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Abstract: This paper is concerned with the least-squares linear estimation problem for a class of discrete-time networked
systems whose measurements are perturbed by random parameter matrices and time-correlated additive noise,
without requiring a full knowledge of the state-space model generating the signal process, but only information
about its mean and covariance functions. Assuming that the measurement additive noise is the output of a
known linear system driven by white noise, the time-differencing method is used to remove this time-correlated
noise and recursive algorithms for the linear filtering and fixed-point smoothing estimators are obtained by an
innovation approach. These estimators are optimal in the least-squares sense and, consequently, their accuracy
is evaluated by the estimation error covariance matrices, for which recursive formulas are also deduced. The
proposed algorithms are easily implementable, as it is shown in the computer simulation example, where they
are applied to estimate a signal from measured outputs which, besides including time-correlated additive noise,
are affected by the missing measurement phenomenon and multiplicative noise (random uncertainties that can
be covered by the current model with random parameter matrices). The computer simulations also illustrate
the behaviour of the filtering estimators for different values of the missing measurement probability.

1 INTRODUCTION

The signal estimation problem in networked systems
is usually based on measurements that are perturbed
not only by additive noises, but also by other stochas-
tic disturbances from multiple sources, which might
be caused, for example, by the degradation of the
measuring devices or the presence of multiplicative
noises. Such random disturbances are usually inher-
ent to the network itself (network-induced uncertain-
ties) and they must be taken into account in the design
of both the observation models and the estimation al-
gorithms, so as to get proper estimations. For this rea-
son, the study of the estimation problem in this kind
of systems with one or several network-induced un-
certainties has become a hot research topic over the
last years (see e.g. (Gao and Chen, 2014), (Chen
et al., 2015), (Tian et al., 2016), (Caballero-Águila
et al., 2017), (Zhao et al., 2018), (Liu et al., 2018) and
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(Yang et al., 2019)).
The introduction of random parameter matrices in

the mathematical model of the measured outputs pro-
vides a global frame to deal with some of the most
common network-induced uncertainties (multiplica-
tive noise, sensor gain degradation or missing mea-
surements, among others). This fact is boosting the
rise of several estimation algorithms in networked
systems with random parameter matrices under dif-
ferent assumptions about the noises and the processes
involved (see e.g. (Yang et al., 2016), (Sun et al.,
2017), (Wang and Zhou, 2017), (Caballero-Águila
et al., 2018), (Han et al., 2018) and (Caballero-Águila
et al., 2019)).

Another relevant issue when addressing the esti-
mation problem is the presence of non-white additive
noises perturbing the sensor measurements. Conven-
tional estimation algorithms usually provide accurate
estimations when the additive noise is either white or
correlated on a finite-time interval. However, we of-
ten come across more general situations involving se-
quentially time-correlated measurement noise, which
is usually the output of a linear system with white
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noise. The design of recursive estimation algorithms
in this class of systems with time-correlated noise
is addressed, for instance, in (Liu, 2016), (Li et al.,
2017) or (Liu et al., 2017) and the time-differencing
approach is conventionally applied to deal with this
kind of noise correlation.

Bearing these considerations in mind, this paper
addresses the least-squares linear filtering and fixed-
point smoothing problems of discrete-time stochastic
signals under the following conditions:

Covariance Information. The state-space model gen-
erating the signal process is not necessarily known
and only information about its mean and covari-
ance functions are required in its stead.

Random Parameter Matrices. The measured outputs
can be corrupted by random uncertainties, which
are modelled in a comprehensive way by random
parameter matrices.

Time-correlated Measurement Noises. The additive
noise in the measurements is described by a
discrete-time linear model perturbed by white
noise.

The use of the time-differencing approach allows us
to transform the original measured data into an equiv-
alent set of transformed measurements, that are per-
turbed by white noise, and the problem is then re-
duced to find the optimal estimators based on this new
set of observations. For this purpose, the innovation
approach is used and recursive algorithms are derived
for the filtering and fixed-point smoothing problems.

The remainder of this paper is divided into four
sections. The measurement model and the problem
formulation are described in Section 2, where the
time-differencing approach is also detailed. Section
3 discusses the derivation of the filtering and fixed-
point smoothing algorithms, based on the innovation
technique. Section 4 illustrates the application of such
algorithms by a numerical simulation example, where
the performance of the estimators is assessed in terms
of their error variances. Finally, some concluding re-
marks are included in Section 5.

