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Abstract: This paper presents the results of the comparison between a proposed Fourth Order Elastic
Constants (FOECs) nonlinear model defined in the sense of Landau’s theory, and the two most
contrasted hyperelastic models in the literature, Mooney–Rivlin, and Ogden models. A mechanical
testing protocol is developed to investigate the large-strain response of ex vivo cervical tissue samples
in uniaxial tension in its two principal anatomical locations, the epithelial and connective layers.
The final aim of this work is to compare the reconstructed shear modulus of the epithelial and
connective layers of cervical tissue. According to the obtained results, the nonlinear parameter
A from the proposed FOEC model could be an important biomarker in cervical tissue diagnosis.
In addition, the calculated shear modulus depended on the anatomical location of the cervical tissue
(µepithelial = 1.29 ± 0.15 MPa, and µconnective = 3.60 ± 0.63 MPa) .

Keywords: hyperelasticity; uniaxial tensile test; cervical tissue; nonlinearity; hyperelastic models

1. Introduction

Modeling of soft tissue implies new perspectives that carry several clinical applications. It could
be used, for example, in tissue engineering [1–3], for finite element modeling [4–7], to analyze virtual
reality in clinical practice [8,9] and for surgery planning [10,11]. To simulate those applications, the
theory of linear elasticity has been employed to understand the results of mechanical tests on soft
tissues [12,13]. However, surgical procedures lead to consider large displacements and linear elasticity
is a simplification when considering small strains. There is a need among researchers to use simplified
models which can represent the nonlinear behavior of soft tissues. The simplicity of the proposed
model in conjunction with a good correlation with the experimental data can be presented as an
accurate and simple model in computational solid mechanics field.

Although the nature of soft tissue behaviour is viscoelastic [14], a simplification of hyperelasticity
allows a reasonable characterization of the mechanical properties, specifically when the loss of strain
energy is small (low loading rates). Veronda and Westmann [15] and Fung [16] were the first works
that used hyperelasticity for soft tissue modeling. The hyperelastic approach postulates the existence
of the strain energy function which relates the displacement of the tissue to the corresponding stress
values [17]. The most common strain energy functions for the modeling of soft tissues are polynomial
forms, such as Mooney–Rivlin and Ogden models. Many authors have modeled the behaviour
of soft tissues such as, porcine spleen, porcine kidney, porcine liver, rat or human brain [18–22].
Regarding cervical tissue, uniaxial tension tests [23–27] and compression [25,28,29] have been studied
in rat tissue and human tissue using load-relaxation protocols. A nonlinear stress–strain response has

Sensors 2020, 20, 4362; doi:10.3390/s20164362 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3196-5935
https://orcid.org/0000-0002-5542-1588
https://orcid.org/0000-0001-9026-3784
https://orcid.org/0000-0002-9239-294X
http://www.mdpi.com/1424-8220/20/16/4362?type=check_update&version=1
http://dx.doi.org/10.3390/s20164362
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 4362 2 of 20

been shown in the tension and compression tests and the response of the tissue was noticeably stiffer
in tension than in compression. It was observed that tissue from pregnant patients was one to two
orders of magnitude more compliant than tissue from nonpregnant patients [25,29]. In a work carried
out by Yoshida et al. [27], load relaxation ring tests were performed on pregnant and nonpregnant
rat cervices. The pregnant tissue showed a very large stress-relaxation compared to the nonpregnant
tissue. Myers et al. observed that the cervix stiffness changes along its length in the uniaxial tensile
test, where the external os had a stiffer response than the internal os [25]. The relationship between
stiffness and gestational age was studied by Poellmann et al. and Jayyosi et al. [26,30]. The works
concluded that stiffness decreased as gestational age increased. In the works mentioned above were
uniaxial, compression and traction tests were performed, the mechanical properties of the tissues have
been obtained. However, in those works the nonlinear elastic properties of ex vivo human cervical
tissue, using the Fourth Order Elastic Constants (FOECs), Ogden, and Mooney-Rivlin models have not
been obtained through uniaxial tensile tests yet.

