Big Data Preprocessing as the Bridge between Big Data and Smart Data:

BigDaPSpark and BigDaPFlink Libraries

Diego Garcia-Gil, Alejandro Alcalde-Barros, Julidn Luengo, Salvador Garcia and Francisco Herrera

Departamento de Ciencias de la Computacion e Inteligencia Artificial, Universidad de Granada, Granada, 18071, Spain

Keywords:

Abstract:

Big Data, Apache Spark, Data Preprocessing, Smart Data, Imbalanced, Classification.

With the advent of Big Data, terabytes of data are generated and stored every second. This raw data is far from
being perfect, it contains many imperfections (noise, missing values, etc.) and is not suitable for analysis,
as it will led to wrong conclusions. Data preprocessing is the set of techniques devoted to polish, clean,
fix, and improve that raw data. With this preprocessed data, we would be able to find more patterns in it,
and to better explain the underlaying distribution of the data. This is what is called Smart Data, raw data
that has been preprocessed and is ready for being analyzed, data that contains valuable information that will
led to knowledge. In this work, we present two Big Data libraries for achieving Smart Data from Big Data,
BigDaPSpark and BigDaPFlink. They are built on top of two Big Data frameworks, Apache Spark and Apache
Flink. Both libraries contain a series of algorithms for Big Data preprocessing, ranging from noise cleaning,
to discretization, or data reduction, among many others. Additionally, we ilustrate the usage of the libraries

with two cases of use.

1 INTRODUCTION

In the Big Data era, the lack of human supervision,
and the automation in the data obtaining and storing
process have led to the acceptance that data will be
of low quality due to the presence of imperfections,
redundancies or inconsistencies, among other perni-
cious traits. These imperfections can be produced by
sensors failing, anomalous situations, or exogenous
factors, among others. Low quality in data can make
impossible the later learning process. The set of tech-
niques devoted to tackle those imperfections, and to
improve the quality of the data are known as Big Data
preprocessing (Garcia et al., 2014). There are dif-
ferent families of Big Data preprocessing algorithms,
being the most widely used the data reduction tech-
niques, imperfect data methods, and imbalance data
handling. The term Smart Data (Iafrate, 2014) is used
to refer to the challenging process of transforming
that raw and low quality Big Data, into data that is
suitable for the posterior data mining or knowledge
extraction process. Therefore, achieving Smart Data
stands as the challenge of extracting useful informa-
tion from Big Data.

In the Big Data environment, we can find a set
of frameworks devoted to work with that raw data.
Apache Spark is the most popular framework for

324

Garcia-Gil, D., Alcalde-Barros, A., Luengo, J., Garcia, S. and Herrera, F.

static Big Data processing. On the other hand,
Apache Flink (Garcia-Gil et al., 2017) is focused on
online data streaming processing. Although both of
them include a library for machine learning, their
functionality for data preprocessing is very limited,
as they only include a few classic and basic algo-
rithms. This lack of Big Data preprocessing algo-
rithms, makes the step from Big Data to Smart Data
an even more challenging task.

In this paper, we introduce two Big Data pre-
processing libraries, BigDaPSpark and BigDaPFlink,
with all the latest algorithms for data preprocessing in
Big Data. Most of them are new proposals for Big
Data, while others are distributed and parallel ver-
sions of existing algorithms. These algorithms rep-
resent the state-of-the-art in Big Data preprocessing.
BigDaPSpark is focused on static data preprocessing,
built on top of Apache Spark. On the other hand, Big-
DaPFlink is oriented to online data preprocessing for
Apache Flink.

We have carried out a case of study as a sam-
ple of the use of the libraries. A noise filtering al-
gorithm from BigDaPSpark have been tested using
SUSY dataset (5,000,000 instances & 18 attributes).
For BigDaPFlink, a discretization algorithm is se-
lected with ht_sensor dataset (929,000 instances & 11
attributes).

Big Data Preprocessing as the Bridge between Big Data and Smart Data: BigDaPSpark and BigDaPFlink Libraries.

