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Abstract: Pansharpening is a technique that fuses a low spatial resolution multispectral image and a
high spatial resolution panchromatic one to obtain a multispectral image with the spatial resolution
of the latter while preserving the spectral information of the multispectral image. In this paper we
propose a variational Bayesian methodology for pansharpening. The proposed methodology uses
the sensor characteristics to model the observation process and Super-Gaussian sparse image priors
on the expected characteristics of the pansharpened image. The pansharpened image, as well as all
model and variational parameters, are estimated within the proposed methodology. Using real and
synthetic data, the quality of the pansharpened images is assessed both visually and quantitatively
and compared with other pansharpening methods. Theoretical and experimental results demonstrate
the effectiveness, efficiency, and flexibility of the proposed formulation.
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1. Introduction

Remote sensing sensors simultaneously capture a Multispectral (MS) low resolution image along
with a single-band high resolution image of the same area, referred to as Panchromatic (PAN) image.
However, MS high-resolution images are needed by many applications, such as land use and land
cover analyses or change detection. Pansharpening is a technique that fuses the MS and PAN images
into an MS high resolution image that has the spatial resolution of the PAN image and the spectral
resolution of the MS one.

In this paper we formulate the pansharpening problem following the Bayesian framework. Within
this framework, we use the sensor characteristics to model the observation process as a conditional
probability distribution. The observation process describes both the MS high resolution image to MS
low resolution image relationship and how the PAN image is obtained from the MS high resolution
one. This probability distributions provides fidelity to the observed data in the pansharpened
image reconstruction process. together with from fidelity to the data, Bayesian methods incorporate
prior knowledge on the MS high resolution image in the form of prior probability distributions.
Crisp images, such as high resolution MS images, are expected to have Super-Gaussian (SG) statistics,
while upsampled images suffer from blur that smooths out sharp gradients, making them more
Gaussian in their statistics [1]. Our goal is to integrate the sharp edges of the PAN image into the
pansharpened image, leading to less Gaussian statistics which makes SG priors a suitable choice.
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SG priors have been successfully applied to other image processing tasks, such as compressed
sensing [2], blind deconvolution [1,3] and blind color deconvolution [4] and so it is also expected
to produce good results in pansharpening. However, the form of the SG prior does not allow us
to obtain the posterior distribution in an analytical way, making full Bayesian inference intractable.
Hence, in this paper, we use the variational Bayesian inference to estimate the distribution of the
pansharpened image as well as the model parameters from the MS low resolution and PAN images.

The rest of the paper is organized as follows: a categorization and short review of related
pansharpening methods is presented in Section 2. In Section 3 the pansharpening problem is
mathematically formulated. Following the Bayesian modelling and inference, in Section 4 we propose
a fully Bayesian method for the estimation of all the problem unknowns and model parameters.
In Section 5, the quality of the pansharpened images is assessed both visually and quantitatively and
compared with other classic and state-of-the-art pansharpening methods. In Section 6 we discuss the
obtained results and finally, Section 7 concludes the paper.

2. Related Work

Early pansharpening techniques, such as in the Brovey method [5], substituted some bands
for image visualization or performed simple arithmetic transformations. Other classical methods
included the transformation of the MS image and the substitution of one of its components by the
high spatial resolution PAN image. Examples of this strategy are Principal Components Analysis PCA
substitution [6], Brovey Transform [7] and Intensity-Hue-Saturation (IHS) [8] methods. A review of
those early methods, among others, can be found in [9].

Over the past 20 years, numerous methods have been presented and, in an attempt to bring some
order to the diversity of approaches, different reviews, comparisons and classifications have been
proposed in the literature (see, for instance, [10–17]) each one with different criteria and, therefore,
with a different categorization. Nevertheless, in the last years, there seems to be a consensus in
three main categories, namely Component Substitution (CS), Multi-Resolution Analysis (MRA)
and Variational Optimization (VO) [15–17]. Additionally, the increasing number of Deep Learning
(DL)-based pansharpening methods proposed in recent years can be regarded as a new category.

The Component Substitution (CS) category includes the most widely used pansharpening
methods. CS methods [12] usually upsample the MS image to the size of the PAN image
and transform it to another space that separates the spatial and spectral image components.
Then, the transformed component containing the spatial information is substituted by the PAN
image (possibly, after histogram matching). Finally, the backward transform is applied to obtain the
pansharpened image. Examples of these methods include the already mentioned PCA substitution [6],
IHS methods [8,18,19], the Gram–Schmidt (GS) methods [20] and Brovey transform [7]. In [21],
the transformation is replaced by any weighted average of the MS bands. It is shown that this
approach generalizes any CS image fusion method. Determination of the weights has been carried
out in different ways. For instance, in [22] the weights are optimally estimated to minimize the
mean squared error while in [23] they are set to the correlation coefficient between a single band
low resolution image (obtained from the MS image) and each MS band. A local criterion, based on
the belonging of a given pixel to a fuzzy cluster, was applied in [24] to estimate weights that are
different for each pixel of the image. To obtain a crisper MS high-resolution image, in [25] a Wiener
deconvolution of the upsampled MS bands was performed before fusion.

In general, CS-based methods produce spectral distortions due to the different statistics of
the PAN image and the transformed component containing the spatial details. To tackle this issue,
Multi-Resolution Analysis (MRA) methods decompose the MS and PAN images to different levels,
extract spatial details from the decomposed PAN image, and inject them into the finer scales of the
MS image. This principle is also known as the ARSIS concept [10]. The High-Pass Filtering (HPF)
algorithm in [11,18], can be considered to be the first approach in this category where only two levels are
considered. Multi-scale decompositons, such as the wavelet transform (WT) [26–28], the Generalized



Sensors 2020, 20, 5308 3 of 28

Laplacian Pyramid (GLP) [29–31] or the Non-Subsampled Contourlet Transform (NSCT) [32–34],
were used to bring more precision to the methods. The “a trous” wavelet transform (AWT) was the
preferred decomposition technique [26,28] until the publication of [31] showed the advantages of
GLP over AWT. This was later corroborated in [14] where a comparison of different methods based
on decimated and undecimated WT, AWT, GLP and NSCT concluded that GLP outperforms AWT
because it better removes aliasing. MRA category also includes the Smoothing Filter Based Intensity
Modulation (SFIM) method [35,36], which first upsamples the MS image to the size of the PAN one
and then uses a simplified solar radiation and land surface reflection model to increase its quality,
and the Indusion method [37] in which upscaling and fusion steps are carried out together.

Deep Learning (DL) techniques have gained prominence in the past years and several
methods have been proposed for pansharpening. As far as we know, the use of Deep Neural
Networks (DNN) for pansharpening were first introduced in [38] where a Modified Sparse Denoising
Autoencoder (MSDA) algorithm was proposed. For the same task, a Coupled Sparse Denoising
Autoencoder (CSDA) was used in [39]. Convolutional neural networks were introduced in [40]
and also used, for instance, in [41]. Instead of facing the difficult task of learning the whole image,
residual networks [42,43] learn, from upsampled MS and PAN patches, only the details of the MS
high-resolution image that are not already in the upsampled MS image and add them to it to obtain the
pansharpened image. To adjust the size of the MS image to the size of the PAN one in a coarse-to-fine
manner, two residual networks in cascade were set in the so called Progressive Cascade Deep Residual
Network (PCDRN) [44]. In [45] a multi-scale approach is followed by learning a DNN to upsample
each NSCT directional sub-band from the MS and PAN images. In general, the main weaknesses of the
DL techniques are the high computational resources needed for training, the need of a huge amount of
training data, which, in the case of pansharpening, might not be available, and the poor generalization
to satellite images not used during training. The absence of ground-truth MS high-resolution images,
needed for training these DL methods, is a problem pointed-out by [46] where a non-supervised
generative adversarial network (Pan-GAN) was proposed. The GAN aims to generate pansharpened
images that are consistent with the spectral information of the MS image while maintaining the spatial
information of the PAN image. However, the generalization of this technique to satellite images
different from the ones used for training is not clear. The adaptation of general image fusion methods,
like the U2Fusion method in [47], to the pansharpening problem is a promising research area.

