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Abstract

Group decision making situations are part of today’s organizations. It is a type of decision making involving many decision

makers which act collectively to choose the best alternative (or alternatives) from a set of feasible alternatives. Usually, numerical

values have been used by the decision makers to express their opinions on the possible alternatives. However, as the standard

representation of the concepts that humans use for communication is the natural language, words or linguistic terms instead of

numerical values should be used by the decision makers to provide their preferences. In such a situation, the linguistic information

has to be made operational in order to be fully utilized. In this contribution, assuming that decision makers express their opinions by

using linguistic terms, we present an information granulation of such a type of information, which is formulated as an optimization

problem in which consistency is maximized by a suitable mapping of the linguistic terms on information granules.
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1. Introduction

One of the most crucial human activities is decision making, whose essence is to find the best opinion, alternative,

and so on, from a set of feasible ones. In particular, most of decision making situations in real world usually involve

multiple decision makers to make the decision [1]. In such a case, it is called a multiperson decision making situation,

being group decision making (GDM) an important class among multiperson decision making settings [2].

GDM is defined as a situation in which there is a set of alternatives and a set of decision makers who provide their

preferences concerning the alternatives. The problem here is to find a solution (an alternative or set of alternatives)

which is best acceptable by the group of decision makers as a whole. The ideal situation would be one where all the

decision makers could convey their preferences on the alternatives in a precise way by means of numerical values.
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Unfortunately, in many cases, decision makers deal with imprecise information or have to verbalize their pref-

erences on qualitative aspects which cannot be evaluated by means of quantitative values. In addition, as decision

making is an inherent human ability that is not necessarily rationally guided, it can be based on tacit or explicit as-

sumptions and it does not need complete and precise measurements about the alternatives [3]. This fact has led to

researchers to apply the fuzzy sets theory, introduced by Zadeh in 1965 [4], to model the vagueness and uncertainty

in GDM situations [5–7].

In recent years, linguistic information have been used to represent the preferences expressed by the decision makers

about the alternatives [3,8–11]. The main purpose of using words or sentences in natural language, i.e. linguistic

values, instead of numerical ones is that linguistic values are, in general, less specific than numbers, but much more

closer to the way that humans verbalize and use their knowledge [3,12]. For instance, if we say “the man is tall”

is less specific than “the man measures 2 m”. Here, “tall” can be seen as a linguistic value which is less precise

and informative than the numerical value “2”. Despite its less informative nature, the value “tall” allows humans to

naturally convey and deal with information that may be uncertain or incomplete (the speaker may not know the exact

man height). As these situations where information is not precise are very common in real world, linguistic variables

are a powerful tool to model human knowledge [3].

In GDM situations in which linguistic values are used to represent the opinions given by the decision makers, a

mechanism to made operational the linguistic information is required. To do so, linguistic computational models have

been presented by researchers [3]:

• The linguistic computational model based on membership functions [13].

• The linguistic computational model based on type-2 fuzzy sets [14].

• The linguistic symbolic computational models based on ordinal scales [15–17].

• The 2-tuple linguistic computational model [18], which is a symbolic computational model that extends the use

of indexes.

• The linguistic computational model based on discrete fuzzy numbers [19].

In this contribution, we present an information granulation of the linguistic information in order to made it op-

erational. To do so, granular computing representing and processing information in form of information granules is

used [20]. Information granules are complex information entities arising in the process, which is called information

granulation, of abstraction of data and derivation of knowledge from information [21]. Here, due to the process of

information granulation and the nature of information granules, the definition of a formalism well-suited to represent

the problem at hand is required. The resulting information granules are then effectively processed within the com-

puting setting pertinent to the assumed framework of information granulation. In the literature, we can find several

formal frameworks in which information granules can be defined, as for example:

• Sets (interval mathematics) [22].

• Fuzzy sets [4,23–25].

• Rough sets [26].

• Shadowed sets [27].

• Probabilities (probability density functions) [28].

Two important questions about information granulation in order to make operational the linguistic information are

the following:

• How the linguistic values have to be translated into the entities?

• What optimization criterion can be envisioned when arriving at the formalization of the linguistic values through

information granules?

Here, we formulate the information granulation as an optimization problem in which a consistency index is opti-

mized by a suitable mapping of the linguistic values on information granules. To do so, the particle swarm optimiza-

tion (PSO) [29] is used as the optimization framework, which supports the formation of the information granules. In
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addition, the granulation formalism considered here concerns intervals (sets), although any other formal scheme of

information granulation could be equally utilized.