Soft tissues are composed of several layers; each one of these layers has different compositions,
for instance, cervical tissues have an epithelial outer layer and a connective layer. The connective
layer is composed by an extracellular matrix (ECM) that ensures the strength and integrity of the
cervix, resisting shear deformation, through a fibrous scaffold [31]. The main component of the ECM is
fibrillar collagen, which determines a cross-linked network interlaced with the elastin protein, enclosed
by a ground substance of proteoglycans and glycosaminoglycans [32–34]. Researchers have identified
three zones of structured collagen in the connective layer: the innermost and outermost rings of
stroma contain collagen fibers preferentially aligned in the longitudinal direction, and the middle layer
contains collagen fibers preferentially aligned in the circumferential direction [35,36]. Regarding the
collagen content, the middle zone had higher levels of collagen content when compared with the
inner and the outer zones [36]. According to the mechanical studies on soft tissues, the connective
layer is often considered as the most important from a mechanical point of view [37–39]. However,
other studies, based on Torsional Wave Elastography, consider the epithelial layer as a key apart from
the connective one [40–42]. The reason is that torsional waves not only propagate in depth but along
the surface before being registered by the receiver. One of the purposes of this work is to study the
differences in stiffness between the epithelial and connective layers of ex vivo human cervical tissue
that comes from the hyperelastic models employed.

The main aim of this work is to propose a new hyperelastic model based on FOEC in the
sense of Landau’s theory. The evaluation of the agreement between classical hyperelasticity theory
and acoustoelasticity theory, in particular third and fourth order elastic constants, in predicting the
mechanical response has potentially high impact. Recent advances in medical imaging techniques for
non-invasive evaluation of rheological behavior of soft tissues provides new perspectives, in particular
for in vivo quantification of nonlinear shear wave-based elastographic biomarkers, which could be
diagnostic predictors of a broad spectrum of labor disorders.

This work has been divided into several sections. First, a brief introduction to the core content
has been presented. Second, a section of materials and methodology details the methods used in this
work. Uniaxial tensile tests of human ex vivo cervical tissues were performed to fit the hyperelastic
models. Third, the results of the comparison between the experimental test and the hyperelastic
models were analyzed.

2. Materials and Methods

2.1. Theory of Hyperelastic Models

This section shows the theoretical relationship between stress and strain for a proposed
hyperelastic model based on the FOEC in the sense of Landau’s theory, Mooney–Rivlin and
Ogden models.
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2.1.1. Proposed Fourth Order Elastic Constants Nonlinear Model

Nonlinear FOECs are defined in the sense of Landau’s theory [43] to establish a strain energy
function, considering the medium incompressible valid for the hyperelastic regime as defined Hamilton
and Destrade [44,45],

W = µI2 +
1
3

AI3 + DI2
2 (1)

where I1 = trE, I2 = trE2 and I3 = trE3 are the classical invariant of deformation defined by
Cemal et al. [46], E is the Green strain tensor, µ is the shear modulus and A and D are the Third
and Fourth Order Elastic Constants of Landau respectively. The Second Piola–Kirchoff stress tensor is
determined by a constitutive law as follows,

S =
∂W
∂E

(2)

where E is the Green–Cauchy strain tensor defined in terms of displacement field as the difference
between actual and initial position respectively, u = x− X. This strain tensor is defined, according to
the large deformation theory, as,

E =
1
2
((∇Xu)T +∇Xu + (∇Xu)T +∇Xu) (3)

Under the hypothesis of a tensile test setup, the initial conditions are described in Figure 1.

1

2

3

u1 u2

u3

Figure 1. (Left): scheme of the uniaxial tensile test. (Right): zoom of a differential element of the sample.

where the displacements are defined in three directions as,

u1 = ax1

u2 = −bx2

u3 = −bx3

(4)

In this case, the Green–Cauchy strain tensor defined in Equation (3) may be described in matrix
form as,

E =

 a + 1
2 a2 0 0

0 −b + 1
2 b2 0

0 0 −b + 1
2 b2

 (5)
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To describe the Second Piola–Kirchoff stress tensor in a nonlinear regime, it is necessary to
determine the invariant I3 in terms of strains.

I3 = E3
11 + E3

22 + E3
33

∂I3

∂E
=

 3E2
11 0 0

0 3E2
22 0

0 0 3E2
33

 (6)

The constitutive law for tensile test case in direction 1 is deduced by the expression,

S11 = 2µa + (µ + A)a2 + (A + 4D)a3 (7)

The relationship between the Cauchy stress tensor and the Second Piola–Kirchoff stress tensor is
defined as,

σ = J−1FSFT (8)

where F is the deformation gradient tensor and J = det(F).
The derivation of Cauchy stress tensor in the context of weakly nonlinear elasticity [47] yields the

constitutive law defined in high order as follows,

σ11 = 2µa + (5µ + A)a2 + (7µ + 3A + 4D)a3 +

(
5
2

µ + 3A + 8D
)

a4 +
5
2
(A + 4D)a5 (9)

In order to compare with the other two hyperelastic models, the aforementioned tensor is
simplified (using µ and A) as follows:

σNL = 2µa + (5µ + A)a2 (10)

where a is defined in Equation (4).

