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A visual model of the Lorentz triangular
moduli space

Daniel de la Fuente, Rafael Ramı́rez-Uclés, Juan Francisco Ruiz

Abstract. We present a schematic construction of the triangular shapes space in the Lorentz
plane, i.e., the moduli space of all Lorentzian triangles up to similarity.

1. INTRODUCTION Lorentzian Geometry has been intensely studied for many ma-
thematicians since its irruption in the past century. It resulted to be very successful in
Physics to model the geometry of relativistic spacetimes and, nowadays, it is a conso-
lidated branch of Mathematics.

In particular, the Lorentz plane L2 (also named Lorentz-Minkowski plane) plays a
crucial role in Special Relativity. It consists in a real affine plane endowed with the
indefinite metric 〈 , 〉 = −dt2 + dx2, expressed in an fixed affine coordinate system
(x, t). A vector v will be called spacelike, timelike or lightlike if its square modulus
|v|2 = 〈v , v〉 is positive, negative or null respectively. We will denote by ‖v‖ to the
non-negative length

√
|〈v v〉|.

Figure 1. Lorentzian circumferences (P ∈ L2 : |OP |2 = ±r2) with positive (green) and negative (blue)
radius. Arrows point in the direction in which points are moved when a boost with positive angle is applied.
Points A′,B′,C′,D′ are the images of points A,B,C,D under a boost of angle φ = 1.

Triangles in the Lorentz plane, as in the Euclidean case, are defined by means of
three non collinear points. According to the causal character of its sides, a triangle is
said to be timelike or hyperbolic (resp. spacelike) if all of its sides are timelike (resp.
spacelike) and lightlike if at least one of its sides has null length. In next sections we
will visualize the complete classification of triangles attending to the causal character
of sides. A detailed analysis of timelike triangles is dealt in [1].
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Our main objective here consists in to visualize the whole space of triangles under
the similarity equivalence relation. Two triangles are said to be similar when have the
same shape, i.e., when there exists an isometry and a homothecia of L2 carrying one
triangle to the other one. Thus, we pretend to built the quotient space of all triangles
in L2 by the isometry group as well as homothetic transformations. The analogous
moduli space for Euclidean triangles is studied, for instance, in [3].

Recall that the isometry group of the Lorentz plane is generated by translations,
symmetries respect to vertical and horizontal lines (x = a, t = b, a, b ∈ R) and
‘boosts’ (the rotations in L2). A boost of hyperbolic angle φ ∈ R, represented in Fig.1,
has the expression

(x, t) 7−→
(

cosh(φ)x+ senh(φ) t, senh(φ)x+ cosh(φ) t
)
.

In contrast to the Euclidean case, given two vectors with the same origin and mo-
dulus, it is not possible in general to transform one into the other through a boost.
However, every timelike vector (resp. spacelike vector) may be carried to axis t (resp.
axis X) by means of a boost.

2. TRIANGULAR SHAPES SPACE AS A SET Let ABC be a triangle in the
Lorentz plane so that the shortest side is AB. If its length is ‖AB‖ = L, we apply
a homothecia centered at A of ratio 1/L. Then, through a translation, we can place
vertex A at the origin (0, 0). Now, one of the following three cases happen.

(a) Side AB is spacelike. In this case, by means of a boost with respect to A, we can
place vertex B at the point (1, 0). In addition, if necessary, vertex C can be located
in the first quadrant by a reflectional symmetry across the axisX . Finally, by means
of a second reflection (if necessary) across the line x = 1/2, we are able to place
the third vertex C in the half plane x ≥ 1/2.

Figure 2. Each triangle with spacelike shortest side is univocally identified with a point of the blue region. Its
boundary represents isosceles triangles, and points P and R are equilateral triangles.

Since the side AB is the shortest one, lengths ‖AC‖ and ‖BC‖ must be bigger
than 1. Therefore each triangle of this case may be identified with a point C(x, t)
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placed in the striped area in Fig.2. We distinguish three regions, denoted by I , II
and III in Fig.2. Region I corresponds with the set of spacelike triangles. In region
II are located triangles with a timelike side and two spacelike sides and, in region
III , triangles with two timelike sides and one spacelike. Point R in the picture
represents the equilateral triangle with two spacelike sides and one timelike. Simi-
larly, P is identified with the equilateral triangle with two timelike sides and one
spacelike. In addition, the boundary of regions I , II and III represents isosceles
triangles with longer uneven side. For instance, boundary of I are the isosceles
spacelike triangles. Points of dotted line dividing II are isosceles triangles with
shorter uneven side.

(b) Side AB is timelike. Then, vertex B, which is denoted by B′ in Fig.3, may be
placed at (0, 1) through a certain boost. If necessary, vertex C can be located in the
second quadrant by a reflection across the axis X . Finally, by means of a second
reflection (if necessary) across the line t = 1/2, we are able to place vertex C in
the half plane t ≥ 1/2.

As before, since AB′ is the shortest side, then ‖AC‖, ‖BC‖ ≥ 1. Each equiva-
lence class of triangles of this type is determined by point of the green area of Fig.3.
There are three regions again, and its interpretation is analogous to the previous
case. Note that boundaries b and d of V and V I (discontinuous green line in the
picture of Fig.3) represent the same triangles of some boundaries of regions II and
III .