DOI: 10.5220/0007738503240331

In Proceedings of the 4th International Conference on Internet of Things, Big Data and Security (loTBDS 2019), pages 324-331

ISBN: 978-989-758-369-8

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Big Data Preprocessing as the Bridge between Big Data and Smart Data: BigDaPSpark and BigDaPFlink Libraries

The rest of the paper is organized as follows: Sec-
tion 2 introduces the concepts of data reduction, im-
perfect data and imbalanced learning, and describes
two existing Big Data libraries, MLIlib and FlinkML.
Section 3 depicts our proposal, two Big Data libraries
for Big Data Preprocessing, one for Apache Spark, for
batch data preprocessing, and other in Apache Flink,
for data streaming preprocessing. Section 4 shows
two cases of use of the libraries. Finally, Section 5
concludes the paper.

2 BACKGROUND

In this section, we describe the most popular families
of data preprocessing algorithms: data reduction in
Section 2.1, imperfect data in Section 2.2, and imbal-
ance learning in Section 2.3. Finally, we provide an
insight into the Big Data libraries MLIlib and FlinkML
in Section 2.4.

2.1 Data Reduction

Data Reduction is the set of techniques devoted to re-
duce the size of the original data, retaining as much
information as possible. These techniques not only
aim at obtaining a reduced set of the original data,
but also achieve a lower space requirement version of
the dataset. These reduced version of the datasets are
achieved by removing noisy instances, redundant and
irrelevant data that will led the learner to learn faster
and on a better quality data.

There are three different ways of performing data
reduction. Feature Selection (FS) methods and fea-
ture extraction techniques select the most relevant set
of features, or construct a new one. From the in-
stances point of view, we can differentiate between
Instance Selection (IS) methods (Garcia et al., 2012),
and Prototype Generation (PG) methods (Triguero
et al.,, 2012). The goal of an IS method is to obtain
a subset of the original data S, such that S does not
contain noisy, redundant or irrelevant instances, and
that the accuracy of the original data and the reduced
set is similar. On the other hand, PG methods can
generate artificial data points if necessary for a better
representation of the original data. As stated previ-
ously, the objective of data reduction methods is not
to just obtain a smaller version of the dataset.

The third way of performing data reduction is
through discretization. Discretization is the process of
transforming continuous values into categorical ones.
In other words, it transforms numerical attributes into
discrete ones, with a finite number of values (or inter-
vals). The objective is to reduce the complexity of the

data, and/or to remove outliers, as they will fall into
one of the top or bottom intervals.

2.2 Imperfect Data

Automation in data acquisition and the lack of manual
supervision entails that data can be imperfect. This
can be even more severe as the number of instances
and attributes grow (Fan et al., 2014). Although most
techniques and algorithms presume that the data is ac-
curate, data in the real world can be redundant or in-
consistent. Data can contain imperfections that will
disrupt the learning process if it is not taken into con-
sideration. These alterations can be caused by many
factors, but one of the most common are the presence
of noise and missing values (MVs).

Noise is an external process that changes or al-
ters the values of the attributes or classes of the in-
stances(Wu and Zhu, 2008). It leads to excessively
complex models with deteriorated performance. It
displaces or removes instances located in key areas
within a concrete class or can even disrupt the bound-
aries of the classes resulting in an increased bound-
aries overlap. Alleviating the effects of noise suppose
the identification of noisy instances and their removal
or relabelling.

Another alteration present in the data is the pres-
ence of MVs. MVs deserve a special attention as it
has a critical impact in the learning process, as most
learners suppose that the data is complete. One simple
technique is to discard the MVs, but this can lead to
poor performance due to the elimination of informa-
tion. There are mechanisms in the literature to impute
(fill-in) these M Vs following some statistical proce-
dures.

2.3 Imbalanced Learning

Among different classification scenarios, class imbal-
ance occurs when there is an uneven representation
of instances for the different classes. In the case of
binary classification, if one class is over-represented
against the other, the classifier will tend to focus on
the majority class. In some cases with extreme im-
balance, the minority class can be completely ignored
by the classifiers. For this reason, numerous efforts
have been carried out for correcting this imbalance
(Fernandez et al., 2018).

We can categorize them in three categories: data
level approaches that rebalance the dataset, algorith-
mic level approaches that adapt the learning process
towards the minority classes, and cost-sensitive solu-
tions that adapt the cost with respect to the different
classes.

325

TIoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

2.4 MLIib & FlinkML

Apache Spark and Apache Flink are two of the most
popular Big Data frameworks. The former is focused
on static data processing, while the second is oriented
to online data streaming. Both of them include a
Big Data library for machine learning with basic al-
gorithms for data preprocessing, namely MLIib for
Apache Spark, and FlinkML for Apache Flink.

