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Abstract: The lack of robust studies carried out on urban roads in developing countries makes it
difficult to enhance traffic safety, ensuring sustainable roads and cities. This study analyzes the
contribution of a number of explanatory variables behind crashes involving injuries on arterial roads in
Irbid (Jordan). Five binary logistic regression models were calibrated for a crash dataset from 2014–2018:
one for the full database, and the others for the four main crash causes identified by Jordanian Traffic
Police reports. The models show that whatever the crash cause, the three most significant factors linked
to an injury or fatality lie in urban road sections that are in large-scale neighborhood areas, have fewer
than six accesses per kilometer, and have a low traffic volume (under 500 veh/h/ln). Some of these
results agree with previous studies in other countries. Jordan’s governmental agencies concerned
with urban road safety might use these results to develop appropriate plans and implement priority
actions for each crash cause, in addition to undertaking further research for comparative purposes.

Keywords: crash severity; collision crashes; arterial roads; urban context; logistic regression; crash cause;
injury; sustainable roads

1. Introduction

Traffic crashes stand as the foremost obstacle to sustainable roadways. Indeed, traffic crashes are
a growing worldwide problem that lead to a tremendous loss of human resources, with economic
consequences as well. There were 1.35 million road deaths in 2016, and about 75% of all crash injuries
occur in urban areas [1]. As urbanization has accelerated and urban traffic is more complicated,
the problem of traffic crashes in urban contexts increases and it is more acute in developing countries,
where around 0.5 million deaths and up to 15 million injuries are caused by urban road crashes [2].
As a case study of developing countries, Jordan traffic crashes with serious injuries and fatalities
amounted to terribly tragic numbers in 2012, for which reason the Public Police Department and the
ministries of Public Work and Municipalities developed a five-year safety plan (2013–2017) to decrease
the figures by 20% by the end of 2017. In reality, the reduction was even greater: a 27% reduction in
injuries, and a 35% reduction in fatalities. However, Jordan urban contexts specifically still suffer from
a lack of safety plans to control the traffic crash problem. As successful plans for safety, and hence
sustainability, depend on a profound understanding of crash causes and contexts, extensive data
collection is also necessary [3]. In this respect, urban road safety studies in Jordan became more viable
in 2014, when police started to report crashes directly in situ using GPS systems.

In light of this improvement, many factors connected to crash location (i.e., geometric design and
urban context factors) could be addressed in urban crash studies in a developing country, such as
Jordan. The main contribution of this study to the literature is the possibility of analyzing the influence
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of several crash location factors on the severity of traffic crashes in a developing country in an urban
context. This study presents, for the first time, a clear understanding of Jordanian urban crashes
and to what extent this context affects traffic crash severity. In addition, for more insight, the study
hypothesizes that the heterogeneity due to crash cause could be studied and will show a variable
effect, since it also reflects the driving behavior effects on Jordanian urban roads. With this intention,
the analysis is replicated for each cause alone for comparison purposes.

Simply, the present study aims to identify the main variables influencing the occurrence of traffic
injuries or fatalities on urban arterial roads in Jordan. Furthermore, differences are identified according
to the crash cause within several categories reported by the police. The findings contribute to Jordanian
urban traffic safety studies, which are very limited in number to date (e.g., Mujalli et al. [4,5]). The results
are compared with those of similar studies in other countries, whether developed (Das et al. [6];
Abdel-Aty and Abdelwahab [7]; Ma et al. [8]; Wang et al. [9]; Haleem and Abdel-Aty [10]; Russo et al. [11];
Garrido et al. [12]; Zhuanglin et al. [13]) or developing (Al Ghamidi [14]; Altwaijri et al. [15]; Hassan
and Al-Faleh [16]; Hosseinpour et al. [17]).

The paper is organized as follows: after this brief introduction, the literature review section
presents existing traffic severity studies in the urban context, focusing on the main explanatory
variables affecting severity; the crash data section describes the database used for analysis, the main
preprocessing tasks, and some descriptive statistics; the model section presents the methodology
followed; the analysis and comparison sections summarize and highlight the main outcomes obtained
through the analysis; and finally, some conclusions and policy implications are offered in the last section.

2. Literature Review

Although 75% of traffic crashes occur in urban infrastructures, the amount of studies examining
them is much lower compared to the literature analyzing rural crashes [2], including crash severity
analysis. Nevertheless, worldwide crash severity studies (in both developed and developing countries)
consider several types of urban infrastructures. For example, crash severity was examined at arterial
sections [14,15,18–23], urban signalized [19,20] and unsignalized [10] intersections, urban freeway
segments [22], toll plazas [20], and other urban segments [17,24].

Some studies analyzing crash severity in urban contexts have considered the type of crash as
one of the independent variables [15,16,21,23], while other studies have restricted their analysis to
one type, such as head-on crash severities [17] or rollover crash severities [24]. This kind of study
allows us to reduce the heterogeneity and provide more robust outputs. In addition, the effect of
non-vehicle–vehicle crashes (i.e., crashes with motorcycles, bicycles, pedestrians) has also been studied
in analyzing traffic behavior effects on urban crash severity [21,23,25,26].

Most of the studies that analyze crash severity in urban areas only consider as explanatory factors
the variables registered in the crash reports, whatever the type of section or the crash type concerned.
This paper focuses mainly on arterial sections and collision crashes (not pedestrian or roll-over crashes).
In developed countries, several studies [20–23] found that the driver’s age and gender, vehicle type,
seatbelt use, alcohol, lighting, weather and road surface conditions, and time and distance from the
intersection are significant variables. Some studies in developing countries [14–16] have identified
a similar pattern regarding age, time, road surface, lighting conditions, whether single vehicle is
involved, day of the week, crash location, and head-on point of collision. Those variables were also
reported as significant in defining crash severity. Regarding traffic flow and speed variables, studies in
both developed and developing countries suggested that low traffic volumes (hourly or daily) are also
related to severe crashes [22,23]. In the same way, crashes at sections with higher speed limits showed
greater tendencies to involve injuries or fatalities [14–16,19,20]. Moreover, sharing the road with heavy
vehicles and light truck vehicles was positively associated with higher severity [24].

