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Abstract: This study reports the adsorption capacity of lead Pb2+ and cadmium Cd2+ of biochar
obtained from: peanut shell (BCM), “chonta” pulp (BCH) and corn cob (BZM) calcined at 500, 600 and
700 ◦C, respectively. The optimal adsorbent dose, pH, maximum adsorption capacity and adsorption
kinetics were evaluated. The biochar with the highest Pb2+ and Cd2+ removal capacity is obtained
from the peanut shell (BCM) calcined at 565 ◦C in 45 min. The optimal experimental conditions were:
14 g L−1 (dose of sorbent) and pH between 5 and 7. The sorption experimental data were best fitted
to the Freundlich isotherm model. High removal rates were obtained: 95.96% for Pb2+ and 99.05. for
Cd2+. The BCH and BZM revealed lower efficiency of Pb2+ and Cd2+ removal than BCM biochar.
The results suggest that biochar may be useful for the removal of heavy metals (Pb2+ and Cd2+) from
drinking water.
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1. Introduction

Water pollution by wastewater discharges into rivers or bodies of water by anthropogenic activities
has increased due to population growth [1,2]. Heavy metals in water promote toxicity, and they are
not biodegradable [3,4]. Low concentration of heavy metals has a great impact on human health and
aquatic life. They can cause respiratory problems, weakening of the immune system, damage to the
kidneys or liver, genetic and neurological alterations and death [5]. Lead (Pb2+) and cadmium (Cd2+)
are abundant in nature; however, they are very toxic. Pb2+ and Cd2+ are incorporated into the food
chain in low concentrations by water systems, affecting wildlife and people [6].

In South America, some rivers that supply drinking water to cities contain Pb2+ in high
concentrations. The Rímac River in Lima, Peru, in 2009, registered a concentration of 2.15 mg
L−1 Pb2+ [7]. In 2017, the Rímac river maintained a high Pb2+ concentration (2.064 mg L−1) and also
reported a Cd2+ concentration of 0.038 mg L−1 [8]. In Ecuador, some rivers contain heavy metals
from mining [9]. The Puyango river, located between Loja and El Oro provinces at southern Ecuador,
reported an average content of 0.77 mg L−1 of Pb2+. However, the water from Puyango river is used
for agricultural application and human consumption by northern Peru.
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There are some technologies for heavy metal removal from water, such as chemical precipitation,
ion exchange, electrochemical treatment, membrane technologies, reverse osmosis, electrodialysis,
nanofiltration, coagulation and adsorption [10–15]. Adsorption is an efficient, simple and low cost
technology for heavy metal removal from water [16,17]. A low cost, renewable and high heavy metal
sorption capacity characterizes an efficient sorbent [18]. The activated carbon is efficient for heavy metal
adsorption; however, it is expensive and unprofitable for water treatment. So, the use of agricultural
by-products as a bioadsorbent-type biochar has become attractive for some researchers [19,20].

Biochar from vegetal sources is used for carbon sequestration due to its stability and
physicochemical properties [21]. The biochar properties depend mainly on the source raw material and
the calcination temperature. Biochar contains mineral and carbon fractions. The formation of aromatic
structures and oxygenated functional groups (Oxygen Functional Groups, OFG) are controlled by the
calcination temperature [22]. Biochar is also an effective sorbent for nutrient removal from water due
to the high specific surface, porous structure and high cation and anion exchange capacity [23].

The aim of this study is to use the agricultural by-products: peanut shell, “chonta” pulp and corn
cob, to transform them into biochar for Pb2+ and Cd2+ removal from water. The peanut shell, “chonta”
pulp and corn cob were selected because they are agricultural residues that are found in abundance in
the location. Not much information has been found about previous studies using “chonta” pulp for
biochar obtention and adsorption of heavy metals. The objectives of the present study are: (i) determine
the optimal calcination conditions of the agricultural by-products for biochar obtention and (ii) evaluate
the efficiency of the biochar for Pb2+ and Cd2+ removal by batch experiments.