MLIib is a very powerful machine learning library
built on top of Apache Spark (Meng et al., 2016). It
is prepared for working with huge amounts of data. It
is composed of two separated packages:

o mlilib: the first API of the library. It is built on top
of RDDs. In the future it will be replaced by the
new ml API.

e ml: the latest addition to the library. It is built on
top of DataFrames and DataSets and enables the
use of pipelines.

MLlIib contains many algorithms devoted to classifi-
cation, regression, clustering, etc. But also includes
some algorithms for data preprocessing, like feature
extraction, transformation, dimensionality reduction,
and selection. Although it may seem that it contains
plenty of algorithms for data preprocessing, it con-
tains only basic algorithms, such as normalizers, data
scalers, Principal Components Analysis or X2 for FS,
etc.

FlinkML is a machine learning library focused on
data streaming. It is part of the Apache Flink project.
It contains only three algorithms for data preprocess-
ing, two of them being data scalers.

As we can see, both MLIlib and FlinkML have al-
gorithms for data preprocessing, but they only offer a
limited set of them.

3 BIG DATA PREPROCESSING
LIBRARIES

In this section we explain in detail the two Big Data li-
braries for data preprocessing, BigDaPSpark and Big-
DaPFlink. These libraries contains a series of state-
of-the-art algorithms for two Big Data frameworks,
Apache Spark and Apache Flink. These libraries are
born with the objective of improving the Big Data
ecosystem with new algorithms for Big Data prepro-
cessing, in order to achieve Smart Data.

3.1 BigDaPSpark

This library is composed of a series of algorithms
for Big Data preprocessing under the Apache Spark

326

framework. It contains algorithms for feature se-
lection, discretization, noise filtering, data reduction,
missing values imputation and imbalanced learning,
among others. The library is publicly available in
https://sci2s.ugr.es/BigDaPSpark.

3.1.1 Feature Selection

The library contains a FS framework, imple-
mented in a distributed fashion. It contains
multiple information-theory based FS algorithms,
like mRMR, InfoGain, JMI and other commonly
used FS filters (Ramirez-Gallego et al., 2018b).
It is also available as an Apache Spark pack-
age in https://spark-packages.org/package/sramirez/
spark-infotheoretic-feature-selection

3.1.2 Discretization

The library also contains two distributed and par-
allel discretizers for dealing with huge amounts of
data: A Distributed Evolutionary Multivariate Dis-
cretizer (DEMD) (Ramirez-Gallego et al., 2018), and
Minimum Description Length Discretizer (MDLP)
(Ramirez-Gallego et al., 2016). Both of these algo-
rithms are also available as Apache Spark packages.

e DEMD is an evolutionary discretizer. It uses bi-
nary chromosomes with a wrapper fitness func-
tion that optimizes the interval selection prob-
lem by compensating two factors: the simple-
ness of the solutions, and the classification ac-
curacy. In order to make DEMD able to cope
with huge amounts of data, the evaluation phase
has been distributed, splitting the set of chromo-
somes and the dataset into different partitions.
Then a random cross-evaluation process is per-
formed. It is available as an Apache Spark
package in https://spark-packages.org/package/
sramirez/spark-DEMD-discretizer.

e MDLP is a distributed discretizer that implements
Fayyad’s discretizer (Fayyad and Irani, 1993). It
is based on Minimum Description Length Prin-
ciple for treating non discrete datasets from a
distributed perspective. It supports sparse data,
multi-attribute processing and also is capable of
dealing with attributes with a huge number of
boundary points (<100K boundary points per
attribute). It is available as an Apache Spark
package in https://spark-packages.org/package/
sramirez/spark-MDLP-discretization.

3.1.3 Noise Filtering

This section of the library is composed of two sub-
libraries. The first one contains three algorithms

Big Data Preprocessing as the Bridge between Big Data and Smart Data: BigDaPSpark and BigDaPFlink Libraries

for removing noise in Big Data datasets: Homoge-
neous Ensemble (HME-BD), Heterogeneous Ensem-
ble (HTE-BD), and ENN-BD. These algorithms are
based on ensembles of classifiers, they were origi-
nally proposed in (Garcia-Gil et al., 2019). These al-
gorithms are also available as an Apache Spark pack-
age in https://spark-packages.org/package/djgarcia/
NoiseFramework.