Figure 3. Each point of the green area (regions IV ,V ,VI ) univocally determines a class of triangles with
timelike shortest side. Its boundary corresponds with isosceles triangles with longer uneven side. Discontinu-
ous line dividing V contains isosceles triangles with shorter uneven side.

(c) Side AB is lightlike. In this case, we have ‖AB‖ = 0. Hence, between the other
two sides, we choose the shortest one, which will be renamedAB if is spacelike, or
AB′ if is timelike. We put vertexA at the origin. The third vertex must be in one of
the four semi lines drawn in Fig.4, or at the points Q or S. The last ones represent
triangles with two lightlike sides and one timelike or spacelike respectively. Point
T determines the class of isosceles triangles with a lightlike side.
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Figure 4. Lightlike triangles are represented by points in semi lines l,m,n,r and points Q and S.

We will denote the built space by T . As an immediate consequence, this cons-
truction allow us to observe that set of lightlike triangles is much smaller than set of
spacelike ones (for instance, Hausdorff dimension of lightlike triangles is one while
dimension of the spacelike or timelike ones is two). Analogously, equilateral triangles
have null measure while the isosceles ones have dimension one. We may also observe
that there are no equilateral spacelike or timelike triangles, and it is not possible a
triangle with three lightlike sides.

3. TOPOLOGY OF TRIANGULAR SHAPES SPACE In the previous section we
have described the moduli space of Lorentzian triangles (up to similarity) as a set: each
point of this space univocally corresponds with a triangular shape in the Lorentz plane.
However, the built space cannot inherit directly the topology of R2. For instance, some
points of region III are identified with the boundary of V . Moreover, since an arbitrary
triangle may be continuously deformed to any other one, the resulting quotient space
must be connected by arcs. Now we will provide a suitable topology to our previously
constructed space which allow us correctly visualize any continuous deformation of a
triangle.

By one hand, observe that the equivalence class determined by a triangleABC with
vertex C located near S along dotted red line in Fig.4, is represented by a far point of
semi line r or m. Then, S links m and r at “infinity”. Similarly, l and n are linked by
means of Q, and m and l through point T . Therefore, the space of lightlike triangles
actually forms an open segment with extremes B and B′.

In order to analyze this situation, it is convenient to make the following conformal
transformation from the Lorentz half plane to Γ, usually known as Penrose-Carter map
[2] (see Fig.5a),

(x, t) ∈ L2 7−→
(

arctan(t+ x)− arctan(t− x), arctan(t+ x) + arctan(t− x)
)
,

where Γ = {(X,T ) ∈ R2 : −π < T +X < π, −π < T −X < π, T > 0}.
In Γ we may visualize the ‘infinity points’ of L2 ∩ {t > 0} –usually named future

lightlike infinity– as points of its boundary (red lines in Fig.5a). We can suitably place
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Figure 5. (a) The image of set T through the Penrose-Carter map. (b) Segments corresponding to classes of
lightlike triangles must be removed to the boundary of Γ. Boundary segments with same colour are identified.
Orange dotted lines represent classes of isosceles triangles with shorter uneven side.

points Q and S on it, but the resulting space is still unsatisfactory if we endow it
with the topology inherited via the Penrose-Carter map. For instance, the only way
to deform a spacelike triangle into another in region II would be passing through a
triangle with two lightlike sides (point S), but that is not true.

Figure 6. Triangular moduli space is topologically a band in R2. On it we may locate the different kinds of
Lorentzian triangles.

Consider a continuous curve in picture of Fig.2 from a triangle ABC in region I
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to another one in region II . Observe that the induced curve in the quotient space goes
towards the ‘infinity’ of region I , passes through a class of r and finally continues
across region II . Consequently, segment r must be the ‘infinity of I’, as it is shown
in Fig.5b. A similar detailed analysis of the ‘infinity’ of each region lead us to the
complete space exposed in Fig.5b. The topology of this new space is the inherited from
Γ taking into account the identifications described by colours and arrows in Fig.5b. A
simple homeomorphism leads us to the final triangular moduli space of Fig.6.

As summary, we conclude this article locating each type of Lorentzian triangles on
picture of Fig.6.

• Regions: I , spacelike triangles; II , two spacelike sides, one timelike with shortest
spacelike side; III , two timelike sides and one shorter spacelike side; IV , timelike
triangles; V , two timelike sides, one spacelike side with timelike shortest side; VI ,
two spacelike sides and a shortest timelike side.

• Lines: isosceles triangles with longest uneven side (black); isosceles with shortest
uneven side (dotted orange line); r, lightlike triangles with two spacelike sides; l
andm, lightlike triangles with one spacelike and one timelike, in l the spacelike side
is shorter than the timelike one, and in m the timelike side is shorter; n, lightlike
triangles with two timelike sides.

• Points: P , equilateral triangle with two timelike sides and one spacelike; R, equi-
lateral triangle with two spacelike sides and one timelike; S, two lightlike sides
and one spacelike side; Q, two lightlike sides and one timelike side; T isosceles
lightlike triangle (with a timelike side and a spacelike one with the same length).
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