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Abstract

In Group Decision Making (GDM) problems before to obtain a solution a high level of consensus among experts is required.

Consensus measures are usually built using similarity functions measuring how close experts’ opinions or preferences are.

Similarity functions are defined based on the use of a metric describing the distance between experts’ opinions or preferen-

ces. In the literature, different distance functions have been proposed to implement consensus measures. This paper presents

analyzes the effect of the application of some different distance functions for measuring consensus in GDM. By using the

nonparametric Wilcoxon matched-pairs signed-ranks test, it is concluded that different distance functions can produce signifi-

cantly different results. Moreover, it is also shown that their application also has a significant effect on the speed of achieving

consensus. Finally, these results are analysed and used to derive decision support rules, based on a convergent criterion, that

can be used to control the convergence speed of the consensus process using the compared distance functions.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

For reaching a decision, experts have to express their opinions or preferences by means of a set of evaluations

over a set of alternatives. Consensus is defined as the full and unanimous agreement of all the experts regarding all

the feasible alternatives. In practice, this definition is inconvenient because it only allows differentiating between

two states, namely, the existence and absence of consensus. A second meaning of the concept of consensus refers

to the judgement arrived at by ‘most of’ those concerned, which has led to the definition and use of a new concept

of consensus degree referred to as ‘soft’ consensus degree [1].

Based on the use of such soft consensus measure, the consensus process can be modelled as a dynamic and

iterative group discussion process, coordinated by a moderator, who helps the experts to make their opinions

closer.

Soft consensus measures represent the level of agreement among experts, and therefore their definition is based

on the concept of similarity between their opinions (preferences). The evaluation of consensus necessarily implies
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the computation and aggregation of the ‘distance’ representing disagreement between the opinions (preferences) of

each pair of experts on each pair of alternatives [2]. An issue here is that the convergence of the consensus process

towards a solution acceptable by most of the experts could be affected by the particular metric, i.e. distance

function, used to measure disagreement and subsequently to compute the soft consensus measure.

The aim of this paper is to analyze five of the most commonly used distance functions in modelling soft

consensus measures: Manhattan, Euclidean, Cosine, Dice, and Jaccard distance functions. Using nonparametric

Wilcoxon tests [3] and [4], significant differences were found in many cases between the behaviour of the com-

pared distance functions. This behaviour was further analysed using a convergent criterion and a set of rules were

identified for their application to control the speed of convergence towards consensus.

The remainder of the paper is structured as follows. Section 2 introduces concepts essential to the under-

standing of the rest of the paper: the GDM problem (Subsection 2.1), the selection process (Subsection 2.2) and

the consensus process (Subsection 2.3). Following that, Section 3 describes the design of the experiment used

to evaluate the different distance functions for measuring consensus in GDM problems. Section 4 presents and

discusses the results of the experiment. Lastly, Section 5 concludes the paper.

2. Preliminaries

In this section, we will introduce the basic notions of GDM problem and Consensus Model.

2.1. The GDM Problem

GDM problems consist in finding the best alternative(s) from a set of feasible alternatives X = {x1, . . . , xn}
according to the preferences provided by a group of experts E = {e1, . . . , em}. Different preference elicitation

methods were compared in [5], where it was concluded that pairwise comparison methods are more accurate than

non-pairwise methods.

Definition 1 (Fuzzy Preference Relation). A fuzzy preference relation P on a finite set of alternatives X is char-
acterized by a membership function μP : X × X −→ [0, 1], μ(xi, x j) = pi j, verifying

pi j + p ji = 1 ∀i, j ∈ {1, . . . , n}. (1)

When cardinality of X is small, the fuzzy preference relation may be conveniently denoted by the matrix P = (pi j).
The following interpretation is also usually assumed:

• pi j = 1 indicates the maximum degree of preference for xi over x j.
• pi j ∈ ]0.5, 1[ indicates a definite preference for xi over x j.
• pi j = 0.5 indicates indifference between xi and x j.

Two different processes are applied in GDM problems before a final solution can be obtained [6]: (1) the
consensus process and (2) the selection process. The consensus process refers to how to obtain the maximum

degree of consensus or agreement between the set of experts. The selection process obtains the final solution

according to the preferences [7] given by the experts.