e HME-BD is based on a partitioning scheme of the
dataset. It performs a k-fold of the input data,
splitting the data into k partitions. The test par-
tition is an unique 1kth of the fold, and the train is
the rest of the partition. Then it learns a deep Ran-
dom Forest (a Random Forest with deep trees) in
each fold, using the train partition as input. Once
the learning process is finished, each of the k mod-
els learned predict the corresponding test partition
of each fold. That way, the models will predict the
data that they didn’t see while they were learned.
The final step is to remove the noisy instances.
This is done by a comparison of the original test
labels with the predicted by the learners. If the
labels are different, the instance is considered as
noisy and removed. Finally, all the filtered par-
titions are joined together to compose a dataset
clean of noise.

e HTE-BD shares the same workflow as HME-BD,
but instead of using a unique classifier, it uses
three of them. HTE-BD partitions the data per-
forming a k-fold of the input data the same way
as was described in HME-BD. Then it learns a
deep Random Forest, a Logistic Regression and a
INN. With the predictions of the three models, a
voting strategy is used to determine if an instance
is noisy. There are two strategies available, ma-
Jjority and consensus. With the former only two
classifiers have to agree to take a decision. With
the second, all classifiers must agree to consider
an instance as noisy. The filtered partitions are
joined to recompose the dataset without noise.

o ENN-BD is much simpler that the previous two. It
is based on the similarity between instances (Wil-
son, 1972). It performs a kNN (typically k=1 or
k=3) to the input data, and uses that same input
data for prediction. That way, the closest neigh-
bors for each instance are found. In order to
remove the noisy instances, those neighbors are
compared with the instance. If the label of the
neighbors differs from the original, the instance is
removed.

The second part of the noise library consists
of three algorithms for noise filtering based on
kNN (Triguero et al.,): AIKNN_BD, NCNEdit_BD

and RNG_BD. These algorithms are available as an
Apache Spark package in https://spark-packages.org/
package/djgarcia/SmartFiltering

e AIIKNN_BD: this method shares the same work-
ing scheme as ENN-BD with some exceptions.
Instead of learning a 1NN, it learns several times
kNN with different values of k (typically 1, 3
and 5) (Tomek, 1976). Each iteration it removes
the instances that does not agree with its closest
neighbors. As can be expected, it is a much ag-
gressive noise filter than ENN-BD, as it applies
kNN repeatedly.

e NCNEdit_ BD: this algorithm uses the k near-
est centroid neighborhood classification rule with
the leave-one-out error estimate (Sanchez et al.,
2003). It discard instances if it is misclassified
using the kNCN classification rule. In the NCN
classification rule, the neighborhood is not only
defined by the proximity of prototypes to a given
instance, but also for their symmetrical distribu-
tion around it.

e RNG_BD: this noise filter computes the proximity
graph of the data (Sanchez et al., 1997). Then, all
the graph neighbors of each instance give a vote
for its class. If the label differs from the origi-
nal label, the instance is considered as noise and
removed.

3.1.4 Data Reduction

The library contains four algorithms for perform-
ing data reduction based on the kNN algorithm:
FCNN_MR, SSMASFLSDE_MR, RMHC_MR and
MR_DIS. As stated previously, the purpose of these
algorithms is to obtain a reduced set of the origi-
nal data that represents it as perfectly as possible.
Some of these algorithms are implemented using a
distributed framework, named MRPR (Triguero et al.,
2015). This framework enables the use of itera-
tive algorithms in Big Data environments by par-
titioning the input data in several chunks, and ap-
plying the corresponding algorithm independently to
each one of them. After that process is finished,
all the partitions are joined together using different
strategies. All these algorithms are available as an
Apache Spark Package in https://spark-packages.org/
package/djgarcia/SmartReduction.

e FCNN_MR: this algorithm is one of the most
extended and widely used in data reduction
(Angiulli, 2007). It is an order-independent algo-
rithm, based on the NN rule, to find a consistent
subset of the training dataset. It has a quadratic
time complexity in the worst-case. It also have

327

TIoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

showed to scale well on large and multidimen-
sional datasets.

e SSMASFLSDE_MR: this algorithm is a hybrid
and evolutionary algorithm composed of two
methods. The first one is a steady-state memetic
algorithm (SSMA) (Garcia et al., 2008), that se-
lects the most representative instances of the train-
ing set. While the second one improves this subset
by modifying the values of the selected instances
with a scale factor local search in differential evo-
lution (SFLSDE)(Triguero et al., 2011).

