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Abstract: Anomaly detection in the performance of the huge number of elements that are part
of cellular networks (base stations, core entities, and user equipment) is one of the most time
consuming and key activities for supporting failure management procedures and ensuring the
required performance of the telecommunication services. This activity originally relied on direct
human inspection of cellular metrics (counters, key performance indicators, etc.). Currently,
degradation detection procedures have experienced an evolution towards the use of automatic
mechanisms of statistical analysis and machine learning. However, pre-existent solutions typically
rely on the manual definition of the values to be considered abnormal or on large sets of labeled data,
highly reducing their performance in the presence of long-term trends in the metrics or previously
unknown patterns of degradation. In this field, the present work proposes a novel application
of transform-based analysis, using wavelet transform, for the detection and study of network
degradations. The proposed system is tested using cell-level metrics obtained from a real-world LTE
cellular network, showing its capabilities to detect and characterize anomalies of different patterns
and in the presence of varied temporal trends. This is performed without the need for manually
establishing normality thresholds and taking advantage of wavelet transform capabilities to separate
the metrics in multiple time-frequency components. Our results show how direct statistical analysis of
these components allows for a successful detection of anomalies beyond the capabilities of detection
of previous methods.

Keywords: cellular management; failure detection; self-healing; transform-based; wavelet

1. Introduction

The complexity of cellular networks is continuously growing. This complexity increases the costs
of the network infrastructure and those of its operation, administration, and management (OAM)
activities. The huge number of indicators, counters, alarms, and configuration parameters transform
network monitoring into a complicated task.

In this field, the concept of self-healing, as part of the self-organizing network (SON)
paradigm [1,2], aims to automate the tasks associated with network failure management, achieving a
more reliable service provision with minimum operational costs. Self-healing includes the tasks of the
detection of degradations in the network service (familiarly known also as problems), diagnosis of the
root cause or fault generating the problem, compensation of the degradation, and the recovery of the
system to its original state.
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In this scheme, the detection of network problems is one essential task for the posterior failure
management activities. The fast and reliable detection of failures is of paramount importance in current
cellular infrastructure, especially given its increasing heterogeneity due to the coexistence of multiple
technologies (GSM, UMTS, LTE) and deployment models (macrocell, small cell). Here, an effective
analysis of cellular metrics coming from the different elements of the network (terminals, base stations,
sectors, etc.) is essential for failure management.

In cellular networks, failure detection is based on the analysis of network metrics (indicators,
key performance indicators (KPIs), counters, alarms, and mobile traces) by means of identifying
abnormal/unhealthy values in its temporal series. Classic techniques for cell degradation detection
are based on the definition of threshold values (upper or lower) [3–5]. If the values for a given metric
violate such thresholds, it is considered degraded. Threshold definitions are typically dependent
on human knowledge about the correct values of the metrics [6]. This is a main drawback for such
mechanisms as they require expertise that is not available in many cases. Even when that knowledge
is available, the process is very time consuming, costly, and unreliable due to the large number
of indicators and the different conditions of distinct network elements [6]. In addition, with fixed
threshold schemes, it is not possible to adapt to the daily, weekly, and long-term variations of the traffic
load. Alternatively, machine learning (ML)-based approaches can be used to automatically establish
the detection thresholds or classification models. However, such approaches require large labeled
datasets [7], also very rarely available in real networks [6]. Furthermore, such training data might not
be applicable to different networks or cells from the ones where it was gathered.

Our hypothesis is that transform-based decomposition can help to overcome the limitations
of previous approaches. Transforms consist of functions that map a particular metric into a
space that simplifies its analysis. Typical transforms include Fourier [8] and wavelet solutions [9].
These mechanisms can be applied to properly decompose the different trends present a in
time-series, and they have been used for the detection of abnormal behavior in other fields, such as
phonocardiograms [10].

However, there is an important knowledge gap in the application of transform-based approaches
and, particularly, wavelet transforms, in cellular networks, where to our knowledge, they have not
been applied for metric-based anomaly detection [7,11]. Moreover, the application of such techniques
is not straightforward, due to the particularities of cellular metrics, which include a wide variety of
metrics showing different resolutions (e.g., hourly, daily), pseudoperiodic trends (e.g., daily, weekly,
monthly), and long-term variations (e.g., increasing or decreasing of the telecommunication service in
an area), which will impact the metrics in a very heterogeneous manner, even for those coming from
the same network element (e.g., the throughput and the number of handover failures of the same cell
might present very different temporal patterns).

In order to overcome these challenges, our work (whose developments have been partially subject
to a patent application [12]) proposes a framework for the detection of the degradations in a metric.
This framework revolves around the multiresolution decomposition of the metric (focused on the
use of discrete wavelet transform (DWT)) at different times and scales, where the scale is related
to the frequency of the component. To do so, our proposed system defines a series of stages able
to characterize and configure the transform decomposition in an automatic manner suitable for
heterogeneous cell metrics.

The decomposition is proposed as a data transformation step able to support the following
classification stage dedicated to detecting anomalies. The subdivision of the original metric into
separate time-scale components containing its different temporal trends and patterns should benefit the
detection, allowing for the application of simpler inference methods with improved results. In particular,
a simple statistical-based outlier identification technique is implemented to show the capabilities of the
proposed framework to facilitate the detection process. To demonstrate this, the complete framework
is evaluated based on data coming from a real commercial cellular network, allowing for a proper
detection of different degradation patterns even without labeled data or large datasets.
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In this way, the present paper is organized as follows. Section 2 analyzes the related works
in the field. Section 3 firstly presents the general introduction to the discrete wavelet transform,
elaborating on its applicability to the objectives of the work. Secondly, it describes the proposed system
for the application of these transforms in the detection of cellular metric network abnormal values,
establishing the inputs, outputs, and general structure. The proposed scheme is evaluated in Section 4
based on real-life cellular metrics. Finally, Section 5 presents the main conclusions and outlook for
the work.

2. Related Work

There is an abundant literature of related works in the field of anomaly detection for cellular
networks. Where extensive surveys in this field can be found in the literature [7,11], this section
will provide a summary of key references in the field. These will be summarized in Table 1.
Without intending to cover all possible approaches, a set of main categories is identified for the
analyzed references, mainly on the basis used for degradation identification (human knowledge,
statistical analysis, pattern comparison, predictor mechanisms). In the table, the applied algorithmic
techniques are identified, and a summary of the common methodology for each category is provided.