2.2. Selection Process

The selection process involves two different steps [8]: (i) aggregation of individual preferences and (ii) ex-
ploitation of the collective preference.
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Aggregation phase. This phase defines a collective preference relation, Pc =
(
pc

i j

)
, obtained by means of the

aggregation of all individual fuzzy preference relations
{
P1, P2, . . . , Pm

}
, and indicates the global preference be-

tween every pair of alternatives according to the majority of experts’ opinions.

The aggregation operation by means of a quantifier guided OWA operator, φQ, is carried out as follows:

pc
i j = φQ

(
p1

i j, . . . , p
m
i j

)
=

m∑
k=1

wk · pσ(k)
i j , (2)

where σ is a permutation function such that pσ(k)
i j ≥ pσ(k+1)

i j , ∀ k = 1, · · · ,m − 1; Q is a fuzzy linguistic quantifier

[9] of fuzzy majority and it is used to calculate the weighting vector of φQ, W = (w1, . . . ,wn) such that, wk ∈ [0, 1]

and
∑n

k=1 wk = 1, according to the following expression [10]:

wk = Q (k/n) − Q ((k − 1)/n) ,∀k ∈ {1, . . . , n}. (3)

Some examples of linguistic quantifiers are “at least half”, “most of” and “as many as possible”, which can

be represented by the following function

Q(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 0 ≤ r < a
r−a
b−a if a ≤ r ≤ b
1 if b < r ≤ 1

(4)

using the values (0, 0.5), (0.3, 0.8) and (0.5, 1) for (a, b), respectively [11].

Alternative representations for the concept of fuzzy majority can be found in the literature [12].

Exploitation phase. This phase transforms the global information about the alternatives into a global ranking of

them, from which the set of solution alternatives is obtained.

Clearly, it is preferable that the experts achieve a high level of consensus concerning their preferences before

applying the selection process.

2.3. Consensus Model

The computation of the level of agreement among experts involves necessarily the measurement of the distance

or, equivalently, the similarity between their preference values. In the following, we provide the formal definition

of distance and similarity functions as given in [13]:

Definition 2 (Distance). Let A be a set. A function d : A × A −→ R is called a distance (or disimilarity) on A if,
for all x, y ∈ A, there holds

1. d(x, y) ≥ 0 (non-negativity)
2. d(x, y) = d(y, x) (symmetry)
3. d(x, x) = 0 (reflexivity)

Definition 3 (Similarity). Let A be a set. A function s : A×A −→ R is called a similarity on A if s is non-negative,
symmetric, and if s(x, y) ≤ s(x, x) holds for all x, y ∈ A, with equality if and only if x = y.

The main transforms between a distance d an a similarity s bounded by 1 are [13]:

d = 1 − s; d =
1 − s

s
; d =

√
1 − s; d =

√
2(1 − s2); d = arccos s; d = − ln s (5)

In this paper, we use the first transform to go from a distance function to a similarity function.

The similarity function is used for measuring both consensus degrees and proximity measures. The first ones

are calculated by fusing the similarity of the preference values of all the experts on each pair of alternatives as per

the expression (6) below. The second ones are calculated by measuring the similarity between the preferences of
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each expert in the group and the collective preferences, previously obtained by fusing all the individual experts’

preferences.

The main problem is how to find a way of making individual positions converge and, therefore, how to support

the experts in obtaining and agreeing with a particular solution. To do this, a consensus level required for that

solution is fixed in advance. This consensus model has been widely investigated in [6] and [14].

The computation of consensus degrees is carried out as follows:

1. The proximity between the preference values provided by each expert, r, and the corresponding preference

values of the rest of the experts in the group is measured and recorded in a similarity matrix, S Mr =
(
smr

i j

)
,

with

smr
i j = s(pr

ij, pij) (6)

where pr
ij = (pr

i j, . . . , p
r
i j), pij = (p1

i j, . . . , p
r−1
i j , p

r+1
i j , . . . , p

m
i j) and s : [0, 1]m−1 × [0, 1]m−1 → [0, 1] a similarity

function. The closer smr
i j to 1 the more similar pr

ij and pij are, while the closer smr
i j to 0 the more distant pr

ij
and pij are.

