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Abstract: Clay dehydration at great depth generates fluids and overpressures in organic-rich
sediments that can release isotopically light boron from mature organic matter, producing 10B-rich
fluids. The B can be incorporated into the tetrahedral sites of authigenic illite during the illitization
of smectite. Therefore, the crystal-chemical and geochemical characterization of illite, smectite or
interlayered illite–smectite clay minerals can be an indicator of depth (temperature) and reactions
with the basin fluids. The aim of this study was to determine the detailed clay mineralogy, B-content
and isotopic composition in illite–smectite rich samples of mud volcanoes from the Gulf of Cádiz,
in order to evaluate interactions of hydrocarbon-rich fluids with clays. Molecular modeling of the
illite structure was performed, using electron density functional theory (DFT) methods to examine
the phenomenon of B incorporation into illite at the atomic level. We found that it is energetically
preferable for B to reside in the tetrahedral sites replacing Si atoms than in the interlayer of expandable
clays. The B abundances in this study are high and consistent with previous results of B data on
interstitial fluids, suggesting that hydrocarbon-related fluids approaching temperatures of methane
generation (150 ◦C) are the likely source of B-rich illite in the studied samples.

Keywords: mud volcano; B isotopes; illite–smectite; molecular modelling fluids; Gulf of
Cádiz; hydrocarbons

1. Introduction

Mud volcanoes (MVs) are generated by extrusion activity involving the transport of clay-rich
sediments, liquids and gases (mainly methane) from deeper regions to the surface [1–8]. In recent
years, both the source of material and fluids have been the focus of research as they give us important
information about the presence of hydrocarbon resources at depth or global methane fluxes to the
atmosphere [9–12]. Extensive work has been done in the study of fluid sources and pathways in
sedimentary basins, where a close relation exists between fluids and the nature of clays, as a result
of clay dehydration at depth resulting in smectite illitization processes [13]. The illitization process
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generates fluids and overpressures at temperature ranges of ~80 to ~150 ◦C [14–16] and smectite is
transformed to randomly interstratified (R0) illite–smectite minerals (I-S) and to more illitic ordered
(R1–R3) I-S [14–19].

Boron is abundant in marine sediments [20] and sedimentary clay minerals illite/smectite (I-S) [21,22],
which contain orders of magnitude more boron than other common diagenetic minerals (e.g., quartz,
carbonates and feldspars). Boron is a highly mobile element, preferring aqueous phases to that of most
minerals [23]. Thus, by understanding how the aqueous B is incorporated into clay minerals, important
insights may be gained to the fluid and chemical dynamics of a sedimentary basin. To use this geochemical
tool, one must be able to interpret the boron isotopic composition of paleofluids that were present in
a basin at the time of clay mineral diagenesis. Boron is incorporated into the clay mineral structure in
tetrahedral sites and can also be adsorbed to clay surfaces, including those in the clay interlayers [24,25].
B adsorption on clays causes a preferential 10B uptake in tetrahedral sites of the clay related to bond
strength. There is a coordination change of B from trigonal in water (at pH < 7) to tetrahedral on the clay
surfaces [26,27]. This fractionation of B isotopes between trigonal and tetrahedral coordination during
fluid–rock interactions is temperature dependent and insensitive to mineral composition [24,28].

Several recent studies have highlighted the potential utility of B-isotope ratios as a tracer for
fluid–rock interactions [25,26,29,30]. The adsorption of B on clay surfaces has been extensively
studied [27,31,32], because it can be easily exchanged [26]. However, fixed-B is more useful for
interpreting paleofluid B composition because the B-isotopic composition is fixed when B substitutes
for Si as Si–O bonds are broken.

Thermal maturation of organic matter during the burial process produces oil, wet gas and dry
gas (mainly methane). Numerous studies of light stable isotopes in clays (e.g., [32–36]) have shown
that trace elements (N, B and Li) commonly found in I-S are associated with hydrocarbon-related
fluids generated during the maturation of organic source rocks. In these studies, it was shown that
the light isotope of each of these “heteroatoms” released from organic matter dominates the fluids,
thus these trace elements are ideal tracers of organic inputs to pore fluids. Thus, organic matter can
release considerable amounts of B, producing 10B-rich fluids [24]. Late-stage or deep diagenesis of clay
minerals [37] coincides with the time/temperatures associated with organic maturation processes that
lead to the expulsion and accumulation of hydrocarbons. Thus, 10B-rich fluids are a source of B that
can be incorporated into the tetrahedral layers of illite during the process of illitization of smectite at
depth. The authigenic illite preferentially incorporates 10B, thus the remaining fluids are relatively
enriched in 11B [24]. Therefore, the crystal-chemical and geochemical characterization of illite, smectite
or interlayered illite–smectite (I-S) clay minerals can be an indicator of temperature and reactions with
the basin fluids.

Molecular modeling is a useful tool for determining many aspects of minerals at atomistic scale
helping the interpretation of many experimental phenomena related with minerals, especially clay
minerals [38–40], including with borate anions [41]. In this work, Density Functional Theory (DFT)
methods were used to obtain information about the incorporation of B into the clay mineral structure,
for understanding the experimental results.

In the Gulf of Cádiz, extensive work has been done on the study of fluid sources and pathways [42–46],
including basin-scale reactive-transport models [47]. These studies conclude that clay mineral dehydration
during reaction of smectite to illite, from Mesozoic to Tertiary shale and marl units has been the
major influence on fluid compositions in many of the Mud volcanoes [42]. Some samples from deep,
hotter regions are associated with B and Li-rich fluid compositions, which have been associated with
production of methane from organic rich sediments [48,49]. The chemical analysis of clay minerals and the
study of the diagenetic evolution of these units is therefore of high interest in order to better characterize
the fluid circulation system present in fluid venting areas such as the Gulf of Cádiz.

In this work, a detailed mineralogical characterization of samples coming from several mud
volcanoes and the content and isotopic values of B in clay minerals were analyzed to determine the
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diagenetic evolution of clay minerals and the possible depth (temperature), origin and interaction of
clay minerals present in the mud breccia with the methane bearing fluids.