From a practical perspective, Variational Optimization (VO)-based methods present advantages
both from a theoretical as well as computational points of view [48]. VO-based methods mathematically
model the relation between the observed images and the original MS high resolution image, building an
energy functional based on some desired properties of the original image. The pansharpened image is
obtained as the image that minimizes this energy functional [49]. This mathematical formulation allows
to rigorously introduce and process features that are visually important into the energy functional.
Variational optimization can be considered as a particular case of the Bayesian approach [50], where the
estimated image is obtained by maximizing the posterior probability distribution of the MS high
resolution image. Bayesian methods for pansharpening formulate the relations between the observed
images and the original MS high resolution image as probability distributions, model the desired
properties as prior distributions and use Bayes’ theory to estimate the pansharpened image based on
the posterior distribution of the original MS high resolution image.

Following the seminal P+Xs method [51], the PAN image is usually modelled as a combination
of the bands of the original high resolution mutispectral image. However, in [49] this model
was generalized by substituting the intensity images by their gradients. Note that while the
P+Xs method [51] preserves spectral information, it produces blurring artifacts. To remove blur
while preserving spectral similarity, other restrictions are introduced as reasonable assumptions
or prior knowledge about the original image such as Laplacian prior [52], total variation [53,54],
sparse representations [55], band correlations [56,57], non-local priors [58,59], etc. Spectral information
is also preserved by enforcing the pansharpened image to be close to the observed MS one when
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downsampled to the size of the latter [52,60,61]. A special class of VO-based methods are the
super-resolution methods which model pansharpening as the inverse problem of recovering the
original high-resolution image by fusing the MS image and the PAN (see [52,62] for a recent review
and [63] for a recent work). Deconvolution methods, such as [64], also try to solve the inverse problem
but the upsampling of the MS image to the size of the PAN one is performed prior to the pansharpening
procedure. Registration and fusion are carried out simultaneously in [65].

Note that the variational Bayesian approach, also followed in this paper, is more general
than variational optimization. While VO-based methods aim at obtaining a single estimate of the
pansharpened image, the variational Bayesian approach estimates the whole posterior distribution of
the pansharpened images and the model parameters, given the observations. When a single image
is needed, the mode of the distribution is usually selected, but other solutions can be obtained,
for instance, by sampling the estimated distribution. Even more, the proposed approach allows us
to simultaneously estimate the model parameters along with the pansharpened image using the
same framework.

3. Problem Formulation

Let us denote by y the MS high-resolution image hypothetically captured with an ideal
high-resolution sensor with B bands yb, b = 1, . . . , B, of size p = m × n pixels, that is, y =

[yT
1 , . . . , yT

B]
T, where the superscript T denotes the transpose of a vector or matrix. Note that each

band of the image is flattened into a column vector containing its pixels in lexicographical order.
Unfortunately, this high-resolution image is not available in real applications. Instead, we observe an
MS low-resolution image Y = [YT

1 , . . . , YT
B]

T with B bands Yb of size P = M× N pixels with M < m,
N < n.

The bands in this image are flattened as well to express them as a column vector. The relation
between each low-resolution band, Yb, and its corresponding high-resolution one, yb, is defined by

Yb = DHyb + nb = Byb + nb, (1)

where D is P× p decimation operator, H is a p× p blurring matrix, B = DH, and the capture noise nb
is modeled as additive white Gaussian noise with variance β−1

b .
A single band high-resolution PAN image covering a wide range of frequencies is also provided

by the sensor. This PAN image x of size p = m× n is modelled as an spectral average of the unknown
high-resolution bands yb, as

x =
B

∑
b=1

λbyb + v, (2)

where λb > 0 are known quantities that depend on each particular satellite sensor, and the capture
noise v is modeled as additive white Gaussian noise with variance γ−1.

Once the image formation is formulated, let us use the Bayesian formulation to tackle the problem
of recovering y, the MS high resolution image, using the observed Y, its degraded MS low resolution
and PAN x.

4. Bayesian Modelling and Inference

We model the distribution of each low resolution image Yb, b = 1, . . . , B, following the degradation
model in Equation (1) as a Gaussian distribution with mean Byb and covariance matrix β−1

b I.
Then, the distribution of the observed image Y is modelled by

p(Y|y, β) =
B

∏
b=1
N (Yb|Byb, β−1

b I), (3)
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with β = {β1, . . . , βb}.
Analogously, using the degradation model in Equation (2), the distribution of the PAN image x is

given by

p(x|y, γ) = N (x|
B

∑
b=1

λbyb, γ−1I). (4)

The starting point for Bayesian methods is to choose a prior distribution for the unknowns. In this
paper, we use SG distributions as priors for the MS high resolution image as

p(y|α) =
B

∏
b=1

J

∏
ν=1

p(ybν|αbν) =
B

∏
b=1

J

∏
ν=1

p

∏
i=1

Z(αbν) exp [−αbνρ(ybν(i))], (5)

with αbν > 0 and α = {α11 . . . , αLB} and Z(αbν) is a partition function. In Equation (5), ybν = Fνyb is
a filtered version of the b-th band, yb, where {Fν}J

ν=1 is a set of J high-pass filters, ybν(i) is the i-th
pixel value of ybν, and ρ(·) is a penalty function. The image priors are placed on the filtered image ybν.
It is well-known that the application of high-pass filters to natural images returns sparse coefficients.
Most of the coefficients are zero or close to zero while only the edge related coefficients remain large.
Sparse priors enjoy SG properties, heavier tails, more peaked and positive excess kurtosis compared to
the Gaussian distribution. The distribution mass is located around zero, but large values have a higher
probability than in a Gaussian distribution. For p(ybν|αbν) in Equation (5) to be SG, ρ(·) has to be
symmetric around zero and the function ρ(

√
s) increasing and concave for s ∈ (0, ∞). This condition

is equivalent to ρ′(s)/|s| being decreasing on (0, ∞), and allows ρ to be represented as

ρ (ybν(i)) = inf
ηbν(i)>0

1
2

ηbν(i) y2
bν(i) − ρ∗

(
1
2

ηbν(i)
)

(6)

⇒ ρ (ybν(i)) ≤ L (ybν(i), ηbν(i)) =
1
2

ηbν(i) y2
bν(i)− ρ∗

(
1
2

ηbν(i)
)

, (7)

where inf denotes the infimum, ρ∗(·) is the concave conjugate of ρ(·) and ηbν = {ηbν(i)}
p
i=1 are a set of

positive parameters. The relationship dual to Equation (6) is given by [66]

ρ∗
(

1
2

ηbν(i)
)
= inf

ybν(i)

1
2

ηbν(i) y2
bν(i)− ρ (ybν(i)) . (8)

To achieve sparsity, the function ρ should suppress most of the coefficients in ybν and preserve a
small number of key features. Table 1 shows some penalty functions, corresponding to SG distributions
(see [1]).

Table 1. Some possible penalty functions.

Label ρ(s) ρ′(s)/|s|

`p , 0 < p ≤ 1 1
p |s|p |s|p−2

log log(ε + |s|) (ε + |s|)−1|s|−1

From Equations (3)–(5), the joint probability distribution p(Θ, Y, x), with Θ = {y, β, γ, α} the set
of all unknowns, is given by

p(Θ, Y, x) = p(Y|y, β)p(x|y, γ)p(y|α)p(β)p(γ)p(α), (9)

where flat hyperpriors p(β), p(γ) and p(α) on the model hyperparameters have been included.
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Following the Bayesian paradigm, inference will be based on p(Θ|Y, x). Since this posterior
distribution cannot be analytically calculated due to the form of the SG distribution, in this paper we
use the mean-field variational Bayesian model [67] to approximate p(Θ|Y, x) by the distribution q(Θ)

of the form q(Θ) = ∏θ∈Θ q(θ), that minimizes the Kullback–Leibler divergence [68] defined as

KL (q(Θ) ||p(Θ|Y, x)) =
∫

q(Θ) log
q(Θ)

p(Θ, Y, x)
dΘ + log p(Y) + log p(x). (10)

The Kullback–Leibler divergence is always non-negative and it is equal to zero if and only if
q(Θ) = p(Θ|Y, x).