2. A consensus matrix, CM = (cmi j), is obtained by aggregating, using an OWA operator (φ), all the similarity

matrices obtained via Equation (6):

∀i, j ∈ {1, . . . , n} : cmi j = φ(sm1
i j, . . . , smm

i j) (7)

3. Consensus degrees are defined in each one of the three different levels of a fuzzy preference relation:

Level 1. Consensus on the pairs of alternatives, cpi j. It measures the agreement among all experts on the

pair of alternatives (xi, x j) :

∀i, j = 1, . . . , n ∧ i � j : cpi j = cmi j (8)

Level 2. Consensus on alternatives, cai. It measures the agreement among all experts on the alternative xi,

and it is obtained by aggregating the consensus degrees of all the pairs of alternatives involving it:

cai = φ(cpi j, cp ji; j = 1, . . . , n ∧ j � i) (9)

Level 3. Consensus on the relation, cr. It measures the global agreement among all experts, and it is

obtained by aggregating all the consensus degrees at the level of pairs of alternatives:

cr = φ(cai; i = 1, . . . , n) (10)

3. Statistical Comparative Study: Experimental Design

Given two vectors of real numbers a = (a1, . . . , an) and b = (b1, . . . , bn), the following five distance functions

have been considered in our study [13]:
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Manhattan: d1(a, b) =

n∑
i=1

|ai − bi| (11)

Euclidean: d2(a, b) =

√√ n∑
i=1

|ai − bi|2 (12)

Cosine: d3(a, b) =

n∑
i=1

ai · bi

√√ n∑
i=1

a2
i ·
√√ n∑

i=1

b2
i

(13)

Dice: d4(a, b) =

2 ·
n∑

i=1

ai · bi

n∑
i=1

a2
i +

n∑
i=1

b2
i

(14)

Jaccard: d5(a, b) =

n∑
i=1

ai · bi

n∑
i=1

a2
i +

n∑
i=1

b2
i −

n∑
i=1

ai · bi

(15)

The hypothesis that we are testing in this paper can be stated as follows:

The application of the Manhattan, Euclidean, Cosine, Dice and Jaccard distance functions in GDM
problems do not produce significant differences in the measurement of consensus

Note that d3, d4, and d5 have been satisfactorily applied in vectorial models of information retrieval by Salton

and McGill [15] to measure the similarity of two documents, with the value of 1 measuring the highest similarity

value. This ‘similarity’ interpretation is also taken in this paper, and therefore d3, d4, and d5 are not subject to the

transform mentioned above but d1 and d2 are.

To test the above hypothesis, twelve (12) sets of fuzzy preference relations were randomly generated for each

possible combination of experts (m = 4, 6, 8, 10, 12) and alternatives (n = 4, 6, 8), and the different distance

functions were applied in turn to measure consensus at the three possible levels (pairs of alternatives, alternatives

and relation), using the three different quantifier guided OWA operators presented in Subsection 2.2. All distance

functions were tested in pairs, di vs d j (i = 1, . . . , 4, j = i + 1, . . . , 5), and therefore we ended having repeated

measurements on a single sample [16]. For each pair of distance functions to compare we have to analyse two

related samples.

Nonparametric test are more appropriate in our experimental study [16] and [4]. For continuous data and two

related samples, the main nonparametric tests available are the sign test and the Wilcoxon signed-rank test [17],

[16], [3] and [4]. Since the last test incorporates more information about the data it is more powerful than the sign

test, and therefore preferable to use in our study.

Wilcoxon Matched-pairs Signed-ranks Statistical Test. Let X1, X2, . . . , Xn be a random sample of size n from some

unknown continuous distribution function F. Let p be a positive real number, 0 < p < 1, and let ξp(F) denote the

quantile of order p for the distribution function F, that is, ξp(F) is a solution of F(x) = p. For p = 0.5, ξ0.5(F) is

known as the median of F.

A problem of location and symmetry consists of testing the null hypothesis H0 : ξ0.5(F) = ξ0 and F is

symmetric against ξ0.5(F) � ξ0 and F is not symmetric.
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Let H0 : ξ0.5(F) = ξ0 be the null hypothesis. Consider the differences Di = Xi − ξ0, i = 1, 2, . . . , n. Under

H0 : (i) the expected number of negative differences will be n/2 and, (ii) negative and positive differences of equal

absolute magnitude should occur with equal probability. Consider the absolute values |D1|, |D2|, . . . , |Dn| and rank

them from 1 to n. Let T+ be the sum of ranks assigned to those D′i s that are positive and T− be the sum of ranks

assigned to those D′i s that are negative. Then it is

T+ + T− =
n∑

k=1

k =
n(n + 1)

2
(16)

so that T+ and T− are linearly related and offer equivalent criteria. A large value of T+ indicates that most of the

larger ranks are assigned to positive D′i s. It follows that large values of T+ support H1 : ξ0.5(F) > ξ0, large values

of T− support H1 : ξ0.5(F) < ξ0 and extreme values of T+ and T− support H1 : ξ0.5(F) � ξ0.