The previous variables were widely studied in both urban and interurban sections without
major differences in their effect on crash severity. However, geometric design variables have shown
significant effects on crash severity at urban road sections. Previous studies [17–19,24] have considered
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a great variety of geometric factors for urban roads because of their richness of design elements and
characteristics. For instance, Harvey and Aultman-Hall [18] examined arterial streetscape design and
traffic safety in urban areas by evaluating the effect of several street landscape design variables (i.e.,
width, building to building across the street; length, centerline distance between intersections; height,
average building height; width–height ratio; street wall continuity; building per length; and tree
coverage area) on crash severity. Ma et al. [19] also established statistical relationships to relate severe
crashes to a variety of geometric design factors. They found that a higher number of severe crashes was
associated with a longer length of the road segment, fewer lanes per direction, more side accesses per
kilometer, and the presence of bus stops. Additionally, Hosseinpour et al. [17] analyzed the effect of road
characteristics and revealed that horizontal curvature, paved shoulder width, type of terrain, and side
friction were associated with more severe crashes; yet, access points and the presence of a median
reduced the probability of severe head-on crashes on federal urban segments. Anarkooli et al. [24] also
had the same results for single-vehicle rollover crash severity on the same segments.

Not only is the design of the urban road section important, but the urban design of the region
where the road section is located could also be of relevance. Previous studies [17,18,24] have also
suggested that the urban context, or the landscape of a region, could have a plausible effect on
traffic behavior, as well as traffic safety. Nevertheless, there is still a lack of analyses on the urban
context effect on crash severity. Briefly, Harvey and Aultman-Hall [18] found that accidents in smaller,
more enclosed street landscapes were less likely than those in larger, more open streetscapes to cause
injury or fatal crashes. Furthermore, in-fill development and street tree planting could be used as
safety countermeasures. In developing countries, Hosseinpour et al. [17] and Anarkooli et al. [24]
showed that land use and the type of terrain have significant effects on crash severity.

Turning to Jordan traffic safety studies, in general, most crash studies are concerned with frequency
prediction (crash rates), not the severity probabilities. Moreover, many studies deal with rural areas or
the whole country’s crash characteristics. By way of illustration, Al-Masaeid [27] studied traffic accident
characteristics in Jordan with an extensive evaluation of the 2008 policy implementation, highlighting
this law enforcement and other measures and their very positive impact on safety. Al-Omari et al. [28]
studied traffic crash trends in Jordan over thirteen years (1998-2010), analyzing the distribution of crash
types, severity level, age group involvement, etc. Their study also correlated traffic crashes to variables
such as time, traffic speed, and pavement condition. Al-Omari et al. [29] studied the spatial–temporal
incidence of crashes in Irbid City using GIS (Geographic Information Systems) and fuzzy logic to
predict the riskiest spots depending on road section and intersection parameters.

Finally, studying crash severity on Jordanian urban roads started with Mujalli et al. [4], who used
the variables included in the Jordanian Traffic Police reports to identify factors affecting the crash
severity. They identified the number of vehicles involved, accident pattern, number of directions,
accident type, lighting, surface condition, and speed limit as the variables that contribute to the
occurrence of high-severity crashes. Furthermore, Mujalli et al. [5] analyzed pedestrian–vehicle crashes,
finding that road type, number of lanes, speed limit, lighting, and adverse weather conditions affect
the risk of fatality or severe injury.

This study follows the line of Mujalli et al. [4], in that, aside from defining the factors that
have significant effects, it also determines to what extent these factors could increase or decrease the
probability of crash injuries. Additionally, this study adds some new urban factors to the analysis (e.g.,
neighborhood scale, land use, on-street parking) for the first time in a traffic safety study set in Jordan.

3. Data Collection and Description of Variables

Careful and extensive data collection is key to drawing sound conclusions. In Jordan, the Police
Traffic Central Department is the crash database reference. Traffic policemen fill out accident reports
that include crash location based on GPS coordinates, and other data (crash type, cause, time, weather,
etc.). This study covers a five-year period (2014–2018), in which 21,662 traffic crashes were registered
on 39 arterial road sections in Irbid City, the second most populated city in Jordan.
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The original severity data consider four categories: property damage only, slight injury, serious
injury, and fatality. Since urban networks generally produce a low number of injuries or fatal crashes,
and to ensure a sufficient number of observations for estimation purposes and following previous
studies [6,30], severity data are grouped into two categories: (1) property damage only (PDO) and (2)
injury or fatality (INJ). Hence, in this study, the target variable of severity is binary.

The crashes were also classified by type into three different categories: 20,742 collisions, 640 crashes
involving pedestrians, and 280 run-off-road crashes. Only 1653 of those crashes entailed injuries,
while all the rest caused property damage only (PDO). Given the low number of run-off-road and
pedestrian crashes, this study focuses on collision crashes only (i.e., head-on, rear-end, sideswipe,
and with fixed object crashes) and does not consider pedestrian and run-off-road crashes that should
be analyzed in further studies.

As mentioned previously, Jordan’s crash database provides the data adopted in this study as
variables: number of vehicles involved, season, time of day, type of day, accident cause, weather
conditions, and state of pavement surface.

