by OVO},SFF
(denoted as FARC-HD_OVOY,$7F) are shown in Table XI,
where the best of the results obtained in each dataset is
highlighted in bold-face.

From the results presented in Table XI, we must high-
light the notable performance improvement of our proposal
respect to IVTURSEgarc.up, FURIA, and PTTD, improving
their average performances by 3.79%, 1.71%, and 1.22%,
respectively. However, we must contrast these results with the
proper statistical analysis.

TABLE XI
ACCURACY RATE OBTAINED IN TEST BY THE STATE-OF-THE-ART FUZZY
CLASSIFIERS AND THE MOST ACCURATE METHOD OF OUR MODEL BASED
ON FARC-HD FUZZY CLASSIFIER.

Dataset PTTD FURIA IVTURSkarc.ip  FARC-HD_OVOyT®
aut 75.07£6.06  75.66+4.79 77.0749.11 80.99+7.33
bal 89.28+1.36  83.14+2.17 85.75+1.92 85.6943.07
cle 59.96+4.36  55.114+1.35 57.47+3.23 57.74+5.31
con 54174147  553742.06 54.47+1.44 55154231
eco 82314593  82.96+5.01 81.3447.33 83.2045.60
gla 63.6946.61  72.05+5.72 69.1246.17 70.1844.11
hay 84.1244.00  79.65+5.70 75.4648.63 81.1945.98
iri 96.67+2.36  94.224+3.44 95.7842.95 95.3343.52
new 96.74+2.08  94.88+3.31 94.26+1.73 96.28+2.61
pag 95.26+0.75  96.50+1.77 94.96+2.10 96.43+1.49
pen 92474236 91.074+1.67 92.22+42.48 94.22+2.49
sat 86.48+2.80  83.09+4.47 75.4043.03 84.0543.26
seg 93.1240.89  97.27+0.81 90.5640.91 94.9941.30
shu 98.48+0.48  99.68-+£0.24 91.8841.48 99.5940.22
tae 53.5548.63 44514572 54.83+7.80 60.55+8.94
tyr 96.53+£0.98  98.37+1.73 93.85+0.64 92.5140.64
veh 71.274£3.05  71.91+1.73 67.34+2.24 71.90+3.05
vow 75.9642.54  82.36+2.97 65.9942.14 90.7141.14
win 97.20+191  94.79+2.01 95.1843.03 94.5543.55
yea 58.4343.43  58.3642.51 56.4342.41 59.994+3.33
AVG 81.04+3.10  80.5542.96 78.47+3.54 82.26+3.46

In order to compare these methods, we have applied the
Aligned Friedman test. The rankings of the different methods
computed using this test are shown in Fig. (3). The p-value



obtained is 0.001, which implies the existence of significant
differences among the four methods.
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Fig. 3. Rankings of the state-of-the-art fuzzy classifiers along with our
proposal.

We now apply the Holm post-hoc test to compare the best
ranking method (FARC-HD_OVO},97¥) with the remaining
methods. Table XII shows the results obtained by this test,
indicating whether the hypothesis of equivalence is rejected by
our proposal and the computed p-value (APV). According to
Table XII, the hypothesis of equivalence is rejected in the case
of IVTURSEarc.gp With a high level of confidence. Regarding
FURIA and PTTD, although the hypothesis is not rejected,
the APV values are low, which denotes that the behavior of
our proposal is very competitive against these state-of-the-art
fuzzy classifiers.

TABLE XII
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE OUR PROPOSAL
(FARC-HD_OVOYTE) WITH RESPECT TO IVTURSEARC-HD, FURIA,

AND PTTD.
algorithm rank APV Hypothesis
FARC-HD_OVOJTE  27.85
PTTD 3590 0273 Not Rejected
FURIA 40.65  0.163 Not Rejected
IVTURSFARC-HD 5760  0.001  Rej. FARC-HD_OVOY,QFE 95%

VI. CONCLUDING REMARKS

In this paper, we have combined the FARC-HD algorithm
and OVO and OVA decomposition strategies to improve its
performance in multi-class classification problems. We have
shown that the confidences returned by FARC-HD may ad-
versely affect the aggregation phase in these decomposition
strategies and thus, the final prediction.

In order to minimize this negative effect, we have defined
the concept of n-dimensional overlap functions and we have
replaced the product t-norm by these functions in the inference
system. Additionally, we have proposed a new aggregation
strategy for OVO called WinWV, which solves the problems
of the WV with the confidences of FARC-HD.

These adaptations have allowed us to show the importance
of the inference process when OVO and OVA models are
considered, since the confidence values are used beyond the
FARC-HD classification. We have shown that the overlap
functions that obtain the best results are those which return
values with a higher variation and preserve the idempotence.
Furthermore, we have observed that there is a relationship
between the used overlap functions and the rule base size
as well as the computational time spent in its learning. In
addition, we have found that the usage of decomposition strate-
gies is suitable for the FARC-HD classifier, but this synergy
is better when the inference process is adapted appropriately

and the best results are obtained with OVO scheme which is in
accordance with previous works. Moreover, the experimental
study shows that our model obtains competitive results in
comparison with three state-of-the-art fuzzy classifiers.

In the future, several works remain to be addressed. Among
them, the problem of non-competent classifiers [19] must be
taken into account when using the OVO model. On the other
hand, a more in depth study of how this type of synergies
affect the interpretability of the model should be carried out.
Furthermore, our proposal might be adapted to different fuzzy
classifiers in order to generalize the effect of the usage of
overlap functions in the inference process when combining
fuzzy classifiers and decomposition strategies. Finally, the
comparison and combination between decomposition-based
techniques and preprocessing-based fuzzy ensembles such
as bagging [44] could be studied, but in this case, only
focusing on improving the classification performance using
fuzzy techniques.
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