2. Geological Setting

The Gulf of Cádiz is located at the front of the Gibraltar arc, the westernmost tectonic belt of
the Alpine Mediterranean compressional system, which has formed in response to the convergence
between the African and Eurasian plates. It has a complex geological history and has undergone several
episodes of rifting, compression and strike-slip motion since the Triassic [50]. During Tortonian times
(11.2–7.1 Ma), allochthonous units took place in the Gulf of Cádiz formed by the westward migration of
the Alborán domain associated with the formation of the Betic–Rifian Arc. This Guadalquivir
allochthonous unit [51] consists of a mixture of Triassic, Cretaceous, Paleogene and Neogene
sedimentary units overlying the Paleozoic basement [50], and is responsible for diapirism of huge
volumes of mud and salt of Triassic units and under-compacted Early–Middle Miocene plastic
marls [50,51] (Figure 1).
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Figure 1. Structural and bathymetrical map of the Gulf of Cádiz. The MVs investigated within this
study are represented by triangles. Modified from [44].

Throughout this area, several methane gas-related seafloor structures have been identified,
including mud volcanoes, areas of carbonate crusts and chimneys, gas pipes and mud mounds [51–59].
Gravity cores were collected during the ANASTASYA/01, MVSeis/08 and CHICA/11 cruises on board
of Cornide de Saavedra and Hespérides. Samples come from short gravity cores (up 2 m long) taken
on the top of 16 mud volcanoes of the Gulf of Cádiz. Table 1 shows the location of the gravity cores
of this study. Mud volcanoes are located in several zones in the Gulf of Cádiz (Figure 1) from 353 to
1639 m depth, more than 100 km apart from north to south. A detailed description of morphologies
and processes can be found in [55,60]. Previous studies on the mineralogy of mud breccia [61] show
that cores from the mud volcanoes are made of several units (hemipelagic and mud breccia) showing
similar bulk mineralogical composition of quartz, clay minerals, scarce calcite and dolomite and pyrite,
with slight differences in type of clay minerals between different mud volcanoes.
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Table 1. Geographical position of the MVs sampled in the framework of this study. All M3 samples
correspond to a diapiric structure, not a mud volcano.

Mud Volcano Samples Water Depth (m)
Location

Lat. Long.

Diapir M3 10-14 600 34◦59′42.4” N 6◦49′50.4” W
Mekness M4 18-22 694 34◦59′06.6” N 7◦04′21.6” W

Almanzor M8 58-62 1440 35◦20′57.6” N 7◦30′40.4” W
Pixie M12 66-70 1639 35◦20′13.2” N 7◦50′38.4” W

MVSeis M14 138-142 1611 35◦23′42.6” N 7◦51′28.8” W
Guadix M25 34-38 1435 35◦30′56.4” N 7◦32′45.0” W

Cid M26 50-54 1330 35◦26′29.4” N 7◦29′04.2” W
Boabdil M27 18-22 1106 35◦25′49.2” N 7◦10′45.0” W
Gazul M29 106-110 411 36◦33′29.4” N 6◦56′06.0” W

Albolote C3 32-33 353 36◦34′27.2” N 6◦52′46.6” W
Tarsis C4 36-37 550 36◦29′17.4” N 7◦14′39.9” W

Anastasya C7 38-39, A2 48-50 457 36◦31′20.9” N 7◦09′04.8” W
Almazán C9 84-85, A8 70-71 830 36◦03′08.0” N 7◦20′01.6” W

Aveiro C10 27-28 1060 35◦52′19.1” N 7◦26′15.2” W
Faro A14 26-30 795 36◦05′31.8” N 7◦23′44.4” W

Gades A4 48-50 915 36◦14′17.4” N 7◦37′01.2” W

3. Experimental Methodology

3.1. X-ray Diffraction and Deconvolution

X-ray diffraction (XRD) patterns of oriented samples with a size fraction of <2 µm were obtained
using a Bruker D8 Advance diffractometer, located at The University of Cádiz (Cádiz, Spain), with a
graphite monochromator, operating at 40 kV and 40 mA using Cu-Kα radiation. Each sample was first
washed with distilled water until the supernatant was chloride-free, sonicated and then the <2-µm
fraction was separated by centrifugation [62]. Each suspension was smeared on glass slides and air
dried in atmospheric conditions. The slides were then saturated with ethylene glycol at 80 ◦C for 24 h to
ensure maximum saturation. XRD patterns were acquired on the oriented clay mounts in both air dried
and ethylene glycol saturated state to determine the percent of illite in I-S [63]. To discriminate between
detrital smectite and I-S mixed-layer phases, deconvolution of the patterns obtained from the oriented
mount after glycolation were performed using the MacDiff 4.2.6 program (4.2.6, Johann Wolfgang
Goethe-Universität, Frankfurt, Germany). The determination of the illite percentage (% illite) and type
of order (Reichweite; R) in I-S was performed according to the position of XRD peaks 001/002 and
002/003 in the regions 8–11◦ 2θ and 14–19◦ 2θ, respectively [64,65]

3.2. Transmission Electron Microscopy

Grain morphology within the bulk and <2-µm fractions and quantitative chemical analyses by
analytical electron microscopy (AEM) were obtained using a Philips CM20 transmission electron
microscope (TEM) at the University of Granada (Granada, Spain). Powdered portions deposited on a
holey C-coated Au grid were used to collect AEM spectra in scanning transmission electron microscopy
(STEM) mode on areas of 200 Å× 1000 Å using a 70-Å diameter spot size. To check volatilization of
light elements, analyses were taken at 15 and 40 s. The structural formulae of smectites, micas and
interstratified I-S were calculated on the basis of 22 negative charges, i.e., O10(OH)2, adjusting the
occupation of the octahedral sheet to 2 atoms per formula unit.

3.3. Secondary Ion Mass Spectrometry

Secondary ion mass spectrometry (SIMS) (Arizona State University SIMS Facility, Tempe, AZ,
USA) was used to characterize the content and isotopic composition of B in the clay minerals. Analytical
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protocols for measurement of B contents and δ11B values have been described elsewhere [49,66–68]
and particularly for measurements of clay minerals by [24].