Even with this factorization, the SG prior for y hampers the evaluation of this divergence, but the
quadratic bound for ρ in Equation (7) allows us to bound the prior in Equation (5) with a Gaussian
form such that

p (ybν(i)|αbν) ≥ Z(αbν) exp[−αbνL (ybν(i), ηbν(i))], ∀ηbν(i) > 0 . (11)

We then define the lower bound of the priorMν(yν, ην|αν) = ∏bMνb(ybν, ηbν|αbν) where

Mνb(ybν, ηbν|αbν) =
p

∏
i=1

Z(αbν) exp[−αbνL (ybν(i), ηbν(i))] (12)

and obtain the lower bound of the joint probability distribution

F(Θ, Y, x, η) = p(Y|y, β)p(x|y, γ)
J

∏
ν=1
Mν(yν, ην|αν) (13)

to obtain the inequality log p(Θ, Y, x) ≥ log F(Θ, Y, x, η).
Utilizing the lower bound F(Θ, Y, x, η) for the posterior probability distribution in Equation (10)

we minimize KL (q(Θ) || F(Θ, Y, x, η)) instead of KL (q(Θ) ||p(Θ|Y, x)).
As shown in [67], for each unknown θ ∈ Θ, the estimated q(θ) will have the form

q(θ) ∝ exp 〈log F(Θ, Y, x, η)〉q(Θ\θ) , (14)

where Θ\θ represents all the variables in Θ except θ and 〈·〉q(Θ\θ) denotes the expected value calculated

using the distribution q(Θ\θ). When point estimates are required θ̂ = 〈θ〉q(θ) is used.
For variables with a degenerate posterior approximation, that is, for θ ∈ {β, γ, α}, the value where

the posterior degenerates is given by [67]

θ̂ = arg max
θ
〈log F(Θ, Y, x, η)〉q(Θ\θ) . (15)

Let us now obtain the analytic expressions for each unknown posterior approximation.

4.1. High Resolution Multispectral Image Update

Using Equation (14) we can show in a straightforward way that the posterior distribution for the
high resolution MS image will have the form

q(y) = N (y| 〈y〉 , Σy) , (16)

where the inverse of the covariance matrix is given by



Sensors 2020, 20, 5308 7 of 28

Σ−1
y = diag(β)⊗ BTB + γ(λλT)⊗ Ip×p

+ ∑
ν


α1νFT

ν diag(η1ν)Fν 0p×p . . . 0p×p

0p×p α2νFT
ν diag(η2ν)Fν . . . 0p×p

...
...

. . .
...

0p×p 0p×p . . . αBνFT
ν diag(ηBν)Fν

 , (17)

with ⊗ denoting the Kronecker product, diag(·) is a diagonal matrix formed from the elements of a
vector and the mean is obtained as

Σ−1
y 〈y〉 =

(
diag(β)⊗ BT

)
Y + γ

(
diag(λ)⊗ Ip×p

) (
xT, xT, . . . , xT

)T
. (18)

4.2. Variational Parameters Update

To estimate the value of the variational parameters, η introduced in Equation (7), we need to solve,
for each band b ∈ {1, . . . , B}, filter ν ∈ {1, . . . , J}, and pixel i ∈ {1, . . . , p}, the optimization problem

η̂bν(i) = arg min
ηbν(i)

〈L (ybν(i), ηbν(i))〉q(y)

= arg min
ηbν(i)

1
2

ηbν(i) u2
bν(i) − ρ∗

(
1
2

ηbν(i)
)

, (19)

where ubν(i) =
√〈

y2
bν(i)

〉
. Since

ρ∗
(

η̂bν(i)
2

)
= min

x

1
2

η̂bν(i)x2 − ρ(x) (20)

whose minimum is achieved at x = ubν(i), we have, differentiating the right hand side of (19) with
respect to x,

η̂bν(i) = ρ′(ubν(i)))/ubν(i). (21)

4.3. Model Parameters Update

The estimates of the noise variance in the degradation models in Equations (3) and (4) are obtained
using Equation (15) as

β̂−1
b =

tr
〈
(Yb − Byb)(Yb − Byb)

T〉
q(Θ)

P
, b = 1, . . . , B, (22)

γ̂−1 =
tr
〈
(x−∑B

b=1 λbyb)(x−∑B
b=1 λbyb)

T
〉

q(Θ)

p
, (23)

where tr(·) represents the trace of the matrix.
From Equation (14) we obtain the following distribution for the parameter αbν of the SG prior in

Equation (5).

q(αbν) = const +
p

∑
i=1

log Z(αbν) exp [−αbνρ(ybν(i))] . (24)

The mode of this distribution can be obtained (see [69]) by solving

∂Z(α̂bν)

∂α̂νs
=

tr
((

FT
ν Fν

) 〈
ybνyT

bν

〉)
p

. (25)
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The `p penalty function shown in Table 1 produces proper priors, for which the partition function
can be evaluated, but the log penalty function produces an improper prior. We tackle this problem
examining, for αbν 6= 1, the behavior of

Z(αbν, K)−1 =
∫ K

−K
exp [−αbνρ(t)] dt (26)

and keeping in ∂Z(αbν)/∂αbν the term that depends on αbν. This produces for the log prior

∂Z(α̂bν)

∂α̂bν
= (α̂bν − 1)−1. (27)

4.4. Calculating the Covariance Matrices

The matrix Σy in Equation (17) must be explicitly computed to find its trace and also to calculate
η̂bν(i). However, since its calculation is very intense, we propose the following approximation. We first
approximate diag(ηbν) using

diag(ηbν) ≈ z(ηbν)Ip×p, (28)

where z(ηbν) is calculated as the mean of the values in ηbν.
We then use the approximation

Σ−1
y ≈


Σ−1

y1
0p×p . . . 0p×p

0p×p Σ−1
y2

. . . 0p×p
...

...
. . .

...
0p×p 0p×p . . . Σ−1

yB


with

Σ−1
yb
≈ βbBTB + γλ2

bIp×p + ∑
ν

αbνz(ηbν)F
T
ν Fν = Cb, b = 1, . . . , B.

Finally we have 〈
y2

bν(i)
〉
≈ (〈ybν(i)〉)2 +

1
p

tr
[
C−1

b FT
ν Fν

]
.

4.5. Proposed Algorithm

Based on the previous derivations, we propose the Variational Bayesian SG Pansharpening
Algorithm in Algorithm 1. The linear equations problem in Equation (18), used in step 4 of Algorithm 1,
has been solved using the Conjugate Gradient approach.
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Algorithm 1 Variational Bayesian SG pansharpening.

Require: Observed multispectral image, Y, panchromatic image x, and λ parameter.

Set Σ
(0)
y = 0 and n = 0. 〈yb〉(0) is obtained by bicubic interpolation of Yb, ∀b = 1, . . . , B.

while convergence criterion is not met do

1. Set n = n + 1.

2. Obtain β(n), γ(n) and α
(n)
bν from Equations (22), (23) and (25) respectively.

3. Using 〈y〉(n−1) and Σ
(n−1)
y , update the variational parameters η̂

(n)
bν , ∀b, ν from Equation (21).

4. Using β(n), γ(n), α
(n)
bν , and η̂

(n)
bν , update Σ

−1(n)
y in Equation (17) and solve Equation (18) for

〈y〉(n).
end while

Output the high resolution hyperspectral image ŷ = 〈y〉(n).

5. Materials and Methods

To test the performance of the proposed methodology on different kind of images, five satellite
images were used: three LANDSAT 7-ETM+ [70] images, a SPOT-5 [71] image and a FORMOSAT-2 [72]
image. LANDSAT MS images have six bands and a ratio between PAN and MS images p/P = 4.
Figures 1 and 2 show RGB color images formed by the bands B4, B3 and B2 of LANDSAT MS images,
and their corresponding PAN images. Figure 1 corresponds to an area from Chesapeake Bay (US) while
Figure 2 depicts two areas from Neatherland.SPOT-5 MS images have four bands and two PAN images,
with resolution ratios of p/P = 4 and p/P = 16, are provided. FORMOSAT-2 MS images also have
four bands and a ratio between PAN and MS images p/P = 16. Figure 3a,c show the RGB color images
formed from bands B3, B2 and B1 bands of a SPOT-5 image from Roma (IT) and a FORMOSAT-2 MS
image from Salon-de-Provence (FR) and Figure 3b,d their corresponding PAN images.