The rest of this contribution is organized as follows: Section 2 describes both the classical GDM situation and

the method used to obtain the consistency level achieved by a decision maker. The information granulation of the

linguistic information is presented in Section 3. An experimental example is shown in Section 4 to illustrate it.

Finally, some conclusions are pointed out in Section 5.

2. Preliminaries

In this section, on the one hand, we introduced the classical GDM situation, and, on the other hand, we show the

concept of consistency and describe how it can be obtained.

2.1. GDM framework

In a classical GDM situation [5,30], there is a problem to solve, a solution set of possible alternatives, X =
{x1, x2, . . . , xn} (n ≥ 2), and a group of two or more decision makers, E = {e1, e2, . . . , em} (m ≥ 2), characterized

by their background and knowledge, who verbalize their preferences about the possible alternatives to achieve a com-

mon solution. In a fuzzy context, the objective is to classify the alternatives from best to worst, associating with them

some degrees of preference assessed in the [0, 1] interval.

Decision makers can use several preference representation structures to convey their preferences or opinions about

the alternatives in a GDM situation. The most common ones that have been widely used in the literature are the

following:

• Preference orderings. Using this preference representation structure, the opinions of a decision maker el ∈ E
about a set of feasible alternatives X are described as a preference ordering Ol = {ol

1
, . . . , ol

n}, where ol(·) is

a permutation function over the index set {1, . . . , n} [31]. Hence, a decision maker gives an ordered vector of

alternatives from best to worst.

• Utility values. Using this preference representation structure, a decision maker el ∈ E expresses his/her opinions

about a set of feasible alternatives X by means of a set of n utility values Ul = {ul
1
, . . . , ul

n}, ul
i ∈ [0, 1]. Here, the

higher the value for an alternative, the better it satisfies decision maker’s objective [32].

• Preference relations. In this case, the preferences given by the decision maker on X are described by a function

μPl : X×X → D where μPl (xi, xk) = pl
ik can be interpreted as the preference degree or intensity of the alternative

xi over xk expressed in the information representation domain D. Different types of preference relations can be

used according to the domain used to evaluate the intensity of the preference [2,16,17,33]. If D is a linguistic

domain, then linguistic values as “High”, “Medium”, “Low”, could be used.

Among the above representation formats, preference relations are the most used for solving GDM problems due

to effectiveness in modeling decision processes. In particular, the effort to complete pairwise evaluations is far more

manageable in comparison to any experimental overhead we need when assigning membership grades to all alterna-

tives of the universe in a single step, which implies that the decision maker must be able to assess each alternative

against all the others as a whole, which can be a difficult task.

Once the decision makers have provided their preferences about the alternatives, a solution set of alternatives has

to be chosen. To do so, a selection process is carried out [34,35], which involves two different steps:

• Aggregation of individual preferences into a group collective one in such a way that it summarizes the properties

contained in all the individual preferences.

• Exploitation of the collective preference to identify the solution set of alternatives. To do so, we must apply

some mechanism to obtain a partial order of the alternatives and, in such a way, select the best alternative(s).
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2.2. Consistency

When information is provided by decision makers, an important issue to bear in mind is that of consistency [36–38].

The pairwise comparison helps the decision makers focus only on two elements once at a time. It reduces uncertainty

and hesitation while leading to the higher of consistency. However, due to the complexity of most GDM situations,

decision makers preferences can be inconsistent. In addition, the definition of a preference relation does not imply

any kind of consistency property, although the study of consistency is crucial for avoiding misleading solutions in

GDM. It is obvious that consistent information, which does not imply any kind of contradiction, is more relevant or

important than the information containing some contradictions. Fortunately, the lack of consistency can be quantified

and monitored [39,40], and it will be used as the optimization criterion.

In the following, we describe how characterize the consistency of the fuzzy preference relations because the gran-

ulation formalism considered in this contribution to represent the linguistic information concerns intervals in [0, 1].

Definition 1. A fuzzy preference relation P on a set of alternatives X is a fuzzy set on the product set X × X, which is

characterized by a membership function μP : X × X → [0, 1].

Every value pik in the matrix P represents the preference degree or intensity of preference of the alternative xi over

xk: pik = 0.5 indicates indifference between xi and xk (xi ∼ xk), pik = 1 indicates that xi is absolutely preferred to

xk, and pik > 0.5 indicates that xi is preferred to xk (xi � xk). Based on this interpretation we have that pii = 0.5
∀i ∈ {1, . . . , n} (xi ∼ xi). Since pii’s do not matter, we will write them as ‘–’ instead of 0.5 [2,38]. Moreover, it is

assumed that the matrix is reciprocal, that is pik + pki = 1 ∀i, k ∈ {1, . . . , n}.
Different properties to be satisfied by the fuzzy preference relations have been proposed in the literature to make

a rational choice [40]. Here, in this contribution, we use the additive transitivity property facilitating the verification

of consistency when fuzzy preference relations are used to represent the preferences given by the decision makers.