¢ RMHC_MR: Random Mutation Hill Climbing
(RMHC) is a powerful yet simple algorithm for
data reduction (Skalak, 1994). It starts by select-
ing a random sample of the data S. Then it ran-
domly replaces an instance of the sample with one
of the original data S§*. Next it uses both samples
to calculate the classification accuracy in the com-
plete dataset, using the kNN algorithm. The sam-
ple with the best accuracy is kept for the next it-
eration, were another instance will be substituted.
After a determined number of iteration, the best
sample is chosen.

e MR.DIS: is a parallel implementation of the
democratic IS algorithm (Arnaiz-Gonzdlez et al.,
2017). This algorithm applies a classic IS algo-
rithm over an equally partitioned training dataset.
The selected instances receive a vote. After a de-
termined number of rounds, instances with most
votes are removed from the data.

3.1.5 Missing Values Imputation

The library also contains two approaches, a global
and a local implementation, for MVs imputation us-
ing the k-Nearest Neighbor Imputation, k-Nearest
Neighbor - Local Imputation and k-Nearest Neigh-
bor Imputation - Global Imputation. The difference
among them is that the local version takes into ac-
count only the instances that are in the same partition,
and the global version considers all the instances in
the datasets. These algorithms are also available as an
Apache Spark package in https://spark-packages.org/
package/JMailloH/Smart_Imputation.

3.1.6 Imbalance Learning

Two popular methods for balancing a dataset are
available in the library: Random UnderSampling
(RUS) and Random OverSampling (ROS) (Batista
et al.,, 2004). The former balances the dataset ran-
domly removing instances from the majority class un-
til the number of instances for both classes are iden-
tical. This approach works best when there is a high

328

redundancy in the dataset, and achieves a lighter rep-
resentation of the data storage-wide.

On the other hand, ROS reaches a balance in the
data by replicating randomly instances from the mi-
nority class from the original data, until the number
of instances from both classes is the same (or until a
replication factor is reached). Depending on the pos-
terior learning algorithm, the replication of instances
may lead to overfitting.

Both algorithms are available as an Apache Spark
package in https://spark-packages.org/package/
saradelrio/Imb-sampling-ROS _and_RUS.

3.1.7 Random Discretization and PCA
Classifier

The library also contains a classifier based on prepro-
cessing, named PCARDE (Garcia-Gil et al., 2018).
This classifier is a distributed ensemble method that
performs Random Discretization and Principal Com-
ponents Analysis, both to the input data, and then
joins the two resulting datasets. It is also available as
an Apache Spark package in https://spark-packages.
org/package/djgg/PCARD.

3.2 BigDaPFlink

This library contains six of the most popular and
widely used algorithms for data preprocessing in data
streaming. It is composed of three feature selec-
tion algorithms and three discretization algorithms.
The library is publicly available in https://sci2s.ugr.
es/BigDaPFlink.

3.2.1 Feature Selection

The library contains three of the most popular fea-
ture selection algorithms for data streaming in the lit-
erature: Information Gain, Online Feature Selection
(OFS), and Fast Correlation-Based Filter (FCBF).

e Information Gain is a feature selection algorithm
composed of two steps, an incremental feature
ranking method, and an incremental learning al-
gorithm that can consider a subset of the features
during prediction (Naive Bayes) (Katakis et al.,
2005). First, the conditional entropy with respect
to the class is computed. Then, the information
gain is calculated for each attribute. Finally, once
the algorithm has all the information gains for
each feature, it selects the best N as features.

e OFS is an e-greedy online feature selection
method based on feature weights generated by an
online classifier (in this case a neural network)

Big Data Preprocessing as the Bridge between Big Data and Smart Data: BigDaPSpark and BigDaPFlink Libraries

which makes a trade-off between exploration and
exploitation of features (Wang et al., 2014).

e FCBF is a feature selection algorithm where the
class relevance and the correlation between each
feature pair of features are taken into account (Yu
and Liu, 2003). It is based on information theory,
it uses symmetrical uncertainty to calculate de-
pendencies of features and the class importance.
It starts with the full set of features and, using
a backward selection technique with a sequential
search strategy, it removes all the irrelevant and
redundant features. Finally, it stops when no more
features are left to eliminate.