2. Materials and Methods

2.1. Raw Materials Collection

The agricultural by-products: peanut shells, “chonta” pulp and corn cob. The “chonta” (Bactris
gasipaes) belongs to the Araceae family. The “chonta” grows in the tropical and subtropical regions of
the American continent [24,25]. “Chonta” is fruit which is part of the nutritional diet of the indigenous
tribes from the Amazon. The peanut (Arachis hypogaea) is a legume of the Fabaceae family which is
originally from South America [26]. The corn (Zea Mays) belongs to the Graminea family [27]. The raw
material was acquired in the southern region of Ecuador. The peanut shell and the corn cob were
collected at Loja province (3◦52′23′′ S–79◦38′27′′ W). The “chonta” fruit was obtained from Ecuadorian
Amazon at Zamora Chinchipe province (4◦4.011′ S–78◦57.293′ W).

2.2. Calcination of Biomass

The “chonta” pulp was separated from the walnut using a 1.5 kg mortar. The peanut shell and
the corn cob were processed in situ from the harvesting tasks. The raw materials were washed with
deionized water to remove impurities. After, raw materials were dried at 105 ◦C for 24 h [28,29].

The optimal calcination temperature and time were determined with a thermogravimetric analysis.
A mass (10 g) of each biomass was calcinated from 30 ◦C to 800 ◦C at 10 ◦C min−1 rate [30–32].
The carbon content and yield were evaluated for the obtained biochar. The biomass was calcinated
until 500 ◦C maintaining it at a constant during the 30 min [33–35]. Furthermore, the calcination was
evaluated during 45 and 60 min until 600 and 700 ◦C, respectively [36].

After calcination, biochar was triturated pass through a mechanical sieve equipment (Retsch
AS200). There was obtained biochar sizes in the range of 4.76 mm to 2 mm, sieve ASTM No. 4 and
ASTM No. 10, respectively. The biochar particles were washed with deionized distilled water to
remove impurities and ash [29,37], finally biochar were dried at 105 ◦C during 60 min [28,38].

2.3. Biochar Characterization

The moisture content, volatile matter, ash and fixed carbon were determined, according to the
ASTM D3174-12 (Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal)
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standard [34,39]. The yield was determined by weight mass difference between the biomass and
the biochar obtained after calcination [40]. The moisture content was determined by drying 1 g of
biochar at 105 ◦C for 180 min, then the sample was placed in a desiccator until the final weight was
registered [41].

The morphology and composition of the biochar were studied in a Scanning Electron Microscopy
coupled to the Energy Dispersive Spectroscopy system.

To biochar specific surface was determined by the nitrogen gas adsorption method. An automatic
adsorption analyzer (Micrometrics) was used. Trials were performed with three replicates and average
values are reported.

The ash content was determined using 0.10 g of dry biochar. The sample was introduced into
a muffle preheated at 650 ◦C between 3 h and 16 h. The calcination was completed when constant
weight was obtained [42]. The volatile material was determined by weighing 1 g of biochar, which is
preheated in a muffle at 950 ◦C for 7 min. Finally, the biochar weight correspond to the non-volatile
compounds [43]. The moisture, volatile material, ash and fixed carbon of biochar is equal to 100% of
the carbon composition. The fixed carbon was determined by mass balance from 100% of the carbon
composition, the percentage of moisture, ash and volatile material [39].

The weight: volume ratio as the apparent density was determined according to ASTM D2854 - 09
(Standard Test Method for Apparent Density of Activated Carbon). An electro vibrator was used with
a uniform flow range of 0.75 cm3 s−1 to 1 cm3 s−1, to improve the density results [44].

Finally, the use of a Hirox KH 8700 digital microscope and Labscope software, the pore size on the
grain surface was measured.

2.4. Evaluation of Pb2+ and Cd2+ Removal from Aqueous Solution

A nomenclature was used to identify each biochar obtained from: peanut shell (BCM), “chonta”
(BCH) and corn cob (BZM). The adsorption capacity was determined using Equation (1) [32].

qe =
(Co − Ce)

m
×W (1)

where qe (mg g−1) is the adsorption capacity; Co (mg L−1) is the initial concentration; Ce. (mg L−1) is
the equilibrium concentration; W (L) is the volume of Pb2+ or Cd2+ aqueous solution and m (g) is the
sorbent mass. The removal percentage (%Removal) were determined by Equation (2) [32].