Additionally, traffic data were obtained from camera videotapes and derived from calculations
following the procedures and equations of Garber and Hoel [31] and Homburger et al. [32].
These variables are hourly traffic volume, percentage of heavy vehicles, and 85th percentile of speed.

In an effort to be more comprehensive and to increase the novelty of this study, several geometric
and urban characteristics were considered according to the Highway Safety Manual (HSM [33]) and
previous studies. The set includes: distance from the following intersection, road cross-section type
(two-lane two-way or multilane two-way), geometric consistency (a qualitative evaluation by an expert
of the consistency of the geometric design and construction), sufficient building setbacks (according to
Jordan’s Ministry of Public Works laws), presence of on-street parking, nominal clear zone of trees
(based on American Association of State Highway and Transportation Officials [34]), neighborhood
scale (a qualitative measure of the massing of buildings and spaces) [35], number of accesses to the
section, and land use.

Afterwards, traffic, geometric, and urban characteristics were combined with the section at
hand using the GIS platform, which connects the section parameters to the GPS crash coordinates.
All variable categories and descriptions, along with a summary of collision data for Irbid City, are listed
in Table 1.

Table 1. Explanatory variable description.

Variables * Variable Levels No. of Crashes INJ ** (%)

Distance from intersection (DI)

Heavy vehicles % (HVEH)

Number of vehicles
involved (VINV)

For single-vehicle crash (SNG) 1018 16.9
For two-vehicle crash (TWO) 18421 3.30

For more than two-vehicle crash (MUL) 1303 7.68

Season (SEAS)

if in autumn (Sep, Oct, Nov) (AUT) 2635 4.74
if in winter (Dec, Jan, Feb) (WIN) 6129 6.27
if in spring (Mar, Apr, May) (SPR) 6577 3.57
if in summer (Jun, Jul, Aug) (SUM) 5401 2.50

Time of the day (TIME)

if during 0:00–5:59 (0–6) 359 9.19
if during 6:00–11:59 (6–12) 3786 4.25

if during 12:00–17:59 (12–18) 9623 4.08
if during 18:00–23:59 (18–0) 6974 4.19

Day type (DAY)

if during the day after the weekend (Sun) (AW) 3487 4.04
if during the day before the weekend (Thu) (BW) 3796 3.66

if during weekend holiday (Fri, Sat) (WE) 8140 4.35
if during regular workday (WD) 5319 4.60
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Table 1. Cont.

Variables * Variable Levels No. of Crashes INJ ** (%)

Crash cause (CAUS)

if due to unsafe lane changes (LCH) 2372 3.92
if due to exceeding speed limit (LIM) 904 5.64
if due to driving without taking safety

precautions (SAF) 8872 4.14

if due to failing to obey traffic control devices
(TCD) 4815 4.09

If due to tailgating (TAI) 3779 4.53

Weather condition
(WEAT)

if in good weather (clear or cloudy) (GW) 18,178 3.16
if in rainy weather (RAI) 2211 12.26

if in other bad conditions (foggy, snowy, windy,
etc.) (OTH) 353 9.92

Pavement Surface
(PAVE)

if on dry pavement (Dry) 18449 3.70
if on wet pavement after raining (WET) 2144 7.88

if on other bad surface conditions (oily, muddy,
icy, etc.) (OTH) 149 18.12

Traffic volume (TRAF)

if traffic volume in the segment is low (350-500
veh/h/ln) (LV) 2020 17.38

if traffic volume in the segment is moderate
(501-700 veh/h/ln) (MV) 11,139 4.60

if traffic volume in the segment is high (>701
veh/h/ln) (HV) 7583 0.21

Geometric consistency
(CONS)

if segment curve consistency is perfect, width of
lane and median is standard, perfect design of
intersections, presence of safety elements (A)

1533 5.22

if segment curve consistency is good, width of
lane and median is standard, good design of
intersections, presence of safety elements (B)

9525 4.16

if segment curve consistency is good, width of
lane and median is less than standard, bad design
of intersections, presence of safety elements (C)

8689 4.14

if segment curve consistency is bad, width of lane
and median is less than standard, bad design of

intersections, absence of safety elements (D)
995 4.22

Cross section (SECT) if in a two-lane two-way road section (TLN) 5542 4.24
if in a multilane two-way road section (MLN) 15,200 4.24

85th-percentile speed
(SP85)

if in a segment of 85th % speed <50 km/h (LSP) 18,634 1.91
if in a segment of 85th % speed >50 km/h (HSP) 2108 24.86

Sufficient building
setbacks (BUIL)

if in a segment where on both sides buildings are
settled on the standard setbacks (SUF) 11,027 3.81

if in a segment where on both sides buildings are
not settled on the standard setbacks (NSUF) 9715 4.73

On-street parking
(PARK)

if there is on-street parking in the segment (EX) 10,119 0.85
if there is no on-street parking (NEX) 10623 7.47

Trees in nominal clear
zone (TREE)

if the trees in the segment curb are in the nominal
clear zone (IN) 11,012 2.07

if trees exceed the nominal clear zone (EXC) 9730 16.69

Neighborhood scale
(NESC)

if in a large-scale neighborhood (LAR) 8104 9.79
if in a small-scale neighborhood (SMA) 12,638 0.68

Number of accesses per
km (ACCE)

if the number of accesses to the segment >6 (HN) 12,266 0.70
if the number of accesses to the segment ≤ 6 (LN) 8476 9.36
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Table 1. Cont.

Variables * Variable Levels No. of Crashes INJ ** (%)

Land use (LUSE)

if in a commercial zone (COM) 9569 3.85
if in a residential zone (RES) 6360 4.61
if in an industrial zone (IND) 2155 4.87

if in a non-categorized zone (NC) 2658 4.25

Note: * All variables are categorical except DI and HVEH, which are continuous; ** INJ: injury or fatality.