3.2.2 Discretization

In this section we show the three online discretiza-
tion algorithms for data streaming available in the li-
brary: Incremental Discretization Algorithm (IDA),
Partition Incremental Discretization Algorithm (PiD)
and Local Online Fusion Discretizer (LOFD). Dis-
cretization in data streaming have the challenge of the
concept drift. These three methods tackle it in three
different ways.

e IDA performs an approximate quantile-based dis-
cretization on the entire encountered data stream
to date by keeping a random sample of the data
(Webb, 2014). This sample is then used to calcu-
late the cut points of the dataset. It uses the reser-
voir sampling algorithm to maintain this sample
randomly updated from the entire stream. In IDA
a sample of the data is used because it is not feasi-
ble nor possible to keep the complete data stream
in memory.

e PiD discretizes data streams in an incremental
manner (Gama and Pinto, 2006). The discretiza-
tion process is performed in two steps. The first
step discretizes the data using more intervals than
required, keeping some statistics of it. The sec-
ond and final step is to use that statistics to create
the final discretization. It is constant in time and
space even for infinite streams, as PiD processes
all the streaming examples in a single scan.

e LOFD is a very recent proposal for online data
streaming discretization. It is an online and
self-adaptive discretizer (Ramirez-Gallego et al.,
2018a). LOFD is capable of smoothly adapt its
interval limits, reducing the negative impact of
shifts (concept drift), and also to analyze the inter-
val labeling and interaction problems. The inter-
action between the discretizer and the learner al-
gorithm is addressed by providing two alike solu-
tions. LOFD generates an online and self-adaptive

discretization for streaming classification whose
objective is to reduce the negative impact of fluc-
tuations in evolving intervals.

4 CASES OF STUDY

In this section we show a real case of use of the two
proposed libraries, BigDaPSpark and BigDaPFlink.
We have selected one algorithm of each library:
HME-BD for noise filtering, and PiD for data stream-
ing discretization. We show how to use them with
snippets of code, and the achieved results.

4.1 HME-BD

As stated previously, HME-BD is a noise filtering
algorithm that removes noisy instances in a dataset.
Here we show how to use the algorithm in a real case
of study. For the dataset we have chosen SUSY dataset
(5,000,000 instances & 18 attributes), present in the
UClT repository (Dheeru and Karra Taniskidou, 2017).
To show the performance of the noise filtering pro-
cess, we have added 4 levels of random noise (5%,
10%, 15% and 20%).

First, the data must be loaded in Apache
Spark. The dataset is required to be in the
RDD[LabeledPoint] format (default format for
Spark’s MLIib).

import org.apache.spark.mllib. _

val nTrees = 100
val maxDepth = 10
val nPartitions = 4
val seed = 12345

val hme_model = new HMEBD(
trainingData , //RDD[LabeledPoint]
nTrees, //size of the RFs
nPartitions , //number of partitions
maxDepth, //depth of the RFs
seed) //seed for the RFs

val hme = hme_model. runFilter ()

Once the filtering process is finished, the algo-
rithm returns a reduced RDD without the noisy in-
stances. Now that the data has been filtered, we can
use the several classifiers available in Spark’s MLIib.
Here we show the results using MLIlib’s Decision Tree
with an increased depth to 20.

Table 1 shows the accuracy results using SUSY
dataset. As we can see, HME-BD is able to keep al-
most the same accuracy with the increasing levels of

329

TIoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

Table 1: Decision Tree test accuracy.

Dataset | Noise (%) | Original | HME-BD

SUSY |5 79.94 79.99
10 79.15 79.85
15 78.21 79.81
20 77.09 79.71

noise. Also, from 5% of noise onward, HME-BD im-
proves the Original accuracy.

HME-BD also achieves very low runtimes, for
SUSY dataset, it takes 514 seconds to process it.

4.2 PiD

PiD is a discretizer for data streaming. Here we show
an example of the usage of the algorithm. In this case
of study, we are using the hz_sensor dataset (929,000
instances & 11 attributes), also present in the UCI
repository. The first step it to load the data into Flink’s
DataSet format. Once the data is loaded, the algo-
rithm can be used in the following way.

import com.elbauldelprogramador. _

val pid = PIDiscretizerTransformer ()
.setAlpha(.10)
.setUpdateExamples (50)
.setL1Bins (5)

val scaler = MinMaxScaler ()

val pipeline = scaler
.chainTransformer (pid)

pipeline fit dataSet

val result = pipeline transform dataSet

The results using the ht_sensor dataset with a de-
cision tree as a classifier show that the accuracy im-
proves from a baseline of 70.13% without preprocess-
ing, to a 71.06% using PiD. Regarding computing
times, it takes 118 seconds of computing.