2 PROBLEM FORMULATION

The goal of this paper is to find a recursive algorithm
for the least-squares (LS) linear filtering and fixed-
point smoothing estimators of a discrete-time random
signal from noisy measurements which are perturbed
by random parameter matrices and time-correlated
additive noise vectors. The estimation problem will
be addressed using covariance information; that is, we
will assume that the evolution model of the signal to

be estimated is unknown and only information about
the mean and covariance functions of the signal and
the processes involved in the observation model are
available.

More precisely, consider the following observa-
tion model with random parameter matrices:

zk = Hkxk + vk, k ≥ 1, (1)

where, at each sampling time k, xk ∈ Rnx is the signal
vector to be estimated, zk ∈ Rnz is the measurement
vector at time k. The following assumptions on the
processes involved in (1) are required:

(i) {xk}k≥1, the signal process, has zero mean and
its covariance function is factorized as

E
[
xkxT

s
]
= ΛkΨ

T
s , s≤ k,

where, for k ≥ 1, Λk,Ψk ∈ Rnx×n are known ma-
trices.

(ii) {Hk}k≥1 is a sequence of independent random
parameter matrices, whose entries hk,pq, for
p = 1, . . . ,nz and q = 1, . . . ,nx, have known
means, E[hk,pq], and second-order moments,
E[hk,pqhk,p′q′ ], for p, p′ = 1, . . . ,nz and q,q′ =
1, . . . ,nx.

(iii) {vk}k≥1 is a zero-mean time-correlated noise
process such that

vk = Ak−1vk−1 +βk−1, k ≥ 1, (2)

where {Ak}k≥0 are known matrices, {βk}k≥0 is a
zero-mean white noise with covariance matrices
E[βkβT

k ] = Bk, and v0 is a random vector with
zero mean and covariance matrix V0.

(iv) The random vector v0 and the processes
{xk}k≥1, {Hk}k≥1 and {βk}k≥0 are mutually in-
dependent.

2.1 Time-differencing Approach

To address the LS estimation problem from the mea-
sured outputs (1) perturbed by time-correlated addi-
tive noise, such measurements are transformed with
the aim of removing the correlated noise. For that
purpose, the time-differencing approach (Liu, 2016)
is used to define a new set of measurements, whose
additive noise is not time-correlated, according to the
following model:

yk = zk−Ak−1zk−1, k ≥ 2; y1 = z1. (3)

Then, if we substitute (1) into the above equation and
we use (2) for vk, we obtain

yk = Hkxk−Ak−1Hk−1xk−1 +βk−1, k ≥ 2;
y1 = z1.

(4)
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Remark 1. Note that, since yh, for h = 2, . . . ,L, is
obtained from zh−1 and zh, the sets {y1, . . . ,yL} and
{z1, . . . ,zL} are equivalent in the sense that they can
be obtained one from the other by linear transforma-
tions. Consequently, LS linear estimator of xk based
on the original measurements {z1, . . . ,zL} given in (1)
is just equal to that based on the new measurements
{y1, . . . ,yL} given in (4). So, in order to address this
estimation problem, the first and second-order statis-
tical properties of the process {yk}k≥1 are necessary.
Remark 2. The assumptions on the model guarantee
that the process {yk}k≥1 given in (4) has zero mean
and its covariance matrices Σ

y
k ≡ E

[
ykyT

k

]
, k≥ 1, sat-

isfy

Σ
y
k = ΣHx

k,k−ΣHx
k,k−1AT

k−1−Ak−1ΣHx
k−1,k

+Ak−1ΣHx
k−1,k−1AT

k−1 +Bk, k ≥ 2;
Σ

y
1 = ΣHx

1 +A0V0AT
0 +B0,

(5)

where ΣHx
k,s ≡ E

[
HkxkxT

s HT
s
]

is given by

Σ
Hx
k,s = E[HkΛkΨ

T
s HT

s ] =

{
HkΛkΨT

s HT
s , s < k,

E[HkΛkΨT
k HT

k ], s = k,
(6)

with Hk ≡ E[Hk], k ≥ 1, and the (p, p′)-th entries of
the above matrices E[HkΛkΨT

k HT
k ] are calculated by(

E
[
HkΛkΨT

k HT
k

])
pp′

=
nx

∑
q=1

nx

∑
q′=1

E[hk,pqhk,p′q′ ](ΛkΨ
T
k )qq′ , p, p′= 1, . . . ,nz.