In this field, classical approaches have considered manually defined thresholds for anomaly
detection. A category of works focuses on how to apply these defined thresholds or to facilitate their
calculation from human knowledge. Khatib et al. [13] evolved on this by proposing a finite-state
machine for the identification of degradation intervals, where the transition between states is based
on the crossings of manually defined thresholds by selected KPIs. Some recent works go beyond this
approach, putting the focus on the knowledge acquisition procedures to help acquire the expertise
from telecommunication operator personnel. Here, Reference [14] complemented the work in [13] by
applying entropy minimization discretization for the acquisition of the numerical thresholds based on
a set of manually solved cases.

Other works have tried to automate the thresholding process based on the statistical analysis of the
metrics. In this field, Novaczki et al. [3] established a framework for detecting degradation based on
deviations from the average KPI values obtained during an observation window. From that, the work
in [15] improved the previous solution by adding the analysis of the statistical profiles of the indicators;
this means the probability distribution functions of each metric depending on the status of or failure in
the network. In a similar fashion, Reference [16] defined a framework for the detection of outages based
on the estimation of the statistical profile of the measurements being gathered by a UE in comparison
with previous ones for the same location. Additionally, Muñoz et al. [17] proposed an automatic
thresholding method using the metric statistics and the application of percentile-based discretization.

Where these methods allow for an automatic definition of the normality values or the classification
rules, they are highly affected by the variability of the network conditions and long-term trends,
which will reduce their capability to detect anomalies.

Machine learning classifier techniques, such as naive Bayesian classifiers [4], k-nearest neighbor,
or support vector machine [18], can also be implemented in a binary way to identify values as
degraded or not. Where these techniques automatically integrate the detection decision, their need for
labeled cases and typically their analysis of the metric values in an atemporal manner can make them
often underperform.

As included in Table 1, a third category of works is identified as those that revolve around
the comparison of a time-series of the metric under analysis with other series with certain patterns.
In this field, Cheung et al. [19] presented a technique for cell automatic failure detection based on
the time-series analysis of traffic data. This was based on the search for abnormal trends in the
indicators, by comparing them with baseline learned profiles of their own cell with the simultaneous
traffic of neighboring cells. Furthermore, correlation-based mechanisms have been considered
applicable to this problem. In [20], the degradation was detected by the correlation between the
indicators of an observed cell and a neighboring cell. In particular, this occurs when the correlation
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coefficient between the observed cell indicator and the neighboring healthy one drops below a
certain threshold. The work in [21] made use of pattern clustering for the identification of a set
of metric values with predetermined fault categories that were determined with the help of expert
knowledge. Muñoz et al. [22] further evolved the category of pattern comparison approaches by the
use of degradation patterns, constructed based on normal time-series and synthetic degradations
(e.g., impulse, ramps). Alternatively, the correlation with other external “contextual” sources, such as
information on social events (e.g., sport matches, concerts, etc.) can also help to establish the presence
and cause of performance anomalies in the network [23].

These pattern comparison methods typically allow coping with the presence of temporal trends
in the metrics, and they do not rely on a direct definition of detection thresholds. However, for the
methods using the analysis of neighboring cells’ data [19,20], these imply the existence of a close
association between the compared cells’ traffic, which is not commonly the case. They also require
human expertise for the identification of the patterns (or cells) to be considered normal.

Another category of solutions is the one based on prediction mechanisms. These approaches
focus on the generation of a predictive model based on a set of data considered normal, generally at
the initial values of the time-series under analysis. The error between the predicted values and the
measured ones is used as an indicator/score of degradation. The specific threshold to consider each
sample as degraded or not is typically established manually or automatically based on the general
statistical distribution of such an error. Here, many different predictive models can be used, such as
the AutoRegressive Integrated Moving Average (ARIMA) [18], forward linear predictors [24], or Long
Short-Term Memory (LSTM) recurrent neural networks [25]. These methods, especially those using
more advanced predictors, will typically require large datasets, and their performance for anomaly
detection will be highly impacted by the proper configuration of the model and the variability and
stationarity of the analyzed metric.

Table 1. Summary of key related works on anomaly detection.

Anomaly Detection and Thresholding in Cellular Networks

Category Techniques Summary Ref.

Human thresholding
State machine Degradation interval identification based on the

crossing of manually defined thresholds. [13]

Entropy minimization
Discretization

Calculation of numerical thresholds from labeled
metric samples. [14]

Statistical thresholding
Deviation from average,
probability distribution
comparison, discretization

Thresholds based on statistics coming from normal
samples or the average of the observed samples. [3,15–17]

ML classifiers Naive Bayes classifier,
kNN, SVM, etc.

Automatic training based on labeled data (normal
and degraded). Often, classification is based
on the metric values without considering the
time variable.

[16,18]

Patterns’ comparison Correlation, clustering

Comparison of the observed time-series with
normal/healthy patterns from the past or neighbor
cells, synthetic degraded patterns, or contextual
sources.

[19–23]

Predictor-based ARIMA, forward linear
predictors, LSTM, etc.

The error between the predicted metric and the
observed one is used as a degradation score. [18,24,25]

In this way, the detection of network issues remains to be fully solved in the challenging
scenario caused by the variability of service behavior over days and weeks, as well as the presence of
long-term variations in the use of each particular cellular element. In this field, some solutions try to
simply remove the periodic or long-term components in the analysis of cell indicators [6]. However,
those approaches only work in the presence of simple and predictable patterns. They also affect the
information associated with trends that can be key for the network analysis.
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Conversely, in order to support anomaly detection mechanisms able to analyze multiple metric
behaviors, our proposal aims at the application of transform-based decomposition, particularly by
wavelet transforms [9]. In this respect, there is a very extended literature in the field of transform-based
data decomposition in the context of anomaly detection. From this, key related works were identified
as summarized in Table 2.

Transforms have been used in the past for the detection of abnormal behavior in other fields.
For example, the work in [10] made use of STFT and the Continuous Wavelet Transform (CWT)
for the analysis and detection of abnormalities in phonocardiogram signals. Reference [26] applied
a static threshold to wavelet transform components for the analysis of non-cellular network layer
measurements (e.g., HTTP packet sizes). Furthermore, in the analysis of packet lengths with the
objective of anomaly detection for network layer traces, Du et al. [27] applied DWT. From this,
different classification features are defined as energy ratios between the DWT components at different
levels. These features are then used as inputs for an SVM-based multi-class classifier. Likewise,
focusing on network layer measurements, Lu and Ghorbani [28] proposed a mechanism for network
intrusion detection where normal daily traffic is modeled by wavelet approximation coefficients.