(a) (b)

Figure 1. Observed LANDSAT 7-ETM+ Chesapeake Bay image: (a) 1024× 1024 multispectral (MS),
(b) 2048× 2048 panchromatic (PAN).
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(a) (b)

(c) (d)

Figure 2. Observed LANDSAT 7-ETM+ Netherland images: (a) 128× 128 MS, (b) 256× 256 PAN,
(c) 2048× 2048 MS, (d) 4096× 4096 PAN.

Both the observed Y and x images have been normalized to the range [0, 1] before running
Algorithm 1. The convergence criterion in the algorithm was ‖ 〈y〉(n)−〈y〉(n−1) ‖2 / ‖ 〈y〉(n) ‖2≤ 10−6

or 50 iterations were reached, whatever occurs first. The relationship between the MS high resolution
image and the panchromatic image in Equation (2) is governed by the parameters λ that need to
be set before pansharpening is carried out. If we knew the sensor spectral response characteristics,
the values of λ could be estimated from them. For instance, for LANDSAT 7-ETM+, Figure 4 shows
the sensor spectral response curves for the MS bands B1-B6, shown in color, and the PAN band shown
in black. For this sensor, the PAN band mainly overlaps B2-B4 MS bands, and λ coefficients could
be obtained from this overlapping (see [52]). In this paper, however, a more general approach is
followed to estimate λ from the observations. First, we define X = Dx, a version of the PAN image
downsampled to the size of the MS image. Then, since the sensor spectral response is the same in high
and low resolution, the parameters λ can be obtained by solving
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λ = argmin
λ

‖ X−
B

∑
b=1

λbYb ‖2, (29)

subject to λb ≥ 0, ∀b,
B

∑
b=1

λb = 1 . (30)

(a) (b)

(c) (d)

Figure 3. Observed SPOT-5 Roma image: (a) 1024× 1024 MS, (b) 4096× 4096 PAN. FORMOSAT-2
Salon-de-Provence image: (c) 1024× 1024 MS, (d) 4096× 4096 PAN.

Table 2 shows the λs associated to the different considered observed images. For the LANDSAT
7-ETM+ images only the first four bands are positive and λ5 and λ6 values are 0 since we know that
bands B5 and B6 are not covered by the panchromatic sensor. For this process, each band is normalized
to the interval [0, 1]. Note that due to the normalization, the estimated λ values do not only depend on
the sensor spectral response but also on the observed area characteristics. This explains the differences
between the obtained λ values for the images in Figure 2a,c. Although those images are from the same
area of Netherlands, clouds in Figure 2a modify the estimation of the values of λ.
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Figure 4. LANDSAT 7-ETM+ band spectral response normalized to one.

Table 2. Estimated λ values for the different sensors.

Sensor Image B1 B2 B3 B4 B5 B6

LANDSAT 7-ETM+ Figure 1 0.0986 0.1011 0.2576 0.5427 0 0

LANDSAT 7-ETM+ Figure 2a 0.0183 0.4243 0.0576 0.4998 0 0

LANDSAT 7-ETM+ Figure 2c 0 0.2283 0.1611 0.6106 0 0

SPOT-5 Figure 3a 0 0.2993 0.6897 0.0110 - -

FORMOSAT-2 Figure 3c 0.0384 0.5566 0 0.4051 - -

6. Discussion

Within the variational Bayesian methodology, two methods are proposed in this paper: one
using the log penalty function (see Table 1), hence, named log method, and another using
the `p penalty function, with p = 1, referred as `1 method. The proposed methods have
been compared with the following classic and state-of-the-art pansharpening methods: the
Principal Component Analysis (PCA) [6], the Intensity–Hue–Saturation (IHS) transform [19], the
Brovey transform (Brovey) [7], the Band-Dependent Spatial-Detail (BDSD) method in [22], the
Gram-Schmidt (GS) method in [20], the Gram-Schmidt adaptive (GSA) method in [21], the Partial
Replacement Adaptive Component Substitution (PRACS) method in [23], the High Pass Filtering (HPF)
algorithm in [18], the Smoothing Filter Based Intensity Modulation (SFIM) method [35,36], the
Indusion method in [37], the Additive A Trous Wavelet Transform (ATWT) in [26], the Additive
Wavelet Luminance Proportional (AWLP) method in [28], the ATWT Model 2 (ATWT-M2) and
ATWT Model 3 (ATWT-M3) methods in [10], the Generalized Laplacian Pyramid (GLP)-based
methods in [29], concretely the modulation transfer functions (MTF)-GLP, GLP with High Pass
Modulation (MTF-GLP-HPM), and GLP with Context Based Decision (MTF-GLP-CBD) methods,
and the pansharpening method using a Total Variation (TV) image model in [53]. We have
used the implementation of the methods and measures provided by the Pansharpening Toolbox
(https://rscl-grss.org/coderecord.php?id=541) [13]. For those methods not included in the toolbox
we have used the code provided by the authors. The code of the proposed methods will be publicly
available at https://github.com/vipgugr. We have also included the results of bilinear interpolating
the MS image to the size of the PAN, marked as EXP, as a reference. Both quantitative and qualitative
comparisons of the different methods have been performed.

6.1. Quantitative Comparison

A common problem in pansharpening is the nonexistence of a MS high resolution ground-truth
image to compare with. Hence we performed two kinds of quantitative comparisons. Firstly,
the images obtained using the different methods have been compared following Wald’s protocol [73]
as follows: the observed MS image, Y, and the PAN image, x, are downsampled by applying the
operator D to generate low resolution versions of them. Then, pansharpening is applied to those low
resolution images and the obtained estimation of the MS image, ŷ, is quantitatively compared with

https://rscl-grss.org/coderecord.php?id=541
https://github.com/vipgugr
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the observed MS image, Y. Secondly, the different methods have been compared using Quality with
No Reference (QNR) measures [13,74]. As previously stated, for the LANDSAT image in Figure 1,
the resolution ratio between MS and PAN images is p/P = 4. Since the SPOT-5 satellite provides two
PAN images, two experiments were carried out on the image in Figure 3, one with a decimation ratio
of 4 and another with a ratio of 16. For the FORMOSAT-2 image the ratio is p/P = 16. However,
for the sake of completeness, two experiments were also carried out, one assuming a decimation ratio
of 4 and another with a ratio of 16.

Both spatial and spectral quality metrics have been used to compare the results obtained using
the different methods. Details for the metrics used is shown below:
Spatial measures:

• Q

– Universal Quality Index (UQI) [75] averaged on all MS bands.
– Range: [-1, 1]
– The higher the the better.

• Q4, Q8

– Instances of the Q2n [76] index taking values. Suitable to measure quality for multiband
images having an arbitrary number of spectral bands. Q4 is used for SPOT-5 and
FORMOSAT-2 images which have four bands and Q8 for the LANDSAT image with six
bands.

– Range: [0, 1]
– The higher the better.

• Spatial Correlation Coefficient (SCC) [77]

– Measures the correlation coefficient between compared images after the application of a
Sobel filter.

– Range: [0, 1]
– The higher the better.

• QNR spatial distortion (DS) [78]

– Measures the spatial distortion between MS bands and PAN image.
– Range: [0, 1]
– The lower the better.

Spectral measures:

• Spectral Angle Mapper (SAM) [79]

– For spectral fidelity. Measures the mean angle between the corresponding pixels of the
compared images in the space defined by considering each spectral band as a coordinate axis

– Range: [0, 180]
– The lower the better.

• Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) [80]

– Measures spectral consistency between compared images.
– Range: [0, ∞[
– The lower ERGAS value the better consistency, specially for values lower than the number

of image bands B.