2.1.2. Mooney-Rivlin Model

The Mooney–Rivlin model, originally derived by Mooney in 1940 [48] was formulated in terms of
the Cauchy–Green deformation tensor invariants by Rivlin [49] as:

Ψ =
2

∑
i=1

ci (Ii − 3) (11)

where c1 and c2 are the material parameters, I1 and I2 the first and second strain invariants respectively
and Ψ the strain energy function.

In the case of an uniaxial tension (σ = σ1, σ2 = σ3 = 0) the Cauchy stress as a function of the
strain invariants is

σ = 2
(

λ2 − 1
λ

)(
∂Ψ

∂I1
+

1
λ

∂Ψ

∂I2

)
(12)

where λ = λ1 (λ1 is the principal stretch in 1 direction) and the invariants from the Cauchy–Green
tensor for an incompressible hyperelastic material subjected to a uniaxial tension are defined as [50],

I1 = λ2 +
2
λ

I2 = 2λ +
1

λ2

I3 = 1

(13)
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For the Mooney–Rivlin model, the Cauchy stress obtained employing (12) and using two
parameters (c1 and c2) is,

σ Mooney = 2
(

λ2 − 1
λ

)(
c1 + c2

1
λ

)
(14)

2.1.3. Ogden Model

The strain energy function in the Ogden model, developed in 1972 [51], is described by,

Ψ =
N

∑
r=1

µr

αr

(
λαr

1 + λαr
2 + λαr

3 − 3
)

(15)

where µr (infinitesimal shear modulus) and αr (stiffening parameter) are material constants, and λ1, λ2

and λ3 are the principal stretches. Taking into account that for an incompressible material, λ1 = λ and
λ2 = λ3 = 1/

√
λ [50], Equation (15) is simplified into,

Ψ =
N

∑
i=1

µr

αr

[
λαr + 2

(
1√
λ

)αr

− 3
]

(16)

The Cauchy stress tensor as a function of the principal stretches for an incompressible material is,

σ1 = λ1
∂Ψ

∂λ1
− λ3

∂Ψ

∂λ3
(17)

Finally, using Equation (17), the Cauchy stress using two parameters (µr and αr) is obtained
as follows,

σOgden = µr

(
λαr − λ−αr/2

)
(18)

The shear modulus µ in the Ogden model results from the expression,

µ =
µrαr

2
(19)

2.2. Hysterectomy Specimens

A total of seven hysterectomy specimens from women with benign gynecological conditions were
obtained from Health Campus Hospital in Granada (Table 1). The study met the principles of the
Declaration of Helsinki. Approvals of the Ethical Committee in Human Research of the University of
Granada and Ethical Commission and Health Research of Health Campus Hospital in Granada were
achieved. All women enrolled in the evaluation provided agreement by signing a written consent and
reading the information of the patient report.

Table 1. Obstetric characteristics of the population in the study.

Patient Age Hysterectomy Indication

1 53 Vaginal prolapse
2 67 Subserous myoma
3 59 Vaginal prolapse
4 54 Cervical prolapse
5 50 Cervical prolapse
6 51 Cervical prolapse
7 71 Cervical prolapse
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2.3. Mechanical Tests

All the mechanical tests were performed using the tensile-compression press shown in Figure 2.
The device was equipped with a 500 N force gauge (IMADA ZTA-500N) fixed to a platform that
is operated by three motors with an accuracy of 0.3 µm. The tolerance of the force gauge is 0.1 N.
The cervical tissue was fixed by two Acrylonitrile Butadiene Styrene (ABS) printed gripper jaws,
one was attached to the press and another linked to a fixed support, that prevents the cervical tissue
from undesired movements. According to the literature reviewed in soft tissue uniaxial tensile tests,
the load step was 0.2 mm, and the strain ramp rate used was 1%/s [52]. A rule was used in the same
plane in which the sample was contained for the calculation of deformations. Finally, a conventional
camera (IPEVO Ziggi-HD High Definition USB CDVU-04IP model, 5 Mpix, 1280 × 720 resolution)
was employed to acquire the image sequence at each loading step until the sample breakdown
(Figure 3). The camera was synchronized with a MATLAB®programming environment (Release 2018b,
MathWorks, Natick, MA, USA) at the beginning of the experimental test. The code implemented in
MATLAB®allowed controlling each increment of load through an Arduino microcontroller, at the same
time that recorded at a rate of 1 frame per load increment until the sample breakdown.