However, these types of transform-based approaches have not been applied for the analysis of
cell-level indicators, typically being only used in an accessory role of the analysis (e.g., smoothing,
periodicity detection) and not as the basis for the detection. Furthermore, the possibility of analyzing
the different components resulting from a wavelet transform has not been developed. As an example,
the work in [29] discussed the possibilities of using the fast Fourier transform (FFT) and wavelets for
abnormal behavior detection. However, the paper adopted the use of Difference over Minimum (DoM)
transformation, applied to smooth cellular metric values. The smoother versions are compared to the
original ones to detect unexpected behaviors. Again, in the context of abnormal behavior detection,
wavelets were also described as applicable for KPI smoothing in [30]. As mentioned, in both cases,
the transforms are used for the smoothing of the metrics, missing the multiresolution information
associated with the different trends obtained by transform-based analysis.

Similarly, Reference [6] applied FFT over already identified anomalies to establish their possible
periodicity. The work in [31] followed a predictor-based approach for outage detection, using a
transform related approach: Fourier series of residual errors were used to improve the estimation of
user equipment signal measurements. With the objective of analyzing traffic burstiness, the authors
of [32] applied the concept of self-similarity to the wavelet decomposition of network traces.

Table 2. Summary of related works on transform-based analysis. DoM, Difference over Minimum.

Transform-Based Applications

Field of Application Transform Ref.

Phonocardiogram signals STFT, CWT [10]
Network traffic anomaly detection DWT [26]
Packet length anomaly detection (network layer traces) DWT [27]
Network intrusion detection DWT [28]
Cellular metric smoothing DoM [29]
Cellular metric smoothing Wavelet [30]
Degradation periodicity identification FFT [6]
UE-level measurement prediction Fourier series [31]
Traffic burstiness identification Wavelet [32]

The identified related works, as well as recent surveys and the state-of-the-art analysis on the
topic [7,11] further confirm the need to deepen the application of transform-based decomposition,
and particularly wavelet-based, as the basis for novel techniques of multiresolution anomaly detection
of cell-level metrics.
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3. Methods

3.1. Wavelet Analysis

The cellular network, as composed of a huge number and variety of elements (base stations,
sectors, terminals, and management and control elements), generates many different metrics.
These consist of the time-series of the values of an indicator, KPIs, counter, alarm, trace, or any
other parameter that is variable in time.

Transform-based decomposition is proposed as the basis for analyzing different behavioral trends
in a metric. This is commonly achieved in integral-based transforms by the integral of the product
between the analyzed time metric and a particular kernel function. The resulting output function
depends on time (in particular, the interval of time where the integral is calculated) and an additional
variable (e.g., scale/frequency), allowing distinguishing different components of the original metric
from its different values.

Typical transforms include Fourier, such as short-time Fourier transform (STFT) [8,33],
and wavelet [9] solutions. Wavelet transforms are particularly interesting in the analysis of non-periodic
series, such as the sequential values of cellular network metrics. This type of transform returns
information in both time and scale/frequency. For discrete transformations, the output of the
transformation produces components at different levels that contain information about the original
metric frequency-like behavior [34] corresponding to distinct frequency bands and different instants.
These components are proposed as particularly suitable for the identification of degradations at different
scales (temporal frequencies) in cellular network metrics, supporting improved detection performances.

The term wavelets refers to a particular set of functions used for transformation and
multiresolution analysis of time-series [9]. These are wave-like oscillation functions constrained
in time. For wavelet transforms, these functions are scaled at different levels, and their convolution
with the input metric is calculated. This provides the information on the frequency/scale behavior of
the input data.

Two key characteristics of the multiresolution transforms are their time and frequency resolutions.
These refer respectively to the range of time and frequency covered for each value of the transform.
Comparing the frequency and time resolution of wavelet transforms with other approaches, such as
STFT (see Figure 1), wavelets provide good time resolution for fast changes in the decomposed metric
while a good frequency resolution for slow changes. This is ideal for the analysis of metrics presenting
daily and weekly persistent patterns together with quick non-periodic changes.

Short‐Time‐Fourier‐Transform

frequency

time
Discrete Wavelet Transform

frequency

time

Figure 1. Time-frequency resolution of different transform-based decompositions.

A special case of wavelet decomposition is the discrete wavelet transform (DWT), which consists of
the application of the transform concept to a discretized version of the transform function considering
only a particular set of scales.

Although the proposed system is not limited to the DWT solution, this introduces important
advantages in comparison to other options. In particular, it allows the implementation of the
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decomposition (and further reconstruction) by means of discrete filter banks at reduced computational
cost [35].

The one level decomposition of an input set of values x[n] follows the scheme presented in
Figure 2. In this way, x[n] is decomposed into low-frequency/large-scale coefficients (or approximation
coefficients) and high-frequency coefficients (called detail coefficients).

h[n]

g[n]

  2

  2

Detail
coefficients

Approximation 
coefficients

x[n]

Figure 2. Block diagram of the proposed method.

The scheme is equivalent to, firstly, filtering the metric following the expression:

cyhigh[n] =
∞

∑
k=−∞

x[k]h[2n− k], (1)

cylow[n] =
∞

∑
k=−∞

x[k]g[2n− k],

where h[n] is the decomposition high-pass filter and g[n] is the low-pass filter forming a quadrature
filter pair. The parameters yhigh and ylow here represent the output of the high-pass and the low-pass
filters, respectively.

Secondly, after the filtering, the samples are decimated, discarding half of them, as shown by the
subsampling operator:

(y ↓ 2)[n] = y[2n] (2)

Figure 3 shows the reiterative application of this scheme by filter banks to obtain the coefficients
at different levels.

x[n]
h[n]

g[n]   2 h[n]

g[n]

  2

  2 h[n]

g[n]

  2

  2

  2

Level 1 detail
coefficients (cD1)

Level 2 detail
coefficients (cD2)

Level 3 detail 
coefficients (cD3)

Level 3 approx. 
coefficients (cA3)

Figure 3. Bank filter for generating the coefficients of the discrete wavelet transform.

Depending on the level, the coefficients would gather the behavior of the metric in different time
scales/frequencies, as represented in Figure 4.

In this way, the coefficient cDl , of each level l, encompasses a different frequency range of the
metric spectrum:

cDl → f requency ∈
[

fmax

2l ,
fmax

2l−1

]
(3)

cAl → f requency ∈
[

0,
fmax

2l

]
, (4)
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where fmax refers to the maximum frequency of the metric. Considering discrete metrics and Nyquist
sampling: fmax = fs/2 = 1/2T, where fs is the sampling frequency and T is the measurement period
of the metric.