• QNR spectral distortion (Dλ) [78]

– This measure is derived from the differences between the inter-band Q index values
computed for HR and LR images.

– Range: [0, 1]
– The lower, the better.
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Spatial and spectral measures:

• Jointly Spectral and Spatial Quality Index (QNR) [78]

– QNR is obtained as the product of (1-DS) and (1-Dλ).
– Range: [0, 1]
– The higher the better.

Table 3 shows the obtained figures of merit using Wald’s protocol for the LANDSAT image in
Figure 1. As it is clear from the table, `1 outperforms all the other methods both in spectral fidelity
and the incorporation of spatial details. Note the high SCC value (meaning that the details in the
PAN image have been successfully incorporated into the pansharpened image) while also obtaining
the lowest spectral distortion as evidenced by the SAM and ERGAS values. The TV method obtains
the second best results except for the SAM metric, for this metric, the proposed log method has the
second best value. This method also obtains the third best values for ERGAS and SCC measures.
GLP based and PRACS methods also obtain high values for the Q, Q8 indices and low value for SAM.
However, their ERGAS and SCC performance is worse. Table 4 shows the QNR quantitative results
for the LANDSAT image in Figure 1. In this table, the proposed methods achieve competitive results.
Log obtains the best Dλ value and this method together with `1 obtain second and third QNR scores,
respectively. Note that EXP obtained the highest score using QNR since bilinear interpolation of the
observed MS low resolution image is used as the MS high resolution estimation to calculate DS and
Dλ calculations.

Tables 5 and 6 show the quantitative results using Wald’s protocol for the LANDSAT images in
Figure 2a,c, respectively. PRACS outperforms all other methods on the image in Figure 2a (see Table 5)
and the proposed `1 and log obtain the first and second best scores on the image in Figure 2c (see
Table 6). Tables 7 and 8 show the obtained QNR figures of merit for those two images. The proposed
methods produce good DS, Dλ and QNR values for both images, both above 0.9 which supports their
good performance. Again the EXP results are the best in all the measures for Table 8 and provides the
best Dλ, for the image associated to Table 7. The `1 method obtains the best DS for this image and
BDSD the highest QNR.

Figures 5 and 6 show a zoomed in region of the RGB color images formed by bands B4, B3, and B2
of MS ground truth images used to apply Wald’s protocol and also the absolute error images for the
methods in Tables 7 and 8. In those images, the darker the intensity the lower the absolute error.
Figures 5 and 6 are consistent with the quantitative comparison shown in Table 5 and 6, respectively.
The best results for the image in Figure 2a were obtained using PRACS, while for the image in Figure 2c
the best performing method is `1. Note that brighter areas in Figure 5e,f correspond to the borders
of cloudy areas in Figure 2a. We argue that since clouds alter the weights of λ estimated using
Equation (30), the boundaries of clouds and land areas in Figure 2a are not well resolved. This explains
a worse behavior of the proposed methods in the cloudy areas of this image.

Tables 9 and 10 show, respectively, the quantitative results using Wald’s protocol for the
SPOT-5 and the FORMOSAT-2 images in Figure 3 for the decimation ratios p/P = 4 and p/P = 16.
The proposed log obtains the best figures of merit for the SPOT image in Figure 3a with p/P = 4
except for Q and Q4 metrics. The Q values obtained by log and `1 are slightly lower than those
obtained by BDSD. Note that BDSD achieved the third best general figures just below the proposed
log and `1 algorithms. With p/P = 16 the proposed log algorithm provides the best results except
for Q, Q4 and SAM values, where competitive values are obtained. The proposed log achieves a
slightly lower Q value than PRACS and a slightly higher SAM value than Brovey. In general, PRACS
is the second best performing method for this image for p/P = 16. For the FORMOSAT-2 image
in Figure 3c, the proposed `1 and log algorithms obtained the best numerical results for a p/P = 4
magnification. Both methods provide similar results, which are better than all the one provided by
the competing methods. For a ratio p/P = 16, there is not a clear winner. The proposed methods are
competitive in this image although they do not stand out in any of the measures. Tables 11 and 12
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show, respectively, the QNR quantitative results for the SPOT-5 and the FORMOSAT-2 images in
Figure 3 for the decimation ratios p/P = 4 and p/P = 16. In Table 11, EXP achieves the best DS, Dλ

and QNR scores. In this table, the proposed methods obtain good scores. The log method obtains the
second best Dλ and DS values and very high QNR values for both decimation ratios. Results for the
FORMOSAT image, shown in Table 12, are very similar although in this case, BDSD obtains the best
DS and QNR values for p/P = 4 and ATWT-M3 for p/P = 16.

Table 3. Quantitative results on the LANDSAT 7-ETM+ Chesapeake Bay image. Bold values indicate
the best score.

Method Q8 Q SAM ERGAS SCC

EXP 0.8335 0.8383 2.0223 5.1113 0.8718

PCA 0.7830 0.8074 2.7937 5.8086 0.8569

IHS 0.6795 0.6734 2.6640 7.8586 0.8223

Brovey 0.6798 0.6790 2.1605 7.5226 0.8148

BDSD 0.7599 0.7829 2.4662 5.9244 0.8539

GS 0.7447 0.7401 3.3052 8.7258 0.8040

GSA 0.8010 0.8202 2.4033 5.0688 0.8764

PRACS 0.8363 0.8423 2.0998 4.8655 0.8774

HPF 0.8137 0.8243 2.2221 5.1279 0.8834

SFIM 0.8008 0.8184 2.1857 5.0228 0.8905

Indusion 0.8052 0.8167 2.2906 5.5412 0.8495

ATWT 0.8100 0.8208 2.3482 5.3642 0.8809

AWLP 0.8267 0.8315 2.2516 5.3873 0.8734

ATWT-M2 0.7737 0.7802 2.6004 5.8133 0.8317

ATWT-M3 0.7884 0.7925 2.5720 5.8973 0.8367

MTF-GLP 0.8157 0.8258 2.2418 5.1307 0.8838

MTF-GLP-HPM 0.8037 0.8206 2.1878 5.0236 0.8918

MTF-GLP-CBD 0.8200 0.8292 2.2499 5.1015 0.8809

TV 0.8492 0.8606 2.1362 4.2505 0.9163

`1 0.8595 0.8694 1.8518 4.0954 0.9220

log 0.7951 0.7856 1.8839 4.4819 0.9007

Table 4. QNR Quantitative results on the LANDSAT 7-ETM+ Chesapeake Bay image. Bold values
indicate the best score.

Dλ DS QNR

EXP 0.0096 0.0166 0.9740

PCA 0.0555 0.1459 0.8066

IHS 0.1049 0.2888 0.6366

Brovey 0.0963 0.2290 0.6968

BDSD 0.1055 0.1486 0.7616

GS 0.0716 0.1992 0.7435

GSA 0.0605 0.1167 0.8298

PRACS 0.0154 0.0823 0.9035

HPF 0.0857 0.1308 0.7947

SFIM 0.0834 0.1146 0.8116
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Table 4. Cont.

Dλ DS QNR

Indusion 0.0595 0.0525 0.8911

ATWT 0.1044 0.1500 0.7612

AWLP 0.1045 0.1517 0.7596

ATWT-M2 0.1530 0.2327 0.6499

ATWT-M3 0.1227 0.1975 0.7041

MTF-GLP 0.0917 0.1378 0.7831

MTF-GLP-HPM 0.0890 0.1215 0.8004

MTF-GLP-CBD 0.0585 0.1081 0.8397

TV 0.0425 0.0919 0.8695

l1 0.0338 0.0527 0.9153

log 0.0090 0.0364 0.9549

Table 5. Quantitative results using Wald’s protocol on the LANDSAT 7-ETM+ Netherland image in
Figure 2a. Bold values indicate the best score.