3 LS LINEAR ESTIMATION
ALGORITHMS

Given the set of measurements {y1, . . . ,yL} in (4), the
aim in this Section is to design recursive algorithms
for the optimal estimators x̂k/L within the class of lin-
ear estimators of the signal xk, based on these mea-
surements, using the LS optimality criterion. Specif-
ically, recursive algorithms for the filter, x̂k/k, and
smoother, x̂k/k+N , at the fixed point k for any N ≥ 1,
will be obtained.

3.1 Preliminary Results

Since the LS linear estimator of the signal, x̂k/L, is
the orthogonal projection of the signal xk over the lin-
ear space spanned by the observations {y1, . . . ,yL},
which generally are non-orthogonal vectors, to ob-
tain the estimation algorithms we will use a inno-
vation approach (Kailath et al., 2000). According
to such approach, the observation process {yk}k≥1 is
transformed into an equivalent one, named innova-
tion process, of orthogonal vectors {µk}k≥1, defined

by µk = yk − ŷk/k−1, where ŷk/k−1 is the orthogonal
projection of yk onto the linear space generated by
{µ1, . . . ,µk−1}, with ŷ1/0 = E[y1] = 0.

Therefore, the LS linear estimator, α̂k/L, of
any random vector αk based on the observations
{y1, . . . ,yL}, can be calculated as a linear combina-
tion of the corresponding innovations, {µ1, . . . ,µL}.
Namely, denoting Πh = E[µhµT

h ], the LS linear esti-
mator α̂k/L is expressed as the following linear com-
bination of the innovations:

α̂k/L =
L

∑
h=1

E[αkµT
h ]Π

−1
h µh. (7)

3.1.1 Observation Predictor

Starting from expression (4) of the observations yk,
and taking into account that Hk−1 is correlated with
the innovation µk−1, to obtain the predictor ŷk/k−1 the
observations yk are rewritten as follows:

yk = Hkxk−Ak−1Hk−1xk−1 +Wk−1, k ≥ 2, (8)
where Wk = βk−Ak

(
Hk−Hk

)
xk, k ≥ 1.

Then, according to the projection theory, we have:
ŷk/k−1 = Hkx̂k/k−1−Ak−1Hk−1x̂k−1/k−1 +Ŵk−1/k−1.

Now, to obtain the estimator Ŵk/k we use the gen-
eral expression (7). Since Hk is independent of
µ1, . . . ,µk−1, it is easy to see that E[WkµT

h ] = 0, for
h < k, hence, denoting Wk ≡ E

[
WkµT

k

]
, from (7) we

have that Ŵk/k = WkΠ
−1
k µk, k ≥ 1. So, the observa-

tion predictor ŷk/k−1 satisfy:

ŷk/k−1 = Hkx̂k/k−1−Ak−1Hk−1x̂k−1/k−1
+Wk−1Π

−1
k−1µk−1, k ≥ 2.

(9)

Now, we derive an expression for Wk = E
[
WkµT

k

]
.

Since E[WkµT
h ] = 0, for h < k, it is clear that Wk =

E
[
WkyT

k

]
. Using (8) for yk, we have that E

[
WkyT

k

]
=

E
[
WkxT

k HT
k

]
, and, from the definition of Wk, we ob-

tain that Wk = E
[
WkµT

k

]
is calculated by

Wk =−Ak
(
Σ

Hx
k,k−HkΛkΨ

T
k HT

k
)
, k ≥ 1, (10)

where ΣHx
k,k is given in (6).

3.2 LS Linear Filtering Algorithm

The starting points to derive the proposed LS linear
recursive algorithm for the filtering estimators, x̂k/k,
are the general expression (7) for the estimators as
linear combination of the innovations, along with ex-
pression (9) for the one-stage observation predictor.
Also, a recursive formula for the filtering error co-
variance matrices, Σk/k ≡ E

[
(xk− x̂k/k)(xk− x̂k/k)

T
]
,

is obtained in this Section. These covariance matrices
are used to assess the accuracy of the filtering estima-
tors x̂k/k when the LS criterion is used.
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3.2.1 Signal Filtering Estimators

From the general expression (7), obtaining the signal

filter, x̂k/k =
k

∑
h=1

Xk,hΠ
−1
h µh, k ≥ 1, requires calcula-

ting the coefficients

Xk,h≡E
[
xkµT

h
]
=E

[
xkyT

h
]
−E
[
xkŷT

h/h−1
]
, 1≤ h≤ k.