%Removal =
(Co− Ce)

Co
× 100 (2)

2.4.1. Effect of pH

The adsorption capacity and removal percentage were evaluated at pH 3, 5, 7 and 9 at room
temperature of 18 ◦C. Synthetic solutions containing 2 mg L−1 Pb2+ and 2 mg L−1 Cd2+ at were
prepared from Pb (NO3)2 (purity 99.5%, MERCK) and using a standard of 1000 mg L−1 Cd2+, SIGMA –
ALDRICH, respectively. The pH of the solution was adjusted using NH4OH at 0.1 mol L-1 or HCl
0.1 M [45]. The amount of biochar and adsorbate was the same for each pH value under evaluation.
The flask was stirred for 45 min at 140 rpm. The equilibrated solution were filtered on a 45 µm filter
paper and HNO3 was added (0.1 mol L−1) to avoid the precipitation of metal ions [28]. An inductively
coupled plasma optical emission spectrometer (Perkin Elmer OPTIMA 8000) was used for determining
the metals’ concentration. The adsorption capacity and removal percentage were determined.

2.4.2. Effect of Adsorbent Dose

The amount of biochar was evaluated using concentrations of 8, 10, 12, 14 and 16 g L−1 of adsorbent
at room temperature at 18 ◦C. 100 mL of solution containing 2 mg L−1 Pb2+ and 2 mg L−1 Cd2+ at pH 5.
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The flask was stirred for 45 min at 140 rpm. The equilibrated solution was filtered on a 45 µm filter
paper. The equilibrium concentration Ce was determined.

2.4.3. Adsorption Isotherms

The initial concentrations of the synthetic Pb2+ and Cd2+ solutions were: 1, 2, 3 and 4 mg L−1.
50 mL of synthetic solutions using 2 mg L−1 of sorbent were equilibrated during 45 min at 18 ◦C.
The equilibrated solution was filtered on a 45 µm filter paper. The equilibrium concentration

Ce was determined. The experimental data were fitted to de Langmuir and Freundlich isotherm
models [28,44]. Langmuir model describe the chemical or monolayer adsorption and Freundlich will
indicate whether it is a physical or multilayer adsorption. The Langmuir isotherm model is represented
by Equation (3) [46].

qe=
qmax KL Ce

1 + KLCe
(3)

where is maximum adsorption capacity required for the formation of monolayer; KL (L mg−1) is a
Langmuir constant related to the affinity constant between the adsorbent and an adsorbate.

The Freundlich equation model is represented by Equation (4) [47].

qe= KFCe
n (4)

where KF (L mg−1) is the Freundlich adsorption constant, which characterizes the strength of adsorption;
n (dimensionless) is a Freundlich intensity parameter.

2.4.4. Adsorption Kinetic

The adsorption kinetics of a 2 mg L−1 Pb2+ and 2 mg L−1 Cd2+ solution was performed at 5 ◦C
and 18 ◦C. In total, 100 mL of a 2 mg L−1 Pb2+ and Cd2+ at 5 were equilibrated with biochar at 140 rpm.
A 5 mL aliquot was taken from the solution during equilibration at 5, 15, 30, 45 and 60 min [37].
The equilibrated solution was filtered on a 45 µm filter paper. The equilibrium concentration Ce was
determined. The experimental data were fitted to the pseudo-first order [48] and the pseudo-second
order [49] kinetic model. The adsorption of metal ions as a function of time was determined by
Equation (5) [37].

qt =
W(C o−Ct)

m
(5)

where qt (mg g−1) is the sorption capacity at t time; Ct (mg L−1) is the concentration of an adsorbate
after a contact time t (min). The Lagergren pseudo-first order model is represented by Equation (6) [48].

dq

dt
= K1

(
qe− qt

)
→ qt = qe

(
1 + e−K1t

)
(6)

where K1 (min−1) is the first order rate constant; t (min) is the contact time. The Ho Model or
pseudo-second order is denoted by Equation (7) [49].

dq

dt
= K2

(
qe− qt

)2
(7)

Integrating the previous equation for the conditions of qt = 0 for t = 0, Equation (8) [50].

qt =

 t
1

K2qe
2 + t

qe

 (8)
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where K2 (g mg−1 min−1) is the second order constant. The adsorption rate is denoted by Equation (9).

v =
qe

te
(9)

where v (mg g−1 min−1) is the adsorption rate; te (min) is the equilibrium time determined by the kinetic.