S CONCLUSIONS

In this work, we have introduced two Big Data
preprocessing libraries. They are built on top of
two Big Data frameworks, one for Apache Spark,
BigDaPSpark, and another for Apache Flink, Big-
DaPFlink. They contain several algorithms for per-
forming data reduction, handling imperfect data, or
dealing with imbalanced data. We plan to expand the
list of available algorithms in the future. With these
algorithms, we have enabled the practitioner to effi-
ciently achieve Smart Data from raw Big Data.

As we have seen, we can find a wide spectrum
of techniques for Big Data preprocessing. However,

330

there is an open challenge related to the combination
and arrangement of these methods in order to achieve
the best possible outcome for a data mining process.
In (Garcia et al., 2016), authors present the most pop-
ular and widely used data preprocessing algorithms,
studying the effects of different arrangements in the
data preprocessing chain. This challenge is even more
complex in Big Data scenarios, where there is a time
restriction. Methods that increase the amount of data
may affect posterior preprocessing techniques, mak-
ing them unable to cope with that amount of data.
This complexity may also be influenced by the de-
pendency of intermediate results, or the input that a
method requires and the output it provides.

ACKNOWLEDGMENTS

This work is supported by the Spanish National Re-
search Project TIN2017-89517-P.

REFERENCES

Angiulli, F. (2007). Fast nearest neighbor condensation
for large data sets classification. IEEE Transactions
on Knowledge and Data Engineering, 19(11):1450—
1464.

Arnaiz-Gonzalez, A., Gonzélez-Rogel, A., Diez-Pastor, J.-
F., and Lépez-Nozal, C. (2017). Mr-dis: democratic
instance selection for big data by mapreduce. Progress
in Artificial Intelligence, 6(3):211-219.

Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C.
(2004). A study of the behavior of several methods for
balancing machine learning training data. SIGKDD
Explor. Newsl., 6(1):20-29.

Dheeru, D. and Karra Taniskidou, E. (2017). UCI machine
learning repository.

Fan, J., Han, F.,, and Liu, H. (2014). Challenges of big data
analysis. National science review, 1(2):293-314.
Fayyad, U. M. and Irani, K. B. (1993). Multi-interval dis-
cretization of continuous-valued attributes for classifi-

cation learning. In IJCAI, pages 1022-1029.

Fernandez, A., Garcia, S., Galar, M., Prati, R. C,,
Krawczyk, B., and Herrera, F. (2018). Learning from
Imbalanced Data Sets. Springer Publishing Company.

Gama, J. and Pinto, C. (2006). Discretization from data
streams: applications to histograms and data mining.
In Proceedings of the 2006 ACM symposium on Ap-
plied computing, pages 662—-667. ACM.

Garcia, S., Luengo, J., and Herrera, F. (2016). Tutorial on
practical tips of the most influential data preprocess-
ing algorithms in data mining. Knowledge-Based Sys-
tems, 98:1 — 29.

Garcia, S., Cano, J., and Herrera, F. (2008). A memetic al-
gorithm for evolutionary prototype selection: A scal-

Big Data Preprocessing as the Bridge between Big Data and Smart Data: BigDaPSpark and BigDaPFlink Libraries

ing up approach. Pattern Recognition, 41(8):2693—
2709.

Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012).
Prototype selection for nearest neighbor classification:
Taxonomy and empirical study. IEEE transactions on

pattern analysis and machine intelligence, 34(3):417—
435.

Garcia, S., Luengo, J., and Herrera, F. (2014). Data Pre-
processing in Data Mining. Springer Publishing Com-
pany, Incorporated.

Garcia-Gil, D., Luengo, J., Garcia, S., and Herrera, F.
(2019). Enabling Smart Data: Noise filtering in Big
Data classification. Information Sciences, 479:135 —
152.

Garcia-Gil, D., Ramirez-Gallego, S., Garcia, S., and Her-
rera, F. (2017). A comparison on scalability for batch
big data processing on apache spark and apache flink.
Big Data Analytics, 2(1):1.