Figure 2. Experimental setup comprising a 500 N force gauge, gripper jaws for holding the sample
attached and a conventional camera to register the loading process.

The sample preparation protocol consists of several steps:

1. All the seven cervical tissues were excised from the women and placed in phosphate buffered
saline (PBS) to avoid loss of hydration after surgery. The connective layer was cut below the
epithelial layer, and at a sufficient distance from the cervical canal to ensure that the preferred
direction of the collagen fibers corresponds to the direction of the uniaxial tensile test [29,53].
The samples were tested in the Ultrasonics Laboratory at the University of Granada. Two slices
were cut manually from each cervical sample, one from the epithelial layer and another one from
the connective layer. The epithelial layer was cut carefully to obtain a thickness between 0.5 and
1 mm. The connective layer was obtained below the epithelial layer. All the samples were cut
with the same mold (see Figure 4) to maintain the same geometry, which is necessary to locate
the most unfavorable section.
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2. A random dot pattern was used in the cervix to improve deformation monitoring carried out by
a cross-correlation algorithm (PTVlab software), see Figure 5. For the speckle generation, acrylic
black paint was used.

3. An optimal contrast obtained by a good illumination and a uniform background help the
tracking algorithm.

4. It is worth underlining that the cervical tissue samples were kept continuously hydrated so as
not to alter the mechanical properties during the experiment by spraying them with PBS.

5. All the samples were preconditioned with 10 cycles at 1 N before the uniaxial tensile test.

(a) Load = 2.8 N (b) Load = 10.7 N

(c) Load = 0.3 N

Figure 3. Three different frames from a recording of a uniaxial tensile test in a cervical tissue sample.
The tissue is stretched in the direction marked with a red arrow.

20 mm 4 mm

10 mm

3 mm

8 mm

(a) (b)

Figure 4. (a) Mold printed with Acrylonitrile Butadiene Styrene (ABS) to maintain the geometry of the
samples. (b) Cervical tissue sample geometry.
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Figure 5. An illustrative example of cervical tissue attached to two gripper jaws that fix it during the
uniaxial tensile test. A dashed yellow line was used to delimit the region of interest (ROI). The green
arrows represent the displacements.

PTVlab is free software that was developed by Dr. Wernher Brevis (mainly developed the
mathematical algorithms) and Antoine Patalano (an adaptation of the graphical user interface (GUI)
in MATLAB and the development of new functionalities) [54,55]. The Large Scale Particle Tracking
Velocimetry (LSPTV) method is employed by PTVlab and uses the binary correlation, the Gaussian
mask and the dynamic threshold binarization techniques for the particle detection. A Gaussian mask
with a correlation threshold 0.5 and a sigma of 3 px was used for particle tracking. The Particle Tracking
Velocimetry (PTV) algorithm was cross-correlated by an interrogation area of 10 px, a minimum
correlation of 0.6 px, and a similarity neighbor of 25%. The deformations were calculated in the
most unfavorable area of the cervical tissue, which according to the printed mold corresponds to the
central area.

3. Results

3.1. Comparison between Hyperelastic Models

The experimental data of the uniaxial tensile tests for each of the cervical tissue samples are
represented as stress–strain curves (Figure 6). In these curves, it can be appreciated the three zones that
are explained in Figure 7: nonlinear, quasi-linear and rupture. The results of the fits of the experimental
data with the three hyperelastic models are shown in Tables 2–4. These fitted curves were performed
with MATLAB ® (Release 2018b, MathWorks, Natick, United States) Curve Fitting Toolbox. The median
and the confident intervals have been calculated for each parameter. The relationship between woman’s
age and the Third Order Elastic Constant A from the proposed model, the infinitesimal shear modulus
µr from the Ogden model, c1 parameter from the Mooney–Rivlin model, and c2 parameter from the
Mooney–Rivlin model for the connective layer are shown in Figures 8–11.