Under H0, the common distribution of T+ and T− is symmetric with mean E[T+] = n(n + 1)/4 and variance

var[T+] = n(n + 1)(2n + 1)/24. For large n, the standardised T+ has approximately a standard normal distribution.

In the case of matched-paired data, {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, obtained from the application of two treat-

ments (in our case – pair of different distance functions) to the same set of subjects (in our case – the set of

random fuzzy preference relations constructed), in order to test H0 : ξ0.5(FXi−Yi ) = ξ0, the Wilcoxon matched-

pairs signed-ranks statistical test is performed exactly as above by taking Di = Xi − Yi − ξ0. In our study, we want

to test whether the application of the different distance function does not affect significantly the measurement of

consensus in GDM, i.e. we are testing a null hypothesis with a value ξ0 = 0.

We assume that two measures with test p-value under the null hypothesis lower than or equal to 0.05 (α) will

be considered as significantly different; we refer to it as the test being significant and therefore we conclude that

the hypothesis tested is to be rejected.

4. Statistical Comparative Study: Experimental Results

A total of twelve (12) random GDM problems were generated for each one of the possible combinations of

experts (m = 4, 6, 8, 10, 12) and alternatives (n = 4, 6, 8). Each one of these random GDM problems was executed

three (3) times, each time using one of the three different OWA operators given in Subsection 2.2 to compute

the consensus degrees at the three different levels of a fuzzy preference relation: the pairs of alternatives, the

alternatives and the relation levels. In the following, we summarise the percentage of cases that were found to

be significantly different according to the Wilcoxon matched-pairs signed-ranks statistical test when all the five

different distance functions were compared in pairs, as per the description given in Section 3.

4.1. Pairs of Alternatives Level

Table 1 shows the percentage of tests with p-value lower than or equal to 0.05 (α) for each one the linguistic

quantifier guided OWA operators used in our experimental study. The application of different distance functions to

measure consensus at the level of the pairs of alternatives produces significantly different results in at least 70% of

all possible combinations of all the parameters used in the experiment (number of alternatives, number of experts

and OWA operators).

In summary, at the level of the pairs of alternatives the measurement of consensus is not affected significantly

if the Manhattan or the Euclidean distance functions are used, but not for a different pair of distance functions.

Obviously, the application of different distance functions, for which significant variation has been established,

could affect the convergence of the consensus process at this level, something that will be discussed in more detail

in Subsection 4.4.

4.2. Alternatives Level

Table 2 shows the percentage of tests with p-value lower than or equal to 0.05 (α) for each one the linguistic

quantifier guided OWA operators used in our experimental study at the alternatives level. The application of

different distance functions to measure consensus at the level of the alternatives produces significantly different
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Table 1. Percentage of significantly different results when different distance functions are applied to measure consensus at the level of the pairs

of alternatives

“At least half” OWA

A\E 4 6 8 10 12

4 80 80 90 90 90

6 80 90 90 90 90

8 90 90 90 100 90

“Most of” OWA

A\E 4 6 8 10 12

4 70 80 90 90 90

6 70 70 90 90 90

8 70 90 90 100 90

“As many as possible” OWA

A\E 4 6 8 10 12

4 80 90 90 90 90

6 90 90 90 90 90

8 90 90 90 90 90

results in at least 50% of all possible combinations of all the parameters used in the experiment (number of

alternatives, number of experts and OWA operators).

In summary, the measurement of consensus at the level of the alternatives does not seem to be significantly

affected if the Manhattan or the Euclidean distance functions are used, nor it is when the Cosine or the Dice

distance functions are used; otherwise the contrary can be asserted. Therefore, at this level, the application of

different distance functions, for which significant variation has been established, could affect the convergence of

the consensus process.

Table 2. Percentage of significantly different results when different distance functions are applied to measure consensus at the level of the

alternatives

“At least half” OWA

A\E 4 6 8 10 12

4 90 70 100 90 100

6 80 60 90 50 90

8 80 80 90 80 90

“Most of” OWA

A\E 4 6 8 10 12

4 80 50 100 90 100

6 60 50 80 90 90

8 80 80 90 90 80

“As many as possible” OWA

A\E 4 6 8 10 12

4 90 90 80 90 90

6 50 80 90 90 100

8 80 80 80 80 100

4.3. Relation Level
Table 3 shows the level of consensus in percentage achieved by the different distance functions for each GDM

problem, showing only the number of experts as the variable parameter, and for each one the linguistic quantifier

guided OWA operators used in our experimental study. The greater a value in this table the greater the global level

of consensus achieved by the experts in the corresponding GDM problem. The comparison of column entries

could be used to find out which distance function returns the largest values and therefore could lead to a faster

convergence of the consensus process.