Q8 Q SAM ERGAS SCC

EXP 0.4727 0.8849 3.0445 7.7235 0.8686

PCA 0.3759 0.7617 3.8165 12.6420 0.8205

IHS 0.3322 0.7479 1.7633 10.7598 0.8570

Brovey 0.2892 0.7675 0.0000 10.7809 0.8492

BDSD 0.7205 0.9520 1.7296 4.6748 0.9777

GS 0.3860 0.7833 3.3486 11.7850 0.8323

GSA 0.5543 0.8474 2.5086 10.2990 0.8707

PRACS 0.8230 0.9720 0.9558 2.9097 0.9878

HPF 0.6420 0.9045 2.0699 7.4387 0.9458

SFIM 0.5950 0.9043 1.8898 8.1778 0.9379

Indusion 0.4108 0.8406 3.6963 9.6521 0.8269

ATWT 0.5582 0.8741 2.6859 9.6507 0.9267

AWLP 0.4715 0.8741 2.2059 10.1057 0.9195

ATWT-M2 0.3943 0.8436 3.7879 8.7289 0.8606

ATWT-M3 0.4861 0.8685 3.5274 7.7506 0.8829

MTF-GLP 0.5975 0.8946 2.2544 8.1279 0.9351

MTF-GLP-HPM 0.5659 0.8926 2.0133 9.0221 0.9272

MTF-GLP-CBD 0.6095 0.9001 2.1726 7.8290 0.9392

TV 0.4798 0.8906 3.4873 7.1207 0.8977

l1 0.4815 0.9044 3.3783 6.9422 0.9022

log 0.4931 0.8920 2.9187 6.9321 0.8952
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Table 6. Quantitative results using Wald’s protocol on the LANDSAT 7-ETM+ Netherland image in
Figure 2c. Bold values indicate the best score.

Q8 Q SAM ERGAS SCC

EXP 0.7874 0.7867 3.3362 5.9279 0.8521

PCA 0.6167 0.4854 5.7078 12.8127 0.5788

IHS 0.5343 0.3778 4.7417 12.9526 0.5918

Brovey 0.5465 0.4063 3.4605 13.0876 0.5960

BDSD 0.7575 0.7733 3.9348 6.8610 0.7856

GS 0.5899 0.4369 6.1158 13.9275 0.5522

GSA 0.7323 0.7444 4.0920 7.2078 0.7535

PRACS 0.7822 0.7829 3.4787 6.3244 0.8037

HPF 0.7167 0.7241 3.8135 7.3266 0.7603

SFIM 0.6908 0.7181 4.6693 9.0262 0.7261

Indusion 0.7230 0.7346 3.8229 7.2177 0.7631

ATWT 0.6948 0.6971 4.0402 8.0306 0.7240

AWLP 0.7110 0.7066 3.8124 8.1733 0.7165

ATWT-M2 0.6332 0.6288 4.5223 8.5542 0.6135

ATWT-M3 0.6993 0.6967 4.3028 7.4420 0.7201

MTF-GLP 0.7116 0.7172 3.8632 7.5134 0.7457

MTF-GLP-HPM 0.6875 0.7133 4.6780 9.1110 0.7161

MTF-GLP-CBD 0.7519 0.7595 3.7522 6.8698 0.7740

TV 0.7843 0.8065 3.8402 5.7351 0.8519

l1 0.8118 0.8196 3.1337 5.1831 0.8853

log 0.7750 0.7682 3.0810 5.3115 0.8818

Table 7. QNR quantitative results on the LANDSAT 7-ETM+ Netherland image in Figure 2a. Bold
values indicate the best score.

Dλ DS QNR

EXP 0.0104 0.0593 0.9309

PCA 0.2463 0.3998 0.4523

IHS 0.2632 0.4035 0.4394

Brovey 0.2182 0.3873 0.4790

BDSD 0.0159 0.0505 0.9344

GS 0.2335 0.4067 0.4548

GSA 0.2139 0.3240 0.5314

PRACS 0.0665 0.2106 0.7369

HPF 0.1711 0.2638 0.6102

SFIM 0.1610 0.2513 0.6282

Indusion 0.1354 0.1612 0.7252

ATWT 0.1968 0.2961 0.5654

AWLP 0.1977 0.2954 0.5653

ATWT-M2 0.1727 0.3127 0.5686

ATWT-M3 0.1187 0.2143 0.6924

MTF-GLP 0.1796 0.2791 0.5915

MTF-GLP-HPM 0.1688 0.2661 0.6100

MTF-GLP-CBD 0.1741 0.2778 0.5965

TV 0.0912 0.1127 0.8064

l1 0.0342 0.0386 0.9286

log 0.0157 0.0627 0.9225
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Table 8. QNR quantitative results on the LANDSAT 7-ETM+ Netherland image in Figure 2c. Bold
values indicate the best score.

Dλ DS QNR

EXP 0.0067 0.0157 0.9778

PCA 0.1893 0.5019 0.4038

IHS 0.2040 0.5973 0.3205

Brovey 0.1979 0.5227 0.3829

BDSD 0.0134 0.0107 0.9761

GS 0.1999 0.5237 0.3811

GSA 0.0986 0.2337 0.6907

PRACS 0.0255 0.1176 0.8599

HPF 0.1594 0.2772 0.6075

SFIM 0.1124 0.2272 0.6859

Indusion 0.1352 0.2054 0.6871

ATWT 0.1822 0.3234 0.5534

AWLP 0.1765 0.3101 0.5682

ATWT-M2 0.1903 0.3467 0.5290

ATWT-M3 0.0917 0.1581 0.7647

MTF-GLP 0.1656 0.2933 0.5897

MTF-GLP-HPM 0.1164 0.2424 0.6694

MTF-GLP-CBD 0.0854 0.1953 0.7359

TV 0.0381 0.1186 0.8478

l1 0.0228 0.0704 0.9084

log 0.0073 0.0199 0.9730

Table 9. Quantitative results using Wald’s protocol on the SPOT-5 Roma image. Bold values indicate
the best score.

p/P 4 16

Method Q4 Q SAM ERGAS SCC Q4 Q SAM ERGAS SCC

EXP 0.8766 0.8859 1.7048 3.7857 0.8640 0.7325 0.7407 2.5071 2.8441 0.6049

PCA 0.4067 0.5360 5.1646 12.3346 0.2788 0.3927 0.5091 5.7208 6.2911 0.2443

IHS 0.4072 0.5238 3.9951 12.2342 0.2772 0.3973 0.5051 4.4508 6.1770 0.2520

Brovey 0.4124 0.5337 1.8413 12.1960 0.2594 0.4019 0.5124 2.4000 6.1718 0.2482

BDSD 0.8559 0.8825 2.0565 4.2776 0.8235 0.5947 0.6231 3.0328 4.3050 0.2804

GS 0.4102 0.5364 5.0523 12.1272 0.2634 0.3985 0.5124 5.5849 6.1471 0.2405

GSA 0.4897 0.5384 2.9893 11.0363 0.1932 0.4997 0.5354 3.1189 5.3703 0.2164

PRACS 0.8220 0.8380 2.0536 4.8936 0.7298 0.7291 0.7458 2.5190 2.9647 0.5295

HPF 0.7488 0.7695 2.0632 6.3388 0.6250 0.5888 0.6124 2.8370 4.5969 0.2988

SFIM 0.7744 0.7860 1.9658 6.0694 0.6447 0.6052 0.6232 2.6792 4.4425 0.3079

Indusion 0.7473 0.7894 2.1609 5.9717 0.6761 0.5301 0.5935 3.5689 4.9656 0.3408

ATWT 0.6928 0.7171 2.2358 7.6433 0.5183 0.5849 0.6092 2.8932 4.7245 0.3099

AWLP 0.7066 0.7260 2.1798 7.6246 0.5075 0.5947 0.6173 2.8504 4.6963 0.3052

ATWT-M2 0.7229 0.7343 2.3084 6.3145 0.4678 0.6723 0.6822 2.7291 3.3277 0.3965

ATWT-M3 0.7837 0.7930 2.2394 5.1935 0.6714 0.6924 0.7019 2.7026 3.1094 0.4801

MTF-GLP 0.7289 0.7507 2.1201 6.7975 0.5766 0.5775 0.6023 2.9275 4.8355 0.3022

MTF-GLP-HPM 0.7553 0.7675 2.0005 6.4923 0.5972 0.5928 0.6111 2.7388 4.7066 0.3073

MTF-GLP-CBD 0.7718 0.7870 2.0188 6.0490 0.6215 0.6021 0.6217 2.7767 4.5632 0.3118

TV 0.7472 0.7893 3.1882 6.1393 0.6162 0.6480 0.6872 3.5109 3.9763 0.3265

`1 0.8617 0.8783 2.0688 4.1557 0.8196 0.6409 0.7017 3.7793 3.7117 0.3792

log 0.8636 0.8762 1.6053 3.3673 0.8923 0.7323 0.7395 2.4228 2.7072 0.6262
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Table 10. Quantitative results using Wald’s protocol on the FORMOSAT-2 Salon-de-Provence image.
Bold values indicate the best score.