Crash cause data were used for segmentation purposes to identify the specific effect of the same
explanatory variables for each cause, this was supposed to deal with heterogeneity of the data and
consider driving behavior as much as possible. The Jordanian Traffic Police reports identify five main
crash causes: unsafe lane changes (LCH), exceeding speed limit (LIM), driving without taking safety
precautions (SAF), failing to obey traffic control devices (TCD), and tailgating (TAI). Table 2 offers a
crash data summary, classified by crash causes.

Table 2. Explanatory variables and data summary of crash causes.

Variables * LCH LIM SAF TCD TAI

main levels total INJ total INJ total INJ total INJ total INJ

DI Cont. 2372 93 904 51 8872 367 4815 197 3779 9

HVEH Cont. 2372 93 904 51 8872 367 4815 197 3779 9

VINV
SNG 125 22 49 10 417 70 261 46 166 24
TWO 2099 65 776 30 7882 258 4243 127 3421 127
MUL 148 6 79 11 573 39 311 24 192 20

SEAS

AUT 340 11 134 5 1107 47 583 25 471 37
WIN 643 46 271 23 2580 151 1477 98 1158 66
SPR 768 24 306 19 2853 97 1497 56 1171 39
SUM 621 12 193 4 2332 72 1276 18 979 29

TIME

0-6 53 5 16 4 140 14 74 7 76 3
6-12 475 20 178 10 1590 76 820 26 723 29
12-18 1096 36 428 16 4128 135 2281 103 1690 103
18-0 748 32 282 21 3014 142 1640 61 1290 36

DAY

AW 393 22 170 10 1529 50 815 21 580 38
BW 417 19 159 6 1688 56 884 34 648 24
WE 939 39 361 14 3364 156 1888 76 1588 69
WD 623 13 214 21 2291 105 1228 66 963 40

WEAT
GW 2137 61 792 33 7776 238 4207 125 3266 116
RAI 192 31 101 15 949 119 525 60 444 46
OTH 43 1 11 3 147 10 83 12 69 9

PAVE
DRY 2169 78 801 37 7898 279 4248 144 3333 145
WET 174 13 93 10 904 74 547 47 426 25
OTH 29 2 10 4 70 14 20 6 20 1

TRAF
LV 229 48 110 19 858 141 483 80 340 63
MV 1302 42 492 31 4727 220 2591 114 2027 105
HV 841 3 302 1 3287 6 1741 3 1412 3

CONS

A 159 7 55 4 668 32 366 19 285 18
B 1029 37 383 17 4062 171 2219 80 1732 74
C 1098 46 414 26 3705 148 2005 88 1567 70
D 86 3 52 4 437 16 225 10 195 9

SECT
TLN 648 30 241 14 2372 87 1283 52 998 52
MLN 1724 63 663 37 6500 280 3532 145 2781 119
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Table 2. Cont.

Variables * LCH LIM SAF TCD TAI

SP85
LSP 2136 33 809 8 7995 154 4378 76 3316 84
HSP 236 60 95 43 877 213 437 121 463 87

BUIL
SUF 1236 46 491 24 4719 177 2567 99 2014 74

NSUF 1136 47 413 27 4153 190 2248 98 1765 97

PARK
EX 1137 7 455 5 4296 37 2350 20 1845 17

NEX 1199 86 449 46 4576 330 2465 177 1934 154

TREE
IN 1200 27 455 11 4795 90 2556 58 2006 42

EXC 1172 66 449 40 4077 277 2559 139 1773 129

NESC
LAR 934 78 354 48 3456 335 1887 175 1473 157
SMA 1438 15 550 3 5416 32 2928 22 2306 14

ACCE
HN 1397 9 538 10 5236 31 2789 19 2306 17
LN 975 84 366 41 3636 336 2026 178 1473 154

LUSE

COM 1086 38 410 25 4122 147 2204 87 1747 71
RES 746 38 302 13 2717 124 1464 62 1131 56
IND 240 6 90 9 901 46 528 21 396 23
NC 300 11 102 4 1132 50 619 27 505 21

Note: * LCH: unsafe lane changes; LIM: exceeding speed limit; SAF: driving without taking safety precautions;
TCD: failing to obey traffic control devices; TAI: tailgating.

4. Methodological Approach

In view of the binary categories of crash severity (dependent variables) that resulted after
aggregation, and given the need to predict the probability of the outcomes rather than the outcomes
themselves, a binary logistic model was chosen to represent the relationship between the level of
severity (personal damage only versus injury) and the set of the explanatory variables. According to
Long [36], logit and probit models provide very similar results in terms of marginal effects (i.e.,
the effects on the predicted mean of the outcome, keeping other covariates at the mean or averaging
them over observed values) for independent variables. However, logit models have the advantage of
generating coefficients that can be transformed into odds ratios.

For this reason, most studies that analyze traffic crash severity use different types of logit models
(e.g., binary logit, multinomial logit, ordered logit, nested logit, random parameters logit, or generalized
ordered logit) [37].