3.3.1. Sample Preparation

Boron is strongly adsorbed to the surfaces of clay minerals at room temperature, with a distribution
coefficient >30 [68]. During burial, B can be found in two sites of clay minerals: exchangeable B in
the interlayer and substituted B in the tetrahedral layer. Therefore, special preparations are required
to separate exchangeable B from that held in the silicate framework before any isotope analysis
of the structurally substituted B. First, the samples were treated with a 1N solution of mannitol a
B-complexing polyhydric alcohol, which removes exterior surface B contamination [69], but not clay
interlayer B. Samples were sonicated in an ultrasonic disaggregator, centrifuged at high speed to
concentrate particles (or clusters of minerals), and then washed in triplicate in “B-free” deionized water
filtered through Amberlite resin [33]. An aliquot of the mannitol-treated sample was mounted for
isotope analysis of the total B (B tetrahedral + B interlayer) by drying a 5-mL suspension onto a one-inch
(25-mm) diameter B-free glass slide. Several samples were placed on a single round B-free glass slide,
including standards. Then, the measurement of total-B content was determined by SIMS using a
calibration curve based on the counts of B (mass 11) relative to Si (mass 30). The calibration curve was
measured on standard reference materials with known B-content [33].

The remaining clay was cation exchanged with 1 N NH4Cl by standard procedures [62] to remove
exchangeable B from the interlayer [70]. Samples were rinsed again in mannitol and then mounted for
isotope analysis as above. These samples only contain B substituted in tetrahedral sites.

3.3.2. Boron Content and Isotope Analysis

A Cameca IMS 6f at Arizona State University (Tempe, AZ, USA) was used with a primary beam
of mass-filtered 16O– ions accelerated at 12.5 kV onto the sample held at 9 kV for a total impact
energy of ~21.5 kV. Primary beam currents below 10 nA were used with beam diameters defocused to
40–60 µm. Positive secondary ions were accelerated away from the sample, and energy filtering (−75 V
sample offset) was used for measurements of B-content [66]. No energy filtering was used for isotope
ratio measurements.

B isotope ratios are reported in delta notation as:

δ11B = [{(11B/10Bsample)/(11B/10Bstandard) − 1}*1000] − IMF (1)

where the standard is NBS SRM 951, boric acid, with a 11B/10B ratio of 4.0437 [71]. The instrumental
mass fractionation (IMF) is determined by measuring a mineral standard on which the δ11B is known.
B-isotope analyses were calibrated by measuring clay mineral standard IMt-1 (Silver Hill Illite) from
the Clay Minerals Repository (http://www.clays.org/sourceclays) that had been characterized by bulk
thermal ionization mass spectrometry (TIMS) [24], with a δ11B of −9 ± 0.6%�. The isotope ratio analyses
averaged 50–100 cycles of measurements on each spot (depending on the B-content) and analytical
errors were compared to predicted errors. Where analytical errors were >2 times predicted errors,
the analysis was discarded. Multiple spots were analyzed on each sample and results were averaged.
The internal standard was measured in between analyses of the unknowns to test for changes in IMF
due to instrumental drift.

3.4. Computational Methodology

We created models of Al(OH)3 and B(OH)3 molecules enveloped in a hydrogen-bonding network
of water molecules which simulates B- and Al-rich fluids that are present in the illitization process (at
low pH). Two different models of illite structures were also created: one of them with tetrahedral Al
(Al-illite) and the other one with B incorporated to the tetrahedral layer by replacing the Al (B-illite).
The comparison of energies of these optimized components can show us whether the incorporation

http://www.clays.org/sourceclays
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of B in the tetrahedral sites is energetically favorable. Furthermore, montmorillonite models were
created to compare optimization energies between montmorillonite with B as hydroxide (B(OH)4

–) in
the interlayer and montmorillonite with B in the tetrahedral layer, replacing Si sites.

The electronic structure of Al(OH)3 and B(OH)3 molecules was studied by quantum chemical
calculations with the Hartree–Fock approximation and the second-order Moeller–Plesset method for
all electrons. A triple-ζ basis set with polarization functions was used for all atoms including H atoms
(MP2/6-311G** level) as implemented in the Gaussian03 program package [72]. All geometries were
fully optimized using the Berny analytical gradient method. No geometry constraint was applied to
the molecules. Normal mode analyses were performed to the same level to confirm the nature of the
various stationary points, finding only positive eigenvalues for minima.

Ab initio total energy calculations of the periodic illite crystal models and Al(OH)3 and B(OH)3

hydrated models were performed using density functional theory (DFT) methods implemented in
the SIESTA program (version 3.0, Max Centre of Excellence, Modena, Italy) [73]. The generalized
gradient approximation (GGA) was used with the Perdew–Burke–Ernzerhof (PBEsol) parameterization
of the exchange-correlation function optimized for solids [74]. Core electrons were replaced by
norm-conserving pseudopotentials [75]. Calculations were restricted to the Γ point in the irreducible
wedge of the Brillouin zone. In all structures, the geometry of each atom was relaxed by means of
conjugated gradient optimizations at constant experimental volume. In SIESTA, the basis sets are made
of strictly localized numerical atomic orbitals (NAOs) with a localization cut-off radius corresponding
to an energy shift of 270 meV. The basis sets used here are double-Z polarized (DZP) following the
perturbative polarization scheme. This approach was successfully used in previous calculations on
phyllosilicates [76] and hydrated systems [77–79]. A uniform mesh with appropriate plane-wave cut-off

energy is used to represent the electron density, the local part of the pseudopotential, and the Hartree
and exchange-correlation potentials. Total energy calculations were performed with cut-off energy
values of 350 Ry. These conditions are consistent with previous studies with phyllosilicates [39,80].

Models

Based on previous works reporting quantum mechanical calculations [81,82], models of hydrated
Al(OH)3 and B(OH)3 molecules were created, consisting of Al(OH)3 or B(OH)3 molecules optimized at
MP2/6-311G** level, encaged in a cavity of a hydrogen-bonded network formed by 24 water molecules.
Those models were also optimized using the DFT methodology implemented in the SIESTA program
in the same conditions as the mineral structures.