p/P 4 16

Method Q4 Q SAM ERGAS SCC Q4 Q SAM ERGAS SCC

EXP 0.8610 0.8617 1.8158 3.7257 0.8460 0.6918 0.6925 2.5057 2.6934 0.5906

PCA 0.7858 0.8089 2.2098 5.0711 0.6595 0.7415 0.7668 2.6373 2.7485 0.5870

IHS 0.7912 0.8159 1.9637 4.6293 0.6695 0.7445 0.7720 2.4527 2.5803 0.5894

Brovey 0.7861 0.8146 1.9106 4.5332 0.6644 0.7385 0.7687 2.4345 2.5597 0.5793

BDSD 0.8443 0.8545 2.0292 4.2608 0.7232 0.7701 0.7823 2.5460 2.7217 0.5821

GS 0.7979 0.8195 2.1375 4.9193 0.6619 0.7506 0.7753 2.5761 2.6860 0.5888

GSA 0.7859 0.8167 2.1855 5.2508 0.6508 0.7607 0.7772 2.5510 2.7698 0.5796

PRACS 0.8495 0.8592 1.9581 4.0842 0.7373 0.7947 0.8016 2.4240 2.3683 0.6230

HPF 0.8469 0.8523 1.9799 4.2210 0.7782 0.7813 0.7885 2.4609 2.5388 0.5900

SFIM 0.8470 0.8523 1.9821 4.2718 0.7755 0.7817 0.7888 2.4600 2.5658 0.5874

Indusion 0.8304 0.8371 2.0075 4.4361 0.7407 0.7519 0.7698 2.4986 2.6941 0.5758

ATWT 0.8391 0.8449 2.0374 4.5675 0.7663 0.7901 0.7965 2.4679 2.5399 0.6161

AWLP 0.8408 0.8473 1.8896 4.3549 0.7671 0.7909 0.7979 2.3689 2.4540 0.6150

ATWT-M2 0.8277 0.8326 2.2307 4.2164 0.6975 0.7672 0.7704 2.5499 2.3709 0.6325

ATWT-M3 0.8325 0.8356 2.2137 4.0586 0.7341 0.7639 0.7660 2.5659 2.3878 0.6384

MTF-GLP 0.8477 0.8533 1.9883 4.2705 0.7704 0.7901 0.7968 2.4714 2.5563 0.6176

MTF-GLP-HPM 0.8476 0.8532 1.9889 4.3313 0.7676 0.7904 0.7971 2.4666 2.5937 0.6158

MTF-GLP-CBD 0.8493 0.8548 2.0076 4.2575 0.7730 0.7846 0.7916 2.5270 2.6394 0.6123

TV 0.8696 0.8790 2.1437 3.7602 0.7876 0.7807 0.7878 2.7906 2.4374 0.5956

`1 0.8946 0.8974 1.9200 3.3526 0.8457 0.7691 0.7625 3.0726 2.6041 0.5503

log 0.8706 0.8683 1.7597 3.3686 0.8751 0.6889 0.6848 2.4975 2.6009 0.6050

Table 11. QNR Quantitative results on the SPOT-5 Roma image. Bold values indicate the best score.

p/P 4 16

Dλ DS QNR Dλ DS QNR

EXP 0.0041 0.0150 0.9809 0.0001 0.0312 0.9687

PCA 0.2047 0.4094 0.4697 0.3094 0.5035 0.3429

IHS 0.2389 0.4158 0.4447 0.3574 0.5143 0.3121

Brovey 0.1804 0.3799 0.5082 0.2890 0.4754 0.3730

BDSD 0.0108 0.0922 0.8980 0.0388 0.0344 0.9281

GS 0.1964 0.4100 0.4741 0.3045 0.5044 0.3447

GSA 0.2194 0.3421 0.5135 0.3267 0.4287 0.3846

PRACS 0.0325 0.1555 0.8171 0.0656 0.2162 0.7324

HPF 0.0851 0.1405 0.7864 0.2149 0.2556 0.5844

SFIM 0.0661 0.1256 0.8167 0.1949 0.2416 0.6107

Indusion 0.0580 0.0370 0.9072 0.2458 0.1587 0.6345

ATWT 0.1310 0.2119 0.6849 0.2398 0.3037 0.5293

AWLP 0.1030 0.1950 0.7221 0.2015 0.2814 0.5738

ATWT-M2 0.0728 0.2002 0.7416 0.0996 0.1691 0.7482

ATWT-M3 0.0162 0.0349 0.9494 0.0493 0.0328 0.9195

MTF-GLP 0.1040 0.1586 0.7539 0.2511 0.3000 0.5242

MTF-GLP-HPM 0.0858 0.1441 0.7825 0.2314 0.2868 0.5481

MTF-GLP-CBD 0.0657 0.1272 0.8154 0.1922 0.2681 0.5912

TV 0.3399 0.1830 0.5394 0.1866 0.1510 0.6906

l1 0.0277 0.0378 0.9356 0.1927 0.1500 0.6862

log 0.0056 0.0272 0.9674 0.0422 0.0380 0.9214
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Table 12. QNR quantitative results on the FORMOSAT-2 Salon-de-Provence image. Bold values
indicate the best score.

p/P 4 16

Dλ DS QNR Dλ DS QNR

EXP 0.0087 0.0837 0.9083 0.0086 0.0931 0.8990

PCA 0.1108 0.2190 0.6945 0.1503 0.3083 0.5877

IHS 0.1083 0.2127 0.7020 0.1508 0.3027 0.5921

Brovey 0.0859 0.1964 0.7345 0.1215 0.2815 0.6312

BDSD 0.0179 0.0150 0.9673 0.0264 0.1775 0.8008

GS 0.0970 0.2084 0.7149 0.1366 0.2971 0.6069

GSA 0.1254 0.2095 0.6914 0.1618 0.2963 0.5899

PRACS 0.0621 0.1656 0.7826 0.0878 0.2413 0.6921

HPF 0.0896 0.1130 0.8075 0.1147 0.1559 0.7473

SFIM 0.0877 0.1121 0.8101 0.1128 0.1556 0.7492

Indusion 0.0510 0.0174 0.9325 0.0938 0.0965 0.8187

ATWT 0.1227 0.1529 0.7432 0.1355 0.1951 0.6958

AWLP 0.1290 0.1500 0.7404 0.1393 0.1887 0.6983

ATWT-M2 0.1184 0.1550 0.7449 0.0967 0.1238 0.7915

ATWT-M3 0.0871 0.0951 0.8261 0.0586 0.0388 0.9049

MTF-GLP 0.1004 0.1277 0.7847 0.1437 0.1996 0.6854

MTF-GLP-HPM 0.0980 0.1269 0.7875 0.1410 0.1989 0.6881

MTF-GLP-CBD 0.0910 0.1222 0.7979 0.1317 0.1919 0.7017

TV 0.1114 0.0787 0.8186 0.0951 0.1811 0.7410

l1 0.0425 0.0514 0.9083 0.0594 0.0847 0.8609

log 0.0094 0.0917 0.8998 0.0174 0.1011 0.8832

(a) (b) (c)

(d) (e) (f)

Figure 5. (a) Ground truth 128× 128 image from Figure 2a. The normalized maximum absolute error
minus the absolute error images images for the following methods, (b) Partial Replacement Adaptive
Component Substitution (PRACS), (c) modulation transfer functions (MTF)-generalized Laplacian
pyramid (GLP)-context based decision (CBD), (d) Total Variation (TV), (e) `1 and (f) log.
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(a) (b) (c)

(d) (e) (f)

Figure 6. (a) Ground truth 256× 256 image from Figure 2c. The normalized maximum absolute error
images for the following methods: (b) PRACS, (c) MTF-GLP-CBD, (d) TV, (e) `1 and (f) log.