Expression (4) for yh and the separable form of
the signal covariance, specified in assumption (i), lead
easily to

E[xkyT
h ] = Λk

(
HhΨh−Ah−1Hh−1Ψh−1

)T
, k ≥ 2;

E[xkyT
1 ] = ΛkH1Ψ1.

(11)
From now on, the following operator will be used

for notational simplicity:

H ϒk ≡ Hkϒk−Ak−1Hk−1ϒk−1, k ≥ 2;
H ϒ1 ≡ H1ϒ1,

(12)

and it will be applied to the matrices ϒk = Λk and
ϒk = Ψk that define the signal covariance function
(see assumption (i)).

Then, from (11) and (12), it is clear that

E
[
xkyT

h
]
= ΛkH

T
Ψh
, 1≤ h≤ k,

and, using (9) for ŷh/h−1, together with (7) for x̂h/h−1
and x̂h−1/h−1, the following expression for the filter
coefficients is obtained:

Xk,h = ΛkH
T
Ψh
−

h−1

∑
j=1

Xk, jΠ
−1
j

(
HhXh, j +Ak−1Hh−1Xh−1, j

)T

−Xk,h−1Π
−1
h−1W T

h−1, 2≤ h≤ k;

Xk,1 = ΛkH
T
B1
.

Hence, if we define a function Eh satisfying

Eh = H
T
Ψh
−

h−1

∑
j=1

E jΠ
−1
j ET

j H
T
Λh
−Eh−1Π

−1
h−1W T

h−1, h≥ 2;

E1 = H
T
Ψ1

,

we obtain that the coefficients Xk,h can be expressed
as follows:

Xk,h = ΛkEh, 1≤ h≤ k.

So, by defining the vectors

ek ≡
k

∑
h=1

EhΠ
−1
h µh, k ≥ 1,

and using (7) for x̂k/k, it is clear that the signal filtering
estimators are given by

x̂k/k = Λkek, k ≥ 1.

Now, using this expression and defining

Ke
k ≡ E

[
ekeT

k
]
=

k

∑
h=1

EhΠ
−1
h ET

h , k ≥ 1,

a formula for the filtering error covariance matrix
Σk/k is derived. Actually, from the Orthogonal Pro-
jection Lemma (OPL), we rewrite Σk/k = E

[
xkxT

k

]
−

E
[
x̂k/kx̂T

k/k

]
; then, since E

[
x̂k/kx̂T

k/k

]
=ΛkKe

k ΛT
k , using

assumption (i) for E
[
xkxT

k

]
, we have

Σk/k = Λk (Ψk−ΛkKe
k )

T , k ≥ 1.

Bearing in mind the preceding results, using the
OPL to write the innovation covariance matrix as

Πk = E[ykyT
k ]−E[ŷk/k−1ŷT

k/k−1],

and taking into account that E[ŷk/k−1eT
k−1] = H

T
Ψk
−

Ek, the recursive filtering algorithm below can be de-
duced without trouble.

3.2.2 Recursive Filtering Algorithm

Under hypotheses (i)-(iv), the LS linear filter, x̂k/k,
and the corresponding error covariance matrix, Pk/k,
are given by

x̂k/k = Λkek, k ≥ 1
Σk/k = Λk

(
Ψk−ΛkKe

k

)T
, k ≥ 1,

where the vectors ek and the matrices Ke
k = E[ekeT

k ]
are recursively obtained from

ek = ek−1 +EkΠ
−1
k µk, k ≥ 1; e0 = 0,

Ke
k = Ke

k−1 +EkΠ
−1
k ET

k , k ≥ 1; Ke
0 = 0,

and the matrices Ek = E[ekµT
k ] satisfy

Ek = H
T
Ψk
−Ke

k−1H
T
Λk
−Ek−1Π

−1
k−1W T

k−1, k ≥ 2;

E1 = H
T
Ψ1
.