An illustrative example of the comparison of the hyperelastic theoretical models with the
experimental results obtained from the connective layer of Cervix 2 is showed in Figure 12.
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Figure 6. Experimental stress-strain relationship for cervical samples tested under uniaxial tensile test.
Solid black and discontinue lines represent the connective and layer respectively. The stress is the
true stress.

Figure 7. Representation of stress–strain behavior of soft tissues. The curve is divided into three zones:
nonlinear (A), quasi-linear (B) and rupture (C). The state of elastin (black color) and collagen (green
color) is represented at the bottom of each zone.
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Table 2. Results of the fits of experimental data with the proposed nonlinear model. Shear modulus µ

and TOEC A in MPa. IQR: Interquartile Range.

Nonlinear Model

Epithelial Layer Connective Layer

Cervix µ A µ A

1 1.13 22.6 3.58 3.49
2 1.22 −6.08 4.72 −7.63
3 1.35 −3.06 2.64 −5.92
4 1.57 28.3 3.30 27.6
5 1.35 −2.35 3.51 73.6
6 1.13 2.32 3.49 70.1
7 1.27 30.72 3.96 25.7

Median (IQR) 1.27 (1.13 1.35) 2.32 (−3.06 28.3) 3.51 (3.30 3.96) 25 (−5.92 70.1)

Table 3. Results of the fits of the experimental data with the Ogden model. The infinitesimal shear
modulus µr in MPa. IQR: Interquartile Range.

Ogden Model

Epithelial Layer Connective Layer

Cervix µr αr µr αr

1 0.41 7.94 0.941 6.01
2 1.01 1.62 1.16 5.63
3 0.42 4.54 0.97 4.13
4 0.35 9.94 0.85 11.1
5 0.47 4.31 0.82 10.25
6 0.39 5.27 0.57 11.54
7 0.40 9.05 1.29 6.40

Median (IQR) 0.41 (0.39 0.47) 5.27 (4.31 9.05) 0.94 (0.82 1.16) 6.40 (5.63 11.1)

Table 4. Results of the fits of the experimental data with the Mooney–Rivlin model. IQR: Interquartile Range.

Mooney-Rivlin Model

Epithelial Layer Connective Layer

Cervix c1 c2 c1 c2

1 6.93 −6.73 5.87 −4.77
2 0.33 −0.08 4.7 −3.15
3 1.22 −0.78 2.51 −1.68
4 8.25 −7.84 59.9 −59.3
5 1.47 −1.05 20.56 −19.67
6 2.35 −2.06 15.7 −15.9
7 8.69 −8.44 12.1 −11.1

Median (IQR) 2.35 (1.22 8.25) −2.06 (−7.84 −0.78) 12.10 (4.70 20.56) −11.1 (−19.67 −3.15)
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Figure 8. Quadratic regression of the Third Order parameter A of the connective layer against the
woman’s age. R2 = 0.84.
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Figure 9. Cubic regression of the infinitesimal shear modulus µr of the connective layer from the Odgen
model against the woman’s age. R2 = 0.60.
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Figure 10. Cubic regression of the c1 parameter of the connective layer from the Mooney–Rivlin model
against the woman’s age. R2 = 0.24.
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Cubic regression

Figure 11. Cubic regression of the c2 parameter of the connective layer from the Mooney–Rivlin model
against the woman’s age. R2 = 0.25.

3.2. Shear Modulus Estimation

The shear modulus can be obtained directly by means of the µ parameter of the FOEC proposed
model, through the slope of the stress–strain curve in the linear region or also trough a combination
of the two parameters of the Ogden model, the infinitesimal shear modulus µr and the stiffening
parameter αr (see Equation (19)). Table 5 shows the values of the shear modulus for each procedure
and for each sample.
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Figure 12. Comparison of the hyperelastic theoretical models with the experimental results obtained
from the connective layer of Cervix 2. (a) The proposed nonlinear Fourth Order Elastic Constant
(FOEC) nonlinear model; (b) Mooney–Rivlin and Ogden models.
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Table 5. Shear modulus estimation for the proposed nonlinear model, the Ogden model and the slope
of the linear region of the stress–strain curve. The mean and standard deviation of the values for the
seven samples are presented in MPa.