This study uses a binary logit model because the dependent variable (Y) only takes two values:
injury or fatal crashes (Y = 1) and property damage only crashes (Y = 0). The probability that an
injuring or fatal crash will occur or not is modeled as a logistic distribution in Equation (1):

π(x) =
exp[g(x)]

1 + exp[g(x)]
(1)

The logit of the multiple logistic regression model is given by Equation (2):

g(x) = ln
[
π(x)

1−π(x)

]
= β j+

p∑
j=1

β j x j (2)

where π(x) is the conditional probability of an injury or fatal crash, which is equal to the number
of injuries or fatal crashes divided by the total number of crashes. In turn, xj is the value of the jth
independent variable, with β j as the corresponding coefficient, for j = 1,2, . . . p, and p is the number of
independent variables. β0 is the intercept.
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The maximum likelihood method is employed to measure the association using the following
likelihood function (Equation (3)):

l(β) =
n∏

i=1

π(xi) yi [1−π(xi)]1− yi (3)

where yi is the ith observed outcome, with the value of either 0 or 1, and i = 1,2, . . . , n, where n is the
number of observations. By maximizing the log likelihood (LL) expression in Equation (4):

L(β) = ln[l(β)]=
n∑

i=1

{yi ln[ π(xi)]+
(
1− yi

)
ln[1−π(xi)]} (4)

the best estimate of β can be obtained.
The influence of attribute k on crash severity can be revealed by the odds ratio (OR) of Equation (5):

OR = exp
(
β j

)
(5)

With a 95% confidence level, the odds ratio provides the relative amount by which the odds ratios
of the crash severity increase (OR greater than 1.0) or decrease (OR less than 1.0) when the value of
the predictive value is increased by 1.0 unit. Because the standard deviations among variables differ
substantially, the effect of a “unit standard deviation change” can be evaluated instead of a “unit
change”. In other words, Equation (6) shows that for a standard deviation change in k, the odds are
expected to change by a factor, holding all other variables constant:

exp(ORStdk) = exp(β j ∗(SD of k)) (6)

The modeling procedure began with the assessment of correlation in the dataset. The correlation
matrix showed that two variables (weather and pavement surface conditions) were strongly correlated.
In order to develop meaningful model estimations, and to ensure reasonable magnitudes and signs of
the coefficients, it was advisable to exclude one of those variables from the model. The selection of
the variable to be removed was based on the condition that the model fit will not vary significantly,
and the removed variable is the one with a higher correlation with all variables. Accordingly, weather
condition was excluded from the models.

A reference category was, moreover, chosen for each variable. It was the one permitting the odds
for other categories of the same variable to be equal to or more than 1 (i.e., to show categories that
directly increase the injury probability in the results table).

Binary logit models for the entire database (general model) and for each one of the crash causes
reported by the police (i.e., unsafe lane changes, LCH; exceeding speed limit, LIM; driving without
taking safety precautions, SAF; failing to obey traffic control devices, TCD; and tailgating, TAI) were
developed using STATA 15/MP. Because the main purpose of this study is not to predict or forecast crash
severity but rather to identify the extent of the effects of all studied factors, insignificant explanatory
variables are retained in the models.

During application of the same fit assessment and model developing procedure on the exceeding
speed limit (LIM) crashes, the model gave overestimated results. This was obviously due to the low
number of observations (904 crashes), so we do not report or interpret these particular results.

The fitted binary logit model for the entire database and the remaining four causes considered are
shown in Table 3. Essentially, it shows the factor estimation results for the category INJ (when the
crash outcome is fatality or injury) when the category property damage only (PDO) crashes is the base
category. It also includes some goodness-of-fit statistics, such as number of observations, Nagelkerke
R-square value, log-likelihood at convergence, log-likelihood at zero, chi-square test, and degree
of freedom.



Sustainability 2020, 12, 7464 9 of 17

5. Analysis of the General Model

Calculating the unit standard deviation change in the odds ratio for each variable when holding
the other variables constant, Table 3 shows the factors’ estimated effects across the entire database.

Table 3. Binary logit model’s estimation of factors´ effect on injury probability.

Exp.
Variables

General Model LCH Model TAI Model TCD Model SAF Model

eˆBStdX * eˆBStdX eˆBStdX eˆBStdX eˆBStdX

Continuous variables

DI 1.334 1.398 1.272 1.543 1.335

HVEH 0.881 0.882 0.866 0.935 0.881

Categorical variables

VINV SNG 1.513 1.653 1.480 1.693 1.418
TWO Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
MUL 1.309 1.184 1.192 1.367 1.322

SEAS AUT 1.154 1.724 1.417 1.366 0.916
WIN 1.478 2.300 1.547 1.969 1.248
SPR 1.172 1.405 1.091 1.288 1.100
SUM Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.

TIME 0-6 1.140 1.251 0.902 1.083 1.220
6-12 1.038 0.837 1.245 1.058 1.039

12-18 1.006 0.735 1.547 1.230 0.811
18-24 Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.

DAY AW 1.079 1.174 1.212 0.878 1.077
BW Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
WE 1.135 0.901 1.081 0.903 1.294
WD 1.073 0.641 0.959 1.117 1.126

PAVE DRY Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
WET 1.090 1.164 0.977 1.060 1.179
OTH 1.176 1.120 0.974 1.228 1.117

TRAF LV 3.767 4.044 4.092 3.744 3.871
MV 4.691 2.692 6.088 4.363 5.261
HV Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.

CONS

A 1.109 1.323 1.342 0.939 1.205
B 1.322 2.250 1.181 1.080 1.572
C 1.310 2.208 1.362 1.075 1.457
D Ref. cat. Ref. cat. Ref. cat Ref. cat. Ref. cat.

SECT
TLN Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
MLN 1.090 0.928 1.130 1.076 1.175

SP85 LSP Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
HSP 2.564 2.967 2.572 2.613 2.523

BUIL SUF Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
NSUF 1.338 1.060 1.657 1.055 1.406

PARK EX Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
NEX 3.087 4.992 3.081 2.942 3.015

TREE IN Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
EXC 1.699 1.401 1.876 1.543 1.756

NESC LAR 6.740 4.342 8.087 6.857 7.951
SMA Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.

ACCE HN Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
LN 4.101 5.537 4.806 4.146 4.114
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Table 3. Cont.