0       fmax/8       fmax/4             fmax/2                                            fmax

frequency

 a3           d3              d2                                  d1

Figure 4. Discrete wavelet transform frequency ranges of the different coefficients.

Detection mechanisms could be able to directly work with the obtained coefficients.
However, this would reduce the resolution of the analysis as the coefficients at each level provide only
one value at each temporal period of their level. For the discrete case and the detailed coefficients,
this leads to providing for each level l one transform value for each set of [2l , 2l+1] samples of the metric.
Instead, the system would be based by default on the reconstruction of the different components.
These consist of the metric reconstructions at each level of the decomposition, where the components
have the same length as the original metric.

The reconstruction is performed by following the inverted scheme of the one presented in Figure 3.
Firstly, the coefficients are upsampled by a factor of two. Secondly, they are filtered by g′[n] (for cAl)
or h′[n] (for cDl). The variables g′[n] and h′[n] are respectively the reconstruction low-pass filter and
reconstruction high-pass filter. These, together with the decomposition filter h[n] and g[n], form a
quadrature mirror filter system [36]. Thirdly, for coefficients with l > 1, the result is upsampled and
filtered by g′[n] l − 1 times.

By this, the detail and approximate components at each level l are obtained, expressed as dl and
al , respectively. Each component reproduces the metric behavior for the frequency band of their level,
as defined in Equation (3). Considering the discrete nature of the metrics, these frequency bands can
be translated into discrete temporal periods, ∆η measured in the number of samples; in this way, dl
period range ∆ηdl

∈ [2l , 2l+1] samples and al period range ∆ηal ∈ [2l+1, ∞] samples.
For the definition of the transformation filters (g[n], h[n], g′[n], and h′[n]), different families of

wavelets have been defined in the bibliography [37]. Each wavelet family is based on a set of mother
wavelet functions Ψ, which share specific conditions and characteristic.

Each of these mother wavelets is the basis for the definition of a double pair of decomposition
and reconstruction filters. For the proposed system, each set of four filters (g[n], h[n], g′[n], and h′[n])
would be the wavelet type of decomposition. For example, the Daubechies family-based filters are
commonly used [38]. As an example, the filters for the Daubechies wavelet of order seven (db7) are
shown in Figure 5.
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g[n]-decomposition low-pass

0 5 10 15
-1

-0.5

0
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h[n]-decomposition high-pass

0 5 10 15

-0.5

0

0.5

1

g'[n]-reconstruction low-pass

0 5 10 15
-1

-0.5

0

0.5

h'[n]-reconstruction high-pass

0 5 10 15

Figure 5. Transform filters of the wavelet type db7.

3.2. Proposed Framework

Having a cellular metric as the input, the proposed multiresolution detection system is based on
the decomposition of these metrics in different steps. Figure 6 shows a high-level logical scheme of the
system, distinguishing three main modules. Firstly, the metric characterization module is dedicated
to properly identifying the main characteristics of the input metrics in case they are not present in
the metric metadata, as described in Section 3. Secondly, the metric multiresolution decomposition
block is dedicated to the application of the transform-based decomposition to the input metrics.
Finally, the multiresolution degradation detection module oversees the processing of the resulting
components coming from the decomposition to detect and characterize the degradations. From this
process, the system returns two main outputs:

• A quantifiable degradation score indicating the level of the abnormality of the samples for each of
the scales considered.

• The classification of the metric samples as degraded or not degraded and the scale where the
degradation has been detected.
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Classification of 
the metric samples 
as degraded or not 

degraded

Classification of 
the metric samples 
as degraded or not 

degraded

   Metric   Metric

Multi-resolution detection system
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Network

System

Process Data

System

Legend

Data

Human 
expert

Terminals

Data

Optional data
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Multiresolution 
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Metric 
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Decomposition and detection 
configuration parameters 

Decomposition and detection 
configuration parameters 

Metric 
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Metric 
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Other 
elements
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sectors

Degradation score 
per sample/scale

Degradation score 
per sample/scale

Figure 6. General system scheme in which the network metrics are analyzed for the detection of
network degradations.

3.2.1. Inputs

The proposed system can be applied to different metrics: counters, performance indicators, traces,
or other measurement generated by base stations, user terminals, or other equipment of the cellular
network. Here, a metric sequence (defined as a set of samples of the metric) is characterized and
decomposed by the system in its time and scale components in order to identify anomalous behaviors.
The components obtained from the decompositions allow the discovery of the degradations of different
forms and duration. Given the association between the different levels of decomposition and their
temporal ranges, it would also provide information about the temporal scale of the degraded behaviors
in the metric sequence.

In this way, the first input of the system is a vector containing an observed sequence of a metric,
x[n], composed of N samples (see Figure 7). Each sample corresponds to a measurement period of
a T time duration, e.g., one hour. The sequence x[n] is therefore associated with a time interval of
length N × T, e.g., 10 days, 48 h, etc. The system can be applied to the metrics in an online manner
(i.e., to continuously received metrics) or offline (i.e., to previously recorded series).

Although x[n] can be used as the only input for the detection system, this means, without the
use of the definition of specific thresholds, other inputs might be available, as shown in Figure 6.
Human experts or external automatic mechanisms can directly provide data about the characteristics
of the metric as optional inputs for the system. In addition, some information could be obtained from
the metric metadata, which are stored in the operator’s databases, and they describe the characteristics
of the metric (e.g., if it is a weekly or hourly indicator). Otherwise, they would be estimated from the
analysis of the metric itself, as will be described in further sections.

Specifically, the required characteristics of the metrics include:

• The set of pseudoperiods of the metric, W , which includes different values of periodicity
W0, W1..., where it is expected that the values of x[n] follow approximately the values of x[n−W].
The variable W depends on the nature of the monitored cellular network. For instance, the hourly
metric typically follows a daily pattern that generally repeats each day. Additionally, the same
dates in different weeks share common trends, associated with the varying distribution of
workers’ activity through the week (e.g., Sundays have reduced activity). For the hourly metric,
W = {24, 7× 24, 30× 24}. For the set of pseudoperiods, the minor one would be identified as
W0 ∈ N, e.g., W0 = 24 for the hourly metric. The value W0 can be derived from either the metric
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metadata or the automatic analysis of the metric (e.g., calculating the FFT of the available metric
samples and obtaining the frequency component with higher energy).