3. Results

3.1. Calcination Conditions

The curves for the fixed carbon content at 30, 45 and 60 min are presented by Figure 1. They are
identified as FC (30 min), FC (45 min) and FC (60 min). The yield is identified as Y (30 min), Y (45 min)
and Y (60 min), respectively.

Figure 1. Yield vs. fixed carbon of biochar: (a) peanut shell (BCM), (b) “chonta” pulp (BCH) and
(c) corn cob (BZM).

The intersection of Y and FC curves is the optimal carbonization point. For the BCM, the optimal
calcination point was determined at 565 ◦C for 45 min. The BCH is optimally calcinated at 630 ◦C for
45 min, and the BZM is optimally calcined at the 600 ◦ C for 45 min. At 30 and 60 min, biochar present
high content of FC and a low Y.

These results have been compared with other studies developed with biochar obtained from
organic material. N’goran et al. [37] calcined cashew shells at 500 ◦C for 240 min and walnut shells at
450 ◦C for 120 min in an electric oven. Colpas et Al. [39] calcined the corn cob at 400 ◦C for 60 min in
a multipurpose furnace. Castellar [51] reports calcination temperatures of 530 ◦C for 30 min for the
cassava shell, carried out in a muffle furnace. Therefore, the carbonization temperature obtained for
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the organic materials used is in the order of the values reported in similar studies, considering it ideal
for the transformation of these biomass.

3.2. Biochar Characterization

The result of biochar characterization is presented in Table 1. Peanut shell biochar obtained at
565 ◦C, “chonta” pulp biochar obtained at 630 ◦C and corn cob biochar obtained at 600 ◦C. The moisture
content of biochar is according to the recommended values suggested according to the ASTM D2867-04,
between 2%–15%.

Table 1. Physicochemical characteristics of biochar.

Parameter Units BCM BCH BZM

Apparent density g cm−3 0.12 0.17 0.11
Moisture content % 6.81 5.98 5.23
Volatile material Mv % 24.49 34.62 19.99
Ash content Cc % 5.85 10.48 4.22
Fixed carbon Cf % 62.85 48.92 70.22
Specific surface m2 g−1 1224 652.8 778.3
Pore size µm 21.11 30.62 28.44
Effective size (D10) mm 1.45 2.28 2.11
Yield Y % 60.16 78.64 61.23

The apparent density of the biochar is in the order of the range established by the ASTM D2854-09
standard, from 0.26–0.65 g cm−3. The apparent density of the biochar obtained is low, so the mass of
these adsorbents should be less in a batch device. This fact can be favorable because fewer particles
increase the porosity and a better contact between the adsorbent’s surface and the adsorbate can occur.
This avoids overlapping of adsorption sites due to large adsorbent masses [44]. The biochars obtained
are in accordance with the AWWA B604-90 (Standard for granular activated carbon) [52]. This Standard
recommends that the particle of the granular carbon for water treatment should have an effective size
between 0.4 to 3.3 mm.

The ASTM D3175-20 (Standard Test Method for Volatile Matter in the Analysis Sample of Coal and
Coke) considers Mv is optimal between 21.25% and 28.84%. ASTM D3175-20 (Standard Test Method
for Volatile Matter in the Analysis Sample of Coal and Coke) establishes a range of 21.25%–28.84% for
Mv. The Mv of BCH is higher than BCM and BZM. A biochar with a low content of volatile material is
not very combustible; the lower the amount of Mv, the higher the fixed carbon content, an aspect that
will favor at the time of adsorption [39,53,54].