The innovations, µk, are given by

µk = yk−H Λk ek−1−Wk−1Π
−1
k−1µk−1, k ≥ 2;

µ1 = y1,

and the innovation covariance matrices, Πk, are ob-
tained by

Πk = Σ
y
k−H Λk(H

T
Ψk
−Ek)

−Wk−1Π
−1
k−1

(
H Λk Ek−1 +Wk−1

)T
, k ≥ 2;

Π1 = Σ
y
1.

The vectors yk are given in (3), and the matrices Σ
y
k

and Wk are calculated by expressions (5) and (15),
respectively. Finally, the notations H Λk and H Ψk are
defined in (12).
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3.3 LS Linear Smoothing Algorithm

The goal in this Section is to derive a recursive algo-
rithm for the LS linear smoothing estimators, x̂k/k+N ,
at the fixed point k, for any N ≥ 1, as well as, a recur-
sive formula for the smoothing error covariance ma-
trices, Σk/k+N ≡ E

[
(xk− x̂k/k+N)(xk− x̂k/k+N)

T
]
.

3.3.1 Recursive Fixed-point Smoothing
Algorithm

Under hypotheses (i)-(iv), for each k ≥ 1, the LS li-
near fixed-point smoothers, x̂k/k+N , N ≥ 1, are calcu-
lated by

x̂k/k+N = x̂k/k+N−1 +Xk,k+NΠ
−1
k+Nµk+N , N ≥ 1,

(13)
with initial condition given by the filter, x̂k/k.

The matrices Xk,k+N ≡ E
[
xkµT

k+N

]
are recursively

obtained by

Xk,k+N =
(
Ψk−Mk,k+N−1

)
H

T
Λk+N

−Xk,k+N−1Π
−1
k+N−1W T

k+N−1, N ≥ 1;
Xk,k = ΛkEk,

(14)
where Mk,k+N ≡ E[xkeT

k+N ] satisfy the following re-
cursive formula

Mk,k+N = Mk,k+N−1 +Xk,k+NΠ
−1
k+NET

k+N , N ≥ 1;
Mk,k = ΛkKe

k .
(15)

The fixed-point smoothing error covariance matrices,
Σk/k+N , are obtained by

Σk/k+N = Σk/k+N−1−Xk,k+NΠ
−1
k+NX T

k,k+N , N ≥ 1,

with initial condition given by the filtering error co-
variance matrix Σk/k.

3.3.2 Smoothing Algorithm Derivation

Using the general expression (7), the smoothing esti-

mators are written as x̂k/k+N =
k+N

∑
h=1

Xk,hΠ
−1
h µh, N ≥ 1;

hence, it is clear that, starting from the filter, x̂k/k, the
fixed-point smoothing estimators are recursively ob-
tained by (13).

To obtain the recursive relation (14) for Xk,k+N =

E
[
xkyT

k+N

]
−E
[
xkŷT

k+N/k+N−1

]
, N ≥ 1, we proceed as

follows:
− On the one hand, the assumption (i) together with

(12), yield
E
[
xkyT

k+N
]
= ΨkH

T
Λk+N

.

− On the other, using that

ŷk/k−1 = H Λk ek−1 +Wk−1Π
−1
k−1µk−1,

it is clear that

E
[
xkŷT

k+N/k+N−1

]
= E

[
xkeT

k+N−1

]
H

T
Λk+N

+Xk,k+N−1Π
−1
k+N−1W T

k+N−1, N ≥ 1.

Therefore, denoting Mk,k+N = E
[
xkeT

k+N

]
, expression

(14) holds and, using the recursive relation for the
vectors ek, given in the filtering algorithm, the recur-
sive expression (15) for the matrices Mk,k+N is also
straightforward.

Finally, using (13) for the smoothers x̂k/k+N , the
recursive formula for the fixed-point smoothing error
covariance matrices, Σk/k+N , is immediately deduced,
and the smoothing algorithm is proven. �

4 COMPUTER SIMULATION
RESULTS

This section analyzes a numerical simulation example
to illustrate the application of the recursive filtering
and fixed-point smoothing algorithms proposed in the
current paper.