• A reference sequence xre f [n] of R samples will be used as an indication of the normal behavior
of the network or as a typical degradation pattern. For the best performance, R >= W0.
Ideally, R must be equal to or larger than any of the W periodicities. Hereafter, it is assumed that
the signal xre f [n] consists of the initial R samples of x[n]. That is, if the first gathered samples of
the metric are normal, the reference consists of those first R samples. If the first samples do not
present a normal behavior, a set of R samples representing the normal state will be placed at the
beginning of x[n].

The definition of the reference sequence is not trivial, as it is difficult to establish a complete set of
what can be considered normal behavior, and this normality will typically change in time and for
different cells due to differences in network use, long-term variations, etc.

Because of this, classical approaches typically imply additional inputs (e.g., expert knowledge)
to define it. Conversely, the proposed system uses the complete input sequence as the reference;
thus, R = N, x[n] = xre f [n]. In this case, the system would be able to identify outliers at different
scales. Outliers refer to those values that are outside of the usual range of the metric. These could
not easily be identified from the original metric x[n] with classical techniques due to its periodic
variabilities and trend behavior. However, the proposed system decomposition allows isolating
each temporal trend, making it possible to identify the outliers at different scales.

…

1

W0

samples

T

N·T time

Observed sequence - x[n]

xref [n]

R N

Figure 7. Metric scheme.

In addition to the previous variables, certain parameters of the decomposition and detection
process could be additionally configured by human experts or other external systems, as will be
described in the following steps; for example, the type of transform, the level of decomposition, etc.
In any case, automatic methods are defined to allow a fully independent execution of the system if
such parameters are not introduced.

The steps and modules of the proposed system are detailed in Figure 8 and described in the
subsections below.

3.2.2. Metric Characterization

This step is dedicated to characterizing the input metric by gathering its main parameters as
introduced in Section 3. In this way, N, the number of samples of the observed sequence, can be
directly obtained by counting the number of samples of x[n]. The number of samples of the reference
sequence, R, can be provided as an input if the labeled data, that is, a set of samples already identified
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as normal, are provided. If not provided, R = N is assumed for the unsupervised application of the
posterior stages of the system.

Finally, the set of periodicities of the metric, W, is calculated. For hourly indicators, W = {24}
can be assumed, and W = {7} for daily ones. These periodicities would be typically automatically
obtained from the metric metadata, such as its name and its associated information in the operator’s
databases. Conversely, if this information is not available, the metric periodicities are estimated based
on the analysis of the metric values by means of the fast Fourier transform of the metric, identifying
the maximums in its spectrogram.
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Figure 8. Steps of the multiresolution detection.

3.2.3. Multiresolution Decomposition

This module performs the multiresolution decomposition of the original metric into different
frequency/scale components. As mentioned, the key challenge of this module is to be able to
process very heterogeneous input metrics in terms of the time scale (e.g., hourly, weekly), duration
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(e.g., from sets of data from a couple of days to several weeks/months), and present trends
(e.g., daily/weekly/monthly patterns, long-term trends of increasing or decreasing use, etc.). To cope
with this, in our proposed framework, the standard DWT (whose principles are described in Section 3.1)
is supported by additional metric adaptation and transform configuration steps. In this way, the main
submodules of this multiresolution decomposition module are the metric adaptation, decomposition
configuration, transform decomposition, and adaptation reversal.

Metric adaptation is applied to improve the results of the decomposition by processing its original
values in three aspects: normalization, shaping, and padding. Firstly, cellular metrics are typically
defined in ranges (e.g., x[n] ∈ [0, ∞) or x[n] ∈ [0, 100] for percentage/ratio metrics). The disparate
ranges between the different metrics can lead to computation and representation problems. To avoid
these, the z-score normalized metric, x′[n], is calculated as:

x′[n] =
x[n]− µx

σx
, (5)

where µx and σx are, respectively, the mean and standard deviation of x[n]. x′[n] is then used as the
input for the next steps.

Secondly, the quality of the transform-based decomposition methods is linked to the similarity of
the analyzed metric in comparison to the used mother wavelet [39]. Therefore, its proper selection
is deemed necessary. For this, both qualitative and quantitative mechanisms are considered useful.
Moreover, shaping procedures to increment this similarity are therefore applied. An example is the
periodical introduction of additional samples to increase the symmetry of the metric.

Thirdly, border effects in the transformation can limit the quality of the decomposition for the
values located at the beginning and the end of the metric series. To avoid them, metrics are padded
at the beginning (padding previous) and at the end (padding posterior), by concatenating a set
of W0 samples at both the beginning and at the end of the metric. These padding sequences are
extracted from xre f [n], as shown in Figure 9. The length Np of the padded metric xp’[n] is therefore
Np = N + (Pprev + Ppost)×W0. This step is especially important for series with a reduced number of
samples (e.g., N <= 48). For those, Pprev = Ppost = 1 can be established by default.

Padding previous       
(Pprev *W samples) 

…
N+(Pprev+Ppost)*W  

samples

Normalized observed 
sequence x’[n]

Padding posterior
(Ppost*W samples)

Normalized padded sequence xp’[n]

Figure 9. Padding process.

The decomposition configuration is executed to identify the parameters to be used in the posterior
transformation as they would differ between different metrics. In particular, the parameters to be
establish are:

• Transform type: By default, the discrete wavelet transform with db7 filters is chosen,
being the one considered the most suitable for the analysis of cellular metrics (as described
in Section 3.1). However, other discrete transforms (e.g., STFT) and kernel functions could be
straightforwardly applied.

• Maximum level for detection (lmax
det ): This refers to the maximum level of the components (provided

by the decomposition) that will be considered for the detection subsystem.
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For the particular case of DWT, given the relation between the coefficient levels and the
possible period of the component (see Equation (6)), the maximum level of the decomposition is
estimated as:

lmax
det = log2( f loor(min(

Np

F− 1
,

R
2×minTREF

))), (6)

which is the minimum between two limits rounded down to the nearest integer ( f loor function).
The limit Np/(F− 1) represents the maximum level of downsampling steps that can be applied
to xp′[n] so that the output sequence has at least the same number of samples as the filter impulse
response, denoted as F (where F− 1 is the order of the filter). For example, F = 14 for “db7”.

The limit R/(2×minTREF) indicates the maximum decomposition level where the reference
sequence would contain at least minTREF times the number of samples of its temporal period
(see Equation (3)). This guarantees the statistical significance for the estimation of normal values
during the detection phase (as at least minTREF periods of the higher-level component would
be considered).