Illite models were based on previous pyrophyllite models [38]. Pyrophyllite is a dioctahedral
phyllosilicate [83] with a structure similar to illite, but without cation substitutions causing the
layer charge on basal siloxane surfaces. The trans-vacant crystal form was used in all models [39].
To obtain a reasonable size illite model, a 4 × 2 × 1 supercell was generated. Two types of illite
models were created, Al-illite and B-illite. The Al-illite model was generated from the supercell by
replacing eight tetrahedrally coordinated Si4+ by Al3+, and four octahedral Al3+ were replaced by
Mg2+. Layer charge is balanced by twelve K+ cations per supercell in the interlayer, resulting in a
simulation cell composition of [K12][Al28Mg4][Si56Al8]O160(OH)32. The B-illite model was created
similar to Al-illite model, but replacing one of tetrahedral Al3+ by B3+, resulting in a simulation cell
composition of [K12] [Al28Mg4][Si56A7B1]O160(OH)32.

In both cases, maximum dispersion of the substituted cations in the tetrahedral and octahedral
sheets was made according to previous studies [40,84]. Initial lattice parameters of each 4 × 2 × 1 illite
supercell are a = 21.14 Å, b = 18.35 Å, c = 9.79 Å; α = 91◦, β = 100◦, γ = 90◦.

Montmorillonite models were created with a unit cell of a = 5.16 Å, b = 8.97 Å, c = 13.61 Å;
α = 91.2◦, β = 100.5◦, γ = 89.6◦, leaving enough space in the interlayer for avoiding additional variables
related with interlayer complexes. Supercells of 2 × 2 × 1 were generated by replacing one octahedral
Al3+ by Mg2+. Layer charge is balanced with one K+ cation per supercell. Two montmorillonite
models were created: One with the salt K+ B(OH)4

− in the interlayer, resulting in a simulation cell



Minerals 2020, 10, 651 7 of 25

composition of [B(OH)4
−][K2][Al15Mg1][Si32]O80(OH)16, and the other with B replacing one tetrahedral

Si atom and Si(OH)4 in the interlayer, resulting in a simulation cell composition of [Si(OH)4][K2]
[Al15Mg1][Si31B1]O80(OH)16. In the illite and montmorillonite models the effect of the presence of water
molecules can be considered similar in both cases with B and without B complex for the study on which
is focused this work. Then, water molecules were not included to avoid additional computational
effort and convergency problems found in our preliminary calculations.

4. Results

4.1. Clay Mineralogy

XRD and TEM analyses of samples were performed to characterize the clay minerals. Although
preliminary XRD data indicated that samples were mainly smectite [61], the deconvolution (using
MacDiff 4.2.6) of the pattern obtained from the oriented mount after glycolation in the regions 8–11◦

2θ and 14–19◦ 2θ showed that detrital micas and mixed-layer I-S phases are present in addition to
smectite (Figure 2). I-S from all samples have similar characteristics, presenting Reichweite (R) values
corresponding to both the R0 (random ordering) and R1 (nearest neighbor) ordering stages (Table 2).
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Figure 2. Example of deconvoluted XRD patterns calculated by MacDiff software in two representative
samples: (a) M4 18-22 sample; and (b) M27 18-22 sample. Red line represents experimental glycolated
XRD, blue lines are deconvoluted peaks and black line represents the sum of deconvoluted peaks.
Deconvoluted peaks are represented in d values in Å noted above the peaks which allow the
determination of R type and percent illite according to [64].
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Table 2. I-S peaks characteristic of the deconvoluted XRD patterns. Illite proportions were calculated
following standard [64] procedures.

Sample R ◦2θ (001/002)/% Illite ◦2θ (002/003)/% Illite ◦∆2θ/% Illite

M3 10-14

R0 10.31/10% 15.75/10% 5.44/10%
R0 9.85/45% 16.25/50% 6.40/45%
R1 9.17/80% 16.83/75% 7.66/75%

Illite 8.78 17.61 8.93

M4 18-22

R0 10.29/10% 15.83/15% 5.54/15%
R0 9.82/45% 16.16/45% 6.34/45%
R1 9.18/80% 17.07/80% 7.89/80%

Illite 8.83 17.51 8.68

M8 58-62
R0 10.32/10% 15.78/10% 5.46/10%
R1 9.64/55% 16.61/60% 6.97/60%

Illite 8.84 17.72 8.88

M12 66-70

R0 10.35/10% 15.82/10% 5.47/10%
R0 9.99/40% 16.04/35% 6.05/35%
R1 9.54/65% 16.70/60% 7.16/65%
R1 9.30/75% 16.97/75% 7.67/75%