Specifically, we consider that the signal to be es-
timated is a scalar signal {xk}k≥1 which is generated
by the following first-order autoregressive model

xk+1 = 0.95xk +ωk, k ≥ 1,

where {ωk}k≥1 is a zero-mean white Gaussian noise
with constant variance Var[ωk] = 0.1, for all k. The
autocovariance function of this signal is

E[xkxs] = 1.025641×0.95k−s, s≤ k

which, in accordance with the assumption (i) on
the theoretical model, can be factorized in a semi-
degenerate kernel form, taking, for example,

Λk = 1.025641×0.95k, Ψk = 0.95−k.

The measured outputs of this signal are assumed
to be described by the following model with missing
measurements and multiplicative noise:

zk = θk (1+0.9εk)xk + vk, k ≥ 1,

where
{

θk
}

k≥1 is a sequence of independent
Bernoulli random variables with constant probabili-
ties, P

(
θk = 1

)
= θ. Hence 1− θ is the probability

that the signal is absent in the measurements; that is,
the missing measurement probability. The multiplica-
tive noise,

{
εk
}

k≥1, is a zero-mean Gaussian white
process with unit variance.

The additive noise, {vk}k≥1, is a zero-mean time-
correlated noise process such that

vk = 0.4vk−1 +βk−1, k ≥ 1,
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Figure 1: Error variance comparison of the filter and
smoothers, when θ = 0.5.

where {βk}k≥0 is also a zero-mean Gaussian white
process with unit variance, and v0 is a standard gaus-
sian random variable.

Finally, we assume that the processes involved in
the system model satisfy the independence hypothe-
ses assumptions imposed on the theoretical model.

The proposed algorithms have been implemented
in a MATLAB program to obtain the filtering and
fixed-point smoothing estimators, as well as the cor-
responding estimation error variances. Fifty iterations
of this program have been run to show the feasibil-
ity and effectiveness of the proposed estimation algo-
rithms. The estimation accuracy has been examined
by analyzing the error variances for different proba-
bilities, θ, of the Bernoulli variables modelling the
missing measurement phenomenon.
Performance of the Filtering and Smoothing Estima-
tors. The performance of the proposed LS linear es-
timators, measured by the estimation error variances,
has been assessed when θ = 0.5. The error variances
of both filtering and smoothing estimators are dis-
played in Figure 1 which shows that the error vari-
ances corresponding to the smoothers are less than
those of the filters (and, consequently, the perfor-
mance of the smoothing estimators is better), as it
could be expected. From this figure it is also gath-
ered that the estimation accuracy of the smoothers at
each fixed-point, k, becomes better as the number of
available observations increases.
Influence of the Probability θ. Analogous results to
those shown in Figure 1 are obtained for other values
of the probability θ that the signal is present in the
measurements. A global analysis of the filtering er-
ror variances versus the probability θ is presented in
Figure 2. From this figure, it is inferred that as θ de-
creases (and, consequently, the missing measurement
probability, 1− θ, increases) the filtering error vari-
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Figure 2: Filtering error variances versus θ.

ance becomes greater and, hence, as expected, worse
estimations are obtained. Similar results are deduced
for the fixed-point smoothers.

5 CONCLUSIONS

Based on the LS optimality criterion, optimal algo-
rithms have been designed for the linear filtering and
fixed-point smoothing estimators of discrete-time ran-
dom signals using measured outputs with random pa-
rameter matrices and time-correlated additive noise.
The use of random parameter matrices yields a widely
applicable measurement model, which is suitable to
cope with different network-induced uncertainties in
the sensor measurements. The additive measurement
noise is assumed to obey a dynamic linear equation
corrupted by white noise. As it is usual in these
situations, the time-differencing approach has been
adopted to define, at each sampling time, an equiv-
alent measurement, which is a linear combination of
two consecutive measurements. After this transfor-
mation, we get an equivalent set of measurements,
where the time-correlation of the noise has been elim-
inated. Since the LS estimators of the signal based on
the original set of observations is equal to that based
on the new set of transformed observations, the orig-
inal estimation problem is simplified and reduced to
that of designing recursive algorithms for the filter-
ing and fixed-point smoothing estimators of the sig-
nal based on the transformed measurements. The al-
gorithm design has been carried out by an innova-
tion approach and without requiring the knowledge
of the signal evolution model, but only the first and
second-order moments of the processes involved in
the measurement model. To conclude, some com-
puter simulations have shown how the proposed al-
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gorithms are applicable to some common engineering
problems, involving missing measurements and mul-
tiplicative noise, which satisfy the system model un-
der consideration.
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