Exp.
Variables

General Model LCH Model TAI Model TCD Model SAF Model

eˆBStdX * eˆBStdX eˆBStdX eˆBStdX eˆBStdX

LUSE COM Ref. cat. Ref. cat. Ref. cat. Ref. cat. Ref. cat.
RES 1.288 1.216 1.225 1.258 1.357
IND 2.134 1.359 2.115 2.128 2.306
NC 2.846 2.142 3.343 2.660 3.134

Constant 0.000 0.000 0.000 0.000 0.000

No.
observations 20742 2372 3779 4815 8872

Nag.
R2 0.711 0.757 0.713 0.728 0.717

−2LL
with

constant
only

7277 785 1392 1645 2539

−2 LL
with

variables
2382 215 454 506 975

X2, df =
30

4896 569 938 1139 2081

Bold values are statistically significant at 95% level of confidence, * change in odds for standard deviation increase in X.

In the case of the continuous explanatory variables, for a standard deviation increase in the log of
crash distance from the nearest intersection (DI), the odds of an injuring crash are 1.334 times greater.
Similar results were found in China’s urban context [13], supposing that an increase in DI produces
higher speeds and higher crash severity. Meanwhile, a heavy vehicle percentage increase (HVEH)
makes the odds of an injuring crash decrease to 0.88 (12% less likely to produce an injuring crash),
indicating that this factor activates driver cognition and perception due to previous knowledge of
existing traffic conditions [17].

5.1. Crash Report Factors

In view of Table 3, for the variables taken from police reports, with a standard deviation unit change:
Single-vehicle crashes (SNG VINV) have higher odds (1.5 times greater injuring crash probability)

than two- and multiple-vehicle crashes. This could be because single-vehicle crashes usually accompany
uncontrolled speeds or sudden obstacles that make the crash riskier. Indeed, this finding has been
reported by previous studies (e.g., [4,15,21,38]).

During winter (WIN), followed by spring and then autumn, the odds of injuring crashes increase.
Russo et al. [11] reported an opposite effect, with winter entailing a lower severity of crashes, but also
more cautious driving behavior and low speeds, but these results were under more adverse weather
conditions (snow, ice).

In terms of time (TIME), nighttime (0–6) with low traffic flow, higher speed, and lighting problems
is riskier than daytime (the odds of an injuring crash being 1.14 times greater). These results agree
with those of many previous studies (e.g., [4,12,22]).

Day factor is not significant in the model, and its effect is limited to the category weekend days
(WE DAY), which is 1.13 times more likely to induce an injuring crash. Similar results were reported
by Hassan and Al-Faleh [16], unlike the findings of Russo et al. [11], which could be attributed to a
difference in traffic flow patterns and driver behavior over different days in different countries.

In comparison with a dry surface, wet pavement has no significant effect, yet other bad pavement
surface conditions (oily, muddy, etc.) do indeed. Similarly, Hassan and Al-Faleh [16] and Mujalli et al. [4]
found that unexpected surface conditions could highly increase crash severity. Still, other studies point
to a higher effect of dry pavement (e.g., [6,12,15]) due to less cautious driving under such conditions.
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5.2. Traffic Factors

As in previous studies (e.g., [4,6,22,39]), the results show that low and medium traffic volumes
(between 350–700 veh/h/ln) for a standard deviation unit change have a highly significant effect on
increasing injuring crashes (respective probabilities 3.7 and 4.7 times greater). Those studies also
agree that high travel speed is a significant factor, being 2.56 times more likely to produce an injuring
crash. In fact, low traffic volumes stimulate drivers to travel at high speeds, which may produce more
severe crashes.

5.3. Geometric Design Factors

When dealing with geometric variables, for a standard deviation unit change, the following results
were reported:

The segment cross section (SECT) showed a low (insignificant) effect. In general, a two-lane
two-way section is less likely to induce injuring crashes than a multilane two-way section. This could
be related to lower speeds and restricted driving in two-lane two-way sections compared to
multilane sections.

In studying the effect of segment geometric consistency (CONS), the results show that a good
consistency (B, C) could increase driver comfort, which leads to higher speeds and a higher possibility
of injuring crashes (1.3 times more). A bad design (D) (i.e., bad segment curve consistency, width of
lane and median less than standard, bad design of intersections, or absence of safety elements) could
increase driver caution and attention, thus decreasing the probability of an injuring crash. These results
agree with previous ones (e.g., [7–10,17]).

A low number of accesses to the segment (LN ACCE) is a factor that could reduce driver attention
and perception due to previous knowledge of the built-in environment. So, as previously reported by
Hosseinpour et al. [17], drivers tend to travel less carefully and faster. These segments are therefore
about four times more likely to be involved in injuring crashes. The same interpretation is evoked for
the existence of on-street parking (PARK). Several studies [40–42] hold that on-street parking makes a
positive contribution to road safety, although parking itself does not improve safety if studied alone.

5.4. Urban Factors

The results also show that urban context factors contribute to driver visibility, attention, and comfort.
For example, for a standard deviation unit change, if the road section has buildings that are not tied
to the stipulated governmental setbacks (NSUF BUIL), the probability of injuring crashes is almost
1.4 times greater. Additionally, when trees are not within the clear zone (EXC TREE), which can affect
the driver visibility of the back-view and road signs (especially for large vehicles), the odds ratio of
injuring crashes is about 1.7 times more.

In addition, this study considers the neighborhood scale (NESC) and land use (LUSE). The effect of
such factors has been analyzed and discussed in previous studies [18,43], and it is thought that widely
dispersed developments and low density often increase vehicle miles traveled, this magnitude being
directly related to higher crash rates and severity. Our study also showed that being in a large-scale
neighborhood increases the odds ratio of injuring crashes by a factor of 6.7. When comparing different
land use types, the results show that non-categorized zones (NC) have the highest injuring crash
probability, followed by industrial and residential, if commercial zones are the reference category (2.8,
2.1, and 1.3 times greater, respectively). Several studies (e.g., [17,43–47]) present similar findings about
the outcomes of crashes in segments with intense activity (commercial, residential, etc.).