Illite 8.89 17.73 8.84

M14 132-138

R0 10.22/15% 15.86/15% 5.64/15%
R1 9.78/50% 16.48/55% 6.70/55%
R1 9.36/75% 16.90/75% 7.54/75%

Illite 8.82 17.56 8.74

M25 34-38
R1 9.72/55% 16.45/55% 6.73/55%
R1 9.16/80% 17.04/80% 7.88/80%

Illite 8.73 17.71 8.98

M26 50-54
R0 10.23/15% 15.82/15% 5.59/15%
R1 9.74/55% 16.44/55% 6.70/55%

Illite 8.79 17.65 8.86

M27 18-22

R0 10.17/25% 15.96/25% 5.79/25%
R1 9.68/55% 16.40/55% 6.72/55%
R1 9.22/75% 16.85/75% 7.63/75%

Illite 8.83 17.53 8.70

M29 106-110

R0 10.05/30% 15.99/30% 5.94/30%
R1 9.74/55% 16.32/55% 6.58/55%
R1 9.19/80% 17.11/80% 7.92/80%

Illite 8.86 17.82 8.96

C3 32-33
R0 10.30/10% 15.80/10% 5.50/10%
R0 9.76/50% 16.28/50% 6.52/50%

Illite 8.87 17.81 8.94

C4 36-37
R0 10.09/30% 15.97/25% 5.88/25%
R1 9.81/45% 16.29/50% 6.48/50%

Illite 8.84 17.74 8.9

C7 36-37
R0 10.06/30% 15.98/25% 5.92/30%
R1 9.55/60% 16.58/60% 7.03/60%

Illite 8.92 17.74 8.82

C8 23-24
R0 10.07/30% 15.99/30% 5.92/30%
R1 9.68/55% 16.52/55% 6.84/55%

Illite 8.97 17.69 8.72

C9 84-85
R0 10.28/15% 15.84/15% 5.56/15%
R1 9.67/55% 16.46/55% 6.79/55%

Illite 8.87 17.75 8.88

C10 27-28
R1 9.18/80% 17.06/80% 7.88/80%

Illite 8.87 17.81 8.94

A2 48-50

R0 10.22/20% 15.83/20% 5.61/20%
R0 9.81/50% 16.35/50% 6.54/50%
R1 9.31/75% 16.92/75% 7.61/75%

Illite 8.81 17.69 8.88

A4 48-50

R0 10.08/30% 15.98/25% 5.90/30%
R1 9.66/55% 16.47/55% 6.81/55%
R1 9.33/75% 17.04/80% 7.71/75%

Illite 8.90 17.80 8.90

A8 110-111
R0 9.77/50% 16.19/45% 6.42/45%

Illite 8.84 17.78 8.94

A14 26-30
R0 9.94/40% 16.12/40% 6.18/40%

Illite 8.79 17.36 8.57
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The deconvolution of the peaks corresponding to 001/002 and 002/003 reflections into small
peaks allows estimating the proportion of illite in each I/S, because each d value corresponds to
R-ordering type.

A detailed TEM study combining chemistry and the imagery of individual clay–mineral particles
on the holey carbon grid showed the expected morphological differences between the smectite and
I-S: smectite displayed typical aggregates and flakes of irregular and wavy outlines and I-S showed
individual crystals with more euhedral shapes and clear outlines (Figure 3). These morphologies are
consistent with previous TEM observations on smectite illitization [85]. Kaolin hexagonal particles and
palygorskite fibers were also present in the samples in minor amounts (Figure 3).
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I/S, Illite–smectite interstratified. Samples: (a) M8 58-62; (b) M12 50-54; (c) C9 84-85; (d) C8 23-24;
(e) M25 34-38; and (f) A2 48-50.
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Figure 4 shows compositional variation of individual clay crystals determined by analytical
electron microscopy (AEM). Figure 4a is a plot of tetrahedral Al content vs. interlayer K, showing
trends that relate to particle morphology as defined by [85]. Chemical ranges correlate with TEM
observations, where smectite flakes, aggregates, round and polygonal particles are characterized.
The substitution of Al by Fe in the octahedral sites provides a well-defined negative relationship
between these two elements (Figure 4b).
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(OH) groups per structural formula. (a) K content vs. tetrahedral Al (AlIV); (b) Tetrahedral Aluminum
(AlIV) vs. Fe content; (c) Tetrahedral Aluminum (AlIV) vs. Mg content; (d). Mg vs. Fe content; (e) Total
Al (Al TOT) vs. Si content; (f) Layer charge vs Si.

A similar negative relationship is also observed between Al and Mg (Figure 4c). No significant
trends were found between Si and Fe or Si and Mg (not shown). However, there is a poorly defined
positive relationship between Fe and Mg (Figure 4d). There is a negative relationship between Al TOT

and Si (Figure 4e), indicating the generation of tetrahedral charge. Figure 4f shows the relationship
between layer charge and Si content, where mainly beidellitic samples have more than half of the
layer charge produced by tetrahedral substitutions. However, montmorillonite samples can be also
represented by larger amounts of Si.

The plot of data in MR3–2R3–3R2 diagram [86] (Figure 5) clearly shows different chemical ranges
in the samples analyzed, from montmorillonite and beidellite to illite compositions. The presence of
I-S phases is represented by multiple points with compositions between smectite and illite.
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4.2. Boron Content and Isotopes

The bulk B-content of the clay minerals studied range from 97 to 146 ppm. Cation exchanged
(xc) samples contain slightly less B than the bulk mannitol washed (mw) samples, due to the loss of
interlayer B after cation exchange. This implies that most of the B in the clay is fixed in the tetrahedral
layer (structurally bound) and only minor amounts of B were held in the I-S interlayer. Figure 6
shows that there are no spatial correlations between δ11B values and mud volcanoes locations or
bathymetric depth.Minerals 2020, 10, x FOR PEER REVIEW 13 of 27 
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4.3. Computational Modeling

Geometry optimizations of Al-illite and B-illite models were performed at constant and variable
volumes. The lattice parameters and the main geometrical features of the optimized structures are
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consistent with experimental values (Table 3), with a mean basal d(001) value of 10.02 Å for Al-illite
and 10.03 Å for B-illite. The main geometrical features of the hydrated Al(OH)3 and B(OH)3 models
(Figure 6) are presented in Table 4. This table shows average values being smaller bond distances in
B(OH)3 molecule than in Al(OH)3. These bond lengths are consistent with B-O and Al-O distances
observed in the B-illite model described in Table 4. In the B hydrated complexes, the structure is
highly symmetric with the cation and O atoms in the same plane according to previous studies at
gas phase [88], whereas the H atoms are twisted to a different plane and oriented towards the vicinal
O atom of the same molecule. However, in the Al(OH)3 hydrated complex, the Al cation forms
a pyramidal form with the O atoms; similar non-planar configurations have been reported in Al
hydrates previously [89]. There are strong H bonding interactions between the metal hydroxides and
the surrounding water molecules. Hence, different B-O bond lengths are found d(B-O1) = 1.355 Å,
d(B-O2) = 1.371 Å and d(B-O3) = 1.394 Å and consequently different BO-H bond lengths are found,
d(O1-H) = 1.023 Å, d(O2-H) = 1.004 Å and d(O3-H) = 1.002 Å. This can be explained due to a strong H
bond with one water molecule d(O1H . . . Ow) = 1.563 Å, d(O2H . . . Ow) = 1.633 Å, d(BO2 . . . Hw) =

1.495 Å, d(O3H . . . Ow) = 1.795 Å, Some correlation can be observed: a stronger H bond, a longer
O-H bond and a stronger B-O bond length is. A similar effect is observed in Al(OH)3 with d(Al-O1)
= 1.743 Å, d(Al-O2) = 1.787 Å and d(Al-O3) = 1.836 Å and also strong H bonds d(O1H . . . Ow) =

1.554 Å, d(O2H . . . Ow) = 1.640 Å and d(AlO2 . . . Hw) = 1.262 Å, d(O3H . . . Ow) = 1.567 Å. During
the optimizations, proton exchanges are observed by dissociation of water molecules, according to
previous works on Al hydrates [90].