Shear Modulus

Epithelial Layer Connective Layer

Cervix Nonlinear Ogden Curve Nonlinear Ogden Curve

1 1.13 1.65 0.82 3.58 2.83 4.17
2 1.22 0.82 0.69 4.72 3.28 3.78
3 1.35 0.95 1.43 2.64 2.01 3.62
4 1.57 1.77 1.82 3.30 4.71 3.26
5 1.35 1.02 0.44 3.51 4.22 5.25
6 1.13 1.03 0.90 3.49 3.30 4.42
7 1.27 1.84 1.08 3.96 4.15 3.17

Mean ± Std 1.29 ± 0.15 1.30 ± 0.43 1.02 ± 0.46 3.60 ± 0.63 3.50 ± 0.92 3.95 ± 0.72

In order to study the differences between the obtained shear modulus with the nonlinear model,
Ogden model and the slope of the curve stress-strain for each cervical layer, a Student’s t-test was used
(see Figure 13).

Figure 13. Comparison between shear modulus of epithelial and connective layers using the proposed
nonlinear model, the Ogden model, and the slope of the linear region of the stress-strain curve.
The results are presented as mean ± standard deviation. The light gray bars represent the epithelial
layer and the dark gray bars the connective layer. p-value obtained from the Student’s t-test was the
metric used for this comparison. (* p-value < 0.001).

Another parameter that shows significant differences between the epithelial and the connective
layers is the infinitesimal shear modulus. Figure 14 shows the mean and deviation values of the
infinitesimal stiffness modulus, derived from the Ogden model, for the epithelial and connective layers.
The metric used for the comparison was the p-value obtained from the Student’s t-test.
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Figure 14. Comparison between the infinitesimal shear modulus (µr) of epithelial and connective layers
using the Ogden model. The results are presented as mean ± standard deviation. p-value obtained
from the Student’s t-test was the metric used. (* p-value = 0.0016).

4. Discussion

According to the evidence found in literature, Myers et al. [29] investigated the nonlinear
time-dependent stress response of cervical samples from different human hysterectomy specimens.
Results showed the nonlinear response of cervical stroma, which was dependent on obstetric history.
However, to our knowledge, the nonlinear elastic properties of ex vivo human cervical tissue, using
the aforementioned hyperelastic models, have not been obtained by uniaxial tensile tests yet.

This work aims at representing a first step toward a nonlinear characterization of human cervical
tissue. The nonlinear elastic properties of ex vivo cervical tissue have been obtained for the first time
by uniaxial tensile tests.

The first contribution of this study is to propose a new hyperelastic model (nonlinear model)
based on the FOEC in the sense of Landau’s theory [56] and compare the obtained results with the
most used hyperelastic models in the literature, Mooney–Rivlin, and Ogden models [49,51].

As a second contribution, the differences in shear modulus between epithelial and connective
layers of ex vivo human cervical tissue are analyzed. The TWE technique proposed in the literature
aims to locally measure the mechanical parameters of the cervix that can be correlated with the different
stages of the cervix maturing during pregnancy [41]. These waves interact not only with the superficial
layer, the epithelial layer, but also with the deeper layers, i.e., connective layer. Therefore, a validation
of the mechanical parameters reconstructed in both layers is necessary through uniaxial tensile tests of
ex vivo samples from hysterectomies of healthy women.

The mechanical behavior of the cervix is nonlinear, as are most of the soft biological tissues.
The nonlinear parameters of the FOEC proposed model were obtained through a fit of the experimental
data measured in the uniaxial tensile tests with the theoretical law that governs the hyperelastic model.
The same procedure was carried out in order to get the nonlinear parameters from the two most
employed hyperelastic models to characterize soft biological tissue in the literature, Mooney–Rivlin
and Ogden models.