• Decomposition level (L): This is the highest level of the generated components for a discrete
decomposition. It must be satisfied that L >= lmax

det . The decomposition L can be superior to
lmax
det for visualization reasons to provide further information of the metric behavior to a possible

human operator or other systems. Furthermore, the components of levels higher than lmax
det can be

required for inter-component compensations, as is detailed in Section 3.2.4.

Transform-based decomposition is then implemented via the DWT of the metric adaptation
block output, xp′[n], and considering the configuration parameters defined in the decomposition
configuration. Here, the set of the different detail level components dp′[n] represents the input for
the next submodules. For each individual component dp′l [n], l indicates its level. These can also
be accompanied by the calculation of the approximate components ap′l [n] (where l is their specific
level) as described in Section 3.1. Typically, the approximate components are not required for the
detection process. Each component reflects the metric behavior for a different frequency band, as
shown in Figure 4 and defined by Equation (3) in Section 3.1. The frequency band of each component
is expressed in terms of their temporal period range in the number of samples: dp′l period ∈ [2l , 2l+1]

samples and ap′l period ∈ [2l+1, ∞] samples.
Adaptation reversion procedures are then applied to revert the normalization/shaping/padding

applied at the beginning of the multiresolution decomposition block. The resulting dp[n] components
are unpadded, extracting the Pprev ×W0 previous and Ppost ×W0 posterior samples to obtain the
final components dp[n] = {dl [n], ∀l ∈ [1, L]}. Each of the resulting dl [n] components has a length of
N samples, where each n sample of the original x[n] metric has a related value in each reconstructed
component. In this way, a set of the samples of reference dre f

l [n] can be defined as the values that
coincide with the samples of xre f [n].

3.2.4. Multiresolution Degradation Detection

Once the different components have been extracted, the system implements the detection based
on those components. Here, the proposed framework is not limited to any particular algorithm.
However, complex mechanisms, such as neural networks, are computationally costly and usually
imply strict learning requirements. Instead, an algorithm based on the identification of metric abnormal
values (outliers) in the different components is proposed. A set of sequential steps is designed for the
detection process: inter-component compensation, degradation scoring, and detection output.

Inter-component compensation is a block defined to cope with the fact that in the decomposition
of long metric series (e.g., N > 7 ×W0), it has been observed how some high-level components
present relatively short “bursts” of high value, which minimize the changes corresponding to
other levels/frequencies. To compensate this, for each particular component dl [n] and sample n,
a “compensated” component d̂l [n] of level l is calculated following Equation (7):
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d̂l [n] = dl [n]−
min(L,l+nup)

∑
ρ=l+1

(
dre f

ρ (eq[n])− dρ[n]
)
−

l−1

∑
ς=max(1,l−nlw)

(
dre f

ς (eq[n]− dς[n]
)

, (7)

where dre f
ρ (eq[n])) represents the average of the reference samples of a specific higher component dρ

(where ρ > l) in the equivalent samples of other periods, calculated as:

eq[n] = {j ∈ [1, R]|mod(j, W0) = mod(n, W0) ∧ n 6= j} (8)

Equivalently, dre f
ς (eq[n]) represents the average of the reference samples of a lower component dς,

where ς < l. The variables nup and nlw indicate, respectively, the number of upper and lower levels
used in the compensation. From the performed analyses, short series in terms of their periodicity
(typically those with N <= 7×W) do not require inter-component compensation. When applying
this compensation process, the condition L >= lmax

det + nup shall be satisfied to have the required
components. Therefore, by default, L = lmax

det + nup.
Degradation scoring is then used to generate an anomaly indicator/score for each component.

These scores represent the level of anomaly at each instant and decomposition level. The method
proposed to calculate them is based on the statistical analysis of the components, supporting automatic
applications of the framework in line with the statistical thresholding methods identified in
Section 2 [3,15,17]. Here, to show the capabilities of the approach, the very simple technique based
on categorizing as anomalous those samples that diverge from the mean by a number of standard
deviations is used [40].

In this way, the mean and standard deviation of each reference component are calculated
as follows:

µ(d̂ re f
l ) =

1
R

R

∑
n=1

d̂ re f
l [n], (9)

σ(d̂ re f
l ) =

√√√√ 1
R

R

∑
n=1

(
d̂ re f

l [n]− µ(d̂ re f
l

)2
(10)

From these, for each level l, the lower thl
lw and upper thl

up normality thresholds can be calculated
following the expressions:

thl
lw = µ(d̂ re f

l )− Tol × σ(d̂ re f
l ) (11)

thl
up = µ(d̂ re f

l ) + Tol × σ(d̂ re f
l ), (12)

where the tolerance, Tol, tunes the strictness of the threshold, being the adopted solution by which
values beyond three times the standard deviation away from the mean are considered degraded.

This configuration can also be used when no reference sequence is provided. In that case,
the totality of the metric is used for the generation of the thresholds considering d̂ re f

l = d̂l .
Based on these thresholds, a direct way to analyze the level of the degradation of a metric is by

calculating the proposed degradation score per level, DSl [n], as:

DSl [n] =
d̂l [n]− µ(d̂ re f

l )

Tol × σ(d̂ re f
l )

; (13)

hence, the generated adimensional normalized score is defined in the range (−∞, ∞), where values in
[−1, 1] indicate no degradation (i.e., the thresholds are not crossed) and degradation otherwise.
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Detection output is then the final procedure to identify, from the calculated DSl [n] values,
the abnormal samples and their corresponding levels. The latter can be defined as those whose
absolute value |DSl [n]| is above one. Moreover, knowing the level (l) of the component crossing the
threshold provides information about its frequency range characteristics. A degradation in level l is a
result of an abnormal behavior during one semiperiod of the component, νl . Given the expression for
the period range of each component in Equation (3), the semiperiod range is defined as:

νl ∈ [2l , 2l+1]/2 = [2l−1, 2l ] samples, (14)

indicating the time-behavior of the metric that led to the abnormal value. For example, a degraded
value detected in the component l = 3 of a daily metric would be associated with a degraded trend in
the semiperiod range of 4 to 8 days, which would likely be caused by a week of abnormal behavior.

4. Evaluation

To assess the contribution and capabilities of the proposed system, a set of baseline approaches
was selected. These are described below, indicating the acronym that will be used to identify them in
the posterior evaluation. Moreover, how the level of degradation of each sample is valued for these
methods is defined. Whereas the original references did not provide a standardized degradation score
with values in [−1, 1] indicating no degradation, this kind of score will be adopted for each of them. In
this way, the details of three implemented baseline mechanisms are described below:

• Metric Statistical Threshold (MST): The level of anomaly of each sample metric x[n] is directly
measured by how far it is from its mean values, also considering a tolerance associated with its
standard deviation (three times) [40]. The calculation of the degradation score is here equal to the
one defined in Equation (13), but calculated directly from the metric instead of the components.