6. Analysis of Reported Causes’ Models

This section illustrates the key results depending on the crash cause:
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6.1. Driving without Taking Necessary Safety Precautions

The last column in Table 3 provides the results for the crashes caused by driving without taking
the necessary safety precautions (SAF), which are the most frequent (see Table 1), and have the highest
percentages of fatalities or injuries.

In this case, the categories most related to crashes involving injury or fatality are: single-vehicle
crashes (SNG VINV), winter (WIN SEAS), from 12 a.m. to 6 a.m. (0–6 TIME), during the weekend
holiday (WE DAY), wet pavement surface (WET PAVE), low and medium traffic volumes in the
segment (LV, MV TRAF), good geometric consistency (B CONS), multilane two-way road sections
(MLN SECT), high 85th percentile speed (HSP SP85), when on both sides buildings are not settled
on the standard setbacks (NSUF BUIL), there is no on-street parking (NEX PARK), trees exceed the
nominal clear zone (EXC TREE), a large neighborhood (LAR NESC), few accesses in the segment
(equal to or fewer than six accesses per kilometer) (LN ACCE), and non-categorized or industrial land
use (NC and IND LUSE). The results are the same as for the general model, except pavement surface
condition; the fact that wet pavement implied higher risk than other bad conditions could be related to
low safety precautions for the vehicles.

The categories that reduce the probability of injuring/fatal crashes coincide with those of the
general model, except for the season of the year (the safest season is autumn), and the time of the day
(the safest period being from 12 p.m. to 6 p.m.). It may be that drivers exhibit more compliance to
safety precautions in these times of the day and the year.

Finally, as for the general model, a crash is more likely to involve injury/fatality when it is further
from an intersection (DI), and it is less likely to do so when the percentage of heavy vehicles (HVEH)
is greater.

6.2. Failing to Obey Traffic Control Devices

Running red lights, failing to obey stop signs or other control devices that regulate traffic priorities,
or unsafe reversing are examples of what we refer to as failing to obey traffic control devices (TCD).

The results for an injury or fatality outcome are similar to those for the general model, except for two
variables: type of day and geometric consistency. Table 3 shows that a regular workday (WD DAY) rather
than a weekend day entails the highest probability of injuring or fatal crashes; the categories that reduce
the probability of injuring or fatal crashes are day after the weekend (Sunday) (AW DAY) and perfect
consistency (A CONS). This finding reflects the degree of compliance with safety precautions—for both
driver and vehicle— in Jordan under these conditions.

As for the previous models, a crash is more likely to cause injury when it is more distant from an
intersection (DI), while it is less likely when the percentage of heavy vehicles is greater (HVEH).

6.3. Tailgating (TAI)

The closer a car is to the one in front of it, the less time a driver has to react to sudden stops in order
to avoid a collision. Tailgating (TAI) is a leading cause of rear-end car crashes and multiple-car collisions.

Since injuring or fatal crashes most often result from high speeds and free-flowing traffic, it is
logically difficult to analyze injuring crashes in conjunction with tailgating. Table 3 shows this to be
the model most different from the general model. In this case, the converse effect is for the factors time
of the day, day type, pavement surface, and consistency. The categories with the highest probability
of injuring or fatal crashes for these variables are: from 12 p.m. to 6 p.m. (12–18 TIME), when the
pavement is dry (DRY PAVE), and with perfect or bad geometric consistency (A,C CONS), so the risk
possibility could stem from bad behavior or bad road design. In contrast, the categories that reduce the
probability of injuring or fatal crashes are: from 12 a.m. to 6 a.m. (0-6 TIME) because at nighttime
drivers do not usually tailgate, wet and other bad surface conditions (oily, muddy, icy) (WET, OTH
PAVE), and bad consistency (D CONS).
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Again, the crash is more likely to cause injury with increasing distance from an intersection (DI),
and less likely when the percentage of heavy vehicles (HVEH) increases.

Additionally, an increase in some urban factor effects is obvious, such as non-sufficient building
setbacks (NSUF BUIL, 32%), trees exceeding the nominal clearance zone (EXC TREE, 17%), and large-scale
neighborhood (LAR NESC, 134%). These figures indicate to what extent visibility could affect driver
behavior and imply an injuring crash, even due to tailgating.

6.4. Unsafe Lane Changes (LCH)

Changing lanes without taking the time to look and make an unsafe maneuver is a leading
cause of sideswipe collisions, and the fourth leading cause of crashes in the urban context of Irbid.
Table 3 presents results largely similar to those of the general model, yet for some variable categories,
opposite effects were observed: time of day, type of day, and cross-section type. Thus, for the following
categories the probability of an injury or fatality outcome was reduced: from 6 a.m. to 12 p.m., from
12 p.m. to 6 p.m. (6–12, 12–18 TIME, since morning and afternoon hours tend to have high traffic
density and it is more difficult to change lanes), weekend days and regular days (WE, WD DAY, which
tend to have less aggressive driving or maneuvers), and multilane two-way road sections (MLN SECT,
as lane changes in this type of cross-sections are predictable, and the driver is ready to respond to such
movement).

Despite the non-significance of both continuous variables in this case, a crash is more likely to
involve injury when further from the intersection (DI), and less likely when there are more heavy
vehicles (HVEH).