Table 3. Cell parameters and select interatomic distances of Al-illite and B-illite unit cells (distances in
Å and angles in ◦).

Features Exp a Al-illite B-Illite

a 5.22 5.24 5.24
b 9.02 9.10 9.08
c 10.07 10.09 10.08

d(001) 10.02 10.02 10.03
α 90.0 101.1 101.1
β 95.7 95.8 95.9
γ 90.0 89.9 89.9

d(Si-O) 1.65 1.67 1.67
d(B-O) 1.48

d(AlVI-O) 1.96 1.95 1.94
d(O-H) 0.97 0.97

a XRD experimental data [91].

Table 4. Interatomic distances of hydrated Al(OH)3 and B(OH)3 models (distances in Å and angles
in ◦).

Average Features

Hydrated Al(OH)3 Model Hydrated B(OH)3 Model

d(Al-O) 1.75 d(B-O) 1.37
d(O-H) 1.01 d(O-H) 1.01

α(Al-O-H) 120.11 α(B-O-H) 110.83
d(Hw-Ow) 1.05 d(Hw-Ow) 1.05

d(Hw . . . Ow) 1.50 d(Hw . . . Ow) 1.55
d(HAl . . . Ow) 1.76 d(HB . . . Ow) 1.67
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The optimization energies of the two illite models (Figure 7) are compared with the energies of
the hydrated Al(OH)3 and B(OH)3 models by proposing the next reaction:

UAl-illite + UB(OH)3↔ B-illite + UAl(OH)3 (2)

where U is the internal energy of the system. Our results shows that UAl-illite+UB(OH)3 is less stable
(−105751.2580 eV) than UB-illite + UAl(OH)3 (−105751.6327 eV) in 36.7 KJ/mol. This means that the
fixation of B on the illite tetrahedral layer instead of Al atoms is energetically favorable.Minerals 2020, 10, x FOR PEER REVIEW 15 of 27 
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in yellow, pink, green and orange, respectively.

The optimization energies of the two montmorillonite models (Figure 8) are also compared,
showing that montmorillonite with tetrahedral B is more stable (−48414.1023 eV) than montmorillonite
with interlayer B(OH)4

− (−48413.1163 eV), again proving that the incorporation of B in the tetrahedral
layer is a energetically favorable process. Furthermore, in the optimized model of montmorillonite
with interlayer K+B(OH)4

−, it can be noticed that this salt is dissociated in B(OH)3 and K+(OH)−.
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The B(OH)3 forms a H bond with basal tetrahedral O atoms, d(O . . . H) = 1.75 Å, and with the OH
anion d(O . . . H) = 1.68 Å. Our energetic result is consistent with previous empirical studies [92] that
indicated B(OH)3 dominates in the I-S interlayer space.Minerals 2020, 10, x FOR PEER REVIEW 16 of 27 
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Further calculations will be performed exploring these phyllosilicate models with different
moisture grade (water molecules) and several pressure conditions (sediments environments) to
complete this study but they are out of the scope of the present work.

5. Discussion

5.1. Clay Mineralogy and Diagenetic Evolution of Deep Sediments in the Gulf of Cádiz

TEM images and XRD data show that smectite and interstratified illite–smectite (I-S) are present as
well as other clay minerals such as detrital mica, kaolin plates and palygorskite. The chemical analyses
conducted on individual particles, indicate that all smectite and I-S phases are dioctahedral, with Al as
the main octahedral cation. Notably, Si from the smectite layers in the mixed-layered I-S decreases
as illitization progresses (Figure 5). Focusing on the nature of interlayer cations, the compositional
analysis shows a wide range of variations in the content of K, Na, Ca and Mg, but the dominant
cation is K. There is a good correlation between the interlayer K content and tetrahedral Al (Figure 4a).
From this plot, together with the observations of these morphologies by TEM (Figure 3), it can be
inferred that the increase in the illitization produces morphological and chemical changes that increases
K and tetrahedral Al in clay particles. This is supported by the percentage of illite in I-S and Reichweite
(R) estimations (Table 2 and Figure 5).

Some smectite–illite transformation characteristics can be observed in the MR3+–2R3+–3R2+ ternary
diagram (Figure 5) [86]. In this diagram, the chemical composition of clay particles is represented
together with ideal compositions of the discrete phases involved in the transformation (montmorillonite,
beidellite and illite). The dioctahedral character of the phases involved in the illitization process
is represented by the distance of the data from the 3R2+ apex. Furthermore, for illite-rich phases,
an increase in the layer charge and interlayer cations can be seen, represented by the trend of the data
towards the MR3+ apex.
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All the clay geochemical trends are related to prograde diagenetic changes, where the dominant
clay minerals provide clues about the burial/thermal history of sedimentary basins [19]. The reduction
of expandable layers or the smectite–illite transformation processes have been related to the evolution
of petroleum systems, as illitization of smectite overlaps the oil window [93–98], as discussed
by numerous papers addressing the potential for reaction through solid state transformation or
dissolution/precipitation mechanisms [17,19,61,85]. Although the coexistence of different I-S phases in
a sample can correlate with a prograde evolution in a diagenetic sequence, in this study, the physical
mixture of clay minerals may come from different stratigraphic units as a result of fluid expulsion
during emplacement of the mud volcano [13]. Nevertheless, morphological changes observed by
TEM (polygonal to euhedral) point to similar mechanisms described previously [85] in a series of
experimental hydrothermal conditions as seen by X-ray diffraction and TEM, where they suggest
illitization mechanism driven by dissolution/crystallization processes.