The proposed FOEC hyperelastic model, Equation (9), presents three parameters, the shear
modulus µ, the third order elastic constant A and the fourth order elastic constant D. In this study,
the proposed theoretical stress-strain relationship has been simplified with the aim of comparing
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with the two-term Mooney–Rivlin and Ogden models. The two parameters that have adjusted the
experimental data were the shear modulus µ and the third order elastic constant A. Analyzing the
results of the shear modulus, there was no significant variation in both, the epithelial 1.29 ± 0.15
MPa and the connective layer 3.60 ± 0.63 MPa for each of the hysterectomy samples, see Table 5. The
values of the shear stiffness are highly dependent on the strain ramp rate used, the larger strain rate,
the larger shear modulus [57,58]. The values obtained for cervical tissue agree with those found in
the literature [23,29]. However, regarding the nonlinear parameter A, large variation was observed,
varying the parameter from positive to negative values (see Table 2). Previous studies in the literature
have obtained the value of parameter A in tissue-mimicking phantoms and breast tissue [59,60].
Gennisson et al. [59] investigated the nonlinear behavior of quasi-incompressible agar-gelatin-based
phantoms using supersonic shear imaging technique. The study concluded that, for different samples
of tissue-mimicking phantoms, the value of parameter A varied from a negative value to a positive one.
Similar results were obtained by Bernal et al. [60] in breast tissue, parameter A presents high variability
due to internal changes in tissue consistency. According to the present study, it is worth pointing
out that, to our knowledge, this is the first work that studies the nonlinear parameters of the FOEC
hyperelastic model in cervical tissue. The variability found in the third elastic constant parameter A
could be associated with the heterogeneity of the tissue, like the two previous studies [61], also depends
on the particular epidemiological aspect of each patient, as reported by Myers et al. [62]. Despite the
variability of parameter A, and the low number of samples, the quadratic regression studied in the
connective tissue samples showed a high correlation with women’s age (R2 = 0.84) (Figure 8). On the
other hand, the cubic regressions in the connective layer of the infinitesimal shear modulus µr from
the Ogden model, the c1 parameter from the Mooney–Rivlin model, and the c2 parameter from the
Mooney–Rivlin model against the women’s age have smaller correlations, Figures 9–11 (R2 = 0.60,
R2 = 0.24, and R2 = 0.25 respectively). This result is very preliminary because only seven samples
have been considered, so future studies to explore other relationships with physiological markers
require a greater number of patients, despite the difficulty of obtaining ex vivo samples.

On the one hand, the shear modulus is one of the most used parameters in the characterization
of soft biological tissues by various techniques. This value can be extracted directly by means of the
µ parameter of the FOEC proposed model, through the slope of the stress–strain curve in the linear
region or also through a combination of the two parameters of the Ogden model, the infinitesimal shear
modulus µr and the stiffening parameter αr. The values of the shear modulus for each reconstruction
technique and for each sample are shown in Table 5. The parameters that govern the Mooney–Rivlin
model have no physical sense and, therefore, the shear modulus value can not be extracted from them.
The results of the shear modulus for each reconstruction technique and for each cervical layers were
compared by using a Student’s t-test. t-test results are shown in Figure 13, in terms of p-values. All of
these values were below 0.001, which can be considered to represent a significant difference in the
shear modulus between the epithelial and connective layers. In conclusion, the shear modulus was
dependent on the anatomical location of the cervical tissue as shown in Table 5 and Figure 13. On the
other hand, the infinitesimal shear modulus (µr) is one of the parameters that governs the hyperelastic
Ogden model. The p-value obtained for the comparison between the epithelial and connective layers
(p-value = 0.0016) shows that there is a significant difference (see Figure 14), therefore, this parameter
could also indicate differences in stiffness for both layers.

In general, by the obtained results, it can be concluded that the nonlinear parameter A could
be an important biomarker in the characterization of connective cervical tissue. In addition,
the calculated shear modulus depended on the anatomical location of the cervical tissue. The protocol
of measurements is applicable to other tissues and it is possible to explore a set of new nonlinear
measurements from different procedures, for example in vivo measurements in women using
ultrasound wave propagation by employing Hamilton’s formulation, one step further from the
diagnostic point of view.
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5. Conclusions

In this work, as a first contribution, we proposed a new hyperelastic model (nonlinear
model) based on the Fourth Order Elastic Constants (FOECs) in the sense of Landau’s theory to
reconstruct the nonlinear parameters in cervical tissue by fitting the experimental data with this
model. The experimetal data were also fitted by the most used hyperelastic models in the literature,
Mooney–Rivlin, and Ogden. The nonlinear parameter A from the proposed model could be an
important biomarker in connective cervical tissue diagnosis. As a second contribution, a comparison
of the shear modulus, extracted from three different procedures, between the epithelial and connective
layers of ex vivo cervical tissue was performed. The conclusion is that shear modulus was dependent
on anatomical location of the cervical tissue. Despite the difficulties encountered in the characterization
of the hyperelastic behaviour of cervical tissue, the proposed nonlinear model should be considered as
the basis of more complex constitutive equations. Nevertheless, the nonlinear FOEC model should
remain as the starting point in the hyperelastic characterization of the cervical tissue in future studies.
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