Table 13 shows the required CPU time in seconds on a 2.40GHz Intel R© Xeon R© CPU for the
pansharpening of a MS image with 4 bands to a 1024× 1024 size, for p/P = 4 and p/P = 16, using
the different methods under comparison. Equation (18) has been solved using the Conjugate Gradient
method which required, to achieve convergence, less than 30 iterations for the `1 prior and at least
1000 iterations for the log prior. This explains the differences between their required CPU time. Note
that the proposed methods automatically estimate the model parameters which increases the running
time but makes our methods parameter free.

Table 13. Elapsed CPU time in seconds for the different pansharpening methods on a 1024 × 1024
image and with different p/P ratios.

P p PCA IHS Brovey BDSD GS

512×512 1024×1024 0.9 0.04 0.04 0.9 0.4

256×256 1024×1024 0.3 0.03 0.03 0.8 0.3

P p GSA PRACS HPF SFIM Indusion

512×512 1024×1024 1 2.2 0.2 0.5 0.5

256×256 1024×1024 1.6 1.2 0.2 0.18 0.3

P p ATWT AWLP ATWT-M2 ATWT-M3 MTF-GLP

512×512 1024×1024 11 14 10 10 0.9

256×256 1024×1024 3 3 7 7 0.6

P p MTF-HPM MTF-CBD TV `1 log

512×512 1024×1024 0.8 2 1.5 103 808 1.1 104

256×256 1024×1024 0.6 0.6 1.6 103 3 103 2.8 104



Sensors 2020, 20, 5308 22 of 28

6.2. Qualitative Comparison

Figure 7 shows a small region of interest of the observed LANDSAT-7 images in Figure 1 and
the pansharpening results with p/P = 4 obtained by the proposed methods and the competing ones
with the best quantitative performance, that is, PRACS, MTF-GLP-HPM, MTF-GLP-CBD and TV
methods. All color images in this figure are RGB images formed from the B4, B3 and B2 Landsat bands.
Since we are using full resolution images, there is no ground truth to compare with, so a visual analysis
of the resulting images is performed. The improved resolution of all the pansharpening results in
Figure 7c–h with respect to the observed MS image in Figure 7a is evident. PRACS, MTF-GLP-HPM
and MTF-GLP-CBD images in Figure 7c–e have a lower detail level than TV and the proposed `1
method, see Figure 7f,g, respectively. See, for instance, the staircase effects in some diagonal edges not
present in the TV and proposed `1 method results. The PRACS, MTF-GLP-HPM and MTF-GLP-CBD
methods produce similar, but lower, spectral quality than the proposed method, which is consistent
with the numerical results in Table 3 and discussion presented in Section 6.1. The image obtained
using the `1 method, Figure 7g, has colors closer to those of the observed MS image than the TV image,
Figure 7f, which is also somewhat noisier. The log method is very good at removing noise in the
image (see the sea area) but it tends to remove other fine details too.

(a) MS observed (b) PAN observed (c) PRACS (d) MTF-GLP-HPM

(e) MTF-GLP-CBD (f) TV (g) `1 (h) log

Figure 7. A region of interest of the LANDSAT 7-ETM+ Chesapeake Bay image in Figure 1a.
Observed images: (a) 128× 64 MS, (b) 256× 128 PAN. 256× 128 pansharpened images by: (c) PRACS,
(d) MTF-GLP-High Pass Modulation (HPM), (e) MTF-GLP-CBD, (f) TV, (g) `1 and (h) log methods.
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Figure 8 shows a region of interest of the observed SPOT-5 images in Figure 3a,b and the
pansharpening results with p/P = 16 obtained using the competing methods with the best
performance on this image, that is, Brovey, PRACS, ATWT-M3, and TV methods, and the proposed
`1 and log methods. All color images in this figure are RGB images formed from the bands B3,
B2 and B1 of the SPOT-5 image. The Brovey method (Figure 8c) produces the highest spectral
distortion, however, it also recovers more spatial details in the image (see the airport runway and
plane). ATWT-M3 (Figure 8e), on the other hand, produces a blurry image. PRACS produces a
sharper image, see Figure 8d, but details in the PAN image do not seem to be well-integrated. The
TV method (Figure 8f) and the proposed `1 and log methods (Figure 8g,h obtain the most consistent
results, with high spatial details and low spectral distortion. However, TV introduces staircase artifacts
on diagonal lines that are not noticeable in the `1 and log images. As with the LANDSAT-7 image,
the log image in Figure 8h lacks some small details, removed by the method along with noise.

(a) MS observed (b) PAN observed (c) Brovey (d) PRACS

(e) ATWT-M3 (f) TV (g) `1 (h) log

Figure 8. A region of interest of the SPOT-5 Roma image in Figure 3a. Observed images: (a) 128× 128
MS, (b) 512× 512 PAN. 512× 512 pansharpened images by: (c) Brovey, (d) PRACS, (e) Additive A
Trous Wavelet Transform (ATWT)-M3, (f) TV, (g) `1 and (h) log methods.

7. Conclusions

A variational Bayesian methodology for the pansharpening problem has been proposed. In this
methodology, we model the relation between the MS high resolution image and the PAN image as a
linear combination of the MS bands whose weights are estimated from the available data. The observed
MS image is modelled as a downsampled version of the original MS image. The expected characteristics
of the pansharpened image are incorporated in the form of SG sparse image priors. Two penalty
functions corresponding to SG distributions are used, `1 and log. All the unknowns and model
parameters have been automatically estimated within the variational Bayesian modelling and inference,
and an efficient algorithm has been obtained.

The proposed `1 and log methods have been compared to classic and state-of-the-art methods
obtaining very good results both quantitative and qualitatively. In general, they have obtained the
best quantitative results for LANDSAT-7 ETM+, SPOT-5 and FORMOSAT-2 images with a resolution
ratio of 4 and SPOT-5 with a resolution ratio of 16. Competitive results were also obtained for the
FORMOSAT-2 image with a resolution ratio of 16. They stand out in terms of spectral consistency
while improving the spatial resolution of pansharpened images. We argue that the superior spectral
consistency of SG methods arises from the modelling of the PAN image which selectively incorporates
PAN detailed information into the different MS high resolution bands without changing their spectral
properties. Qualitatively, SG methods produce results consistent with the observed PAN and MS
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images and with the numerical results previously described. The log method is better at removing
noise in the images, at the cost of removing some fine details.
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Abbreviations

The following abbreviations are used in this manuscript:
MS multispectral
PAN pancrhomatic
PCA principal components analysis
IHS intensity-hue-saturation
CS component substitution
MRA multi-resolution analysis
VO variational optimization
DL deep learning
CS component substitution
GS Gram-Schmidt
HPF high-pass filtering
WT wavelet transform
GLP generalized Laplacian pyramid
NSCT non-subsampled contourlet transform
AWT “a trous” wavelet transforms
SFIM smoothing filter based intensity modulation
DNN deep neural networks
MSDA modified sparse denoising autoencoder
CSDA coupled sparse denoising autoencoder
PCDRN progressive cascade deep residual network
GAN generative adversarial network
SG super-Gaussian
Brovey Brovey transform
BDSD band-dependent spatial-detail
GSA Gram-Schmidt adaptive
PRACS partial replacement adaptive component substitution
ATWT additive “a trous” wavelet transform
ATLP additive wavelet luminance proportional
MTF modulation transfer functions
HPM high pass modulation
CBD context based decision
TV total variation
UQI universal quality index
SCC spatial correlation coefficient
SAM spectral angle mapper
ERGAS erreur relative globale adimensionnelle de synthese
QNR quality with no reference
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