MV clay mineral samples in this study, with δ11B values ranging from +2.2 to 12.7 and an average
of −2.2%� fixed-B abundances, are relatively high, 82–145 ppm. Again, a precipitation process is the
most probable mechanism to incorporate B in the tetrahedral layer of illite as described previously by
the authors of [68,99], showing that, during diagenesis, as temperatures approach 120 ◦C, B-adsorption
becomes negligible and substitution of Si by B occurs as illite forms [100]. Molecular models presented
in this work are in agreement with this statement, as these calculations prove that it is energetically
favorable for B to reside in the tetrahedral sites of illite. Although B-O bonds in the tetrahedral layer
are shorter (1.48 Å) than Al-O and Si-O bonds (1.78 and 1.67 Å, respectively), the lattice parameters of
B-illite models are similar to the Al-illite model and to the experimental illite values, meaning that the
incorporation of B in tetrahedral sites has no effect on the crystal structure.

Boron geochemistry has been studied recently in different environments as an indicator of fluid
circulation and diagenetic grade. A set of samples from different mud volcanoes around the world as
indicators of progressive diagenesis show a good correlation between B contents and δ11B isotopic
values [101,102], although these studies did not carefully separate tetrahedral B from interlayer (trigonal)
B. Besides B, the uptake of N in illite (as NH4

+ substituting for K+) increases during diagenesis as
illitization proceeds and has been studied in hydrocarbon-bearing sedimentary basins suggesting a
kerogen source for both elements [32,103–105]

The nature of clay and clasts present in the mud breccia of the Gulf of Cádiz mud volcanoes can be
used to infer the possible depth of the underlying units [42,56]. In Yuma mud volcano in the Moroccan
margin, more than 200 clasts from the mud breccia were studied [106], displaying a very complex
mixture of material from the sedimentary successions. The reconstructed sedimentary succession
showed sediments at least as old as Eocene, with the presence of several clayey units Miocene in age
(Aquitanian and Tortonian).

The detailed clay mineral characterization and the chemical composition made in this study
indicates that although I-S content can vary among the mud volcanoes, the clay mineralogy is similar
to that found in Tertiary units (Miocene in age) common in Mediterranean Messinian sediments.
The Messinian clay minerals taken in DSDP legs 13 and 42A contained large amounts of smectite
and are constant throughout the Mediterranean Basin [107,108]. Similar results were found by [109]
and [110] in the Lower Messinian in Sicily or by [111] in the Upper Cenomanian–Turonian sediments in
the high Atlas in Morocco. In addition, clays (dioctahedral smectite and illite) are a common component
in the Miocene–Pliocene lithostratigraphic formations (Gibraleon clays) of the lower Guadalquivir
Basin [112–114].

Based on the δ11B values of I-S in MVs of the Gulf of Cádiz (−12.7%� to +5.3%�; Table 5), the average
clays equilibrated in fluid with δ11B < 10%�, (calculated using the mineral-water fractionation factor
1000 ln α min-water = 3.28 − 10.35 (1000/T); [33], which is significantly more 10B-enriched than seawater
(+39%�). We interpret the B-isotope composition of the I-S in MVs of the Gulf of Cádiz to result from
illitization of the smectite-rich sediments, probably from Messinian sources over a range of temperature
during organic maduration of primary source rocks (~80–150 ◦C). Hydrocarbon-related fluids generated
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at temperatures of methane production (~150 ◦C) are enriched in 10B [24,115], thus hydrocarbon related
fluids are the likely source of isotopically light B in I-S in all the studied samples, from north to south
and from the shelf to 1639 m depth. There are no mineralogical sources in these sediments that could
be a source of such high concentrations of 10B-enriched fluids.

Table 5. Boron isotope analysis. mw, Mannitol washed samples; xc, NH4Cl exchanged samples.
Standard IMt-1 is analyzed to determine IMF for each analytical session. This value is subtracted from
the delta value. SE is standard error of the average. PE is predicted error, which is the best possible
error based on counting statistics.

Sample Preparation 11/10 IMF δ11B SE %� PE %� n B (ppm)