In [40], it was shown that additive transitivity for fuzzy preference relations can be seen as the parallel concept

of Saaty’s consistency property for multiplicative preference relations [41]. The mathematical formulation of the

additive transitivity was given by Tanino in [31]:

(pi j − 0.5) + (p jk − 0.5) = (pik − 0.5),∀i, j, k ∈ {1, . . . , n} (1)

Because the additive transitivity implies additive reciprocity (pi j + p ji = 1, ∀i, j), it can be rewritten as:

pik = pi j + p jk − 0.5,∀ ∈ i, j, k{1, . . . , n} (2)

A fuzzy preference relation is considered to be “additive consistent” when for every three alternatives encountered

in the problem, say xi, x j, xk ∈ X their associated preference degrees pi j, p jk, pik fulfill Eq. (2).

Given a reciprocal fuzzy preference relation, Eq. (2) can be used to calculate an estimated value of a preference

degree using other preference degrees. Indeed, using an intermediate alternative x j, the following estimated value of

pik (i � k) is obtained [37,38,40]:

ep j
ik = pi j + p jk − 0.5 (3)

The overall estimated value epik of pik is obtained as the average of all possible values ep j
ik:

epik =

n∑

j=1; j�i,k

ep j
ik

n − 2
(4)

The value |epik − pik | can be used as a measure of the error between a preference value and its estimated one [38].

When information provided is completely consistent then ep j
ik = pik ∀ j. However, because decision makers are not

always fully consistent, the evaluation made by a decision maker may not verify Eq. (2) and some of the estimated

preference degree values ep j
ik may not belong to the unit interval [0, 1]. From Eq. (3), it is noted that the maximum

value of any of the preference degrees ep j
ik is 1.5 while the minimum one is -0.5. In order to normalize the expression

domains in the decision model, the final estimated value of pik (i � k), cpik, is defined as the median of the values 0,

1 and epik:

cpik = median{0, 1, epik} (5)
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The error assuming values in [0, 1] between a preference value, pik, and its final estimated one, cpik, is:

εpik = |cpik − pik | (6)

Reciprocity of P = (pik) implies reciprocity of CP = (cpik), therefore εpik = εpki. εpik = 0 is interpreted as a

situation of total consistency between pik (pki) and the rest of entries of P. Obviously, the higher the value of εpik the

more inconsistent is pik (pki) with respect to the remaining entries of P.

The above interpretation allows us to assess the consistency degree associated to a reciprocal fuzzy preference

relation P as follows [37]:

cd =

∑n
i,k=1;i�k (1 − εpik)

n2 − n
(7)

When cd = 1, the reciprocal fuzzy preference relation P is fully consistent, otherwise, the lower cd the more

inconsistent P is.

3. An information granulation of the linguistic information

In this section, we present the granulation process of the linguistic values, which leads to the operational realization

of further processing forming a ranking of alternatives considering the opinions expressed by the decision makers. In

addition, the optimization framework of this granulation process is described.

3.1. Granulation process

We are interested in GDM situations defined in linguistic contexts, that is, it is assumed that decision makers use

linguistic values in the pairwise comparison of alternatives in the preference relation. For instance, linguistic values

as “Low” or “High” could be used. It should be pointed out that the linguistic values may be organized in a linear

fashion, as there is an apparent linear order among them. Any case, a quantification of the linguistic values is required

in order to operate with them.

As the granulation formalism considered in this contribution concerns intervals, the problem of a granular descrip-

tion of linguistic values is concerned with the formation of a family of intervals over the unit interval. Therefore,

information granules come in the form of intervals [ak, ak+1], that is to say, information granules L1, L2, . . . , Lc where

L1 = [0, a1), L2 = [a1, a2), . . . , Li = [ai−1, ai), . . . , Lc = [ac−1, 1]. These intervals form a partition of the unit in-

terval where 0 < a1 < . . . < ac−1 < 1. In such a way, the interval format of granulation of the unit interval is fully

characterized by the vector of cutoff points of the granular transformation in the unit interval, a = [a1 a2 . . . ac−1].

The two main characteristics of this granulation process are the following:

• The mapping is by no means linear, i.e., a localization of the associated information granules on the scale is not

uniform.

• The semantics of the linguistic values allocated in the process of granulation is retained.