From Table 3 we can conclude the following:
1. The Manhattan (d1) and the Euclidean (d2) distance functions increase the global consensus level as the

number of experts increases. Also, the values of consensus returned by both distance functions are quite

similar, which was already evidenced by the results obtained in the pair of alternatives and the alternative

levels.
2. The Cosine (d3) and the Dice (d4) distance functions result in fairly similar and stable global consensus

levels regardless of the number of experts. For low number of experts both tend to produce higher values

of consensus than the Manhattan and the Euclidean distance functions, which reverse when the number of

experts is 8 or higher.
3. The Jaccard distance function (d5) produces the lowest global consensus levels, being fairly stable in value

regardless of the number of experts.

4.4. Consensus Process Convergence Rules
Based on the above analysis we can draw rules to speed up or slow down the convergence of the consensus

that could prove an important decision support tool in GDM problems.

• The Manhattan (d1) and the Euclidean (d2) distance functions help the consensus process to converge faster

than the rest as they consistently produce the highest consensus values for almost all possible combinations

of number of experts and linguistic quantifier guided OWA operators.



1007 F. Chiclana et al.  /  Procedia Computer Science   55  ( 2015 )  1000 – 1008 

Table 3. Consensus degree in percentages for all GDM problems at the level of the relation

“At least half” OWA

di\E 4 6 8 10 12

d1 63,08 82,40 91,04 96,45 99,86

d2 64,60 82,82 91,60 96,71 100,00

d3 93,05 93,61 94,53 94,83 94,93

d4 95,96 94,62 94,82 94,91 94,48

d5 81,44 80,71 78,86 79,81 79,89

“Most of” OWA

di\E 4 6 8 10 12

d1 69,49 85,09 92,90 97,22 100,00

d2 67,94 85,25 92,51 96,89 99,71

d3 84,66 84,06 84,69 84,57 85,05

d4 86,59 85,41 85,37 84,76 84,70

d5 69,02 68,12 65,96 67,60 66,94

“As many as possible” OWA

di\E 4 6 8 10 12

d1 73,17 87,12 94,13 97,65 100,00

d2 70,40 86,47 93,27 97,21 99,76

d3 78,66 77,20 76,65 76,74 77,67

d4 80,00 78,06 78,19 77,36 77,64

d5 60,75 59,79 58,50 59,49 58,45

• The Jaccard distance function (d5) contributes the least to the speed of convergence of the consensus process.

• The Cosine (d3) and the Dice (d4) distance functions are placed in a mid term position in terms of helping

speed up the convergence of the consensus process.

• The Manhattan (d1) and the Euclidean (d2) distance functions are quite sensitive to the number of experts,

i.e. they produce significant different consensus values when the number of expert changes.

• The Cosine (d3), the Dice (d4) and the Jaccard (d5) distance functions are quite stable in the global consensus

values they produce with respect to changes in the number of experts.

To corroborate the above rules, we run a GDM problem with 8 experts using the “most of” guided OWA

operator with the five different distance functions and record the number of rounds necessary for the consensus

process to reach the threshold consensus level acceptable for the GDM to reach a solution of consensus. This is

graphically represented in Figure 1.

It seems reasonable that in the early stages of the consensus reaching process fairly stable distance functions

should be used, with the application of less tolerant distance functions in later stages of the consensus process to

speed up its convergence towards the threshold consensus level.

5. Conclusion

In this paper we have analyzed different distance functions used to compute consensus measures. We have

presented detailed comparative experimental study based on the use of the nonparametric Wilcoxon statistical

test. The results are interesting in that our experimental study has shown that the compared distance functions

produce significant different results in most of the GDM problems carried out. The analysis of the results allows

for the draw of a set of rules for the application of the compared distance functions that can be used to control the

convergence speed of the consensus process using the compared distance functions.
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Fig. 1. Number of consensus rounds necessary for each distance function to reach consensus threshold in a GDM problem: 8 experts and most
of guided OWA operator
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