M3 10-14
mw 39.192 −27.8 −3 1.0 0.9 3 142
xc 39.151 −27.8 −4 0.3 0.8 3 132

M4 18-22
mw 39.139 −27.8 −4.3 0.6 1.0 3 104
xc 39.090 −27.8 −5.5 0.5 0.5 2 88

M8 58-62
mw 39.568 −27.8 6.3 2.0 1.4 3 96
xc 39.361 −27.8 1.2 0.5 0.4 2 82

M12
66-70

mw 39.163 −27.8 −3.7 0.9 0.5 2 99
xc 39.115 −27.8 −4.9 0.1 0.6 2 89

M14
138-142

mw 39.030 −27.8 −7 0.1 0.6 2 105
xc 38.965 −27.8 −8.6 0.5 0.5 2 102

M25
34-38

mw 39.305 −24.6 −3.4 0.6 0.4 2 137
xc 39.192 −24.6 −6.2 0.6 0.4 2 134

M26
50-54

mw 39.224 −24.6 −5.4 0.6 0.3 2 101
xc 39.204 −24.6 −5.9 0.5 0.4 2 94

M27
18-22

mw 39.442 −24.6 0 0.7 0.3 2 146
xc 39.236 −24.6 −5.1 0.8 0.4 2 141

M29
106-110

mw 39.337 −24.6 −2.6 0.5 0.3 2 132
xc 39.171 −24.6 −6.7 0.6 0.3 2 122

C3 32-33
mw 39.685 −24.6 6 0.6 0.3 2 126
xc 39.657 −24.6 5.3 0.8 0.5 2 115

C4 36-37
mw 39.644 −24.6 5 0.7 0.5 2 113
xc 39.499 −24.6 1.4 0.6 0.4 2 103

C7 38-39
mw 39.309 −24.6 −3.3 0.6 0.4 2 120
xc 39.058 −24.6 −9.5 0.6 0.4 2 113

C8 23-24
mw 39.596 −24.6 3.8 0.9 0.5 2 163
xc 39.297 −24.6 −3.6 0.7 0.4 2 145

C9 84-85
mw 39.220 −31.8 1.7 0.5 0.4 2 97
xc 39.050 −31.8 −2.5 0.5 0.4 2 96

C10
27-28

mw 39.001 −31.8 −3.7 0.6 0.4 2 137
xc 38.892 −31.8 −6.4 0.7 0.4 2 121

A2 48-50
mw 38.908 −31.8 −6 0.7 0.4 2 139
xc 38.840 −31.8 −7.7 0.8 0.4 2 138

A4 48-50
mw 38.913 −31.8 −5.9 0.8 0.4 2 129
xc 38.638 −31.8 −12.7 0.8 0.4 2 117

A8
110-111

mw 39.446 −31.8 7.3 0.8 0.4 2 111
xc 39.200 −31.8 1.2 0.7 0.4 2 110

A14
26-30

mw 39.628 −31.8 11.8 0.7 0.5 2 125
xc 39.240 −31.8 2.2 0.7 0.4 2 122

5.2. B Isotopes and Origin of Fluids in the Gulf of Cádiz

The affinity of the light isotope 10B for tetrahedral coordination and the heavy isotope 11B for
trigonal coordination was shown by [27]. Hence, during illitization, clay minerals will concentrate 10B
in the process of crystallization under hydrothermal conditions [24]. It was shown [116] that kerogen
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in the Gulf of Mexico sedimentary basin oil source rocks have a B isotopic composition of −4%� to
+10%�. B-isotopic values from Gulf of Cadiz mud volcano samples are similar to those previously
reported by [116] (Figure 9). However, mud volcano samples show higher dispersion of δ11B data
ranging from −7%� to +11.8%� for the bulk (mw) samples and from −12.7%� to +5.3%� for the cation
exchanged (xc) clay samples (Table 5), perhaps reflecting mineralogical variations arising from mixed
fluid sources, as expected in the processes of expulsion of fluids in a mud volcano. Table 5 shows that
there are small differences in isotopic compositions between mannitol and cation exchanged samples
indicating that the interlayer B is isotopically heavier than the tetrahedral-B.
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Figure 10 represents B concentration and B isotope composition of MV from different locations.
It can be seen that the pore fluids from MV clay minerals are 11B-enriched compared to the clay
minerals. While this may in part reflect the mineral–water fractionation of B, it also reflects the
mixing of basinal water with seawater (+39.5%�). Using the B-isotope fractionation equation for pH
< 7 [33], the fractionation between illite and water at 150 ◦C (methane generation temperature) is
−1.2%�. Therefore, an illite precipitated with δ11B −12.7%� (Table 5, Sample A4 48-50 (xc)) would be in
equilibrium with +8.4%� water. This isotopically light δ11B water composition, compared to seawater,
is consistent with 10B enrichment from organic sources. Furthermore, Gulf of Cádiz MV samples show
δ11B compositions near values associated with source rock kerogen samples in other hydrocarbon-rich
sedimentary basins (e.g., [99]). The higher δ11B values measured in some samples (up to +5.3%�)
may represent more mixing with seawater or samples less influenced by hydrocarbon-related waters.
Seawater contains only about 5 ppm B, thus the high B content of the mud volcanoes requires a high
fluid:rock ratio, as expected for MVs. Furthermore, where the water pH was higher than ~8, B(OH)4

−

dominates the fluid, and, because 10B prefers tetrahedral coordination, there is little fractionation
between B(OH)4

− dominated fluid and illite [28].
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Figure 10. Summary of data of B-isotope trends and fluid/rock interactions in sedimentary basins:
white squares, fixed B in xc; gray triangles, total B mw samples; 1, 2, Barbados pore fluids and
mud respectively [117]; 3, 4, Makran pore fluids and mud [118]; 5, 6, Mediterranean pore fluids and
mud [119]; 7, 8, Malaysia pore fluids and mud [120]; and 9, 10, 11, Seawater, source rock kerogen and
muscovite pods from Gulf of Mexico, respectively [24].

These data are consistent with previous results shown by [43,45], based on Li and Sr isotope
data from interstitial water, suggesting that the fluid geochemistry in MVs from the Gulf of Cádiz is
influenced by overpressuring caused by clay dehydration at several kilometers depth. Temperatures
approached 150 ◦C where thermogenic methane is produced and illitization ends. These clay and
marl units underneath mud volcanoes in the Gulf of Cádiz, are Mesozoic and Tertiary in age (mainly
Tortonian-Messinian) and have been considered as the oil source rock in the area [44]. A complex
scenario of hydrocarbon fluid generation at depth and migration to the upper units, dehydration of
clays and mixing with methane-rich fluids, and a later mixing with shallow gas was proposed by [121]
to explain the distinct composition of fluids of this area. The detailed clay mineral characterization
together with the B-isotopic composition is used in this study to provide additional information on the
fluid geochemistry obtained in this area by the authors of [43–46,121,122]. These new data allow us to
corroborate that illitization is an important process in the generation of fluids in MVs and can be one of
the driving forces of mud volcanism in the area. Boron geochemistry is also relevant in elucidating both
mineral processes and fluid origins, as previously proposed by the authors of [25,43,102]. This also is
in agreement with other works that show the importance of the relationship of clays and petroleum in
oil formation, migration, accumulation and storage [122,123].

6. Conclusions

Mud volcanoes in the marine environment usually involve a mixture of clays dragged up by fluids
from underlying units of various depths. The detailed characterization of the clays, as well as B isotopic
compositions contributes to our understanding of the geological model of the area. Those data show
that mixed-layer illite–smectite phases and other clay minerals present in the mud volcano samples
were derived from depths where temperatures were great enough to generate B from organic source
rock. The illitization process occurs at temperatures close to oil generation [37]. During the illitization
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process, B released from kerogen, enriched in 10B, was incorporated into the tetrahedral layer of
diagenetic illite. The Gulf of Cadiz MVs are dominated by minerals with high B-content and low δ11B,
suggesting that they formed at depth, in equilibrium with hydrocarbon-related fluids at temperatures
hot enough to have generated methane that is associated with these MVs. This interpretation is
supported by theoretical atomistic calculations demonstrating the preferred incorporation of 10B in
the tetrahedral sheet rather than in the interlayer space of the I-S. From an oil industry point of view,
this contribution is very important, as it helps to prospect for hydrocarbon reservoirs, since δ11B gives
information on the organic matter maturation state of the oilfield.
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