Finally, we should point out that a joint treatment of the linguistic values, coming from the decision makers involved

in the GDM problem, is considered here. On the one hand, this allows us to deal with the linguistic values in a unified

fashion. On the other hand, it allows us to reconcile the semantics of the linguistic values in such a way that the

individual consistencies are made comparable and, therefore, could be aggregate to arrive at the joint view at the

optimization criterion.

3.2. Optimization framework

The way in which we arrive at the operational version of the information granules specified as intervals is formu-

lated as an optimization problem, which has to be specified in such a way that all details are addressed.
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3.2.1. The optimization criterion
First, the optimization criterion needs to be defined. Here, we use the consistency of the preference relations given

by the decision makers to obtain the quality of the solution achieved in a GDM situation. In such a way, the solution

obtained will be better if the consistency level of each preference relation is high. For this reason, the quality of a given

vector of cutoff points is obtained by means of a performance index calculated as the aggregation of the consistency

levels measured for all the preference relations given by all the decision makers {P1, . . . , Pm}. The objective is to

increase this performance index, which is utilized as optimization criterion.

To optimize the performance index, different alternatives as, for instance, PSO or genetic algorithms could be taken

into account. Here, we use PSO as it is very attractive given its less significant computing overhead in comparison

with genetic algorithms [42]. Furthermore, PSO offers a significant level of diversity of possible objective functions,

playing a role of fitness functions.

3.2.2. PSO environment
The construction of the information granules formalized as intervals is carried out by means of the PSO, which

is a viable optimization alternative for this problem. PSO algorithm is a population-based stochastic optimization

technique developed by Kennedy and Eberhart [29], which is inspired by social behavior of bird flocking or fish

schooling. A particle swarm is a population of particles, which are possible solutions to an optimization problem

located in the multidimensional search space. The PSO is well documented in the existing literature with numerous

modifications and augmentations [43–46].

On the one hand, what is essential in this setting is finding a suitable mapping between the particle’s representation

and the problem solution. In this contribution, each particle represents a vector of cutoff points in the unit interval.

They are used to represent the intervals into which the linguistic values are translated.

Let us consider a set of five linguistic values (Very Low (VL), Low (L), Medium (M), High (H), and Very High

(VH)) with their respective cutoff points (a1, a2, a3, a4). Then, the following mapping is formed: VL: [0, a1], L:

[a1, a2], M: [a2, a3], H: [a3, a4], and VH: [a4, 1]. If we consider m linguistic values to be used by the decision makers

to convey their preferences, this results in m − 1 cutoff points, which constitute a particle in the swarm of the PSO.

Therefore, in this example, a particle is represented as [a1 a2 a3 a4].

On the other hand, the performance of each particle during its movement is assessed by means of some fitness

function. Here, the aim of the PSO is the maximization of the values of the performance index by adjusting the posi-

tions of the cutoff points in the unit interval. When it comes to the formation of the fitness function, its determination

has to consider the fact that interval-valued entries of the reciprocal preference relations have to return numeric values

of the fitness function. This is carried out as follows: because of information granules are encountered in the form of

intervals, series of their realizations being the entries of the preference relations are formed by randomly generating

entries coming from the above intervals. To do so, the reciprocal linguistic preference relations {P1, . . . , Pm} given by

the decision makers are sampled to obtain the preference relations {R1, . . . ,Rm} where each entry of Rl, l = 1, . . . ,m,

is represented by a numerical value drawn from the uniform distribution defined over the corresponding sub-interval

of the unit interval, according to the linguistic value of that entry in the reciprocal linguistic preference relation Pl.

Therefore, the performance index Q is expressed as follows:

Q =
m∑

l=1

cdl (8)

where cdl is the consistency degree associated with the reciprocal preference relation Rl. To obtain the consistency

degree cdl, the method described in Section 2.2 is utilized.

Here, the components are intervals, but we need a numeric value of the fitness functions. Therefore, the reciprocal

linguistic preference relations {P1, . . . , Pm} are sampled 500 times. The average of the values of the performance index

Q computed over each collection of 500 samples is the fitness function, f , associated with the particle formed by the

cutoff points:

f =
1

500

500∑

i=1

Qi (9)
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A way of the formation of the fitness function is in line with the standard practices encountered in Monte Carlo

simulations [47].