DSMST [n] =
x[n]− µ(x[n])
Tol × σ(x[n])

, (15)

where Tol = 3 and the statistics are calculated for the complete input metric x[n].
• Forward Linear Predictor (FLP): Following a similar scheme to the one in [24], a method based on

the forward linear predictor of the 10th order is implemented, representing the predictor-based
approaches discussed in Section 2. The prediction absolute error |e[n]| = |x[n]− xpred[n]| for each
sample is the value used in this type of approach to detect anomalies. The original work [24]
established some formulation in order to distinguish between metrics where the sign of the
degradation is relevant, as well as assuming a zero mean for the error. However, a degradation
score as the one for MST is in terms of the normalized error, this being fully consistent with the
original approach:

DSFLP[n] =
e[n]− µ(|e[n]|)
Tol × σ(|e[n]|) , (16)

where again, Tol = 3, consistent with the values in [24], and the error is calculated for the complete
input metric x[n] (no reference period).

• Degraded Patterns’ Correlation (DPC): The approach in [22], referenced in Section 2, works by
establishing a certain pseudoperiod or set of pseudoperiods of x[n] as reference, e.g., a period of
24 h. Degraded patterns are then generated by adding a negative or positive synthetic pattern
(e.g., a positive-sign impulse or negative-sign impulse) to the reference sequence. This is done
for all possible shifts of the synthetic pattern inside the reference sequence (e.g., the reference
with a positive-sign impulse at n = 0, 1, 2, ...24). The Pearson coefficient r1 is calculated for
all these possible degraded patterns and each pseudoperiod of the remaining of x[n] under
analysis. High values of this correlation r1 might indicate an anomaly of x[n], whereas the level of
correlation r2 between the original reference set (without added patterns) and the pseudoperiod
under analysis is also taken into account for the detection decision. Hence, fully complying with
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the original definitions in [22], the associated degradation score (with values outside [−1, 1] to be
considered degraded) is defined as:

DSDPC[n] = q× (r1− r2) + r1, (17)

with q = 3. For this technique, the score will be calculated for both a positive impulse degradation
pattern (labeled as DPC+) and a negative one (DPC−) [22]. This mechanism requires a reference
sequence, which is one of its main shortcomings in respect to our proposed method.

To evaluate the proposed system in comparison with these baseline methods, a dataset from a
real urban macrocell LTE network (covering a large city) was used following a similar approach to the
one followed in [22]. From this dataset, a set of degraded metrics is identified that follow common
faulty behaviors, which are difficult to identify by classical detection methods. First is the two hourly
metric, with a pronounced daily pattern. The first one presents an impulse-like degradation consisting
of a value lower than the one expected. The second one shows a degradation with a higher value than
the normal. Thirdly, a daily metric presenting multiple types of degradations through multiple weeks
is analyzed.

The detailed characteristics of these cases and their anomalies are provided at the beginning of
the next subsections. In their analysis, all the parameters use the automatic settings indicated in the
description of the system, comparing its results with the ones obtained by the baseline mechanisms in
terms of the capacity to detect the existing anomalies and the closeness of the degradation scores to
generate possible false positives.

4.1. Hourly Metric, Down-Degradation

Firstly, as shown in Figure 10-top, data from an hourly metric, the number (#) of intra-handover
attempts (NUM_HO_ATT_INTRA), is analyzed. As can be observed, this metric is degraded during 1
h in the 34th sample, showing a low number of attempts in comparison with the previous day and
considering the values shown in the hours before and after the affected hour.
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Figure 10. Two-day data of the hourly metric NUM_HO_ATT_INTRA and its decomposition and
detection process following the proposed system.

For the detection, no reference period is selected, which means that the totality of the input
metric is used as the reference: N = R = 48. The decomposition is automatically configured with the
parameters: W = 24, Pprev = Ppost = 1, nup = 0, nlw = 0. This gives lmax

det = 2, and no inter-component
compensation is applied given that N <= 7 × 24. The degraded score values (DSl [n]) of each
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component are shown in Figure 10, bottom. The legend of the figure indicates the component from
which each degradation score was obtained. The associated semiperiod range for each component
level is shown between brackets.

Based on these values, the system detects n = 34 as the point where the degradation score DS1

crosses the detection level. The degraded component is therefore at Level 1, d1. This indicates its
association with a network degradation of duration in its semiperiod range. Following Equation (14),
this means νl ∈ [1, 2] samples (as indicated in the figure legend), which coincides with the faulty
behavior shown by the metric. The detection output is also represented in Figure 10, top and bottom,
where the larger orange square indicates the period detected as degraded and its association with DS1.

In order to compare these results with the proposed baseline mechanisms, the same dataset is
processed with the MST, FLP, and DPC+/DPC− approaches as described at the beginning of the
section. Both FLP and DPC use the first 24 h as training, while MST considers the complete x[n] for the
statistics calculation. The results are represented in Figure 11. The top image shows the original metric
and the one predicted for FLP. The bottom figure represents the degradation scores calculated for each
of the baseline approaches.

For MST, it can be seen how, as the degraded value on n = 34 keeps between the margin of the
distribution of x[n], it is far from being detectable. This was expected as MST does not incorporate
the temporal dimension in any manner. FLP is also not able to identify the failure: multiple samples
provide a similarly high prediction error, making it not possible to define a threshold allowing the
identification only of the unique degradation on n = 34. In fact, with the considered score, a false
positive is detected for n = 32, as the predicted starting increase of traffic following the daily pattern
has a delay of one hour, creating a peak in the error.

For DPC+, unsurprisingly, the mechanism is able to detect the n = 32 degradation, as shown
for the same metric in [22] and considering that the anomaly fits perfectly with a negative sign
impulse. However, in order to achieve this, a reference set has to be established as normal (in this case,
the first 24 h), information that is not always known. Additionally, the synthetic impulse patterns have
to be defined. Moreover, it can be observed how the score values are very close to the threshold for
many other samples, making it prone to possible false positives.
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Figure 11. Two-day data of the hourly metric NUM_HO_ATT_INTRA, its prediction using the baseline
linear filter (top), and its absolute prediction error (bottom). FLP, Forward Linear Predictor; MST,
Metric Statistical Threshold; DPC, Degraded Patterns’ Correlation.