7. Comparison of Models

When comparing the five models to each other, some key similarities and differences in the
variable effects stand out. In general, the percentage of heavy vehicles (HVEH), geometric consistency
(CONS) and the type of cross section (SECT) were not statistically significant in most models.

At the same time, a number of categorical variables present noteworthy differences among the models:

• Season: summer is the safest season for all the models except for SAF, which shows autumn to be
the safest season.

• Time of the day: for all the models except TAI, the period from 12 a.m. to 6 a.m. presents the
highest odds ratio for injuring crashes. The TAI model’s highest odds ratio is for the period 12 p.m.
to 6 p.m. The safest time frame likewise presents differences among the models: 6 p.m. to 12 a.m.
for the general model and TCD; 12 p.m. to 6 p.m. for LCH and SAF; and 12 a.m. to 6 a.m. for the
TAI model.

• Type of day: the general and SAF models present similar results for this variable, the highest odds
ratios being for weekend holiday and the lowest ones for the day before the weekend. LCH and
TAI models give similar results, with the highest odds ratios for after the weekend and the lowest
ones for regular workdays. However, the TCD model gives just the opposite results: the highest
odds ratios for regular workdays and the lowest ones for after the weekend.

• Pavement surface: for all the models except TAI, other bad surface conditions is the variable
presenting the highest odds ratio for injuring crashes. The TAI model’s highest odds ratio is
for dry pavement, though this is the safest category for all the other models. Other bad surface
conditions constitutes the safest category for the TAI model.

• Geometric consistency: segment curves with good consistency present the highest odds ratios for
all the models except TAI, whose highest one corresponds to low consistency. Segment curves
with bad consistency present the lowest odds ratios, with the exception of the TCD model, whose
lowest odds ratio is for perfect consistency.

• Cross section: multilane two-way road sections present the highest odds ratios for the models,
with the exception of LCH, which designates two-lane two-way roads sections.
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Although the values of odds ratios vary among the models, they present similar trends for certain
categorical variables. Table 4 offers a summary of all the statistically significant (at a 95% confidence
level) categories of factors that increase the possibility of inducing crashes with injuries or fatalities
(displayed in descending order of influence).

Table 4. Summary of important factors increasing injuring crashes in an urban context.

Factors Type of Factor

Large-scale neighborhood Urban

Number of accesses to the segment < 6 per km Geometric

Low traffic volume (<500 veh/h/ln) Traffic

No on-street parking Geometric

Non-categorized and industrial land use Urban

High 85th % speed (>50 km/h) Traffic

Single-vehicle crash Crash report

Winter and autumn seasons Crash report

Trees exceeding the nominal clear zone Urban

Distance from intersection Crash report

8. Conclusions

This study has examined the influence of 17 factors on the injury probability of collision crashes
in an urban context within a developing country, in this case Jordan. While injuries from crashes in
urban areas constitute a worldwide problem, it is even more serious in developing countries, as their
databases contain limited information for analysis and extrapolation. Since 2014, the crash database in
Jordan managed by the Police Traffic Central Department has improved, now including the locations
of crashes using GPS coordinates. This makes it possible to complement the database statistics with
further information, such as traffic volume, speed, and other variables related to the road characteristics
or the urban context (road cross section, geometric consistency, land use, etc.).

The modeling involved the complete database and each one of the subsets of crash causes reported
by the police (i.e., driving without taking safety precautions, failing to obey traffic control devices,
tailgating, and unsafe lane changes). The results show that most of the variables considered in the
analysis have a significant effect on severity. Whatever the model considered, the distance from an
intersection, the number of vehicles involved in the crash, the season, traffic volume, 85th percentile of
speed, the presence of on-street parking, the neighborhood scale, the number of accesses, and land
use proved to be significant variables. In addition, all previous factors except the season showed a
homogeneous effect (e.g., in all models, a single vehicle increased the probabilities of injury from
crashes, while two-vehicle involvement decreased the probabilities). This homogeneous behavior is
also observed for two other variables that are not significant in all the models considered: sufficient
building setbacks and trees in the nominal clear zone.

In all models, the probability of a crash with injury or fatality increases as the distance from the
intersection increases; when the number of heavy vehicles decreases; when there is only one vehicle
involved in the crash; when the traffic volume is low (under 500 veh/h/ln); when the link speed is
over 50 km/h; in segments when the buildings are not settled on the standard setbacks; when there is
no on-street parking; when trees exceed the nominal clear zone; in large-scale neighborhood areas;
when the number of accesses per kilometer is under six; and in zones with non-categorized or industrial
land use. Although it is not possible to generalize the results for all the models in the case of the other
variables considered in the analysis, some general patterns emerge, with the exception of the type of
day. In most of the models (four out of five), the probability of an injuring crash increases during
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winter, from 12 a.m. to 6 a.m., when the pavement surface is in bad condition other than wet (oily,
muddy, icy), in curves with good consistency, and in multilane two-way road sections.

These results, consistent with previous studies in other developed and developing countries,
provide a broader view of Jordan´s problem with urban traffic crashes. The results expounded here
could be used by Jordanian governmental agencies, or agencies in developing countries, to design
and implement long-term traffic safety plans. Firstly, they could help reduce injuring crashes in
urban areas, and secondly improve road quality as a base for sustainable cities. For example, specific
sustainable countermeasures could be undertaken in large-scale neighborhoods, or traffic controls
could be increased in low-volume arterials and in multilane two-way road sections.

Certain limitations might affect the results of this study: reporting errors in collecting the urban
context data, GPS technical errors, and human errors because of unreliability in accident reports.
Further replications of the model with larger, more comprehensive and reliable samples—including
factors overlooked in this study, such as driver and vehicle characteristics, and dealing with other
crash and road types—could enhance our understanding of how the urban context affects traffic safety.
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