Finally, it is important to note that, in this contribution, the generic form of the PSO algorithm is used. Here,

the updates of the velocity of a particle are realized in the form v(t + 1) = w × v(t) + c1a · (zp − z) + c2b · (zg − z)

where “t” is an index of the generation and · denotes a vector multiplication realized coordinatewise. zp denotes the

best position reported so far for the particle under discussion while zg is the best position overall and developed so

far across the entire population. The current velocity v(t) is scaled by the inertia weight (w) which emphasizes some

effect of resistance to change the current velocity. The value of the inertia weight is kept constant through the entire

optimization process and equal to 0.2 (this value is commonly encountered in the existing literature [42]). By using

the inertia component, we form the memory effect of the particle. The two other parameters of the PSO, that is a
and b, are vectors of random numbers drawn from the uniform distribution over the [0, 1] interval. These two update

components help form a proper mix of the components of the velocity. The second expression governing the change

in the velocity of the particle is particularly interesting as it nicely captures the relationships between the particle and

its history as well as the history of overall population in terms of their performance reported so far. The next position

(in iteration step “t+1”) of the particle is computed in a straightforward manner: z(t + 1) = z(t) + v(t + 1).

When it comes to the representation of solutions, the particle z consists of “m − 1” entries positioned in the unit

interval corresponding to the search space. One should note that while PSO optimizes the fitness function, there is no

guarantee that the result is optimal, rather than that we can refer to the solution as the best one being formed by the

PSO.

4. Experimental example

In this section, an experimental example is shown in order to illustrate the approach described in Section 3 and

highlight its main characteristics.
Let us suppose a set of four alternatives, X = {x1, x2, x3, x4}, and a group of four decision makers, E = {e1, e2, e3, e4}.

Using the set of five linguistic values S = {VL = Very Low,L = Low,M = Medium,H = High,VH = Very High},
the following reciprocal linguistic preference relations are given by the four decision makers:

P1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− VL H H

Neg(VL) − VL H

Neg(H) Neg(VL) − VL

Neg(H) Neg(H) Neg(VL) −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− H L M

Neg(H) − VH VL

Neg(L) Neg(VH) − VH

Neg(M) Neg(VL) Neg(VH) −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− M H M

Neg(M) − M L

Neg(H) Neg(M) − VH

Neg(M) Neg(L) Neg(VH) −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− VL H M

Neg(VL) − VL L

Neg(H) Neg(VL) − VH

Neg(M) Neg(L) Neg(VH) −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, it should be noted that because of the linguistic values as represented as intervals, Neg(si) denotes the complementary

qualitative value of si, whose semantics is determined in our approach using the equivalence index characterizing s1
i . For instance,

suppose that si = H, and H is represented by the interval [0.6, 0.8]. If it is sampled as, for instance, with the number 0.65, Neg(H)

will be equal to 0.35.

Once the decision makers have expressed their preferences, our approach is applied. Proceeding with the details of the opti-

mization environment, a generic version of the PSO is used in this contribution. The parameters in the update equation for the

velocity of the particle were set as c1 = c2 = 2, as these values are usually encountered in the existing literature. The size of the

swarm consists of 100 particles, and the algorithm was run for 300 generations (or iterations). These values were selected as a

result of intensive experimentation.

On the one hand, the progression of the optimization quantified in terms of the fitness function is depicted in Fig. 1. Here, the

optimal cutoff points returned by the PSO are: 0.31, 0.37, 0.43, and 0.48, respectively. Therefore, the intervals corresponding to

the linguistic values of the set S are: VL: [0, 0.31], L: [0.31, 0.37], M: [0.37, 0.43], H: [0.43, 0.48], and VH: [0.48, 1], respectively.

Furthermore, the average value of the performance index Q is equal to 0.751, with a standard deviation of 0.022.

The performance obtained when considering a uniform distribution of the cutoff points over the scale is reported in order to put

the obtained optimization results in a certain context. A uniform distribution of the cutoff points is obtained when the points are

equal to 0.20, 0.40, 0.60, and 0.80. In such a situation, the average performance index Q assumes the value 0.683 with a standard
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Fig. 1: Fitness function f in successive PSO generations.

deviation of 0.014. Comparing with the values achieved by the optimized cutoff points, the performance index Q takes on now

lower values.

Finally, to obtain the ranking of alternatives from best to worst, a selection process (aggregation and exploitation) should be

carried out [34,35].

5. Conclusions and future work

In this contribution, an approach to make operational the linguistic information used by the decision makers in GDM situations

has been proposed. To do so, an information granulation of the linguistic information and its optimization framework have been

described. Also, using this approach, the consistency degree associated to the linguistic preference relations given by the decision

makers is increased, as it is utilized as an optimization criterion.

In the future, we propose to continue this research by applying the proposed approach to other formalism as fuzzy sets, shadowed

sets, probabilities, rough sets, and so on. For instance, if we deal with probabilistically granulated linguistic values, it could be a

source of illumination on possible linkages between fuzzy and probabilistic models of decision making along with some possible

hybrid fuzzy-probabilistic schemes.
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