4.2. Hourly Metric, Up-Degradation

The data for this example are represented in Figure 12, top, which shows the hourly metric
NUM_DROPS (number of dropped calls). As observed, the time variability of this metric is high,
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showing a degradation peak (increase in the number of drops) of a magnitude that is considerably
greater than the values in the previous day and the adjacent samples.

For this case, as shown in Figure 12, bottom, the degradation score values (DSl [n]) for n ∈ [25, 48]
show values higher than one only for n = 42. The method allows identifying the degradation for
n = 42. Again, this occurs in the component d1, as it is associated with one unique sample.

Figure 13 presents the results for the baseline methods, where this case is somehow easier than the
previous one to address for them. However, their performance is still far from the one achieved with
our proposed multiresolution mechanism. MST is able to detect the anomaly for n = 42 given that the
value goes quite far (more than three standard deviations) from the mean of x[n]. FLP and DPC use
again the first 24 h as training. For FLP, although in this case, the score allows detecting the degradation,
this would lead to a false positive for n = 43, wh8ch presents an even higher prediction error.

For DPC+, as the failure fits quite well with a positive sign impulse degradation pattern,
the anomaly is identified. However, again, knowledge of the reference part of the metric, as well as
of the type of possible degradation must be available for the process. Moreover, it can be observed
how many values of the score are quite close to the threshold, showing that false positives could easily
appear in the analysis.
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Figure 12. Two-day data of the hourly metric NUM_DROPS and its decomposition and
detection process.
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Figure 13. Two-day data of the hourly metric NUM_DROPS, its prediction using the baseline linear
filter (top), and its absolute prediction error (bottom).
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4.3. Weekly Metric, Multiple-Degradations

This last case presents a long and complex metric set. Here, the daily counter E-UTRAN Radio
Access Bearer (E-RAB) attempts (number of attempts of the user equipment to connect to the network)
of a cell are analyzed for 175 samples (25 weeks, one sample per day). As shown in Figure 14, top,
this metric consists of a large sequence of values showing a strong long-term decreasing trend. It also
shows a periodic behavior with a period of seven samples, associated with the weekly use pattern
variations. These conditions would make impractical most of the common approaches of correlation or
fixed threshold presented in Section 1.

The metric presents degradations of different characteristics and duration, as indicated by the
numbered dashed red squares:

• Degradation 1: n ∈ [4, 10] shows a typical one-week pattern, but of a duration of six samples,
instead of seven.

• Degradation 2: There are anomalous low metric values in n = 41 and n = 42 (part of the week
pattern of n ∈ [38, 45]).

• Degradation 3: A sequence of more than one week n ∈ [128, 136] has an overall out-of-trend
reduction of the metric values. Furthermore, n = 132 and n = 133 show values breaking the
normal weekly pattern.

• Degradation 4: n = 159 and n=160 present degraded values.
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Figure 14. The E-RABattempts daily metric and its decomposition and detection process.

For this case, the configuration parameters are those assigned automatically considering it as
a long metric with no predefined reference set: N = R = 175, W = 7, Pprev = Ppost = 0, nup = 2,
nlw = 1.

The DSl [n] values are shown in Figure 14, bottom. The dashed red squares encompass the points
of detected degradation, also indicated by wider edge line markers. It is observed how, as expected,
Degradation 1 is detected based on the values of the degradation score DS1, marking the lack of one
day from the weekly pattern. Degradations 2 and 4 are correlated with DS1 and DS3 crossing the
detection threshold, showing a degraded character at both weekly and daily levels.

Degradation 3 is detected by DS4 in the segment n ∈ [131, 134], related to the generally low values
of the period n ∈ [128, 136], a complete week. Furthermore, it is observed that, within this abnormal
interval, a superimposed degradation by DS1 can be found in n = 133, which responds to a value that
breaks the general degraded weekly pattern of the period even further.

The results of the baseline approaches can be observed in Figure 15. MST is not able to detect
any anomaly again since the mechanism does not consider the evolution in time and the degradations
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being in the range of the three standard deviations limit. This is an especially complex case for this
kind of approach as the non-stationarity of the metric due to its long-term trend increases the tolerance
range defined considering a normal standard deviation enormously.

For FLP and DPC, considering the large number of samples of the dataset, three normal weeks
are selected for training (n ∈ [10, 31]). Once trained, FLP does not provide a proper detection of the
degradations as the prediction error presents a repetitive pattern very similar for all weeks, with or
without the presence of anomalies. Just one sample associated with Degradation 2 (see Figure 14) is
detected. DPC- only detects an anomalous sample for Degradation 2 and another one for Degradation 3.
Its score is also close to the detection of two samples associated with Degradation 4. However,
these techniques do not provide any additional information on the nature of the anomaly behavior.
They also require a proper selection of the normal reference period. In particular, for this case,
the reference cannot be obtained just from the beginning of the time-series due to the presence of
Degradation 1.

The analyzed cases show the capabilities of the proposed approach to provide the detection
of network anomalies, as well as additional information on the characteristics of the degradation
in a fully automated manner and for the heterogeneous metrics granularities, length, behavior,
and degradation patterns. These advantages are prominent in comparison with the tested baseline
methods, which required additional human-based configuration without providing a proper detection
of the anomalies and being more prone to false positives.
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Figure 15. Two-day data of the daily metric E-RAB attempts, its prediction using the baseline linear
filter (top), and its absolute prediction error (bottom).

5. Conclusions and Outlook

Covering the lack of previous works on the topic, the present work proposes an application of
transform-based decomposition for the automatic detection of cellular network failures. A complete
framework was developed in order to apply the decomposition in an automatic manner for
heterogeneous cell-level metrics. As hypothesized, the use of transform-based decompositions,
supported by the framework modules dedicated to the transform configuration and metric
characterization and adaptation, allows applying simplified detection methods with improved
detection performance for multiple metrics.

In this way, the provided evaluation shows the capabilities of our approach to overcome the
presence of periodic patterns such as weekly or daily ones and long-term trends identifying the
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degradations of different shape and duration without the need for establishing specific reference
periods or degradation patterns.

Future works are expected to deepen the application of transform-based decomposition for
cellular management. Here, additional mechanisms for anomaly detection classification are expected
to be also benefited by the application of the proposed framework. Moreover, root cause analysis
applications are deemed promising, where the diagnosis systems are expected to be benefited by the
transformation of the input metrics.

6. Patents

The developments of the present work have been partially subject to a patent application [12].
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