The Cc of the biochar are in accordance with the ASTM D-2866-11 (Standard Test Method for
Total Ash Content of Activated Carbon) standard establishes a range from 3% to 15%. A high ash
content indicates that the biochar is fragile to carbonize but the low Cf content obtained affect its
specific surface the adsorption capacity [55,56]. The higher specific surface the better the adsorption
capacity. The specific surface of the BCM was higher and had a higher adsorption capacity than the
other materials tested. The specific surface of the biochar was compared with other similar materials
(Table 2).
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Table 2. Specific surface area of various activated carbons and biochar.

Sorbent S (m2 g−1) Reference

Ripened Tea Leaf (MTL) 1313 [56]
Macore fruit 229.5 [57]

Palm oil mill effluent 59.19 [58]
Coconut shell 1135 [59]
Cashew shell 395.0 [60]
Cashew shell 984.0 [61]

Shea shell 768 [37]
Cashew shell 512 [37]

Peanut shell (BCM) 1224 This study
“Chonta” pulp (BCH) 652 This study

Corn cob (BZM) 778 This study

3.3. Sorbent Chemical Characteristics

The morphology and chemical compositions of the adsorbents were analyzed using a scanning
electron microscope (SEM) coupled Energy Dispersive X-ray spectroscopy (EDX) (EDX) (Figure 2a–c).
BZM contains mainly silicon, the whitish coloration can be leathery materials from the plant that
generated the carbon. BCH contains a lot of calcium sulphate, gypsum, some phosphorus (typical of
organic materials) and a little silicon.

Figure 2. Cont.
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Figure 2. SEM photographs and EDS spectra of adsorbents, (a) BCM ≈ 565 ◦C, (b) BCH ≈ 630 ◦C, (c)
BZM ≈ 605 ◦C.

3.4. Adsorption as A Function of pH

The pH is determinant for the adsorption of heavy metals for biochar, since it shows that the
adsorption occurs through electrostatic attraction. In Figure 3 is represented the adsorption as a
function of pH for the three biochars. The Pb2+ adsorption increases with the increase of pH from 3 to
5. However, when pH increase from 7 to 9 the Pb2+ adsorption decrease. The Cd2+ removal percentage
is the same for the pH range evaluated. The optimal pH for the removal of Pb2+ and Cd2+ is performed
the best at pH 5.

Figure 3. Percentage of (a) Pb2+ and (b) Cd2+ adsorption as a function of pH.

The adsorption decrease below pH 5 because an excess of hydrogen ions is generated, producing
a competition with the positively charged metal ions towards the same places on the adsorbent
surface [37]. Removal also decreases when pH is higher than 7, the pH increase promotes the formation
of anionic hydroxide complexes that decrease the concentrations of free Pb2+ ions [62]. The occurrence
of the hydrolysis reactions is represented by Equations (10)–(12):

[Pb 2+ + OH− → Pb(OH)+, — pka = 6.48] (10)

[Pb(OH)+ + OH− → Pb(OH)2, — pka = 11.16] (11)

[Pb(OH) 2 + OH− → Pb(OH)3− , — pka = 14.16] (12)

Kumar et al. [61] and Coelho et al. [63] determine pH 5 is the best for lead and cadmium removal
using activated carbon obtained from cashew nuts in India and Brazil, respectively. The behavior of
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the biochar evaluated in this study represents an excellent possibility for drinking water treatment
with typical pH values between 6.5 and 7.5.

3.5. Effect of Adsorbent Dose

The BCM using 14 g L−1 allowed 86% of Pb2+ removal, but BCH and BZM with 12 g L−1 removes
a maximum of 74% and 85%, respectively (Figure 4). There are no differences between the BCM
doses used for Cd2+ removal. The BCH and BZM using 14g L−1 obtained over 90% of Cd2+ removal.
The percentage of removal increases with mass biochar increase. The greater the biochar mass the
more available spaces for adsorption. However, when the equilibrium is reached, no matter how much
biochar is used, the removal percentage does not increase. The aggregation or partial agglomeration of
the adsorbent particles in higher concentration promotes this behavior [6,64,65].

Figure 4. Removal percentage as a function of the biochar dose: (a) Pb2+ and (b) Cd2+.