Garcia-Gil, D., Ramirez-Gallego, S., Garcia, S., and
Herrera, F. (2018). Principal Components Analy-
sis Random Discretization Ensemble for Big Data.
Knowledge-Based Systems, 150:166—174.

lafrate, F. (2014). A Journey from Big Data to Smart Data,
pages 25-33. Springer International Publishing.

Katakis, 1., Tsoumakas, G., and Vlahavas, 1. (2005). On the
utility of incremental feature selection for the classifi-
cation of textual data streams. In Panhellenic Confer-
ence on Informatics, pages 338-348. Springer.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman,
S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen,
S., et al. (2016). Mllib: Machine learning in apache
spark. The Journal of Machine Learning Research,
17(1):1235-1241.

Ramirez-Gallego, S., Garcia, S., and Herrera, F. (2018a).
Online entropy-based discretization for data stream-
ing classification. Future Generation Computer Sys-
tems, 86:59-70.

Ramirez-Gallego, S., Garcia, S., Mourifio-Talin, H.,
Martinez-Rego, D., Bol6n-Canedo, V., Alonso-
Betanzos, A., Benitez, J. M., and Herrera, F. (2016).
Data discretization: taxonomy and big data challenge.
Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 6(1):5-21.

Ramirez-Gallego, S., Mourifio-Talin, H., Martinez-Rego,
D., Bol6n-Canedo, V., Benitez, J. M., Alonso-
Betanzos, A., and Herrera, F. (2018b). An information
theory-based feature selection framework for big data
under apache spark. /EEE Transactions on Systems,
Man, and Cybernetics: Systems, 48(9):1441-1453.

Ramirez-Gallego, S., Garcia, S., Benitez, J., and Herrera,
F. (2018). A distributed evolutionary multivariate
discretizer for big data processing on apache spark.
Swarm and Evolutionary Computation, 38:240 — 250.

Sanchez, J., Barandela, R., Marqués, A., Alejo, R., and
Badenas, J. (2003). Analysis of new techniques to ob-
tain quality training sets. Pattern Recognition Letters,
24(7):1015 - 1022.

Sanchez, J., Pla, F., and Ferri, F. (1997). Prototype selec-
tion for the nearest neighbour rule through proximity
graphs. Pattern Recognition Letters, 18(6):507 — 513.

Skalak, D. B. (1994). Prototype and feature selection by
sampling and random mutation hill climbing algo-
rithms. In Machine Learning Proceedings 1994, pages
293-301. Elsevier.

Tomek, I. (1976). An experiment with the edited nearest-
neighbor rule. IEEE Transactions on systems, Man,
and Cybernetics, (6):448-452.

Triguero, 1., Derrac, J., Garcia, S., and Herrera, F. (2012). A
taxonomy and experimental study on prototype gener-
ation for nearest neighbor classification. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(1):86-100.

Triguero, 1., Garcia, S., and Herrera, F. (2011). Differential
evolution for optimizing the positioning of prototypes
in nearest neighbor classification. Pattern Recogni-
tion, 44(4):901-916.

Triguero, 1., Garcia-Gil, D., Maillo, J., Luengo, J., Garcfa,
S., and Herrera, F. Transforming big data into smart
data: An insight on the use of the k-nearest neigh-
bors algorithm to obtain quality data. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Dis-
covery, 0(0):e1289.

Triguero, I., Peralta, D., Bacardit, J., Garcia, S., and Her-
rera, F. (2015). Mrpr: A mapreduce solution for pro-
totype reduction in big data classification. neurocom-
puting, 150:331-345.

Wang, J., Zhao, P, Hoi, S. C., and Jin, R. (2014). On-
line feature selection and its applications. [EEE
Transactions on Knowledge and Data Engineering,
26(3):698-710.

Webb, G. I. (2014). Contrary to popular belief incremen-
tal discretization can be sound, computationally ef-
ficient and extremely useful for streaming data. In
2014 IEEE International Conference on Data Mining,
pages 1031-1036.

Wilson, D. L. (1972). Asymptotic properties of nearest
neighbor rules using edited data. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-2(3):408—
421.

Wu, X. and Zhu, X. (2008). Mining with noise knowledge:
error-aware data mining. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part A: Systems and Hu-
mans, 38(4):917-932.

Yu, L. and Liu, H. (2003). Feature selection for high-
dimensional data: A fast correlation-based filter solu-
tion. In Proceedings of the 20th international confer-
ence on machine learning (ICML-03), pages 856—863.

331