N’goran et al. [37] reported the optimum Pb2+ removal using activated carbon from cashews and
shea nuts using 12 g L−1. Coelho et al. [63] reported experimental essays using 12 g L−1 for activated
carbon prepared from Brazilian cashew shell.

3.6. Adsorption Kinetics

The equilibrium sorption for Pb2+ and Cd2+ on the biochar was reached within 45 min at which
was obtained the highest removal value (Figure 5).

Figure 5. Biochar adsorption kinetics: (a) Pb2+ and (b) Cd2+.

BCM developed the higher adsorption rate 0.0029 mg−1 g min−1 which developed the highest
Pb2+ removal. The removal percentage of biochar: 95.96% for BCM, the 87.37% for BCH and 67.77%
for BZM (Table 3). The adsorption capacity depends on the specific surface because the BCM (1224 m2

g−1) is higher than BZM and BCH. The BCM has a great surface to retain Pb2+ and Cd2+ from water.
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Table 3. Comparison of the adsorption results obtained for the biochar.

Element Biochar
Co Ce Removal qe Time Velocity

(mg L−1) (mg L−1) (%) (mg g −1) (min) (mg g−1 min−1)

Pb2+
BCM 1.90 0.077 95.96 0.130 45 0.00289
BCH 1.90 0.240 87.37 0.119 45 0.00263
BZM 1.90 0.612 67.77 0.092 45 0.00204

Cd2+
BCM 1.90 0.018 99.05 0.134 45 0.00299
BCH 1.90 0.109 94.25 0.128 45 0.00284
BZM 1.90 0.150 92.12 0.125 45 0.00278

The kinetic parameters of biochar evaluated in this study are summary in Table 4. So, the adsorption
mechanism of Pb2+ and Cd2+ removal on biochar can be determined [65].

Table 4. Parameters of mathematical kinetic models.

Element Biochar
First Order Second Order

qe (mg g−1) K1 (h−1) R2 qe (mg g−1) K2 (g mg−1 h−1) R2

Pb2+
BCM 0.019 6.094 0.658 0.130 2676.817 0.99995
BCH 0.031 6.714 0.827 0.119 1334.948 0.99996
BZM 0.099 8.199 0.836 0.096 187.224 0.99252

Cd2+
BCM 0.028 6.247 0.754 0.142 1604.717 0.99998
BCH 0.077 8.409 0.909 0.138 418.102 0.99999
BZM 0.025 3.560 0.753 0.132 2879.693 0.99999

Taking into account the R2 value near to 1 the experimental sorption data are best fitted to
the pseudo-second order kinetic model. So, Pb2+ and Cd2+ removal on biochar is performed by
chemisorption. Furthermore, Pb2+ and Cd2+ removal by biochar is governed by physisorption due to
the electrostatic attraction previously discussed as an effect of pH [66].

Chemical sorption reactions occur through chemical bonds at specific functional groups which
are irreversible. Previous studies attributed the Pb2+ and Cd2+ removal is performed by ion exchange
reactions. The three biochar of this study contain some exchangeable metals on the surface such
as: Na+, K+, Ca2+ and Mg2+ that allow the exchange. The adsorption of lead and cadmium by ion
exchange reaction with those exchangeable ions can be described by Equation (13).

B-Na+/K+/Ca2+/Mg2+ + Pb2+/Cd2+
→ B-Pb2+/Cd2+ + Na+/K+/Ca2+/Mg2+ (13)

Furthermore, some complexation reactions occurred between Pb2+ and Cd2+ and the functional
groups existing on the surfaces of coals. Biochar contains some organic groups containing oxygen that
promote the Pb2+ and Cd2+ sorption on the biochar [67]. B-COOH and B-OH (B: biochar) represents
the functional surface groups of BCM, BCH and BZM. The Pb2+ and Cd2+ adsorption is expected to
occur by complexation reactions described in Equations (14) and (15) [29].

2 B-COOH+
Pb2+

Cd2+ →
2 B-COOPb2++2H∓

2 B-COOCd2++2H+ (14)

2 B-OH+
Pb2+

Cd2+ →
2 B-OPb2++2H+

2 B-OCd2++2H+ (15)

Furthermore, it has been found in previous reports that some precipitation reactions may occur
due to the components of biochar [28,68]. However, in this study we do not have evidence of this
fact. The low Pb2+ and Cd2+ concentrations used for the study make it improbable to detect them by
SEM-EDX characterization.
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3.7. Adsorption Isotherms

The Pb2+ and Cd2+ removal by biochar increase with the increase of initial metal concentration.
Taking into account the R2, the experimental sorption data of both Pb2+ and Cd2+ on biochar are best
fitted to Freundlich isotherm. The highest Pb2+ and Cd2+ sorption on biochar is obtained by BCM
(Table 5).

Table 5. Fit to mathematical models of isotherms.

Element Biochar
Langmuir Freundlich

qMAX (mg g−1) KL (L mg−1) R2 KF (L mg−1) n R2

Pb2+
BCM 0.271 11.58 0.940 2.528 0.34 0.967
BCH 0.245 4.34 0.763 0.532 0.76 0.999
BZM 0.205 4.27 0.996 0.453 0.37 0.920

Cd2+
BCM 1.038 1.67 0.189 0.816 0.86 0.839
BCH 0.655 1.08 0.881 0.675 0.79 0.997
BZM 0.857 0.37 0.534 0.0.528 0.84 0.989

Accordingly, to Freundlich isotherm model the adsorption is performed by physical mechanisms
(Figures 6 and 7). Physical adsorption denotes the existence of an energetically heterogeneous surface.
The occurrence of Van der Waals forces and the metal adhesion to the porosity is determinant for
adsorption. The Langmuir isotherm establishes chemisorption as the basis mechanism. Chemisorption
takes place in a homogeneous layer, indicating finite sites on the adsorbent’s surface specific for the
adsorbate [13,28]. As it was reported before, Pb2+ and Cd2+ adsorption on the biochar occurred by
specific ion exchange and complexation reactions represented by Equations (13)–(15).
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Figure 6. Adsorption Pb2+ isotherms: (a) BCM, (b) BCH and (c) BZM.
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Figure 7. Adsorption Cd2+ isotherms: (a) BCM, (b) BCH and (c) BZM.

The results of this study suggest the simultaneous occurrence of physical and chemical adsorption
for the Pb2+ and Cd2+ removal. Physisorption, is the mechanism that governed the Pb2+ and Cd2+

caption on biochar.

4. Conclusions

The yield of BCH ≈ 78.64% > CZM ≈ 61.23% > BCM ≈ 60.16%. The moisture content,
the effective particle size, ash content and volatile material of biochar is in accordance with the
standards for granularly activated carbon. BCM has the higher Pb2+ and Cd2+ adsorption capacity.
The physicochemical characteristics of BCM are responsible for the high adsorption behavior. BCM
has the highest specific surface area of biochar: BCM ≈ 1224 m2 g−1 > BZM ≈ 778 m2 g−1 > BCH ≈ 652
m2 g−1. The Pb2+ adsorption capacities of biochar were: BCM ≈ 2.528 mg g−1 > BCH ≈ 0.532 mg g−1 >

BZM ≈ 0.453 mg g−1. The Cd2+ adsorption capacities of biochar were: BCM ≈ 0.314 mg g−1 > BZM ≈
0.155 mg g−1 > BCH ≈ 0.049 mg g−1. The experimental data were best fitted to the Freundlich isotherm
model and the pseudo-second order kinetic model. The adsorption is denoted by physical mechanisms:
Van der Waals forces and the biochar porosity. The adsorption on biochar is also promoted by means
of chemical reactions, complexation and ion exchange.

The biochar evaluated has great potential to be used in the treatment of water, allowing Pb2+

and Cd2+ removal from drinking water. The low cost and availability of the raw material makes it an
interesting proposal for water treatment. Furthermore, adsorption is a low-cost and easy-to-implement
technology in treatment systems for drinking water. Although the energy requirement to obtain the
biochar is important, the social benefit is also very relevant for developing countries, because with this
application we are able to avoid serious diseases in children and adults, which is of evident public
health interest. Furthermore, on the other hand, a sustainable use of waste is achieved, that otherwise
would have to be managed, incurring significant costs.
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